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Nonlocal transport of heat in equilibrium drift-diffusion systems
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The amount of heat an integer quantum Hall edge state can carry in equilibrium is quantized in universal

units of the heat flux quantum Jq = πk2
B

12h̄ T 2 per edge state. We address the question of how heat transport
in realistic one-dimensional devices can differ from the usual chiral Luttinger liquid theory. We show that a
local measurement can reveal a nonquantized amount of heat carried by the edge states, despite a globally
equilibrium situation. More specifically, we report a heat enhancement effect in edge states interacting with
Ohmic reservoirs in the presence of nonlocal interactions or chirality-breaking diffusive currents. In contrast
to a nonequilibrium, nonlinear drag effect, we report an equilibrium, linear phenomenon. The chirality of the
edge states creates additional correlations between the reservoirs, reflected in a higher-than-quantum heat flux
in the chiral channel. We show that for different types of coupling the enhancement can be understood as static
or dynamical back action of the reservoirs on the chiral channel. We show that our results qualitatively hold
by replacing the dissipative Ohmic reservoirs by an energy-conserving mesoscopic capacitor and consider the
respective transmission lines for different types of interaction.
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I. INTRODUCTION

One-dimensional systems, especially quantum Hall (QH)
systems, provide an interesting platform to build quantum
thermoelectric devices due to the chiral nature of their edge
states. The theoretical framework of QH edge states contains
a lot of seeming paradoxes due to the fact that, on the one
hand, edge states show many signature properties of one-
dimensional (chiral) states, such as a quantized charge or
thermal Hall conductance [1,2] and a quantized heat flux in
thermal equilibrium [3–5], but on the other hand it is not in-
tuitively clear how strong interactions in mesoscopic devices
affect this common knowledge.

It was demonstrated that interactions introduced by cou-
pling the edge states to metallic granulas show a violation of
the perfect quantization [6,7] of heat if the system is driven out
of equilibrium. Recently, experiments found a deviation from
this perfect quantization due to unknown mechanisms [3–5]. It
was an open question whether dissipation due to the naturally
present disorder in the edges can be an explanation for this
loss of heat in the edge [8]. This motivated us, in a previous
paper, to develop an effective model of a chiral edge in the
presence of intrinsic dissipation [9]. We surprisingly found
that even in the presence of dissipation of arbitrary strength
in equilibrium the energy flux carried by the edge retains the
universal value. The dissipated heat is exactly canceled by the
back-action effect of the dissipative degrees of freedom on the
chiral edge state, guaranteeing perfect quantization.

One effect which has been studied in conventional meso-
scopic devices is the mutual electron drag effect [10,11]. A
device with an active part, driven out of equilibrium, induces
a current in a passive part of the system. Various mecha-
nisms for the drag of charge currents are known, such as

combined electron-phonon, electron-photon, and electron-ion
interactions [12–14]. In contrast to this is the thermal drag
effect, where a temperature imbalance in the system induces a
heat current, mediated by a Coulomb interaction between the
active and passive parts of the system. Recently, a similar drag
effect has been found in a chiral system consisting of two QH
edge states interacting cross capacitively through two metallic
granulas [15]. The effect leads to a heat drag if the active part
of the system is driven out of equilibrium, but it is a linear
phenomenon; it does not rely on the rectification of noise due
to a nonlinear element, as seen in other similar drag effects.

The idea of cross-capacitive coupling as a form of nonlocal
coupling was also realized in a nonchiral system and led to
a Brownian gyration effect, where the coupling leads to a
persistent current, similar to a heat pump or ratchet, where
heat was pumped from the hot to the cold reservoir by the
current [16,17].

In this paper we focus on QH edges at integer filling factors
subject to strong interactions. The goal of this paper is to
analyze the reason for the perfect quantization of heat flux
in chiral edge states with intrinsic dissipation and show how
it can be broken in equilibrium drift-diffusion systems. Our
main result is that a local measurement of heat can reveal a
nontrivial amount of heat current carried by the edge states in
a globally equilibrium system. To understand this statement,
we start from a physical model of the QH edge.

In real systems, the edge of a QH system is typically
disordered by lumps and defects, as shown in Fig. 1(a). We
assume that the disorder is characterized by a typical disorder
length scale ξ and leads to a decay of a collective mode
present in the edge [8,9] with a decay rate proportional to
ξ−1. We refer to a certain class of experiments with the ex-
perimental setup shown in Fig. 1(b) [3–5]. A quantum point
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FIG. 1. (a) Microscopic image of a disordered edge. The edge
of a quantum Hall state can be disordered and form lumps and
puddle defects. The disorder is assumed to have a characteristic
length scale ξ . We explicitly model the interaction between these
edge structures and show that a local measurement of the effective
temperature (indicated by the orange arrow) could reveal an unex-
pectedly high temperature. (b) Experimental setup to measure the
effective temperature of the edge. The experiment is done by cre-
ating a nonequilibrium distribution function in the edge, by mixing
two edge states at different chemical potentials at a quantum point
contact. After the equilibration length Leq we assume that the edge
retains a local equilibrium temperature Teq > Tbulk. The subject of
this paper concerns the effective temperature after the equilibration
has taken place and in a part of the edge subject to interactions. As we
show, Teff is not necessarily equal to Teq, depending on where and how
one measures. Since we are in a local equilibrium, we assume that our
system is subject to a boundary current with a correlation function
in local equilibrium with the corresponding temperature Teq for the
two-node setup or periodic boundary conditions for the transmission
line setup. The latter is justified since the collective mode decays and
we assume an infinite system.

contact (QPC) creates a nonequilibrium distribution function
in the edge. We do not study the equilibration in this paper
but assume that after some equilibration length Leq the edge
reaches a local thermal equilibrium temperature Teq. We can
view this as a boundary condition for the edge state and
assume that somewhere upstream of the detector we have a
boundary current with a thermal noise power corresponding to
the temperature Teq. Furthermore, the experiments show that
the edge is thermally isolated from the bulk, but this does not
exclude the possibility that the energy of the collective mode
can be dissipated to unknown degrees of freedom, e.g., to the
creation of electron-hole excitations in the edge. We will refer
to this as intrinsic dissipation.

A first attempt to study this system with a hydrodynamic
model of the edge with intrinsic dissipation [8] led to the
nontrivial problem that the definition of energy flux is not
intuitively clear. We could show that the proposed flux of
potential energy neglects the energy of electron-hole exci-
tations that is eventually given back to the edge [9]. This
back-action effect is responsible for a perfectly quantized heat
flux even in the presence of intrinsic dissipation. We showed
this by introducing a transmission line model of the disorder

FIG. 2. The transmission line (a) and the equivalent circuit of a
single reservoir of the transmission line (b). The longitudinal current
is chiral, indicated by the diodes, which have a quantum resistance
Rq = 2π h̄

e2 . Each node has a self-capacitance C and is assumed to be
floating.

at the edge, i.e., a Caldeira-Leggett-type model where impu-
rities are represented by periodic heat baths interacting with
an edge state. More specifically, we modeled a transmission
line consisting of Ohmic contacts connected via chiral edge
states; see Fig. 2(a). The main advantage of this model is the
unambiguous definition of the energy flux carried by the edge
state, since in between the reservoirs the flux is described by
free chiral bosonic edge states. The exact cancellation of the
dissipated energy and the back-action effect is a direct conse-
quence of the chirality of the edge channels. In the following
we will introduce a two-node model and a transmission line
model similar to our analysis in Ref. [9] with the difference
that we introduce nonlocal interactions or chirality-breaking
diffusive currents between the reservoirs. “Nonlocal” refers to
interactions with a range of the order of the disorder length
scale ξ . This breaks the chirality of the system locally and
allows heat to be passed from one reservoir to the next directly
without the help of a chiral edge state. The consequence of
this is that the edge state carries an anomalously high heat
flux, compensated by a deficit current passed by the nonlocal
interactions or chirality-breaking diffusive currents mediated
by quantum point contacts.

II. BACK-ACTION EFFECT OF LANGEVIN
SOURCES AND ITS EXACT CANCELLATION

Let us consider a QH edge state as a chiral, one-
dimensional channel. Each of the edge states carries heat
proportional to the bosonic current-current correlation func-
tion [18]

J = Rq

2
[〈 j2(x, t )〉 − 〈 j2(x, t )〉T =0], (1)

where T indicates the temperature. For the free noninteracting
edge, J evaluates to a universal value of a heat flux quantum

Jq = πk2
B

12h̄ T 2. In this paper, we will distinguish two different
models to describe the edge defects; see Fig. 1. At first, we
will model the edge defects by dissipative Ohmic contacts;
see also Ref. [19]. In a second model, we will revert to the
mesoscopic capacitor as a fully energy-conserving approach
using scattering theory. Under these assumptions we intro-
duce dissipation in the system effectively by considering the
edge states interacting with a lattice of heat baths, modeled
as Ohmic reservoirs [19]; see Fig. 2(a). This can be under-
stood as a variant of the Caldeira-Leggett model [20,21],
where we assume a strong system-bath coupling. A finite
coupling between the system and bath will be considered
separately.
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FIG. 3. Dynamics inside the reservoir. The capacitive interaction
mediates scattering between the incoming current jin, the Langevin
source jc, the current that is dissipated inside of the Ohmic contact
jc
out, and the outgoing current jout. The scattering is energy conserv-

ing, which can be seen by the unitarity of the scattering matrix before
tracing out the sources.

The dynamics of the Ohmic contacts are effectively gov-
erned by three relevant energy scales: The level spacing of
the reservoir Elvl, the temperature of the reservoir T , and the
charging energy Ec due to the finite capacitance C of the impu-
rities. Physically, a reservoir falls into either of two categories:
A small impurity has a large level spacing and resembles a
two-level system; however, if the impurity is large and hence
the level spacing is small, it resembles a many-level system.
We will consider the limit of infinitely small level spacing.
Finite-level-spacing effects are addressed later in this paper,
and the two-level system limit will be discussed elsewhere.
Furthermore, we assume that we are in the Coulomb blockade
regime and the following separation of energy scales holds:
Elvl � kBT � Ec.

Each Ohmic reservoir is connected to the next one via a
chiral edge state. The incident current creates electron-hole
excitations, which heat the reservoir and in turn lead to the
emission of thermal (neutral) current fluctuations, alongside
charge fluctuations; see Fig. 3. This allows us to use the
Langevin equation approach. The equivalent circuit represen-
tation of each node is shown in Fig. 2(b).

Each reservoir is characterized by a self-capacitance C and
a longitudinal (quantum) resistance Rq. The corresponding
Langevin equation tells us that at each node the outgoing
(longitudinal) current emitted by the reservoir has two con-
tributions,

jout(t ) = 1

τ
Q(t ) + jc(t ), τ = RqC, (2)

where all correlations between nodes are encoded in the col-
lective mode Q(t ) and jc(t ) is the Langevin source. This
implies that the heat in the connecting edge state where the
system is free and chiral consists of four contributions.

J ∼ Ccc + 1

τ
(Ccq + Cqc) + 1

τ 2
Cqq, (3)

where we defined the source correlation function Ccc =
〈 jc(t ) jc(t )〉, the source-charge correlation functions Ccq ∼
〈 jc(t )Q(t )〉 and Cqc ∼ 〈Q(t ) jc(t )〉, and the charge correlation
function Cqq ∼ 〈Q(t )Q(t )〉. Note that the vacuum contribution
at T = 0 needs to be subtracted.

We found the exact cancellation of the source-charge and
charge-charge correlation functions upon integrating over the

bandwidth of the system introduced by a Fourier transforma-
tion of the discrete lattice of reservoirs.

1

τ

∫
dk Cqq(k, ω) = −

∫
dk(Ccq(k, ω) + Cqc(k, ω)). (4)

This is one central result of Ref. [9]. The exact cancella-
tion of correlation functions implies an energy balance: Heat
absorbed by a reservoir ∼Cqq will later be reemitted as thermal
fluctuations ∼Ccq + Cqc. This back-action effect guarantees
that the heat carried by the edge state is always an equilibrium
heat flux quantum J ∼ Ccc = Jq independent of the strength
of dissipation introduced by the transverse interaction.

The result above can be understood in yet another way and
is a direct consequence of the local nature of heat transport.
Imagine cutting the transmission line into a segment, like the
one shown in Fig. 2(a). No matter where the transmission line
is cut between reservoirs, if the incoming current is in equilib-
rium, the outgoing current is also going to be in equilibrium
due to energy conservation.

However, nonlocal interactions, i.e., an interaction between
nodes at different sites, or introducing a second nonchiral
channel change this picture dramatically. Energy conservation
only requires that the total longitudinal cross section carries an
equilibrium amount of heat, but it is not clear how the energy
will be distributed between the chiral channel and the second
channel introduced by some nonlocal interaction or diffusion.
Intuitively, this already explains a potential enhancement or
impediment of the heat flux in the chiral channel. To reveal
this effect, a local measurement of the correlation function in
the chiral channel subject to the special interaction or diffu-
sion is necessary. In this paper we will introduce two types of
nonlocal interaction or diffusion between the nodes and their
corresponding transmission lines and compute the heat carried
by the edge state in the presence of these extra correlations of
reservoirs.

III. THEORETICAL MODEL:
NONLOCAL ENERGY TRANSPORT

We will demonstrate that an edge channel can carry a
nontrivial amount of heat in the presence of nonlocal inter-
actions. The implications of this will be discussed later. We
start from the simplest possible nontrivial model involving
two Ohmic reservoirs which are connected by an intermediate
edge channel and are coupled via some nonlocal interaction.

A. Cross-capacitive coupling

The first example we would like to consider is a cross-
capacitive coupling of strength CX between the charge
fluctuations in each reservoir. This can be seen in Fig. 4.
The starting point of our analysis is Kirchhoff’s law and the
respective Langevin equations for the outgoing currents of the
following form:

d

dt
Q1(t ) = jin(t ) − jout2(t ), (5)

d

dt
Q2(t ) = jin2(t ) − jout(t ), (6)

jout2(t ) = 1

τ
(Q1(t ) + λQ2(t )) + jc

2(t ), (7)

jout(t ) = 1

τ
(Q2(t ) + λQ1(t )) + jc(t ), (8)
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FIG. 4. Cross-capacitive coupling of reservoirs. The Hamilto-
nian density obtains additional terms of the form C−1

X QjQj′ with
j �= j ′, directly coupling the charge fluctuations of the reservoirs
capacitively. One can formally solve the equations of motion inside
of the reservoirs, i.e., of the edge states subject to the long-range
Coulomb interaction, in terms of the boundary currents indicated in
the figure. The equations of motion for the bosonic fields or currents
are equivalent to Langevin equations (5)–(8).

with λ = C/CX ∈ {0, 1}, which can be solved for the outgo-
ing currents 	jout = ( jout, jout2, jc

out, jc
out2)T as a function of the

incoming currents and sources 	jin = ( jin, jin2, jc, jc
2 )T . Note

that the index c refers to the neutral current propagating in-
side the Ohmic contact. This gives the following relationship
for the Fourier transformation of the currents in terms of a
scattering matrix 	jout = M · 	jin:

M =

⎛
⎜⎜⎝

A B C −A
B A −A C

−A C B A
C −A A B

⎞
⎟⎟⎠, (9)

A = iλτω

λ2 − (1 − iτω)2
, (10)

B = 1 − C, (11)

C = iτω(1 − iτω)

λ2 − (1 − iτω)2
. (12)

One can easily check that this scattering matrix is unitary,
MM† = 1, reflecting the energy-conserving nature of the
scattering matrix before the Langevin sources are traced out.
Note that this is the same scattering matrix as the one obtained
in Ref. [15]. We implement the additional constraint that
jin2 = exp(iωW/vF ) jout2 and solve for the outgoing currents
as a function of the incoming boundary current jin and the
sources jc

out and jc
2, respectively. We give the resulting matrix

( jout, jout2)T = M′( jin, jc, jc
2 )T for W → 0 [22].

M′ =
(

D F + G E
D + E F G

)
, (13)

D = λ2 − 1 + iλτω

λ2 − iλτω − (1 − iτω)2
, (14)

E = iτω − iλτω

λ2 − iλτω − (1 − iτω)2
, (15)

F = − iλτω

λ2 − iλτω − (1 − iτω)2
, (16)

G = iτω(1 − iτω)

λ2 − iλτω − (1 − iτω)2
. (17)

Note that M′ is not the scattering matrix of the system, since
it contains the intermediate current jout2 and is thus not unitary

[23]. This means that part of the heat is passed by the nonlocal
interaction.

Next, we assume that the incoming currents and Langevin
sources are in equilibrium with the same temperature β = 1

kBT
[24]. This assumption is justified since the energy balance be-
tween absorbed and emitted heat Jc

out = Jc is trivially fulfilled
by the assumption of equal temperature for each reservoir. The
current-current correlation function is given by

〈δ jx(ω)δ jy(ω′)〉 = 2πδ(ω + ω′)δx,yS(ω), (18)

x, y ∈ {in, c, c2}, with the noise power S(ω) = R−1
q h̄ω(1 −

exp(−β h̄ω))−1. Using Eq. (1), we are able to compute the heat
flux carried by the edge states after and between the reservoirs.

1. Heat flux carried by jout

The unitarity of the scattering matrix guarantees en-
ergy conservation for the total system. This can be best
seen from the outgoing current-current correlation function
〈 jout(ω) jout(−ω)〉 = S(ω), which translates into a full quan-
tum of heat carried by the outgoing current. The same
is true for the correlation functions of the internal states
〈 jc

out(ω) jc
out(−ω)〉 and 〈 jc

out2(ω) jc
out2(−ω)〉. Inserting Eq. (18)

into Eq. (1) indeed reproduces the equilibrium result J = Jq.

2. Heat flux carried by jout2

The result for 〈 jout2(ω) jout2(−ω)〉 �= S(ω) is different. The
edge state obtains additional correlations due to the nonlocal
interactions. We find

〈 jout2(ω) jout2(−ω)〉 = f (ω, λ)S(ω), (19)

f (ω, λ) = (λ2 − 1)2 + (2 + λ2)τ 2ω2 + τ 4ω4

(λ2 − 1)2 + (2 + λ(3λ − 4))τ 2ω2 + τ 4ω4
, (20)

where f (ω, λ) is always larger than 1 and for low tem-
peratures τkBT/(h̄) � 1, (1 − λ2) can be approximated as
f (ω, λ) − 1 ≈ 2λ(2 − λ)(λ2 − 1)−2τ 2ω2. Note that this ex-
pansion breaks down if λ → 1 is sufficiently close to the
strongly interacting limit. If we look at the strongest possible
interaction, we find

f (ω, 1) = 3 + τ 2ω2

1 + τ 2ω2
≈ 3 − 2τ 2ω2, (21)

signifying the emergence of a new regime with a different
enhancement already starting in the constant order O(1). One
can estimate a critical temperature Tc at a given λ or vice
versa by comparing the coefficients in the expansions at low
temperatures and λ = 1. This emergence of a strongly inter-
acting regime is crucial to understanding the physics of the
corresponding transmission line, where this enhancement can
be attributed to the emergence of a second “soft” collective
mode.

We conclude that there is a negative heat drag in a system
with a cross-capacitive coupling. This can be seen explic-
itly, by performing the integration necessary in Eq. (1) using
Eq. (19) in the limit we have just demonstrated. In leading
order the heat flux will be threefold larger than the equilib-
rium flux, which corresponds to an increase of the effective
temperature by a factor of Teff ≈ √

3T0, where T0 corresponds
to the temperature of the injected equilibrium heat flux. We
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FIG. 5. Transmission line with cross-capacitive coupling. We ex-
tend our two-node model by introducing nearest-neighbor capacitive
interaction between reservoirs. Similar to before, the equations of
motion can be found either from solving the Hamiltonian equa-
tions of motion directly or by solving the corresponding Langevin
equations.

conclude that the correction to the equilibrium heat flux for
low temperatures appears as a (kBT )4 correction for weak
interactions and as a (kBT )2 correction for strong interactions
and has a positive sign, independently of λ. The enhancement
stems from additional correlations due to out-of-phase fluctu-
ations of the charge in the two different reservoirs resulting in
a correlated state in the chiral channel.

B. Cross-capacitive coupling: Transmission line

We note that the transmission line (TL) model is not just
a simple extension of the two-reservoir model, but it contains
some additional physics, namely, the appearance of a second
collective mode, which has important implications for the
transport of heat. Let us consider a TL of reservoirs coupled
via cross-capacitive interactions; see Fig. 5.

Every chiral edge channel is now accompanied by a second
nonlocal channel in each cross section of the infinite line. The
equations of motion for this case are given by

d

dt
Qn(t ) = jin,n − jout,n, (22)

jout,n = 1

τ
Qn(t ) + jc

out,n(t ), (23)

Qn(t ) = Qn(t ) + λ(Qn−1(t ) + Qn+1(t )), (24)

where the first equation implies charge conservation at each
node and the second equation is a modified Langevin equa-
tion takeing into account the nonlocal interaction as a function
of the dimensionless parameter λ = C/CX . We promote these
equations to transmission line equations, by demanding that
jin,n(ω) = jout,n−1(ω). Since the dissipation leads to a decay
of the collective mode, we will consider a large number of
nodes and assume periodic boundary conditions, which allows
us to use the discrete Fourier transformations

Xn(t ) =
N−1∑
k=0

∫
dω

2π
ei 2πk

N n−iωt Xk (ω), (25)

Xk (ω) = 1

N

N−1∑
n=0

∫
dt e−i 2πk

N n+iωt Xn(t ) (26)

and take the large-N limit

lim
N→∞

1

N

N−1∑
k=0

→
∫ π/ξ

−π/ξ

dk

2π
,

where we introduced the distance between the nodes ξ . The
general procedure to compute the heat flux carried by the
edge state, in between reservoirs n and n + 1, involves the
following steps: (1) Solve Eqs. (22)–(24) using a Fourier
transformation for jout(k, ω). (2) Compute the correlation
function Cinter(k, ω) = 〈 jout(k, ω) jout(−k,−ω)〉 and integrate
over frequencies and momenta. (3) Solve the momentum
integral, by mapping it onto a unit circle contour with the
transformation z → exp(ikξ ), and pick up the residues inside
of the contour. The outgoing current-current correlation func-
tion is given by

Cinter(k, ω) = ω2S(ω)

(ω − ε(k))(ω + ε(−k))
, (27)

where the spectrum of the collective mode is given by

ε(k) = i

τ
(e−ikξ − 1)(1 + 2λ cos(kξ )). (28)

The eigenvalues of the capacitance matrix Cnm = C−1(δn,m +
λ(δn,m−1 + δn,m+1)) [25] are given by C−1(1 + 2λ cos(kξ )),
which have to be positive definite. This limits λ ∈ {0, 1/2}.
The integral over momentum over the unit circle contour has
the form

C̃inter(ω) =
∮
C

dz

2π i

ω2S(ω)

(zω − zε̃(z))(ω + ε̃(1/z))
, (29)

with ε̃(z) = i
τ

( 1
z − 1)(1 + λ(z + 1

z )), where C̃inter(ω) =∫
dk
2π
Cinter(k, ω). In general this integral has six poles with

a complicated pole structure. We solve the integral exactly
for the noninteracting (λ → 0) and strongly interacting
(λ → 1/2) limits, and we compute low-temperature
deviations from that point and compute the crossover energy
scale between the two limits. In the following we will analyze
the heat flux J = Rq

4π

∫
dω C̃inter(ω) in the limits of weak and

strong coupling.

1. Noninteracting limit λ → 0

In this limit the integral reduces to the one given in Ref. [9].
There is only one pole inside of the contour at z1 = (1 −
iτω)−1 and one pole outside of the contour at z2 = 1 + iτω.
We pick up z1 and immediately find that C̃out(ω) = 1, which
gives a heat flux quantum, due to the local nature of the
interaction and unitarity of the scattering matrix, as seen in
Ref. [9].

2. Strongly interacting limit λ → 1
2

In the opposite limit of strong interactions, the poles of
Eq. (29) follow from the two cubic equations

1 − z2 − z3 + z(1 + 2iτω)
!= 0, (30)

1 + z − z3 − z2(1 − 2iτω)
!= 0. (31)

We find that one pole is always outside of the contour, one
pole is always inside of the contour, two poles are only inside
for ω > 0, and the other two poles are only inside for ω <

0. A detailed discussion of the pole structure is provided in
Appendix A. We pick up the poles inside of the contour and
find that for low temperatures the correction to the heat flux
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quantum is given by

J =
∫ ∞

0

dω

2π

(
1 +

√
τω

2
√

2

)
(S(ω) − Svac(ω))

= Jq + 3

8

√
π

2
ζ

(
5

2

)
(kBT )

5
2

√
τ

h̄3 , (32)

where ζ (s) =
∞∑

n=1
n−s is the Riemann zeta function.

3. Crossover between the two limits

It can be easily seen, e.g., by a perturbative expansion in
small λ, that corrections to the λ ≈ 0 regime will come with
an additional factor of τ 2ω2 and thus the heat flux will obtain
a correction that scales as k4

BT 4. However, we can go beyond
this perturbative expansion by assuming that τkBT/(h̄) �
1, (1 − 2λ) is small and look for corrections proportional to
τ 2ω2. This gives the following contribution to the heat flux,
which, as we note again, is only perturbative in temperature,
but not in λ:

J = Jq + 4π4τ 2k4
BT 4

15h̄3 J (λ), (33)

J (λ) = λ

(1 + 2λ)3
+ λ(1 − λ)

(1 − 2λ)3/2(1 + 2λ)5/2
. (34)

Upon analyzing J (λ), we see that it diverges as λ → 1/2.
This signifies the breakdown of the perturbative expansion
since the difference 1 − 2λ may become smaller than the
energy scale set by the temperature. This is the point where
a second soft mode emerges. This can be seen from the pole
structure of the propagator, the inverse Fourier transformation
of ( − iω − ε(k))−1, with the spectrum from Eq. (28). In the
strongly interacting limit there will be an additional pole at
ω = 0, k = π besides the pole at ω = 0, k = 0. We can
estimate the crossover from the single-mode solution to the
two-mode solution by comparing the coefficients of Eqs. (32)
and (33). This gives the crossover value for the temperature Tc

at a given value of λ or the crossover value for λc at a given
temperature if the expression is inverted:

τkBTc

h̄
=

(
45
2 ζ

(
5
2

))2/3

8π7/3

(
1

J (λ)

)2/3

. (35)

Note that the nonlocal effect due to the cross-capacitive
coupling is a dynamical effect. In the limit where the collec-
tive mode is frozen out (τ → 0) the heat flux vanishes and is
blocked by the Ohmic reservoirs. The nonlocal heat transport
can thus be understood as out-of-phase fluctuations (“k = π”)
leading to an enhancement of heat in the edge state. Qualita-
tively, the limits of strong interactions give different results for
the TL model and the two-node model. This is reflected in the
fact that for λ2node = 1 the two-node model can be written as a
single node with charging energy 1

2C (Q1 + Q2)2, while it can-
not be written like that for the transmission line at λTL → 1/2.
The Hamiltonian of the system contains only the product of
neighboring charges 1

2C

∑
j (Q

2
j + QjQj+1) �= 1

2C (
∑

j Q j )2.

4. Work done by one reservoir on the neighboring reservoirs

To find the part of the heat passed by the nonlocal inter-
action, imagine drawing a virtual box around a single node
of the transmission line shown in Fig. 5. Let this box have
length L and choose it such that the bosonic current den-
sity j(x, t ) = − e

2π
∂tφ(x, t ) at the boundaries corresponds to

j(0, t ) = jin,n(t ) and j(L, t ) = jout,n(t ). Next, write a conti-
nuity equation for the Hamiltonian density of the section of
the transmission line inside of the box ∂t 〈ĥn〉 + ∂xJn = 0,
where n labels the node. Note that in the reservoir model
we take L → ∞ at the end. For a detailed discussion, see
Sec. IV. The Hamiltonian reads

Hn = h̄vF

4π

∫ L

0
dx(∂xφn(x, t ))2 + HC, (36)

HC = Q2
n(t )

2C
+ Qn(t )Qn−1(t )

CX
, (37)

where Qj (t ) = e
2π

∫ L
0 dx ∂xφn(x, t ) is the integrated charge

density of the reservoir. The total energy current density in
the box Jn = −∂t 〈Hn〉 = 0 is zero since the total energy is
conserved, but we are able to express everything in terms of
incoming and outgoing heat fluxes plus some additional term.

Jn = Rq

2
[〈 j2(L, t )〉 − 〈 j2(0, t )〉]

+ λ〈Qj (t )∂t Q j−1(t ) − Qj (t )∂t Q j+1(t )〉. (38)

The first two terms correspond to the heat flux outgoing from
the reservoir Jout ∼ 〈 j2(L, t )〉 and incident to the reservoir
Jin ∼ 〈 j2(0, t )〉. In the absence of the cross-capacitive cou-
pling these two terms cancel exactly, due to the cancellation
of Joule heating and the back-action effect of the Langevin
sources discussed in Sec. II. In the presence of cross-
capacitive interaction the two additional terms in Eq. (38)
describe the work done by one reservoir on its neighbors and
vice versa. For the two-node model it is easy to see that

−iωλ〈Q1(ω)Q2(−ω)〉 − H.c. ∼ 1 − f (ω, λ), (39)

which exactly compensates the extra heat in the chiral chan-
nel. Each cross section thus carries only one flux quantum of
heat as expected from thermodynamic arguments. However, a
local measurement might reveal an anomalous amount of heat
in the chiral channel despite a globally trivial heat flux.

Note that Eq. (36) is the same Hamiltonian as the one used
in Ref. [15], where heat drag was studied in chiral systems.
Our analysis thus holds also for this case, and we can com-
pute the heat passed by the cross-capacitive coupling for all
regimes considered in Ref. [15].

C. Tunnel coupling

The second example of nonlocal interaction we would like
to consider is a direct tunnel coupling of the reservoirs through
a quantum point contact (QPC); see Fig. 6.

The equations of motion are given by the following set of
equations:

d

dt
Q1(t ) = jin(t ) − jout2(t ) − jR(t ) + jR(t ), (40)

d

dt
Q2(t ) = jin2(t ) − jout(t ) − jL(t ) + jL(t ), (41)
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FIG. 6. Direct tunnel coupling of the reservoirs. We consider
QPCs in the regime where the transmission probability is energy in-
dependent. The tunneling of bosonic currents is in general nonunitary
there; however, the partitioning noise adjusts in a way that the energy
balance between in- and outgoing heat at the QPC is respected.

where the two equations are Kirchhoff’s law satisfying charge
conservation of the two reservoirs. The two incoming cur-
rents, jL and jR, which passed the QPC are given by an
energy-independent scattering matrix (T ∈ {0, 1}) at the QPC
[26],

jR(t ) = T jL(t ) + (1 − T ) jR(t ) + jQ(t ), (42)

jL(t ) = T jR(t ) + (1 − T ) jL(t ) − jQ(t ), (43)

which is in general nonunitary; however, the QPC introduces
partitioning noise jQ, whose noise power is determined in
such a way that the whole QPC is energy conserving and thus
JR + JL = JR + JL.

Finally, all the currents outgoing from the reservoir are
given by the Langevin equations, respectively.

jR = 1

τ
Q1(t ) + jc

R(t ), (44)

jL = 1

τ
Q2(t ) + jc

L(t ), (45)

jout2(t ) = 1

τ
Q1(t ) + jc

2(t ), (46)

jout(t ) = 1

τ
Q2(t ) + jc(t ). (47)

We assume no retardation for the intermediate current
jin2(t ) = jout2(t ) and solve the system of equations for the
Fourier transformation of the currents. As before, the tem-
peratures of the reservoirs are equal to the temperature of
the boundary current to the left, due to the unitarity of
the scattering matrix inside of the reservoirs. Furthermore,
each cross section contains an equilibrium amount of heat,
which can be seen by adding up the heat of the individual
channels, e.g., Jout2 + JR − JR = Jq or Jout2 + JL − JL =
Jq, using Eq. (1). However, each individual channel, between
the reservoirs, carries a nontrivial amount of heat. The corre-
lation function of the outgoing intermediate current is given
by

〈
j2
out2(ω)

〉 = (1 + g(ω, T ))S(ω), (48)

g(ω, T ) = 2T (T̃ − ω2τ 2)

T̃ 2 + 2T̃ (T̃ + T )ω2τ 2 + ω4τ 4
, (49)

FIG. 7. Transmission line with tunnel coupling. We extend our
two-node model by introducing nearest-neighbor tunneling between
reservoirs in the form of a QPC. Similar to before, the equations of
motion can be found either from solving the Hamiltonian equa-
tions of motion directly or by solving the corresponding Langevin
equations.

where T̃ = 1 + T . In contrast to the cross-capacitive coupling
we can safely perform a perturbative expansion for small
frequencies τkBT/(h̄) � 1 and find

g(ω, T ) ≈ 2T
1 + T − 2T (3 + 4T )τ 2ω2

(1 + T )2
. (50)

The correction thus starts already at the constant order and
hence represents a direct correction to the value of the heat
flux quantum. The heat carried by this channel is given by

Jout′ =
(

1 + 2T
1 + T

)
Jq − 2T (3 + 4T )

(1 + T )2
J4, (51)

where J4 = π4

15
τ 2

h̄3 (kBT )4. There is a frequency-independent

part of the correction. The term 2T
1+T Jq survives in the limit

where all dynamics are suppressed, τ → 0. In contrast to
the cross-capacitive coupling where the enhancement was
dynamical, this represents a static contribution, a frequency-
independent neutral excitation of electron-hole pairs, which
create additional correlations on the chiral channel.

D. Tunnel coupling: Transmission line

Similar to before, we promote the two-reservoir model to
a transmission line. The modified equation of motion has the
following form:

d

dt
Qn(t ) = jin,n(t ) − jout,n(t ) + jQPC,n, (52)

where n labels the position of the node in the line and jQPC,n =
jL,n(t ) − jL,n(t ) + jR,n(t ) − jR,n(t ) is the total net cur-
rent incoming and outgoing from the left and right QPC; see
Fig. 7.

To obtain the transmission line equations, we demand that
jin,n(ω) = jout,n−1(ω). Since the dissipation leads to a decay
of the collective mode, we will consider a large number of
nodes and assume periodic boundary conditions, which al-
lows us to use the discrete Fourier transformations (25) and
(26). Solving for the heat flux follows the same steps already
presented in Sec. III B. The outgoing current jout,n(t ) satisfies
a normal Langevin equation. The QPC current, however, sat-
isfies a special Langevin equation of the following form:

jQPC(k, ω) = −2T
τ

(1 − cos(kξ ))Q(k, ω) + js
QPC, (53)
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with a noise power SQPC = (2Rq/RQPC)S(ω) with R−1
QPC =

2T R−1
q (1 − cos(kξ )). Note the difference of factor 2 due to

nonchirality of the Langevin source. The sign in Eq. (53) is
due to the convention of the definition of current; however,
R−1

QPC can be understood as the eigenvalues of the capacitance
matrix of the system and are defined to be positive definite.
The spectrum of the collective mode is given by

ε(k) = i

τ
(e−ikξ − 1) − 2iT

τ
(1 − cos(kξ )). (54)

The outgoing current-current correlation Cout,n(k, ω) =
〈 jout,n(k, ω) jout,n(−k,−ω)〉 function in the large-N limit is
given by

Cout,n(k, ω) = SQPC(ω)

τ 2(ω + ε(−k))(ω − ε(k))

+ S(ω)[1 + eikξ [iτ ( − ω + ε(k)) − 1]](H.c.)

τ 2(ω + ε(−k))(ω − ε(k))
.

(55)

We map this onto the unit circle contour by doing the transfor-
mation z → eikξ and pick up the poles inside of the contour.
We find in total six poles, but in contrast to the capacitive
coupling they stay inside or outside independently of ω. For
low temperatures we find the following correction to the heat
flux:

C̃out,n(ω) ≈ 1 + 2T
1 + T − 6(T + 2T 2)τ 2ω2, (56)

which is exact in T , but perturbative in small frequencies. This
gives a heat flux of

Jout,n =
(

1 + 2T
1 + T

)
Jq − 6(T + 2T 2)J4, (57)

where J4 = π4

15
τ 2

h̄3 (kBT )4. The heat flux is qualitatively similar
to the one obtained for the two-node case. Note also here the
emergence of the direct enhancement of the heat flux quantum
in the chiral channel. The heat carried by the QPC current is
negative and exactly compensates the excess heat.

IV. MESOSCOPIC CAPACITORS:
ENERGY-CONSERVING APPROACH

One assumption we rely on is that all dissipative degrees
of freedom lie in the Ohmic reservoirs, which typically repre-
sent a metallic system with an infinitely small level spacing.
The noise power of the Langevin sources can be represented
as an infinite number of harmonic oscillators. This condi-
tion can be relaxed by replacing the Ohmic reservoirs with
mesoscopic capacitors [27,28], a fully Hamiltonian and thus
energy-conserving system without dissipation. A mesoscopic
capacitor is a loop of an edge state, which interacts via long-
range Coulomb interactions with itself; see Fig. 8.

The advantage of this is twofold. One the one hand, this
mesoscopic capacitor is an easily realizable mesoscopic de-
vice: A building block to re-create our theoretical predictions

FIG. 8. Mesoscopic capacitor. A loop of an edge state subject
to Coulomb self-interaction. The Hamiltonian inside of the loop
acquires the additional interaction term Q2/2C, where Q is the total
charge inside of the loop.

in experiments. On the other hand, this mesoscopic capacitor
might be a more realistic approximation of the shape and form
of disorder and defects inherent to QH edges, as shown in
Fig. 9. Our original motivation was to consider an effective
model that includes dissipation intrinsically. However, the
assumption of modeling this as an Ohmic reservoir remained
an open question up until now. As we will show, many of our
results for the reservoirs qualitatively apply also to the energy-
conserving approach and might be an inherent property of QH
edges.

In Appendix B we briefly revisit the cases of cross-
capacitive coupling with mesoscopic capacitors instead of
Ohmic reservoirs. Note the difference. The former does not
rely on the Langevin formalism, but on scattering theory,
and it is a fully Hamiltonian system without any dissipation.
As an example we considered two mesoscopic capacitors
subject to cross-capacitive interaction, but the special role
of the mesoscopic capacitors can be directly generalized to
tunnel coupling and the respective transmission lines. The
main results are that a large capacitor L → ∞ in equilibrium
is equivalent to the reservoir model considered in this paper.
The reason for this is that correlations between the currents
propagating inside of the capacitor are lost, similar to the
way in which current is dissipated in the Ohmic reservoir,
which leads to the same physical situation and prediction
for the correction of heat flux due to nonlocal interactions.
Our analysis holds if the following separation of energy scale
holds: h̄vF /L � kBT � Ec, where temperature T is larger
than the level spacing but smaller than the charging energy
of the capacitor.

For a finite length L the result remains qualitatively the
same as for the reservoirs; however, the correlation function
develops additional resonances due to interference effects be-
tween the charge fluctuations of the reservoirs.

FIG. 9. Defects in the edge.
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V. CONCLUSIONS

We model chiral systems with effective intrinsic dis-
sipation in the form of Ohmic reservoirs. We rely on a
combination of scattering theory and Langevin equations and
have full access to equilibrium and nonequilibrium situations.
In thermal equilibrium, there is a cancellation between the
Joule heating of the reservoirs and a back-action effect of the
Langevin sources. This cancellation is the reason for a robust
quantization of heat carried by the edge state in the presence of
dissipation and in the absence of chirality-breaking nonlocal
interactions or diffusion.

We have shown that nonlocal interactions or diffusive cur-
rents between the reservoirs in a chiral system create highly
correlated and nontrivial states, leading to a negative heat
drag effect: an enhancement of the heat flux above the quan-

tized value of the heat flux quantum Jq = πk2
B

12h̄ T 2 and thus a
violation of the aforementioned energy balance in the chiral
channel. This nonlocal passage of energy is in full agreement
with the second law of thermodynamics, since every cross
section of the system only carries an equilibrium amount
of heat. This enhancement can be attributed to out-of-phase
fluctuations for cross-capacitively coupled reservoirs and to
an enhancement through the Coulomb blockade effect in the
case of tunnel coupling.

We have shown that neither dissipation nor the specific
choice of our model for a reservoir is the cause for this phe-
nomenon. The same effect can be found by replacing the reser-
voirs with mesoscopic capacitors, a fully energy-conserving
system, consisting of a loop of the edge state subject to
Coulomb self-interaction. For large mesoscopic capacitors the
predictions are the same as for the reservoirs. For small meso-
scopic capacitors the current correlation function develops
resonances, but the effect remains qualitatively the same.

Our results show the nonuniversality involved in heat trans-
port experiments already in equilibrium, and this paper can be
understood as a toolbox to construct and detect these highly
correlated and nontrivial states in mesoscopic experiments.

To proceed further, one needs to look into the physics of
probing the correlated states. The states are highly correlated,
and thus in the tunneling Hamiltonian approach one needs to
define an electronic operator which is not just the bosonized
vertex operator but goes beyond the bosonization formalism
due to correlations through the collective mode if a tunnel
probe is connected. It is an open question whether one has
experimental access to the charge of the excitations, e.g.,
by Aharonov-Bohm-type experiments [29]; to the quantum
statistics, e.g., by nonequilibrium measurements [30]; or to
the correlation function directly by tunneling to a quantum
dot [4].

Finally, the formalism developed in this paper can be easily
applied to construct mesoscopic devices showing anomalous
heat transport, unusual statistics, and more interesting phe-
nomena.
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FIG. 10. Poles of the heat integral in Eq. (29): (a) Roots of

1 − z2 − z3 + z(1 + 2iτω)
!= 0 and (b) roots of 1 + z − z3 − z2(1 −

2iτω)
!= 0. The dashed lines indicate ω < 0, and solid lines indicate

ω > 0. The blue and purple poles are always present. In the noninter-
acting limit λ → 0, we only pick up the purple pole. The other poles
around z = −1 → k = π correspond to the second soft mode, the
out-of-phase fluctuations of the collective mode. For finite λ these
poles move towards the center of the contour, i.e., the momentum
obtains a finite imaginary part. The excitation becomes gapped, and
we can rely on our low-energy expansion, where the smallest energy
scale is set by temperature, given by Eq. (33).

APPENDIX A: EVALUATION OF CORRELATION
FUNCTIONS FOR CROSS-CAPACITIVE COUPLING

1. Strongly interacting limit λ → 1
2

In the strongly interacting limit λ → 1
2 the poles of Eq. (29)

follow from the two polynomials

1 − z2 − z3 + z(1 + 2iτω)
!= 0, (A1)

1 + z − z3 − z2(1 − 2iτω)
!= 0, (A2)

where z → eikξ . We refrain from writing the poles explicitly,
but the structure of the poles can be seen in Fig. 10(a) for the
first polynomial and Fig. 10(b) for the second polynomial in
Eq. (29).

Note the structural difference of the poles in quadrants I
and IV, belonging to the collective mode contribution at k →
0 and the two poles in quadrants II and III, which appear due
to the nonlocal coupling and approach k → π for ω → 0 indi-
cating the closing of a gap of a second mode, which becomes
soft sufficiently close to this point. Upon picking up all three
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FIG. 11. Cross-capacitive coupling of mesoscopic capacitors.

poles inside the contour for ω > 0 and ω < 0 separately and
assuming small temperatures, we find an intermediate result,
which if integrated over frequencies directly yields Eq. (32).

2. Corrections to the regime τkBT
h̄ � 1 − 2λ

If, however, temperature is the smallest energy scale in
the system, this means that the two additional poles are suffi-
ciently far from the k = π point, and we can use the method
of intermediate asymptotics, where we do a perturbative ex-
pansion at small temperature around the pole at z ≈ 1 in the
first and fourth quadrants, up to the necessary accuracy. This
gives the first term of J (λ) in Eq. (34). For the other two poles
we can simply set ω → 0 in the denominator and pick up the
other poles at

z3/4 = − 1

2λ
+

√
1

4λ2
− 1. (A3)

Since the whole correlation function is already proportional
to τ 2ω2, we immediately find the correction from this pole by
setting ω = 0 in the denominator. This gives the second term
of J (λ) in Eq. (34).

APPENDIX B: EDGE STATES WITH LONG-RANGE
COULOMB CROSS COUPLING

A loop of an edge state of length L interacts with itself via a
long-range Coulomb interaction with self-capacitance C. We
introduce a nonlocal Coulombic cross coupling CX between
two of these mesoscopic capacitors which are separated by a
distance W ; see Fig. 11. The Hamiltonian of the edge state in-
side of the interaction region acquires the following additional
terms:

H j = h̄vF

4π

∫
dx(∂xφ j (x, t ))2

+ Q2
j (t )

2C
+ Qj (t )Qj−1(t )

CX
, (B1)

where Qj (t ) = e
2π

∫ L
0 dx ∂xφ j (x, t ) is the integrated charge

density of the loop and j = 1, 2 labels the left or right node.
The equation of motion of the bosonic field φ j (x, t ) is given

by

∂tφ j (x, t ) + vF ∂xφ j (x, t ) = − e

h̄C
Q j (t ), (B2)

with Q j (t ) = Qj (t ) + λ(Qj−1(t ) + Qj+1(t )), where we in-
troduce the relative coupling strength λ = C

CX
∈ {0, 1} and

Q0(t ) = Q3(t ) = 0. We assume that the system is connected
to a large reservoir without charge fluctuations and hence

no capacitive cross couplings. The reservoir to the left has
temperature T and emits the equilibrium current jin. We solve
the equation of motion inside of the red interaction regions
in terms of their boundary currents jin, jin2, jout, jout2, which
allows us to express all currents as a function of only the
equilibrium current jin. As expected we find that 〈 j2

out(t )〉 =
〈 j2

in(t )〉. This is not necessarily the case for the intermediate
current jout2. The Fourier transformation of the outgoing cur-
rent 	jout = ( jout, jout2)T as a function of the incoming current
	jin = ( jin, jin2)T is given by

	jout = S · 	jin, S =
(
A(ω) B(ω)
B(ω) A(ω)

)
, (B3)

A = −iλτωx2
(

ω
2

)
(1 − λ2 − iτω)x2

(
ω
2

) + τωx(ω) + τ 2ω2e− iωL
vF

, (B4)

B = (1 − λ2)x2
(

ω
2

) + τωx(ω) + τ 2ω2

(1 − λ2 − iτω)x2
(

ω
2

) + τωx(ω) + τ 2ω2e− iωL
vF

, (B5)

x(ω) = 2 sin

(
ωL

vF

)
, τ = RqC. (B6)

The scattering matrix S is unitary, but there is another chan-
nel where heat can propagate. With the additional constraint
that jin2 = exp(iωW/vF ) jout2, we can express the outgoing
currents as a function of the boundary current jin only and
compute their respective current-current correlation functions,
i.e., the heat carried by the edge state. We analyze the nontriv-
ial correlation function 〈 j2

out2(t )〉 of the intermediate current in
different limits of W and L.

1. Trivial limits

We discover several trivial limits of the parameters L and
W . In the limit L → 0 there is no accumulation of charge in
the capacitor and hence no interaction between the reservoirs.

lim
L→0

〈
j2
out2(t )

〉 = Jq. (B7)

In the limit W → ∞ the phase factors exp(±iωW/vF ) are
fast oscillating, and we average them over a period. We do this
by mapping the average integration onto the unit circle con-
tour C with the transformation z → exp(iωW/vF ) and include
only the residues inside the contour.

〈
j2
out2(ω)

〉 =
∮
C

idz

2π

〈
j2
in(ω)

〉|B(ω)|2
(z − A(−ω))(zA(ω) − 1)

, (B8)

which evaluates to

lim
W →∞

〈
j2
out2(t )

〉 = Jq. (B9)

This means that the correlation between the outgoing and
incoming intermediate currents is lost, the cross-capacitive
interaction does not influence the system, and the current is
in equilibrium everywhere. For the rest of this paper we will
thus consider the opposite limit of strong correlations between
the intermediate currents and consider W → 0.

2. Limit of L → ∞
Similar to the case of W → ∞, we average over the fast

oscillations as a function of L by the following transforma-
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tion: z → exp(iωL/vF ). This gives a slightly different integral
compared with Eq. (B8) of the form

〈
j2
out2(ω)

〉 =
∮
C

idz

2πz

〈
j2
in(ω)

〉
Bz(ω)B 1

z
(−ω)

(1 − A 1
z
(−ω))(Az(ω) − 1)

, (B10)

where Az(ω) and Bz(ω) are given by Eqs. (B4) and (B5)
with the replacement z → exp(iωL/vF ); note especially that
x(ω) = z + 1

z . A 1
z
(−ω) and B 1

z
(−ω) indicate the complex

conjugate. The integral has three poles which are always in-
side the unit circle contour at

z0 = 0, (B11)

z1 = λ2 − 1 + iλτω

(λ − 1)(1 + λ + iτω) + iτω
√

λ(λ + iτω)
, (B12)

z2 = (λ − 1)(1 + λ + iτω) + iτω
√

λ(λ + iτω)

λ2 + iλωτ − (1 + iωτ )2
. (B13)

Picking up the residues of this pole gives the nontrivial
result for the heat per frequency carried by the intermediate
current 〈

j2
out2(ω)

〉 = f (ω, λ)
〈
j2
in(ω)

〉
, (B14)

f (ω, λ) = (λ − 12)2 + (2 + λ2)τ 2ω2 + τ 4ω4

(λ2 − 1)2 + (2 + λ(3λ − 4))τ 2ω2 + τ 4ω4
,

(B15)

where f (ω, λ) is the same correction as Eq. (20), the one we
found with reservoirs instead of mesoscopic capacitors.

3. Equivalence to the reservoir model

We note that the same equations, Eqs. (B14) and (B15), can
be found by replacing the large (L → ∞) mesoscopic capaci-
tors by Ohmic reservoirs [19]. Note that the same corrections
follow from solving Eqs. (5)–(8) directly.

The reason for this equivalence is the following. The cur-
rent entering the mesoscopic capacitor propagating towards
infinity loses the correlation with the current propagating from
infinity towards the end of the capacitor. This means that an
equilibrium source current, i.e., a Langevin source, satisfies
this condition.

4. Finite L or W

In general, finite L or W will introduce different kinds
of oscillations of the heat carried by the intermediate edge
state. This is natural and expected, since the negative drag
effect arises from correlations between the charge in different
nodes, which can be tuned by adjusting the retardation of the
intermediate currents or the correlation of currents inside of
the nodes themselves. This will lead to a modulation of the
heat but cannot change the sign of the correction to the heat
flux.
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