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When normal metals (NMs) are attached to topological insulators or topological superconductors, it is
conceivable that the quantum states in these finite adjacent materials can intermix. In this case—and because
the NM usually does not possess the same symmetry as the topological material—it is pertinent to ask whether
zero-energy edge states in the topological layer are affected by the presence of the NM. To address this issue,
we consider three prototype systems simulated by tight-binding models, namely a Su-Schrieffer-Heeger/NM, a
Kitaev/NM, and a Chern insulator/NM. For all junctions investigated, we find that there exist trivial “fine-tuned”
zero-energy states in the NM layer that can percolate into the topological region, thus mimicking a topological
state. These zero-energy states are created by fine-tuning the NM chemical potential such that some of the NM
states cross zero energy; they can occur even when the topological material is in the topologically trivial phase,
and exist over a large region of the topological phase diagram. Interestingly, the true Majorana end modes of
the Kitaev/NM model cannot be crossed by any NM state, as the NM metal layer in this case does not break
particle-hole symmetry. On the other hand, when the chiral symmetry of the Su-Schrieffer-Heeger chain is broken
by the attached NM, crossings are allowed. In addition, even in Chern insulators that do not preserve nonspatial
symmetries, but the topological edge state self-generates a symmetry eigenvalue, such a fine-tuned zero-energy
state can still occur. Our results indicate that when a topological material is attached to a metallic layer, one has
to be cautious as to identify true topological edge states merely from their energy spectra and wave function
profiles near the interface.
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I. INTRODUCTION

The metallic edge or surface states are a defining feature
of the topologically nontrivial phase of topological quantum
materials, and often times what make them practically useful
[1–6]. The pristine edge or surface states, hereafter collec-
tively referred to as edge states, are responsible for a number
of fascinating phenomena in these materials, such as the quan-
tum spin Hall effect (QSHE) [7–11] and Majorana fermions
[12–14], among many others.

A common strategy to access and probe edge states is to
attach a thin metallic layer to a topological material such that
the edge states percolate into the normal metal (NM). One
then may be able to use these edge states to manipulate the
metallic material. For instance, in 3D topological insulators
(TIs), it has been demonstrated that a thin ferromagnetic metal
(FMM) deposited on top of a TI exhibits very prominent
current-induced spin torque [15–17]. This phenomenon has
triggered significant theoretical interest in investigating the
underlying mechanism and the role played by the edge states
[18–31].

In these kinds of junctions, specifically topolog-
ical insulator/normal metal (TI/NM) or topological
superconductor/normal metal (TSC/NM), with a finite-size
NM, the nature of the NM quantum-well states can elicit
interesting issues. In particular, since the topological edge
state can percolate into the NM, it is natural to speculate that

the NM quantum-well states can similarly percolate into the
TI layer. The question is then whether one can unambiguously
distinguish these percolated NM quantum-well states from
the true topological edge states by merely analyzing the
profile of the wave function, which is often how one tries to
image topological edge states by using some real-space probe
such as a scanning tunneling microscope (STM) [32–37].

As a concrete example, we mention perhaps the most con-
troversial system involving (topological) zero-energy modes:
a 1D topological superconductor. In this system, a zero-
energy midgap mode gives rise to zero-bias conductance
peaks (measured, e.g., via STM probes [32,38] or usual trans-
port geometries [39–41]) that, purportedly, signal Majorana
zero modes. A number of recent theory papers [42–48] have
pointed out that by fine-tuning the system parameters, trivial
zero-energy modes can emerge, thus making it challenging
to discern true topological Majorana zero states from trivial
ones. Earlier on, the authors of Ref. [42] had already shown
that by fine-tuning the dot level and dot-chain coupling of
a quantum dot coupled to a Kitaev chain, the two-terminal
conductance through the dot mimicked the e2/2h conductance
peak of the topological case, even in the absence of p-type
superconductivity (i.e., � = 0) [see their Fig. 3(d)].

More importantly, fine-tuning complicates matters further
as zero modes can also arise from disorder effects, Andreev
bound states, the Kondo effect, etc., as is well known [49].
Recently, a protocol [50,51] has been proposed to possibly
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identify these zero-energy modes through conductance mea-
surements. Interestingly, Ref. [52] points out that trivial
Andreev bands can emulate closing and reopening of bulk
band gaps in the nonlocal conductance of nanowires, which
could be detrimental to the protocol of Refs. [50,51].

In connection with the above zero-energy fine-tuning issue,
here we consider junctions of a topological material (a TI
or a TSC) attached to or grown on a metallic material. We
show that should one try to identify nontrivial edge states in
these types of junctions by probing (i) the edge-state wave
function profile, e.g., whether it decays and only localizes in
one sublattice (SSH model), and/or (ii) their corresponding
zero-energy spectral features, e.g., via conductance measure-
ments, then caution must be taken. This is so because in
both TI/NM and TSC/NM junctions, it is possible to fine-
tune the NM chemical potential such that a quantum-well
state has zero energy and a wave function profile that is
indistinguishable from the true topological edge state. We
investigate in detail the wave function profile of such a fine-
tuned zero-energy quantum-well state in several models of
one- (1D) and two-dimensional (2D) TIs and TSCs, including
the Su-Schrieffer-Heeger (SSH) model [53], the Kitaev chain
[12], and the Chern insulator, in both topologically trivial and
nontrivial phases to show that it can exist over a large region of
the topological phase diagram, with several different models
for the adjacent NM.

We organize the paper as follows. In Sec. II A we start
from the simplest 1D chiral-symmetric TI, namely the SSH
model. We show that if chiral symmetry is locally preserved
when a NM layer is attached to the SSH system, a zero-energy
quantum-well state emerges and its wave function profile is
indistinguishable from a true topological edge state. We then
investigate a Majorana chain/NM junction in Sec. II B. Here,
particle-hole symmetry ensures that the zero-energy states
must appear in pairs. By fine-tuning the NM chemical poten-
tial μN , we show that the wave functions of these pairwise
states are, to some extent, indistinguishable from true Majo-
rana fermions even when the system is topologically trivial.
In Sec. II C we study a 2D Chern insulator/NM junction.
Our results indicate whether the zero-energy states at zero
momentum display the same symmetry eigenvalue as the true
topological chiral edge states depends on the orbital kinetics
of the NM. Section III summarizes our results.

II. TRANSIENT ZERO-ENERGY STATES IN 1D AND 2D

In this section we investigate the SSH, the Kitaev, and the
Chern-insulator models interfaced with a mesoscopic normal
metallic layer.

A. Chiral symmetry: SSH/NM junction

We first consider a 1D SSH/NM junction Fig. 1(a). Sim-
ilar systems have been considered previously including an
SSH/gapless wire/SSH junction [54]. Here, though, we will
focus on an SSH/NM system with a finite NM layer [55] such
that the quantum-well states in the NM couple only to one
edge state. The spinless SSH layer of length NT I is described

FIG. 1. (a) The 1D SSH/NM junction consists of an SSH chain
of length NT I and kinetic hoppings t ± δt , coupled to an NM layer
of length NNM , with chemical potential μN and hopping tN , via an
interface hopping t ′. (b) Eigenenergies En (measured in units of
t) for an isolated SSH chain as functions of δt . (c) Evolution of
the eigenenergies En in the topologically nontrivial phase (δt < 0)
for the SSH/NM junction in (a) as the chiral-symmetry-breaking
chemical potential μN is increased. (d) to (g) Wave function profiles
of several eigenenergies in (c) (following the same color code):
(d) μN = 0 (blue solid circle), (e) μN = 0.2844t (green solid circle),
(f) μN = 0.6281t (purple solid circle), and (g) μN = 0.3656t (orange
solid circle). We have used the following parameters: NT I = 40,
NNM = 10, δt = −0.2t , t ′ = t , and tN = −0.6t .

by the lattice Hamiltonian [53]

HSSH =
∑

i<NT I ,i∈odd

(t + δt )(c†
i ci+1 + c†

i+1ci )

+
∑

i<NT I ,i∈even

(t − δt )(c†
i ci+1 + c†

i+1ci ), (1)

where ci (c†
i ) is the spinless fermion annihilation (creation)

operator at site i, and t ± δt are the alternating hopping ampli-
tudes. Figure 1(b) shows the spectrum of the SSH chain HSSH

with open boundary conditions as a function of the parameter
δt , from which the zero-energy edge states in the topologically
nontrivial phase (δt < 0) can be clearly identified.

For periodic boundary conditions and after performing
a Fourier transform, the SSH Bloch Hamiltonian HSSH(k)
itself possesses time-reversal (TR), particle-hole (PH), and
chiral symmetries. Denoting by K the complex conjugate
operator and σ̂ = (σx, σy, σz ) the Pauli-matrix vector, we can
implement the symmetry operators for PH, TR, and chiral

045401-2



PROXIMITY-INDUCED ZERO-ENERGY STATES … PHYSICAL REVIEW B 107, 045401 (2023)

symmetries by T = K , C = σzK , and S = σz, respectively,
thus realizing a 1D class BDI model [56,57]. For the SSH
model, chiral symmetry is often termed sublattice symmetry.

The NM layer of length NNM is modeled by the tight-
binding Hamiltonian

HNM =
∑

i>NT I

μN c†
i ci

+
∑

NT I <i<NT I +NNM

tN (c†
i ci+1 + c†

i+1ci ), (2)

with tN and μN the hopping parameter and chemical potential
in the NM, respectively, as depicted in Fig. 1(a). Note that
as long as μN is nonzero, the Bloch Hamiltonian HNM(k)
breaks PH and chiral symmetries. Therefore, μN serves as
a parameter to control the symmetries of the NM. The two
systems are coupled by a tunneling term given by HT =
t ′(c†

i ci+1 + c†
i+1ci ), where t ′ is the hopping parameter between

the last site on the SSH chain and the first site on the NM [see
Fig. 1(a)].

For open boundary conditions, an SSH chain in the topo-
logically nontrivial phase (δt < 0) is known to host two
zero-energy edge states that are eigenstates of the chiral
symmetry operator σz [5,6]. This translates into edge states
localizing on odd and even sites near the left (i ≈ 1) and right
(i ≈ NT I ) ends of the chain, respectively. When the NM layer
is attached to the right end of the chain, the first question one
can ask is how to unambiguously distinguish the percolated
topological edge state from other eigenstates of the SSH/NM
junction. To answer this question, we numerically diagonalize
the SSH/NM junction to obtain its eigensolutions. We will
discuss the results for the topologically nontrivial and trivial
cases separately in the following sections.

1. Results: SSH/NM junction in the nontrivial phase (δt < 0)

Figure 1 summarizes our results for the topological
regime of the SSH chain. In Fig. 1(c) we show the dis-
crete eigenenergies En of the system as a function of the
chiral-symmetry-breaking NM chemical potential μN . When
μN = 0, the state at zero energy can be identified as a true
edge state [see solid blue circle in Fig. 1(c)] because its wave
function percolates into the NM layer and retains the SSH
sublattice symmetry; i.e., it only localizes on the even sites
[see Fig. 1(d)]. As we gradually turn on μN , the energy of this
edge state increases, thus allowing us to track its evolution.
The wave function at finite μN no longer entirely localizes
on the even sites; it continuously evolves into a sublattice
symmetry-breaking profile, see Fig. 1(e), corresponding to the
green solid circle in Fig. 1(c). At an even larger μN , such that
the tracked edge-state energy merges into the bulk (see purple
solid circle), its identification becomes rather ambiguous [see
Fig. 1(f)].

Figure 1(c) also reveals that tailor-made zero-energy states
appear as we vary μN . This occurs because some negative
energy NM states at μN = 0 gradually move up as we increase
μN , eventually crossing zero energy, e.g., the orange solid
circle. The wave function of this kind of state inherits both
the edge state character (localization on even sites within the
SSH layer), and features of the NM quantum-well-like states
(standing waves within the NM layer), as shown in Fig. 1(g).

FIG. 2. (a) Eigenenergies En as functions of μN in the topolog-
ically trivial phase of the SSH chain (δt = 0.2t). (b) Eigenenergies
for a fixed value of μN = 0.1704t [black point in (a)] as functions
of the hopping δt . Note that if cross the predicted trivial/nontrivial
bulk phase transition (δt = 0), there is no distinction between the
two regimes. Wave function probability density for several δt of
the fine-tuned zero-energy state that only localizes on the even sites
within the SSH layer and whose profile is indistinguishable from
the true topological edge state: (c) δt = 0.06t , (d) δt = 0.01t , (e)
δt = −0.01t , and (f) δt = −0.06t . We have used the following pa-
rameters: NT I = 40, NNM = 10, t ′ = t , tN = −0.6t , and μ = 0.4t .

Thus, if a local measurement, like STM, is performed in the
SSH/NM interface, it would not be possible to distinguish
these fine-tuned zero-energy states Fig. 1(g) from the true
topological edge states Fig. 1(d).

2. Results: SSH/NM junction in the trivial phase (δt > 0)

When the SSH model is in the topologically trivial phase,
which has no topological zero-energy edge states, one can
still fine-tune the chemical in the metallic layer such that the
NM quantum-well states have zero energy; see Fig. 2(a). The
robustness of this fine-tuned mode can be seen in Fig. 2(b),
in which we fix the NM chemical potential μN and vary the
parameter δt that controls the topology. As we move across the
trivial/nontrivial bulk phase transition (δt = 0), the fine-tuned
zero-energy state still persists, indicating that this state can
exist over a wide region of the topological phase diagram
parametrized by δt . The wave function probability density
for different δt’s is shown in Figs. 2(c)–2(f). We note that
these states still localize only on the even sites within the SSH
layer, meaning that they are indistinguishable from the true
topological edge states.

Our result suggests that if one solely relies on the existence
of the edge state to judge whether the system is in a topolog-
ically nontrivial phase, then caution must be taken in these
kinds of SSH/NM junctions.
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B. PH symmetry: Kitaev/NM junction

We now consider the spinless Kitaev p-wave superconduct-
ing chain interfaced with an NM layer. Similarly to the SSH
model, the finite Kitaev model hosts topologically zero-energy
end modes known as Majorana bound states [12]. Note that
a similar interface problem of a Majorana fermion leaking
into an adjacent quantum dot has been investigated previously
from the transport point of view [42,58–60], as well as the
situation that the two ends of the NM (that may also con-
tain Rashba spin-orbit coupling) are coupled to two separated
Majorana chains [61,62]. In contrast, here we focus on the
symmetry perspective of a Majorana end mode leaking into a
metal of finite length.

The lattice Hamiltonian of this Kitaev/NM junction is
given by

H =
∑
i∈Np

t (c†
i ci+1 + c†

i+1ci ) − μ
∑
i∈Np

c†
i ci

+
∑

{i,i+1}∈Np

�(cici+1 + c†
i+1c†

i )

+
∑

i∈NNM

tN (c†
i ci+1 + c†

i+1ci ) − μN

∑
i∈NNM

c†
i ci

+ t ′(c†
Np

cNp+1 + c†
Np+1cNp

)
, (3)

where ci (c†
i ) is the spinless fermion annihilation (creation)

operator at site i and Np (NNM) denotes the Majorana chain
(NM region). The parameters t , μ, and � correspond to the
hopping, chemical potential, and superconducting pairing in
the Kitaev model, respectively. The last term in Eq. (3) cor-
responds to the coupling between the Kitaev and NM chains.
The site indices Np and Np + 1 denote, respectively, the end of
the Kitaev chain and the beginning of the NM layer, i.e., their
interface.

1. Results: Kitaev/NM junction in the nontrivial phase (|μ| < 2t)

The Bloch Hamiltonian of the Majorana chain, written in
the basis (c(k), c†(−k))T , is given by

Hp(k) =
(

1
2 (2t cos k − μp) i� sin k

−i� sin k − 1
2 (2t cos k − μp)

)
, (4)

which satisfies PH symmetry implemented by C = σxK . The
NM chain alone expressed in the same basis is essentially the
diagonal part of Eq. (4), which also satisfies PH symmetry. As
a result, the edge state of the Kitaev/NM junction still remains
an eigenstate of the PH-symmetry operator C and therefore
contains equal weights of the electron and hole channels. This
means that the edge state can percolate into the NM layer and
remain a Majorana fermion, as can be seen in Fig. 3(a), where
the red (hole) and blue (particle) merge together to become
one blue line that percolates into the NM.

One may consider this result as an artifact stemming from
the Hamiltonian being expressed in the basis (c(k), c†(−k))T ,
so the PH symmetry by construction cannot be broken even
when the system is attached to an NM layer. In addition, the
energy spectrum shown in Fig. 3(a) indicates that even by
fine-tuning the NM chemical potential μN , NM-layer states
never reach zero energy, so it is not possible to fabricate a

FIG. 3. (a) Energy spectrum En of a Kitaev/NM junction in the
topologically nontrivial phase as a function of the NM chemical
potential μN . Here NT I = 40, NNM = 10, μ = 0.5, t = 0.4, � = 0.6,
and t ′ = tN = 0.3. Inset: Wave function profiles of the two zero-
energy states, indicating that one of them has a Majorana wave
function ψe = −ψh (red opposite of blue) at the left end, and the
another has a Majorana wave function ψe = ψh (red equals to blue,
hence only blue is shown) at the right end that percolates into the
NM. (b) Energy spectrum of the junction in the topologically trivial
phase, μ = 1. The four panels show the wave function of the two
quantum-well states that cross zero energy upon tuning μN . One
state has only an electron-like component while the other has only
a hole-like component, and hence, the two of them together may be
misidentified as one Majorana fermion.

zero-energy state in the topologically nontrivial phase other
than the true Majorana edge state itself. This follows from
our spinless system being one-dimensional and having PH
symmetry. Therefore, it allows for at most two solutions per
energy [63].

2. Results: Kitaev/NM junction in the trivial phase
(μ < −2t or μ > 2t)

In the topologically trivial phase (here we only consider
μ > 2t), in which no Majorana edge states occur, the situation
is different. In contrast to the topological case in Sec. II B 1,
here, the NM quantum-well states can be made to cross at
zero energy by fine-tuning μN , as shown in Fig. 3(b). In
our system, this is possible because there are no topological
zero-energy solutions. Since the spectrum is PH symmetric,
the states always come in pairs with one electron-like and
the other hole-like. In the wave function panels of Fig. 3(b),
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FIG. 4. (a) Color map of the LDOS at E = 0 for the Kitaev/NM
junction as a function of μ and the number of sites. The horizontal
red line indicates the topological (μ < 2t)/nontopological (μ > 2t)
phase transition. Total density of states for the (b) trivial (μ = 1) and
(c) topological (μ = 0.5) regimes as functions of the energy E .

we show the wave function profile before (μN = 0.5672) and
after (μN = 0.5922) the crossing. Note that the inversion of
the electron-like to hole-like at the crossing is clearly visible.

As pointed out in a different context by recent theoret-
ical and experimental works [47,64–71], this feature raises
concerns that either of these two zero-energy states (trivial
and nontrivial) may be mistakenly identified as a Majorana
mode. Additionally, we corroborate this difficulty by showing
in Fig. 4(a) the local density of states (LDOS) at E = 0 of
the Kitaev/NM junction as a function of the Kitaev chemical
potential μ and the number of sites. The horizontal red line
indicates the predicted topological/nontopological bulk phase
transition. We note that throughout the whole NM region,
there is an energy mode pinned to zero across the topological
phase transition, which can lead to an ambiguity in telling
apart the true Majorana mode.

To further support this statement, Figs. 4(b) and 4(c) show
the density of states (integral of the LDOS) for the trivial and
nontrivial regimes, respectively, as functions of the energy E .
Once again, we see that they both have a zero-bias peak and
very similar profiles, indicating that tunneling conductance
measurements would possibly not distinguish them.

C. Symmetry induced by edge direction: Chern
insulator/NM junction

The Chern insulator belongs to class A in the Altland-
Zirnbauer symmetry classification [56], which has no non-
spatial symmetries. Despite the absence of nonspatial sym-
metries, the edge state self-generates a symmetry eigenvalue
according to the direction of the edge, as we shall see below.

The bulk Chern insulator is described by the Bloch Hamil-
tonian [4,6]

HCI (k) = A sin kxσ
x + A sin kyσ

y

+ (M + 4B − 2B cos kx − 2B cos ky)σ z, (5)

written in the spinless basis ψ = (ck,s, ck,p)T , where c†
k,s(p) =∑

i e−ik·rc†
i,s(p), and c†

i,s(p) is the creation operator of an
s(p)-orbital electron at site i. Recall that in (5) the Pauli
matrix vector σ̂ = (σx, σy, σz ) denotes a pseudospin degree of

freedom. The corresponding 2D lattice model [72] reads

H =
∑
i∈CI

t{−ic†
i,sci+a,p + ic†

i+a,sci,p + H.c.}

+
∑
i∈CI

{−c†
i,sci+b,p + c†

i+b,sci,p + H.c.}

+
∑

i∈CI,δ

t ′{−c†
i,sci+δs + c†

i,pci+δ,p + H.c.}

+
∑
i∈CI

(M + 4t ′){c†
i,sci,s − c†

i,pci,p}, (6)

with CI denoting the Chern insulator sites, t = A/2, t ′ = B, s
and p the orbital degrees of freedom, and δ = a, b the lattice
constants for the x̂ and ŷ directions, respectively. Periodic
boundary conditions along x̂ and open boundary conditions
in the ŷ direction are imposed in our calculations.

We focus on the critical region near M = 0 where the
bulk gap closes at wave vector k = (0, 0). The corresponding
Schrödinger equation can be solved by expanding the Hamil-
tonian in Eq. (5) near k = (0, 0) and then replacing ki →
−i∂i. Considering an edge state whose energy dispersion is
linear, i.e., E (kx ) = Akx, we have

{−iAσx∂x − iAσy∂y + [
M − B∂2

x − B∂2
y

]
σz

}
ψ = Akxψ. (7)

Using the ansatz ψ = ψxψy ∝ eikxxe−λyχη, with χη a spinor of
eigenvalue η, the equation becomes

{
Akxσx + iAσyλ + [

M + Bk2
x − Bλ2

]
σz

}
χη = Akxχη. (8)

From the equation above, we see that when the edge state is an
eigenstate of σxχη = ηχη = with eigenvalue η = ±1, the Akx

terms on the left and right hand sides cancel out. The remain-
ing equation, Aλ + (M + Bk2

x − Bλ2) = 0, straightforwardly
yields the edge state decay length 1/λ. Note that the edge
state is an eigenstate of σx because we choose the boundary
to be extending along the x̂ direction. We also remark that
the topological state of the Chern insulator is protected by
the approximate chiral symmetry of the corresponding nodal
semimetal, which has a nonzero winding number, as discussed
in detail in Ref. [73].

The continuum limit solution above being an eigenstate
of σx implies that in the lattice model the edge state at any
site i has equal weights of the two orbitals {s, p} (pseudospin
degrees of freedom). Note, however, that in this simple cal-
culation we suppose a perfect linear dispersion E (kx ) = Akx,
which is not true for the edge states at large momenta kx �
M/A. This means in reality that only the edge state at zero
momentum kx = 0 is a perfect eigenstate of σx.

In what follows, we examine two different models for the
NM layer to highlight the influence of the orbital kinetics
of the NM on the fine-tuned zero-energy states, and whether
they are distinguishable from the true edge states at zero mo-
mentum kx = 0. Here we consider a NM layer with parabolic
bands. A Chern insulating layer coupled to a gapless metallic
system, also described by Dirac models, has been considered
previously [74].
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FIG. 5. Chern insulator/NM junction with periodic boundary conditions in x̂ and open boundary conditions in ŷ. Here, the NM and
interface Hamiltonians have identical kinetics between the two orbitals. Panel (a) shows the wave functions |ψs(y)|2 (solid red curve) and
|ψp(y)|2 (dashed blue curve) for the zero-energy state in the topologically (a) nontrivial (M = −1) and (b) trivial (M = 1) cases. The insets
show the eigenenergies En at kx = 0 as functions of μN , and the black dots indicate the zero-energy states, whose wave functions are shown.
We have used the parameters t = t ′ = tN = tB = 1.

1. Results: Chern insulator/NM junction with identical orbital
kinetics in the NM

We first consider an NM tight-binding model that has iden-
tical kinetic hopping terms for the s and p orbitals, i.e.,

Hσ0
NM =

∑
i∈NM,δ

tN (c†
i,sci+δ,s + c†

i,pci+δ,p) + H.c.

−
∑

i∈NM

μN (c†
i,sci,s + c†

i,pci,p), (9)

with tN and μN the hopping and chemical potential, respec-
tively. The coupling Hamiltonian reads

Hσ0
BD =

∑
i∈BD

tB(c†
i,sci+b,s + c†

i,pci+b,p) + H.c., (10)

where tB is the interface hopping parameter and i ∈ BD
denotes the boundary sites at the interface. We use the super-
script σ0 in Hσ0 to denote that when the Fourier transform of
such a Hamiltonian is written in the basis (ck,s, ck,p)T , it is
proportional to the identity matrix.

Nontrivial phase (M < 0). In the inset of Fig. 5(a) we show
the eigenenergies En at kx = 0 versus μN . Note that in addition
to the topological edge state, pinned at zero energy, there are
several trivial NM states within the Chern insulator bulk gap
that eventually cross zero. This is similar to what happens in
the SSH/NM system in Sec. II A.

As an example, we show in Fig. 5(a) the wave function of
the fine-tuned zero-energy state at kx = 0 for μN = −0.6906t
(black dot in the inset). We note that, similarly to the true topo-
logical edge state, the state here also has equal s- and p-orbital
components (|ψs|2 = |ψp|2) in both the Chern insulator and
NM regions. This indicates that it mimics the true topological
edge state.

Trivial phase (M > 0). In Fig. 5(b) we plot En versus μN

(inset) and show the wave function of one of the fine-tuned
zero-energy states μN = −0.6485t (black dot in the energy
spectrum.) In this case, the wave function no longer has the
same weights on both orbitals (|ψs|2 ≈ 0, for this particular
example), and hence in principle should be distinguishable
from the true topological edge state.

2. Results: Chern insulator/NM junction with opposite orbital
kinetics in the NM

The second NM model we analyze has kinetic hopping
terms of opposite signs for the s and p orbitals, i.e.,

Hσz
NM =

∑
i∈NM,δ

tN (c†
i,sci+δ,s − c†

i,pci+δ,p) + H.c.

−
∑

i∈NM

μN (c†
i,sci,s − c†

i,pci,p). (11)

For the interface, the Hamiltonian is given by

Hσz
BD =

∑
i∈BD

tB(c†
i,sci+b,s − c†

i,pci+b,p) + H.c. (12)

Here, the superscript σz means that a Bloch Hamiltonian
Hσz (k), written in the basis (ck,s, ck,p)T , is proportional to σz.

Nontrivial phase (M < 0). In Fig. 6(a) we show that as
we vary μN , it is not possible to generate an additional zero-
energy state. As a result, the true topological edge states can
be unambiguously identified. This is so because there are
already two solutions (true topological edge states) at E = 0.

Trivial phase (M > 0). In this case, as shown in Fig. 6(b),
it is always possible to create zero-energy states that come in
pairs. In a way similar to the Majorana chain/NM junction
discussed in Sec. II B 2, one of the two zero-energy states is
purely an s-like wave function and the other is a purely p-
like one, making two of them together indistinguishable from
the true topological edge state that has equal s and p orbital
wave functions.

III. CONCLUSIONS

In summary, we show that when an NM is attached to a
topological material, it is possible to fine-tune the chemical
potential of the metallic layer so as to create a zero-energy
state that is indistinguishable from the true topological edge
state. The results for the three examples we have examined
are summarized below.

For the SSH/NM junction, we find that such a zero-energy
state can be created by fine-tuning the chiral-symmetry-
breaking chemical potential of the NM. Moreover, these states
can be created in both the topologically trivial and nontrivial
phases, and exist over a wide region of the topological phase
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FIG. 6. Chern insulator/NM junction with periodic boundary conditions in x̂ and open boundary conditions in ŷ. Here the NM and interface
Hamiltonians have opposite kinetics between the two orbitals. The wave functions |ψs(y)|2 (solid red curve) and |ψp(y)|2 (dashed blue curve)
for the zero-energy state are shown for the (a) nontrivial (M = −1) and (b) trivial (M = 1) cases. In the trivial case the solutions come in pairs.
The inset shows the eigenenergies En as functions of μN , with the parameters t = t ′ = tN = tB = 1.

diagram. The wave function profile of this zero-energy state
in the SSH region is only localized on one sublattice, just
like the true topological edge state, making it indistinguish-
able from the true topological edge state as far as the wave
function profile is concerned.

For the Kitaev/NM junction in the topologically nontrivial
phase, we find that such a zero-energy state cannot occur
alongside the true Majorana edge states. On the other hand, in
the trivial phase, the fine-tuned zero-energy states can occur,
and they must appear in pairs due to PH symmetry. Because
one of them has an electron-like wave function and the other a
hole-like one, it is highly possible to mistake the two zero-
energy states together as one single Majorana fermion. In
addition, though investigating the local and global DOS, we
find that it is practically impossible to distinguish these fine-
tuned states from true Majorana fermions either by detecting
the local DOS using STM, or by probing the tunneling con-
ductance of the whole junction, since these fine-tuned states
give the same zero-bias peak as the true Majorana fermions.

In the 2D Chern insulator, the true topological edge state
self-generates a symmetry eigenvalue due to the direction of
the edge. As a result, its wave function has the same weight on
the two orbitals. In the 2D Chern insulator/NM junction, we
show that for an NM model that has the same kinetic hopping
terms for the two orbital degrees of freedom, a zero-energy
state can be created in the topologically nontrivial phase.
The wave function, here, has the same weights on the two

orbitals, thus mimicking the true topological edge state. On
the other hand, if the kinetic hopping terms of the two orbitals
in the NM have opposite signs, then the zero-energy state
appears in pairs and can only be created in the topologically
trivial phase. Moreover, one of the zero-energy states has an
s-like wave function and the other a p-like one, meaning that
the two states together may be wrongly identified as one single
edge state.

These results indicate that should a metallic layer be at-
tached to a topological material, caution must be taken if one
intends to identify the true topological edge state merely from
the zero-energy modes and their wave function profiles, or
some zero-bias conductance feature in STM or tunneling con-
ductance measurements, since such fine-tuned zero-energy
states may occur in a wide region of both the topologically
trivial and nontrivial phases.

ACKNOWLEDGMENTS

P.H.P. acknowledges support of the PNPD program by
Coordenação de Aperfeiçoamento de Pessoal de Nível Su-
perior (CAPES)—Finance Code 001. J.C.E. acknowledges
support from the São Paulo Research Foundation (FAPESP)
Grants No. 2016/08468-0 and No. 2020/00841-9, and
from Conselho Nacional de Pesquisas (CNPq), Grant No.
306122/2018-9.

I.J.C. and P.H.P. contributed equally to this work.

[1] B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, and Q. Niu, Phys.
Rev. Lett. 101, 246807 (2008).

[2] H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys.
Rev. B 81, 115407 (2010).

[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[4] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[5] S.-Q. Shen, Topological Insulators: Dirac Equation in Con-

densed Matter, Springer Series in Solid-State Sciences, 2nd ed.,
(Springer Nature, Singapore, 2017).

[6] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University Press,
Princeton, 2013).

[7] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[9] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[10] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802

(2006).
[11] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[12] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[13] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[14] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[15] A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J.

Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim,

045401-7

https://doi.org/10.1103/PhysRevLett.101.246807
https://doi.org/10.1103/PhysRevB.81.115407
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.077001


CALIFRER, PENTEADO, EGUES, AND CHEN PHYSICAL REVIEW B 107, 045401 (2023)

N. Samarth, and D. C. Ralph, Nature (London) 511, 449
(2014).

[16] Y. Wang, P. Deorani, K. Banerjee, N. Koirala, M. Brahlek, S.
Oh, and H. Yang, Phys. Rev. Lett. 114, 257202 (2015).

[17] D. C. Mahendra, R. Grassi, J.-Y. Chen, M. Jamali, D.
Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman,
Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J.-P.
Wang, Nat. Mater. 17, 800 (2018).

[18] I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
[19] T. Yokoyama, J. Zang, and N. Nagaosa, Phys. Rev. B 81,

241410(R) (2010).
[20] F. Mahfouzi, N. Nagaosa, and B. K. Nikolić, Phys. Rev. Lett.
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