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Metamorphoses of the flow past an obstacle of a resonantly driven bistable polariton fluid
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Motivated by recent experiments, we theoretically analyze the flow past an obstacle of a one-dimensional
“quantum fluid of light,” which is resonantly driven, and exhibits bistability. The flow is found to abruptly
change several times when the fluid velocity or the obstacle potential strength is increased. These transitions
display unusual features. In contrast to the cases of usual fluids and superfluids, the transitions take place between
stationary states. They involve the fluid bistability in an essential way. Remarkably, at the transitions points, the
fluid in the obstacle wake lies in the unstable intermediate density state.
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I. INTRODUCTION

The discovery of Bose-Einstein condensation has opened
a very active field of research [1]. Besides cold atomic va-
pors, Bose-Einstein condensation has also been achieved in
exciton-polariton fluids [2,3]. These “quantum fluids of light”
[4] result from the strong coupling between the excitonic
resonance of a semiconductor quantum well and a micro-
cavity electromagnetic field. Their solid-state nature and the
higher condensation temperature associated with the polariton
very low mass turn them into attractive systems. In early
experiments, polaritons were created with a transient [5] or
a spatially localized [6] driving field to avoid interfering with
the superfluid behavior of the condensate. The short polariton
lifetime then restricted the experiment duration or limited the
observations to a local region around the pumping spot. In
order to bypass these limitations, it has been found useful to
introduce a weaker resonant drive, a so-called “support field”,
away from the strong localized pumping spot used to create
the polaritons [7]. The extended quasiresonant drive tends to
lock the phase of the condensate and its dynamics, which is
different from the dynamics of a conventional fluid or of a
superfluid [8]. When the support field is not too strong, it
allows the formation of collective excitations, such as vortices
[9] and dark solitons [10]. This new coherently driven regime
has started to be investigated theoretically [3,7,11-13] and
experimentally [9,10,14,15].

Here, we consider the flow of a resonantly-driven conden-
sate past an obstacle. Such a set-up has been the subject of
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many investigations both for classical fluids [16] and superflu-
ids [1]. In two or three dimensions, the flow becomes unsteady
at a critical velocity through an oscillatory (Hopf) bifurcation.
For superfluids, this leads to the nucleation of vortices [17]
past the critical velocity. In a one-dimensional setting, gray
solitons are generated and propagate from the obstacle along
the flow [18]. For standard (conservative) superfluids, these
dynamical behaviors are well described in the framework
of the Gross-Pitaevskii equation [19-23]. If the creation of
defects in the flow of a resonantly-driven condensate has been
observed, strong deviation from standard superfluids behav-
iors were reported [3,7,12,15]. It remains to better understand
the transition and its dependence on the fluid bistability [24],
and, more generally, condensate dynamics in the presence of
resonant drive and dissipation.

In the present paper, we focus on the one-dimensional case,
which is easier to analyze than higher dimensional cases. We
find that multiple transitions in the flow occur when the fluid
velocity is increased, or when the obstacle strength is in-
creased at fixed velocity. We show that these transitions are of
a very different type from the usual ones in fluids and superflu-
ids. Moreover, their unusual character forbids their prediction
from the characteristics of excitations around the steady flow,
as done for superfluids with the Landau criterion [1].

II. THE GENERALIZED GROSS-PITAEVSKII
EQUATION AND BISTABILITY

We consider the fluid described by the following general-
ized Gross-Pitaevskii equation (GGPE):
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In the context of exciton-polariton microcavity physics,
Eq. (1) provides an effective description of a driven lower
polariton field [3,4], with the polariton-polariton repulsive
interaction accounted by the constant g > 0. Additional terms
as compared to the usual GPE arise from the coherent drive
and dissipation [3,4]. The support field is characterized by its
amplitude F', its momentum k,, produced by a slight tilt of
the driving laser beam with respect to the cavity plane and
the detuning A of its frequency from the lower polariton band
bottom frequency. Dissipation is described by the rate y > 0
arising from the polariton finite lifetime. The potential V (x)
models a localized obstacle. It is our main aim to charac-
terize its effect on the fluid flow described by Eq. (1). It is
worth noting that our results are also relevant for nonlinear
optics [25] where Eq. (1) is known as the Lugiato-Lefever
equation [26] and describes the wave evolution in a cavity
filled with a nonlinear medium (see e.g., [27] and references
therein).

The explicit x dependence in Eq. (1) can be eliminated by
defining

Y =/ hy /28 d(x) exp(ikyx). 2

The function ¢ then obeys the equation

i0:p = —10,,¢ — ikodyp — By (M) +i— 191l + £, (3)

where we have introduced the dimensionless variables y =

xy/my [2h, T =ty /2, and constants kg = k,/2h/my, f =
F./g2/hy 3/2 and defined the function
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Before considering the effect of a localized obstacle, we
briefly recall some properties of the fluid described by Eq. (3).
When V (y) = 0 and dy (y) = 8o, Eq. (3) has constant solutions
in space and time with a homogeneous density p = |¢|?,
which can readily be seen to simply obey

B(p) := [(p — 80)* + 11p = f*. ®)

Two cases can be distinguished. When §p < 0, the function
B(p), defined in Eq. (5), is increasing from 0 to +oo with the
density. As a consequence, the density p is also an increasing
function of the forcing amplitude f. When §; > 0, namely
for blue detuning, B(p) can be nonmonotonic with multiple
homogeneous solutions for a given forcing. A simple analysis
of Eq. (5) shows that this actually happens when 8, > /3.
An example of this S-like dependency of the density with the
driving field is plotted in Fig. 1(a). In this case, three solutions
exist in a window of intermediate forcing strengths, i.e., for
B(py) < f* < B(p-) with

pr = 3(280 £,/83 —3). ©)

The high density (HD) and low density (LD) solutions are
stable while the intermediate density (ID) one is unstable,
as explicitly shown in Appendix A. Bistability stems from
the positive feedback between the fluid density increase and
forcing efficiency, for blue detuning. When the density of the
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FIG. 1. Numerical simulations of Eq. (3). (a) Fluid density p
vs. forcing f as described by Eq. (5). In the parameter regime
considered, there are three homogeneous steady states, stable HD
(high density, solid-orange circle) and LD states (low density, solid-
blue square) and an unstable ID one (intermediate density, solid-red
diamond). [(b),(c)] The fluid is injected in the HD state. The fluid
density is shown at successive times separated by At = 6. Suc-
cessive curves are shifted upward with time by 1.2 unit of density
to highlight that the flow becomes stationary. The last simulation
curve is shown as a thicker colored line. (b) for a potential amplitude
u,, = 2, the flow is steady with the wake of the obstacle in the HD
state at y > 0. (c) For a larger u,, = 6, the flow is still stationary,
but is in the LD state in the wake of the obstacle. Other parameters
are 8p = 6.2, f =3.2,ky = 2.75, which corresponds to the typ-
ical experimental values KA = 0.5 meV, iy = 0.1 meV, ii*/m =
1 meVyum?, k, = 0,616 um~", J/&F =0.036 (meV)*?2. The poten-
tial range is o =1 corresponding to 4.5 um, the chosen unit
length.
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fluid increases, the detuning of the forcing decreases as a con-
sequence of the repulsive self-interactions, as can explicitly
be seen in Eq. (5). This results in a more closely resonant and
thus more efficient forcing, which, in turn, increases the fluid
density. This bistability for sufficiently strong blue detuning is
well known in nonlinear optics [4] and has been demonstrated
for polaritons in microcavities [24]. While in the LD state,
self-interactions are unimportant, the strong self-interactions
in the HD state modify the fluid flow properties [8,28].

III. FLOW PAST AN OBSTACLE: NUMERICAL
SIMULATIONS AND FLOW METAMORPHOSIS

Having recalled the basic features of the homogeneous
state, we proceed and describe our simulations of Eq. (3) with
a localized repulsive [V (y) > 0] Gaussian potential

h
V(y) = Tyum exp[—(y/o)*]. )

We focus on the bistable parameter regime with 8, > +/3 and
the forcing f in the appropriate intermediate interval [see
Fig. 1(a)]. In an experimental setting, a strong driving field
in a far upstream local region would be used to create the
HD state as proposed in Ref. [7], experimentally realized
in, e.g., [15], and sketched within the Supplemental Material
[29]. Instead, here, we study an equivalent but mathematically
simpler situation by simply setting up the fluid in the HD state
as an upstream boundary condition.

Simulations of Eq. (3) with the Gaussian potential (7)
are performed as in Ref. [20] with a finite-difference semi-
implicit Crank-Nicholson scheme. The reported results are
obtained in a symmetric domain around the origin, of linear
size 150 or 200, with a spatial step Ay = 0.05 and a time step
At =107%

For a low potential amplitude, the flow is steady. The
density decreases as expected in the region of the repulsive
potential, and it returns smoothly to the HD state in the wake
of the obstacle, as shown in Fig. 1(b). For a weak potential,
this configuration has been previously studied perturbatively
in the context of a moving particle in a polariton fluid [30,31].
An increase in the potential amplitude u,, produces a transi-
tion in the flow, as shown in Fig. 1(c). However, the character
of the transition appears to be very different from the usual
transitions to time-dependent flows in fluids and superfluids.
Instead, above the transition the flow is still stationary, after
a transient, but with the fluid density in the LD state down-
stream of the obstacle, as shown Fig. 1(c). In other words,
for the driven-dissipative GGPE, the steady flow undergoes
a metamorphosis instead of becoming time dependent. That
the flow density downstream of the obstacle lies in the LD
state provides a first hint that the fluid bistability is playing a
significant role in the observed transition.

Simulations of Eq. (3) for different potential amplitudes u,,
and different flow velocities kg, provide a more global view of
the dynamical regimes of the GGPE flow past an obstacle, as
summarized in Fig. 2. The results are displayed for two values
of the potential range o = 1 [Fig. 2(a)] and o = 2 [Fig. 2(b)]
[32] They are qualitatively very similar in the two cases. As
expected, the transition point described above extends to a full
boundary delimiting two domains in the (ko, u,,) plane, with

different kinds of steady state flow. In the outside domain
[yellow domain in Figs. 2(a) and 2(b)], flows starting in the
HD-state upstream of the obstacle return to the HD state in
the wake of the obstacle. On the contrary, in the inside domain
[blue domain in Figs. 2(a) and 2(b)], flows starting in the
HD state end up in the LD state in the wake of the obstacle.
However, the survey of an extended part of the (ko, u,,) plane
brings a surprise: other transitions are found, corresponding
in Figs. 2(a) and 2(b) to the boundaries of the smaller yellow
regions inside the blue domain. In these smaller regions, the
fluid in the wake of the obstacle is again in the HD state.
These multiple transitions are illustrated in Figs. 2(c)-2(h) for
o = 2, by increasing the potential amplitude u,, at fixed flow
velocity ko. The fluid density is in the the HD state in the wake
of the obstacle for low u,, values. At a first critical value of u,,,
the fluid in the obstacle wake jumps in the LD state [Figs. 2(c)
and 2(d)] as described above. When the potential amplitude
is further increased a second transition is found, at which the
fluid density in the obstacle wake, jumps back to the HD state
[Figs. 2(e) and 2(f)]. At a still higher value of u,,, there is a
third transition, similar to the first one, where the fluid density
in the obstacle wake returns to the LD state [Figs. 2(e) and
2(H).

How does the transition take place in the obstacle wake,
between a steady flow in the HD state and a solution in the
LD state, when parameters are varied? In order to shed light
on this question, simulations very close to a transition point
on the lowest transition line are shown in Figs. 3(a)-3(d), for
the two potential ranges o = 1 and o = 2. The flow velocity
ko is fixed and the amplitude u,, of the potential is varied.

As shown in Fig. 3(a), for 0 = 2, when the amplitude of the
potential is close to, but below, the critical potential amplitude
u;,, the obstacle is followed by a fluid region of length L, close
to the intermediate density (ID) unstable state. This region
terminates by a front that joins the ID state to the more down-
stream HD state. As the potential amplitude approaches u),,
this front stands farther downstream from the obstacle, with
an increasing region of the fluid downstream of the obstacle in
the unstable ID state. For potentials with an amplitude slightly
greater than u,, the complementary process is observed, as
shown in Fig. 3(b). As for subcritical potentials, the obstacle
is followed by a fluid region in the unstable ID state but which
terminates by a front joining it to the stable LD state. When
increasing the potential amplitude, this front stands closer to
the obstacle. It reaches the obstacle and disappears, as soon
as the potential amplitude departs by a small amount from u;,.
These observations strongly suggest that the critical solution
is such that the fluid downward wake exactly stands at the
unstable ID state.

For 0 = 1, the scenario of the transition is similar but with
an additional complication. When u,, approaches u, from
above, the ID to LD state stands farther and farther down-
stream from the obstacle with a large region of fluid in the ID
state [Fig. 3(d)] exactly as for o = 2. As in this previous case,
this strongly suggests that the critical solution is such that
the fluid density lies in the unstable ID state in the obstacle
wake. When u,, is below u},, and approaches it closely, the
ID state appears in the obstacle wake together with a front
linking it to the HD state [Fig. 3(c)]. However, the HD front
recedes but becomes nonstationary, when u,, approaches even
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FIG. 2. Results of simulations of the GGPE [Eqs. (1) and (3)] for f = 3.2, §; = 6.2 for different values of the localized potential amplitude
u,, and velocity kq. The fluid is in the HD state at y << 0. (a) The potential range is 0 = 1 in (a) and o = 2 in (b). The color code indicates
the relative density in the wake of the obstacle relative to the density in the HD state. Intermediate colors are due to the limited resolution of
the numerical procedure used to scan this two-parameter plot. [(c)—(h)] For o = 2, close-up with higher resolution, of 3 transitions that take
place when u,, is increased on the vertical line k) = 6.4 of panel (b). Solution densities [(c),(e),(g), solid lines] and phases [(d),(f),(h), dashed
lines] are shown for two values of the potential just below and just above the transition. The fluid in the obstacle wake is either in the HD state
(orange) of the LD state (blue). (c) and (d) first transition with u,, = 4.85 (HD state) and u,, = 4.86 (LD state) (e) and (f) second transition with
u,, = 14.16 (LD state) and u,, = 14.17 (HD state). The second transition is inverted as compared to the first, namely the fluid density jumps
back to the HD state when u,, is increased. (g) and (h) third transition with u,, = 14.84 (HD state) and u,, = 14.85 (LD state). The transition
is analogous to the first one, but with the phases shifted by 2z in the far downstream wake of the obstacle.
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FIG. 3. Detail of the flow metamorphosis in simulations of Eq. (3). [(a),(b)] 0 = 2, ky = 6.4 with (a) u,, = 4.8586914, just below the
transition with the fluid in the far wake of the obstacle in the HD state, and (b) u,, = 4.858728, just above the transition with the fluid in the
far wake of the obstacle in the LD state (see [32])). In both cases, the fluid in the near wake of the obstacle is in the unstable ID-state, as
described in the main text. [(c)—(e)] Same as (a) and (b) for o = 1 and three different potential amplitudes: (c) u,, = 5.46 below the transition,
and (d) u,, = 5.4789, just above the transition. (e) For u,, = 5.4781, below but very close to the critical potential amplitude u,,* >~ 5.4786, the
fluid density is shown at successive times. The curves (dark-solid lines) are plotted every eight time units and shifted upward with time by one
unit of density. The four last curves (thick orange solid lines) are highlighted in order to show the time dependence of the flow. (f) The length
L of the ID state region [depicted in (a) and (b)] is shown as a function of |u,, — u,| for u,, < u, (upward-pointing triangle with orange-dotted
line) and u,, > u;, (downward-pointing triangle with orange-dotted line) when o = 2, ky = 6.4 and u,,* >~ 4.8587. The predicted asymptotic
slope of —3.02 (Eq. (8) and Appendix A) is displayed (dashed-dotted red line). The length L is also shown when ¢ = 1, ky = 2.75 and
uy, > 5.4786 for u,, < u,,* for (upward-pointing triangles with solid orange line) or u,, > u}, (blue-solid line and downward-pointing triangle)
wheno =1, kg = 2.75 and u);, 2~ 5.4786. The predicted asymptotic slope of —1.07 is displayed (dashed-red line). Filled symbols correspond to
steady solutions. Empty symbols corresponds to time-dependent solutions and are only indicative since the fronts have significant oscillations.
In both cases, the length L is defined as the distance from the potential maximum at y = O to the point of density p = 6 (resp. p = 4) of the
front joining the ID obstacle wake to the HD (resp. LD) state as shown in panel (a) [resp. (b)]. In all panels, the parameters §, = 6.2, f = 3.2
are the same as in Fig. 1.
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more closely u,. This leads to large excursions in density, to
and back from the LD state, that travel in the far wake of the
obstacle [Fig. 3(e)]. This phenomenon, which only takes place
in a very small interval of u,, values below u}, is observed
for different discretization steps, simulation box sizes and
total simulation times. It thus appears real and not due to a
numerical instability or to an incomplete relaxation to a steady
state.

IV. CRITICAL SOLUTIONS EXISTENCE AND SHARPNESS
OF THE TRANSITIONS

The transitions observed in the numerical simulations sug-
gest that the critical flows are such that, surprisingly, the fluid
lies in the unstable ID state in the far wake of the obstacle.
This leads us to consider at which conditions such steady
solutions of Eq. (3) that start in the HD state at y = —oo and
end in the LD state at y = +o00 can exist. Another remarkable
fact is the sharpness of the observed transitions when the po-
tential strength u,, is varied [see e.g., the very small difference
between the values of u,, in Figs. 3(a) and 3(b)]. We show
below that considering the spatially growing modes around
the homogeneous states at y = —oo and y = 400 sheds light
on both questions.

A stationary solution of Eq. (3) obeys a second-order
complex equation. Thus, its asymptotic behavior around a
homogeneous state is described by four real modes. As shown
in Appendix A, three of these four modes are spatially di-
verging as y — +00 when the stationary solution is linearized
around the ID state. Similarly, there are two diverging modes
as y — —oo when the solution is linearized around the HD
state. Let us suppose integrating in space the time independent
version of Eq. (3) from the HD state at y = —oo. In order
for the solution to tend towards the ID state at y = 400, the
prefactors of the three diverging modes should be set to zero.
However, the only integration freedom lies in the prefactors
of the two convergent modes at y = —oo since the amplitudes
of the two divergent modes at y = —oo are set to zero by
the initial condition. The solution can tend towards the ID
state at y = 400 only if the potential amplitude is used as an
additional variable to be adjusted to cancel the three divergent
modes. Therefore, a stationary solution linking the HD state at
y = —oo to the ID state at y = 400, only exists for a discrete
set of critical potential amplitudes when other parameters are
fixed. The numerics of Fig. 2 shows that this set actually com-
prises several values. We also show it analytically in Sec. V C,
in a suitable asymptotic limit.

The whole process of the ID state appearance in the wake
of the obstacle, for u, below u},, to its disappearance for
u,, above uy, takes place in a very small interval of values
of the potential amplitude [Figs. 3(a) and 3(d)]. This is a
direct consequence of the ID-state instability, as we now show.
When u,, is close to the critical amplitude u},, the station-
ary solution ¢(y) of Eq. (3) is close to the critical solution
¢*(y) for negative y and for positive y in the vicinity of the
obstacle. Namely, on a length scale of order one behind the
obstacle, one has |¢(y) — ¢*(y)| ~ |u,, — u},|. This is also the
magnitude of the three divergent modes in the vicinity of
the potential. Behind the obstacle, the distance between ¢(y)
and ¢*(y) grows exponentially and is dominated by the rate

q+ of the fastest growing mode, computed in Appendix A.
The front in the obstacle wake, which links the ID state to
one of the homogeneous stable states [Figs. 3(a) and 3(b)],
appears when |¢(y) — ¢*(y)| reaches a value of order one. As
a consequence, the distance L of the front from the obstacle
is related to the difference |u,, — u,| between the potential
amplitude and the critical one by

ltm — ] explg L) = O(1). ®)

This explains the sharpness of the transition observed in the
numerical simulations [Figs. 3(a)-3(d)] since in order to ob-
tain a front at a distance L from the obstacle, u,, should be
exponentially close in L to u;,. Conversely, the distance of the
front from the obstacle only grows logarithmically with the
departure of u,, from the critical potential amplitude, as

L~ (=1/g)In |uy, — u*). )

The measured distance L is plotted vs In |u,, — u},| in Fig. 3(f),
for u,, close to the critical potential and two values of k.
The asymptotic slope, —1/g, is also drawn, using the spa-
tial growth rates computed in Appendix A. The quantitative
agreement appears very good [33].

V. ANALYSIS OF THE TRANSITION:
SLOWLY-VARYING OBSTACLES

In order to better understand these transitions and the role
of bistability in the stationary flow metamorphosis, we con-
sider the parameter regime suitable for theoretical analysis,
provided by an obstacle that varies on a long length scale,
o > 1 [Eq. (7)]. For a slowly varying obstacle, when the
flow is accordingly slowly varying, the derivative terms in
Eq. (3) can be treated perturbatively. At the lowest order,
they can be entirely neglected and the “adiabatic” solution,
?q.(y) = /pa(y) explif,(y)], readily obtained. The fluid den-
sity pg, is linked to the potential amplitude by Eq. (5) with §;
simply replaced by &y (y) [Eq. (4)], which takes into account
the influence of the potential on the detuning. In this adiabatic
approximation, solving the quadratic Eq. (5) for §y(y) pro-
vides the implicit relation between the fluid density and the
potential,

Sv(y) = pa(y) — -1, 0< pa < f2 (10)

As for homogeneous solutions, the solution phase is simply
given as a function of the density

1

L (y) = arctan | ——— |. 11
) “m<mw—%w) (a
The relation (10) between the density p and the “detuning”
oy at fixed forcing amplitude f, is plotted in Fig. 4(a). It is
equivalent but more convenient for our purpose than Fig. 1(a),
which gives the density as a function of f for fixed detuning. A
simple calculation shows that Eq. (10) determines the density
as a unique function of 8y when f < f. = (4/3)** ~ 1.2408
while for f > f,, there is a range of dy values with multiple
possible densities. In other words, bistability occurs for a
range of 8y values when f > f,, as illustrated in Fig. 4(a).
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FIG. 4. Adiabatic approximation and corrections for the GGPE
[Eq. (3)]. (a) Plot in the (p, §y) diagram. (b) Plot of the density
and the phase vs y. The stationary numerical solution (orange-solid
line) of Eq. (3) is plotted together with the adiabatic solution alone
[dotted magenta; Eqgs. (10) and (11)] or with the first-order correc-
tions [dashed magenta; Eq. (12)]. The parameters are o = 4, u,, = 6,
ko =275, f =3.2,6) =6.2.

Let us now consider, a fluid injection in the HD state,
when the forcing is sufficiently strong for bistability to occur
(i.e., f > f.). As the potential varies with the position Yy,
oy (y) follows it according to Eq. (4). The density, as given
by Eq. (10), moves along the HD branch in Fig. 4(a). The
adiabatic solution is already a close approximation of the flow
obtained by numerically solving Eq. (3), for the Gaussian po-
tential of Eq. (7) even with a rather large amplitude (u,, = 6)
when o = 4 [Fig. 4(b)].

A. The attractive potential case

We first briefly describe the case of an attractive potential
(4, < 0). Equation (10) predicts that the fluid density goes
up the high density branch in Fig. 4, as V (y) becomes more
negative. The flow should undergo a transition if |u,,| is large
enough for the top of the high density branch to be reached,
since the branch cannot be followed beyond its top. This
transition is indeed seen in numerical simulations of Eq. (3)
even away for the slowly-varying potential limit, as shown
for o =1 in Fig. 5. As for repulsive potentials, for small
|u,|, the flow is stationary and in the HD state in the wake
of the obstacle [Fig. 5(a)]. There is a transition for a critical
amplitude u,, ;. When |u,,| is larger than the critical amplitude
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FIG. 5. Transition in the GGPE for an attractive potential. Sim-
ulations of [Eq. (3)] for two localized potential amplitudes (a) u,, =
—5(b) u,, = —6. The density is shown at different times (solid-black
lines) with a time interval At = 5 between the different curves. The
last simulation solution is plotted with a thicker line in (a) (orange-
solid line) and (b) (blue-solid line). Successive curves have been
shifted upward with time by 1 p unit to show the stationarity of the
flow. Note that the fluid beyond the obstacle is in the HD state in
(a) and in the LD state in (b). (c) The HD state (orange-solid line)
and LD state (blue-solid line) solutions coexist in for —5.1 < u,, <
—4.1. They are displayed here for u,, = —4.5. For each simulation,
the dimensionless attractive Gaussian potential U (y) is also shown
(violet-solid line), where U (y) = 2V (y)/(fiy) [Eq. (6)]. The other
parameters are f = 3.2,8) = 6.2, kg =2.75,0 = 1.

|ty 1], the flow in the wake of the obstacle is in the LD
state. The transition has however a different character than for
repulsive potentials. The HD-state solution disappears at u,, |
presumably by merging with an unstable solution in a classical
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saddle-node bifurcation. The LD-state solution exists and is
stable below below u,, ;. It disappears at u,, ». Both solutions
coexist [Fig. 5(c)] when u,, stands in between the two critical
amplitudes, for u, | < uy, < u, 2 < 0, which is therefore an
interval of flow bistability.

B. The repulsive potential case: A spatial
rate-dependent tipping bifurcation

How a transition can happen for a repulsive potential
(u;, > 0) is less obvious. The density of the adiabatic solu-
tion [Eq. (10)] follows the high density branch towards low
density before increasing again in the wake of the obstacle,
as shown in Fig. 4(a). This appears to be a smooth process
for all potential strengths u,,. It is not clear why this would
result in a transition of the flow profile at a critical amplitude
u,, and what this critical amplitude would be. However, one
can note that in the adiabatic approximation, all derivatives
are absent and, as a consequence, the fluid velocity plays
no role. This suggests to go beyond the adiabatic approxi-
mation and treat perturbatively the derivatives terms. Writing
PO = pay)+ 1)+, 00) =0,(y) +01(y)+---, the
first corrections to the adiabatic solution of Egs. (10) and (11)
are obtained after a short calculation (see Appendix B) as

2ko dpa

ko dpa gy Ko s ) aa)
B’(,oa)dy’ 1Y—B, vy a

o1(y) =— on) dy
(12)

where B'(p) denotes the derivative of B(p) [Eq. (5)] with
respect to p. These corrections are shown in Fig. 4(b) and,
as expected, they result in a closer agreement between the
analytic approximations and the numerical profiles. More in-
terestingly, the corrected density profile in the (p, §) diagram
provides a clue to the origin of the instability [Fig. 4(a)].
One observes that the correction (12) produces a departure
of the profile from the high density branch towards the mid-
dle unstable branch when the potential returns to O, in the
close downward wake of the obstacle. Equation (12) shows
that this nonadiabatic effect grows with &y and, it also grows
with the localized potential amplitude u,,. One can therefore
guess, that, for sufficiently large u, or ko, this leads the
flow profile loop in Fig. 4(a), to reach the unstable density
branch in the (p, §) diagram and leads to an instability. The
global character of the bifurcation shows that it is invisible
to linear (i.e., Bogoliubov) excitations [13,14,34] around the
steady flow. It cannot be located by a criterion that only
involves them, like the Landau criterion for superfluids. The
bifurcation appears to be the analog in the spatial domain of
“rate-dependent tipping” bifurcations [35,36] in bistable sys-
tems, which have become of interest in the context of climate
change.

C. Multiple transitions in a reduced asymptotic description

While suggestive, the above argument is not rigorous since
the perturbative correction (12) cannot be trusted when it is
not small. In order to obtain a full reduced nonlinear de-
scription, a further asymptotic limit is needed, beyond that of
a slowly varying potential (i.e., 0 — 00). A simple mathe-
matical one is obtained by increasing the flow velocity kg at

the same time as the length scale of the potential is varied,
i.e., taking the limit, 0 — o0, kg — oo with a fixed ratio
k = ko/o. Determining the steady solution of Eq. (3) reduces
in this limit to solving the simple system,

kd.p=—2p —2f./psin(®), (13)

k0.0 = [8v(2) — p] — fcos(6)//p, (14)

where z = y/o. Equations (13) and (14) simply give back
for k = 0 the adiabatic solution (10), (11) and, perturbatively
for small «, the correction (12). But, in the asymptotic limit
considered, k can now take any value. The reduced system
(13) and (14), has only first-order derivatives in z. Equa-
tions (13) and (14) have only one spatially-divergent mode
from the unstable ID state at z = 4+00. A simple shooting
method thus determines the critical amplitude of the potential,
u,, for which this divergence vanishes and the solution tends
at z = +oo toward the ID branch, as illustrated in Fig. 6(a).
For given driving parameters, multiple transitions are found
by increasing the localized potential amplitude, as for the full
GGPE. The fluid density in the wake of the obstacle is in the
HD state for low potential amplitudes. At a first critical ampli-
tude, it jumps to the LD state, as described above. When the
potential amplitude is further increased, a second transition is
found, at which the fluid density jumps back to the HD state.
Further transitions are found for still higher values of u,,. The
loci of these transitions are plotted in the (kg, u,,) parameter
plane in Fig. 6(b).

For the reduced Egs. (13) and (14), these multiple solutions
and the asymptotics of the u}, (ko) branches can be analytically
described by considering the large « limit. It is helpful to
return to the complex function ¢ = ,/p exp(if) and analyze
the dynamics of p and 6 in the complex ¢ plane. For large
k, the evolution of p and 6 with z is slow, except for the
potential term §y (z) that evolves with z on a scale of order
1. Apart from this fast action of the potential, the dynamics is
governed by the phase plane of the problem without potential
[6v (y) = do]. Itis plotted in Fig. 7(a) together with the 3 fixed
points and a few trajectories. In the presence of the potential,
a solution, that starts in the HD state at z = —o0, remains in
the HD state until it encounters the localized potential. The
potential does not explicitly appear in Eq. (13) that governs
the evolution of the density. The density change produced by
the potential is mediated by the change of the phase 6. It is
smaller than it by a factor «, on the length scale of order 1
where the potential has a significant amplitude. Therefore, at
lowest order, the density does not change, on this length scale
of order 1. On the contrary, Eq. (14) shows that the phase 6
rotates by an angle A6,

+o0

A6 = dzV(z) = =/ uy/x, (15)

hyk J_o
where the second equality holds for the Gaussian potential (7).
Since the density is conserved, the action of the potential is
simply to displace ¢ on the circle of radius ry = ,/py, where
pg is the density of the HD state, as shown in Fig. 7(b).
For the solution to end up at z = +o0 in the ID state, the
phase turn A6 has to bring ¢ precisely, on one of the two
entering separatrices of the unstable ID state, namely at their
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(a)
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U 20
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FIG. 6. Reduced asymptotic description. (a) Solutions of
Egs. (13) and (14) for « = 2.75. In the obstacle wake, the flow
tends towards the HD state for u,, = 4.9 (dashed orange) and toward
the LD state for u,, = 5.0 (dashed-dotted blue). The critical flow
corresponds to u;, > 4.93 (solid red) and tends to the ID-state. (b) Di-
agram of the transition lines in the (k, u,,) plane (solid black). The
asymptotes for large « [Egs. (16), (C8), and (C14)] of the three lowest
transition lines are shown (dashed red). In the different parameter
regions, it is indicated whether the flow in the wake of the obstacle
tends toward the high (H) or the low (L) density states with the
numbers corresponding to the additional 27 dephasing [Eq. (16)]
of the large « solutions in their downstream wake, as compared to
the HO and LO ones. At finite «, the boundary between different
regions of the same type with different numbers (e.g., HO and H1)
is a line of solutions (not shown) with vanishing density at a point
allowing the required phase jump. The zigzagging transition line at
k 2 1 has only been computed up to u;, = 24. The other parameters
are f =3.2,8) = 6.2.

crossing points points S4 or Sg, with the circle of radius ry,
as shown in Fig. 7(b). Therefore, A6 should be equal to
Oap—2nmw, n=0,1,--- where 64 p are the rotation angles
corresponding to the displacement of the HD state onto S4
or Sp [Fig. 7(b)]. The angle values with n > 1 correspond to
the solution phase making full rotations before reaching one
of the two separatrices. The double series of critical potential
amplitudes for ¥ >> 1, follows from Eq. (15),

wh = —k (Oap —2nw)//T+0(1) n=0,1,2,...

For the parameter values of Figs. 6 and 7 one has 64 ~
—1.851, 0 ~ —4.589. Equation (16) shows that asymptoti-
cally the critical potential amplitudes u«, depend linearly on
k = ko/o. Equation (16) gives the slopes of the asymptotic
lines of critical potential amplitudes as a function of «. In

(16)

FIG. 7. Phase plane analysis of the reduced asymptotic prob-
lem. (a) Phase plane of the homogeneous problem [Egs. (13) and
(14)] without the localized potential [i.e., dy(y) = §y] showing the
three fixed points, HD (orange-solid disk), ID (red-solid diamond),
LD (blue-solid square) together with the two entering separatri-
ces (red-solid lines) of the ID fixed point and the outgoing ones,
ending on the HD point (orange-solid line) or the LD point (blue-
solid line). Several trajectories are also shown ending either on the
HD point (dashed-orange line) of the LD state (dashed-blue line).
(b) Same diagram as (a) but showing two critical trajectories of the
reduced problem [Eqs. (13) and (14)] for « = 6.0 with the localized
Gaussian potential of amplitude u;, | >~ 7.328 (dashed-red line) and
uy, , = 21.34 (dashed-dotted red line), corresponding to the first two
transitions when u,, is increased from 0. The critical trajectories
start in the HD fixed point and they end on the ID fixed point.
Two other trajectories are shown which end either at the HD point,
with u,, = 6.5 < uj, | (dashed orange line), or at the LD point, with
U, = 8.0 > uy | (dashed-blue line). It is also shown a circle of radius
equal to the modulus of the HD point (dotted black line) centered at
the origin (solid-black circle) as well as its two intersection points S}
and S, (red triangles) with the entering separatrices of the ID point.
The phase difference 0, and 6, between these intersection points and
the HD point are indicated. They provide the asymptotic slopes of
the different transition branches [see Eq. (16) and the main text]. The
other parameters are f = 3.2, §, = 6.2.

order to fully obtain the asymptotic lines, one also needs to
compute the constant, next-order, term in the large «- expan-
sion of u},, as derived in Appendix C. The obtained asymptotic
lines for the three lowest branches, with the slopes given by
Eq. (16) and the intercepts at the origin given by Eq. (C14),
are displayed in Fig. 6(b) together with the numerically ob-
tained solutions. The two lowest transition branches merge at
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k >~ 1.30. The fourth and higher branches cross and re-
combine at intermediate « values, producing the bifurcation
diagram shown in Fig. 6(b). Finally, one can note that
Fig. 6(b) resembles Figs. 2(a) and 2(b) for the full GGPE
where o is not large. One difference is that the band H1
in Fig. 6(b) terminates and does not exist at low « values
in Figs. 2(a) and 2(b), presumably due to the recombination
of the second (HO—L1) and third transition (H1—L1). For
higher values of «, the transition lines in the full GGPE are
close to that of the reduced model.

VI. CONCLUSIONS

In summary, the presence of an extended resonant drive
and the bistability that it creates, deeply change the transition
of a condensate flowing past an obstacle. The stationary flow
profile undergoes a metamorphosis through the spatial analog
of a rate-dependent tipping bifurcation instead of becoming
time dependent. The metamorphosis takes place in a very
small range of obstacle strengths (or velocities) due to the
unstable nature of the wake at the transition. Moreover, for
given flow and pumping parameters, successive transitions
exist at a discrete number of potential amplitudes. We have
shown that this can be understood analytically in a suitable
asymptotic regime.

It is worth emphasizing that the bifurcations of the flow
profile that we have described, are quite different from usual
textbook bifurcations. The steady state solution does not
disappear by merging with an unstable solution, like in a
saddle-node bifurcation, the bifurcation, which, for instance,
gives rise to grey soliton emission in a one-dimensional con-
densate flow past and obstacle. The steady state above the
bifurcation is also obviously different from the limit cycle in a
Hopf bifurcation, which gives rise to vortex emission in usual
fluid flow or higher dimensional condensates. Here, the steady
solution persists through the bifurcation. It is stable above the
bifurcation but its shape has abruptly changed. The stationary
solution undergoes a metamorphosis at the bifurcation point,
in a way that is only possible in an infinite dimensional sys-
tem, namely by deforming at infinity.

The results suggest a careful reexamination of the analo-
gous flow transition in higher dimensions. We hope that they
will also motivate experimental studies of the phenomenon.
It will certainly be challenging to experimentally resolve the
details of the transitions and to witness the appearance of the
unstable state in the wake of the obstacle since this happens
in a small neighborhood of the transition points. However, the
transitions from a fluid in the HD state to a fluid in the LD
state in the wake of the obstacle and the steadiness of the flow
both below and above the transitions should be more easily
observable. Finally, we cannot help but wonder, whether the
extended switches of the fluid density wake induced by a
localized obstacle could provide useful applications in all-
optical technology and devices [37].
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APPENDIX A: STABILITY OF THE CONSTANT
DENSITY SOLUTIONS

Here and in the following appendices, we find it conve-
nient to analyze the GGPE [Eq. (3)] by writing its solution
¢ as ¢(y) = r(y)explif(y)], where the modulus r(y) is the
square root of the fluid density p(y), r(y) = +/p(y). With
these notations, the adimensionned GGPE [Eq. (3)] gives for
the modulus r and phase 6,

der = — 1[20,0 dyr + rdy,0]
— kodyr — r — fsin(0),
rd:0 = 1[0,r — r(8,0)°] — kord,0
+ 8y (y) — r*)r — f cos(6).

We first analyze the stability of the constant homogeneous
solutions without potential (8y = &y). Their modulus ry and
phase 6y obviously obey

ro=—fsin(@), (80— rg)ro = f cos(fo).

Taking the square of each of these two equations and adding
them, gives back the previous Eq. (5).

Linearization of the dynamical system (Al) around one
such constant solution, r = ro + ry, 0 = 6y + 61, shows that
the first-order terms r; and 6, obey

(AD)

(A2)

)
<m+mmn=—§%m—n<ﬂm%wh

ro(d; + kody)01 = 10y,,r1 + (80 — 3r5)r1 + f sin(60)0).
(A3)

Since the linear system (A3) is invariant by translation, we can
look for the eigenvectors as Fourier modes, under the form
ri(y,t) =7 exp(st + iky), 6, = 0, exp(st + iky). The evolu-
tion of (ry, rof;) is governed by the matrix S, which has
s + ikko as its eigenvalues, with

—f cos(y)/ro + k2 /2)

-1
S = .
(80 —3r3 —k*/2 +/ sin(6)/ro

_ ~1 12— 8+ K2/2 A
80— 3r2 —k*/)2 —1 '

The phase 6p has been eliminated in the second equal-
ity with the help of the fixed point equations (A2). The
trace of S is negative, equal to —2. Therefore, the sys-
tem is stable if and only if the determinant of S is
positive,

det(S) =1 — (rg — 0 + k%/2) (80 — 3r5 — k*/2)
= B'(r3) + K*(2r5 — 80) + k*/4,

where the function B(p) in the last equality is defined by
Eq. (5). The stability at long wavelengths (k < 1) simply
depends on the sign of B/(rg) with B/(rg) < 0 leading to insta-
bility. That is, when there are multiple solutions, the branch of

(AS5)
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intermediate values of rg is unstable, the other ones are stable
to homogeneous perturbations.

For Eq. (9) and the counting argument of Sec. III, the
values of the spatial growth rates g = ik of stationary pertur-
bations (e.g., with s = 0) are needed. They obey

4
] n (gko)

=0.
4kg

1

B/(”S) + 2gko + (qko)z[l — k—2(2r§ — 80)
0

(A6)

In order to determine the spatial growth rates about the
LD, ID, and HD states, one should first compute the co-
efficients of Eq. (A6), namely the densities of the LD,
ID, and HD states and the corresponding values of the
B function derivative. The three densities are the roots of
Eq. (5). With our parameter choice of f =3.2,8, = 6.2,
they are respectively equal to, pp = rqu =~ 0.2845, p; =
re, ~5219, py =r3, =~ 6.896. The corresponding B'(p)
are B'(p) ~ 32.63, B'(p;) ~ —8.276, B'(py) =~ 11.089.

For the ID state, when ky = 2.75, the four roots gkq
of Eq. (A6) are found to be equal to {—5.82,1.62 —
i11.1,1.62 4 i11.1,2.58}. Thus, as stated in the main text,
there are three modes that exponentially grow with y. One is
real positive and the two others are complex conjugate modes
with a positive real part. The fastest spatially growing is the
real mode g = 2.58/kg = 0.938. The corresponding slope
1/q+ = 1.07 is used to plot the asymptotics of the interme-
diate state length as function of the departure from the critical
potential amplitude [Eq. (8)] in Fig. 3(e) (red-dashed line).
The situation is similar for ky = 6.4 with kyg; = 2.12 for the
fastest growing mode. The corresponding slope 1/, = 0.33
is also shown in Fig. 3(e) (red dashed-dotted line). We note
that for large ko, the case of interest for slowly varying po-
tentials, Eq. (A6) for s = gk reduces to the second-order
equation for the growth rate s of an homogeneous perturbation
of the ID state. Namely, the fastest spatially growing pertur-
bation simply corresponds to the advection of the unstable ID
state temporally growing mode.

For the HD state, when ky = 2.75, the four roots gkg
are found to be equal to {—5.26 — i2.34, —5.25914 4 i 2.34,
5.26 —i7.0,5.26 + i 7.0}. Therefore, there are two diverging
modes when y tends towards —oco or +o00, as stated in the
main text.

APPENDIX B: EXPANSION FOR A
SLOWLY-VARYING POTENTIAL

We provide here a derivation of the expressions for the
adiabatic solution modulus [Eq. (10)] and phase [Eq. (11)] and
their first corrections [Eq. (12)]. We suppose that the potential
is slowly varying on an adimensioned length scale o > 1
[as given by Eq. (7) for a Gaussian potential]. We consider
a stationary solution of the GGPE as written in Eq. (Al).
We expands its modulus and phase as r(y) = r,(y) + r1(y) +
e, 80 =6,(») +61(y)+ - - - with r; and ¢; of order 1/o.
This gives

ra(y) + f sin[0q(y)] = 0, (B

(ra)* = Sy (MIra() + f cos[6. (] = 0. (B2)

These are the same equations as those determining the con-
stant solution with §y replaced by &y (y). The modulus r,(y)
of the slowly varying solution corresponding to the stable HD
branch is given by Eq. (10).

The first corrections r;(y) and ¢;(y) obey

r (y) + fcos[Qa(y)] 01 (y) = _koayrm
Bray)’ = 8y (M)r1(y) — f sinl6,()]161(y) = —koradyba-

This 2x2 linear system is straightforwardly solved. The de-
terminant of the matrix £ on the left-hand side is

det(L) = —fsin[6,] — f cos[0.(NI[3r.(»)* — Sy ()]
= 1, + [r,(0)* = Sy MIBra()* — v ()]
= raB[r. ()], (B3)

where we have used Eqs. (B1) and (B2) to express the phase in
term of the modulus of the zeroth-order adiabatic solution and
B'(p) = dB/dp denotes the derivative of the function B(p)
[Eq. (5)]. Similarly, the Cramer’s determinant for | is

det(L,) = ko (3y7a sinl0a(y)] + radyba cos[0a(y)])
= kof3,(rasinlf.()]) = —kody (r2),

where we have again used Eq. (B1) in the last equality. The
ratio the two determinants (B4) and (B3) provide the expres-
sion for the first correction to the modulus of the stationary
slowly-varying solution. Since the fluid density is the square
of the modulus r, the first correction p; to the density is
p1 = 2r,ry. This finally gives Eq. (12).

Similarly, one can compute the first-order phase correction.
The Cramer’s determinant for 6 is

det(Lg) = ko[3r7 — 8y (1)]0yra — koradyba
= ko f sin(6,)9,6, + ko7, 0,8y — kora0,0,
= korada8y — 2koradyba. (B5)

The ratio of the expressions (B5) and (B3) for the two deter-
minants gives Eq. (12) for 6.

(B4)

APPENDIX C: ASYMPTOTICS IN THE SLOWLY-VARYING
POTENTIAL AND LARGE FLOW VELOCITY LIMIT

We study the asymptotics for large « of the reduced system
described by Eqs. (13) and (14) with the potential U (),

U(z) = upy u(z). (C1)

For our choice of a Gaussian potential [Eq. (7)], u(z) is simply
exp(—z2). We derive the leading estimation [Eq. (16)] of the
critical potential amplitude as well as the subleading constant

term u*! in its 1/k expansion,
* *,0 *,1
w, =Ky, +uy; + - (C2)

We seek the expansions of the solution modulus r(y) and
phase 6(y), as well as the potential amplitude, under the form

’"(Z)ZVH"‘%VI(Z)"‘"' : (€3)
1

0@) =@+ 0+, (C4)

u,,,:;cu‘,},+u},,+---, (C5)

045306-11



HAKIM, PIGEON, AND AFTALION

PHYSICAL REVIEW B 107, 045306 (2023)

with the boundary condition 8(—o0) = 0y, where ry and 6y
are the phase and modulus of the HD state.
At lowest order, Eq. (14) gives
300 = —up u(z), i.e.00(z) = Oy — / dz up u(z'), (C6)
—00

while r remains constant equal to ry. The critical potential
amplitude u;;, is such that the solution asymptotically land on
the ID fixed point. At the considered lowest order in 1/«, this
requires that the point (rg, 6y) should tend toward Sy or Sp
(Fig. 7), the crossing points of the circle of radius ry with the
two entering separatrices of the ID fixed point. Namely 6y(z)
should tend toward 6, the angular coordinate of S4 or Sy when
z — +oo. This gives for the critical potential amplitude,

+00 GH _ GS
/ da®u(z) =0y — 05 or u’=—5—— (C7)
—0 - dzu(z)

where 6y should be equal to 6y + 64 — 2nm or Oy + 6 — 2nw
in agreement with Eq. (15). Numerically, for the parameters
of Figs. 6 and 7, one has 84 = —1.851, 6 = —4.462 for the
two separatrix points S4 and Sg. This gives for the asymptotic
slopes of the first three bifurcation branches (Fig. 6),

=1.044, 30, =2517, ut’, =4.589. (C8)

M m,2nd

m, lst

where um 3,4 COTTEsponds to the angle 64 — 2.
At the next order, the modulus r; and phase 6, are given by

@) = — f d2/ (g + f sinl63 (1),

—0Q

feosl65 ()] /ru — upu(z)}
(C9)

01(z) = / dz' {8, — rh—

—00

where the *-superscript on 6y (y) is meant to denote that 65 (y)
is the solution of Eq. (C6) for u? equal to um The pertur-
bation expansion used to obtain these expressions is valid as
long as r(z)/k and 6,(z)/x are small. Namely, z can be large
but should be much smaller than k. For 1 <« z < «, Egs. (C9)
and (C10) show that r(z) and 6, (z) grow linearly with z in
a direction parallel to the separatrix at its crossing point with
the circle of radius ry,

ri(z) ~ s:z, 61(2) ~ spz (C10)
with
s, = —ry — fsin(@s), sp =38 — rj; — f cos(Bs)/ru.
(C11)

In order to reach the intermediate density point, the point
r(y), 8(y) should belong to the separatrix when y >> 1. This
gives the condition

lim [sgr((y) — s.61()] = 0. (C12)
y—>—+00
It determines u;; ! the subleading term in the expansion of the
critical potential amplitude, as

ul=————— | 80 — rfy — = cos
" [ dzu) S AT, o

So .
+S—{VH + fSln[Go(y)]}>- (C13)
For f =3.2, §p = 6.2, the modulus and phase of the HD
state are ry = 2.626, 0y = —2.179. With these values and the
values of 64 and 6, one obtains for the subleading constants
in the first three bifurcation branch asymptotics

=0.428, u*'  =5.074, u"! —0.277.

m lst m,2nd m,3r d =

(C14)
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