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Giant electron-phonon interaction for a prototypical semiconductor interface: Sn/Ge(111)-(3 × 3)
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We report an experimental and theoretical study of the electron-phonon coupling for α-Sn/Ge(111), a
prototypical triangular lattice surface, closely related to Sn/Si(111)-(

√
3 × √

3), where recent experimental
evidence has found superconductivity [X. Wu et al., Phys. Rev. Lett. 125, 117001 (2020)]. We concentrate
our study on the (3 × 3) phase of α-Sn/Ge(111) that appears between 150 and 120 K and has a well-known
geometry with a half-filled electronic band around the Fermi energy. We show that this surface presents a giant
electron-phonon interaction that can be considered at least partially responsible for the different phases that
this system shows at very low temperature. Our theoretical results indicate that indeed the electron-phonon
interaction in α-Sn/Ge(111)-(3 × 3) is unusually large, since we find that λ, the electron mass enhancement
for the half-filled band, is λ = 1.3. This result is in good agreement with the experimental value obtained from
high-resolution angle-resolved photoemission spectroscopy measurements, which yield λ = 1.45 ± 0.1.

DOI: 10.1103/PhysRevB.107.045303

I. INTRODUCTION

Low-dimensional solids have been widely studied during
the last years due to their exotic properties [1]. Surfaces are
a prominent example, since the reduction of dimensionality
from three dimensions (3D) to two dimensions (2D) enhances
the importance of fluctuations and entropic effects as well
as the role played by electronic correlations in surface states
in competition with the degree of coupling between those
surface states and the lattice phonons. The variety of surface
phenomena encompasses Mott phases, charge density waves,
Thouless-Kosterlitz phases, magnetism, and superconductiv-
ity [1–13].

The α-Sn/Si(111) and α-Sn/Ge(111) surfaces, obtained
by covering a Si or Ge substrate with 0.33 monolayers
(ML) of Sn, have been widely studied due to their inter-
esting and complex physical behavior. Recently, Weitering
et al. [2] have observed superconductivity associated with
the Sn/Si(111)-(

√
3 × √

3)R30◦ surface states. On the other
hand, calculations made for K/Si(111):B-(

√
3 × √

3)R30◦
[14] suggest that for Si-dangling bonds the strength of the
electron-phonon (e-ph) interaction is very similar to the
electron-electron (e-e) repulsion, indicating that also in α-
Sn/Si(111) there might be a close competition between the
repulsive e-e and attractive e-ph interactions [2,15]. An impor-

*These authors contributed equally to this work.

tant e-ph interaction associated with partially occupied surface
bands has also been observed in Si(111)-(7 × 7) (λ = 1.06
[16]) and in Ge/Si-(5 × 5) (λ � 0.53 [17]). Electron-phonon
coupling is thus an important element to accurately describe
semiconducting surfaces with metallic two-dimensional sur-
face states, and to understand a possible superconductor state
and other phase transitions [2,15,18,19].

In this paper we analyze the (3 × 3) phase appearing
between 150 and 120 K [4,6] at the α-Sn/Ge(111) paradig-
matic surface with a combined experimental and theoretical
approach to elucidate the importance of the e-ph coupling,
poorly studied in the past. The (3 × 3) phase has a well-known
structure that allows us to perform an accurate analysis of its
e-ph properties. Our theoretical results indicate that in this sur-
face the e-ph interaction is unusually large, λ = 1.3, in good
agreement with the value of λ = 1.45 found by angle-resolved
photoemission spectroscopy (ARPES) experiments. We con-
clude that the strengths of the e-ph and e-e interactions are
comparable, indicating that the e-ph interaction should play
an important role in the stabilization of the low-temperature
phases of α-Sn/Ge(111) [4].

II. ELECTRONIC SURFACE BANDS AND PHONONS

Sn atoms occupy T4 sites of the Ge(111) substrate in the
Sn/Ge(111)-(3 × 3) reconstruction, which is characterized by
a vertical distortion, so that one of the three Sn atoms in
the unit cell is at a higher position than the other two [see
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FIG. 1. (a) Top and side views of the Sn/Ge(111)-(3 × 3) surface. (b) Surface Brillouin zone. (c) Energy per (3 × 3) unit cell associated
with the (3 × 3) distortion; �Z = (�zup − �zdown), where �zup and �zdown are the vertical displacements of the up and down Sn atoms.
(d) DFT surface bands; the shaded areas represent the projection of the bulk bands and the red line at 0 eV indicates the Fermi energy EF .

Fig. 1(a)]. The interface presents three surface bands. One
of them is completely filled and is related to the dangling
bond state of the Sn atom moving up. The dangling bond
states of the two Sn down atoms create the two other surface
states; a bonding combination of those dangling bonds is
associated with the metallic band crossing the Fermi energy
[7,20]. Figure 1(d) shows the three surface bands as calculated
with density functional theory (DFT) [21] while the bands
below the Fermi energy measured with ARPES are shown in
Fig. 2(a). Notice that the theoretical bandwidth of the metallic
band below EF is around 0.3 eV, while the experimental width
of this band is around 0.2 eV. This is probably due to the e-e
interaction which, as discussed in the Supplemental Material
(SM) [21] (see also Refs. [22,23] therein), yields a band
narrowing effect of around 1/1.6, close to the experimental
value.

We are interested in calculating the e-ph coupling asso-
ciated with the active half-occupied band and the surface
phonons of the Sn/Ge(111)-(3 × 3) surface, assuming that
the active band has the measured photoemission bandwidth.
As discussed in Ref. [24], we find three different phonon
surface modes associated with the following displacements of
the three Sn atoms of the (3 × 3) unit cell along the direc-
tion (z) perpendicular to the surface: �u1 = (1, 1, 1)/

√
3, �u2 =

(1,−1, 0)/
√

2, and �u3 = (−1,−1, 2)/
√

6. The first mode, �u1,
only introduces a rigid displacement of the three electron
surface bands. The second mode, �u2, interacts weakly with the
bonding state of the half-occupied band due to its symmetry.
The crucial mode interacting with the active band is �u3, which
introduces the same distortion appearing at the (3 × 3) phase
(see below).

Figure 1(c) shows the energy per (3 × 3) unit cell along the
distortion path defined by the trajectory (

√
3 × √

3)R30◦ →
(3 × 3), where the (

√
3 × √

3)R30◦ corresponds to a flat

structure with equivalent Sn atoms, as calculated using DFT
techniques [21]. The down atoms move to a very good approx-
imation with 1/2 of the displacement associated with the up
atom, �zdown � −0.5�zup [25]. As expected, the energy min-
imum appears for the (3 × 3) structure with ∼5 meV lower
energy [4,20,25,26] than the (

√
3 × √

3)R30◦ structure, and
for a relative displacement, �Z0 = �zup − �zdown, of 0.29
Å [7,20]. The �u3 phonon mode is associated with the po-
tential around that minimum. Calculations and He-scattering
experiments [24] indicate that the corresponding phonon en-
ergy, ω0, is around 4.3 meV. From our DFT calculations
[Fig. 1(c)], we obtain the potential V ≈ 1/2Kη2 around η = 0
(K = 0.70 eV/Å2), where �η = η(−1,−1, 2)/

√
6 defines the

normal mode along the �u3 direction. As ω0 = √
K/M, we can

also calculate M = 172mp (mp is the proton mass), in good
agreement with Ref. [25].

III. PHOTOEMISSION EXPERIMENTS
AND SURFACE BANDS

The fluctuating (
√

3 × √
3)R30◦ reconstruction observed

at room temperature freezes into the (3 × 3) metallic phase
shown in Fig. 1 below 150 K. A sharp (3 × 3) low-energy
electron diffraction (LEED) pattern is observed in the 150–
120 K range. Below this temperature, however, the intensity
of the (3 × 3) spots weakens [4]. The e-ph interaction can be
analyzed experimentally by looking at the mass enhancement
effect that this interaction introduces in a metallic band around
the Fermi energy. This can be accurately determined by means
of ARPES measurements [27–30].

We have explored with ARPES the electron mass enhance-
ment associated with the e-ph interaction in the 120–150 K
temperature range. Figure 2(a) shows the second derivative
of the ARPES data along the �M3×3 direction, where �
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FIG. 2. (a) Second derivative of the ARPES data along the �M3×3 direction in the second BZ (see text). (b) Left panel: Fermi level
region from (a). Right panel: Momentum distribution curves corresponding to the red lines shown in the left panel. Note that the momentum
distribution curves exhibit minima at the location of the band because the figure shows the second derivative of the data. The minima (green
tick marks) are fit to Lorentzians (red lines, two fits are shown). The corresponding points appear in the left panel. (c) Experimental points and
fit to the bare (black line) and the renormalized (dashed purple line) bands, also shown in (b) (left).

belongs to the second Brillouin zone (BZ). The surface
presents two bands, one completely filled band associated
with the up atoms and a metallic band related to the down
atoms. The detail of the region of the metallic band closer
to the Fermi level [Fig. 2(b)] shows that the electronic band
does not follow the parabolic dispersion of the band at higher
binding energies characterized by the bare effective mass m0.
The spectral weight in the two branches of the parabola cen-
tered around −0.6 Å−1 is not equivalent, as often happens
in photoemission, due to matrix element effects [31]. Close
to the Fermi level, a kink develops in the metallic band, the
slope of the band decreases, and the effective mass is affected
by the e-ph coupling in such a way that m∗ = (1 + λ)m0. λ

can be obtained from the experimental values of m0 and m∗
with no further assumption. We have therefore determined
the band dispersion [dots in Figs. 2(b) and 2(c)] from a fit
of the momentum distribution curves to Lorentzian peaks.
Once the experimental dispersion was accurately determined,
the data were fitted to two parabolas in order to extract m0

and m∗. Figure 2(c) shows that the renormalized parabola
fits both branches of experimental data, thus providing great
confidence in the determination. A perfect agreement is, how-
ever, not expected since the state does not follow an ideal
parabolic dispersion in the considered energy range, as evi-
dent from the theoretical bands [Fig. 1(d)]. From these fittings,

the e-ph mass enhancement parameter is determined to be
λ = 1.45 ± 0.1, a very large value when compared to the
usual values of λ in other surfaces [32].

IV. ELECTRON-PHONON INTERACTION: CALCULATION
OF g AND λ

We analyze theoretically the e-ph interaction by means of
the following Holstein Hamiltonian [33],

Ĥ =
∑

iσ

ε0n̂iσ +
∑
i jσ

Ti j ĉ
+
jσ ĉiσ +

∑
i

ω0b̂+
i b̂i

+
∑

i

g(b̂+
i + b̂i )(n̂i↑ + n̂i↓ − 1), (1)

where a local i phonon, the �u3 mode, with ω0 = 4.3 meV [24]
is coupled to the active orbital associated with the half-filled
band. In this equation, the creation, ĉ+

iσ , and the annihilation,
ĉiσ , operators, as well as n̂iσ = ĉ+

iσ ĉiσ , are fermion operators
associated with the i-bonding orbital of the half-filled band,
characterized by the hopping interactions Ti j , while b̂+

i and b̂i

are the boson operators associated with the �u3 phonon.
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In this second quantization formalism, the normal mode
displacement ηi is given by√

1

(2Mω0)
(b̂+

i + b̂i ),

(with h̄ = 1), M = 172mp being the effective mass of the �u3

phonon mode [34,35]; on the other hand, the electronic level
associated with the i-bonding orbital is shifted by the phonon
mode ηi as follows,

δEi = ∂Ei

∂ηi
ηi = ∂E

∂η

√
1

(2Mω0)
(b̂+

i + b̂i ),

assuming ∂Ei/∂ηi site independent. This equation shows that

g = ∂E

∂η

√
1

(2Mω0)
; (2)

we calculate ∂E/∂η and g, starting from the (3 × 3) ground
state of the system, and introducing a small displacement
δη for all the Sn atoms (in the 3 × 3 unit cell), following
the �u3 phonon mode. Using DFT techniques, we calculate
∂E0/∂ (�Z ), E0 being the energy shift between the up and
down surface bands, and �Z the vertical distance between up
and down Sn atoms. Since the down atoms associated with
the metallic band move 1/3 of the total displacement between
up and down Sn atoms, we take δE = 1

3δE0; moreover, the
shift in the vertical distance, δ(�Z ), between up and down Sn

atoms is given by δ(�Z ) =
√

3
2δη; these equations show that

∂E
∂η

= 1√
6

∂E0
∂ (�Z ) . Our calculations yield δE0

δ(�Z ) = 0.85 eV/Å and
g = 16.8 meV.

It is interesting to realize that this value of ∂E0
∂Z is close

to, but a little larger than, the one calculated taking �E0

and �Z from the difference between the
√

3 × √
3 and 3 × 3

structures: In our calculations [see Figs. 1(d) and S1 in SM]
�E0 = 0.20 eV and �Z0 = 0.29 Å, so that �E0

�Z0
= 0.69 eV/Å;

in the calculations of Ref. [20], �E0
�Z0

= 0.73 eV/Å.
The e-ph interaction can be described by means of an

e-ph self-energy �(ω) [35] in such a way that m∗/m0 = 1 −
d�(ω = 0)/dω, with d�(ω = 0)/dω = −λ. We first obtain
�ii(ω) ≈ �(ω) for small ω using second-order perturbation
theory in the e-ph interaction g, and neglecting the off-
diagonal self-energies contributions, �i j (ω) ≈ 0 for i �= j.
This approach yields [21]

�(2)(ω) = −2g2ρ0ω/ω0 (ω  ω0), (3)

where ρ0 is the spin local density of states associated with the
half-filled electron band. Then, the e-ph mass enhancement
parameter λ = −d�(ω → 0)/dω, in second-order perturba-
tion theory, is given by λ(2) = 2g2ρ0/ω0.

The spin local density of states ρ0 is obtained using the
experimental evidence of Fig. 2(c), where the bare two-
dimensional surface band shows a parabolic behavior below
EF ; this two-dimensional band yields a constant density of
states, so that ρ0 ≈ 2.5 eV−1 because there are 0.5 electrons
per spin in a bandwidth of 0.2 eV. Then, with g = 16.8 meV
and ω0 = 4.3 meV, λ(2) ≈ 0.32; this value is quite small as
compared to the experimental evidence shown above, λ =

FIG. 3. λ = −d�iiσ (ω → 0)/dω as a function of g/
√

ω0T0 for
the cluster model (see text) for different values of T0/ω0. The inset
shows λ in a different scale; the dotted lines correspond to λ(2) for
T0/ω0 = 6 and 10.

1.45 ± 0.1, suggesting that contributions beyond the second-
order perturbation theory are very important.

In order to go beyond second-order perturbation theory in
the electron-phonon interaction g, we follow Refs. [33,36,37]
where the half-filled Holstein Hamiltonian of Eq. (1) has
been analyzed as a function of g for some particular values
of ω0 and ρ0. In these works, the lattice model of Eq. (1)
is mapped into an associated impurity level that is embed-
ded in a lattice by means of a dynamical mean-field theory
numerical renormalization group (DMFT-NRG) calculation.
Of particular interest for our case is the calculation in those
references, as a function of g, of the quasiparticle weight Z =
[1 − d�(ω = 0)/dω]−1 associated with the impurity density
of states at the Fermi level (ω = 0); this quantity provides λ =
−d�(ω = 0)/dω = (1 − Z )/Z , which is shown in Fig. S2
in the Supplemental Material as a function of g(ρ0/ω0)1/2.
Notice that in is this representation we have changed the
abscissa from g to g(ρ0/ω0)1/2 because in the limit of small
g it is found that

λ(2) = −d�(2)(ω = 0)/dω = 2[g(ρ0/ω0)1/2]2;

in this way, for small g, λ(2) shows a universal behavior as a
function of g(ρ0/ω0)1/2. Moreover, plotting λ as a function of
g(ρ0/ω0)1/2 for the particular values of ρ0 and ω0 discussed
in the DMFT-NRG calculations [33,36,37] shows a similar
behavior (see Fig. S2 in the SM), suggesting that to a good
approximation in the DMFT-NRG solution of the half-filled
Holstein Hamiltonian λ is a universal function of g(ρ0/ω0)1/2.

As an independent check to this conjecture, we have an-
alyzed the case of an impurity embedded in a semi-infinite
one-dimensional spinless chain with nearest-neighbor hop-
ping elements T0 and a local e-ph interaction in the last site of
the chain: in this model we neglect the possible off-diagonal
self-energy terms between different sites, �i j (ω) = 0, i �= j,
appearing in the lattice of our initial system. Solving numer-
ically this semi-infinite one-dimensional model with the e-ph
interaction localized in the impurity is, however, a formidable
task in the strong-coupling regime, so that in our analysis we
have calculated λ for a cluster of six sites [21].
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A general view of our results is presented in Fig. 3, where λ

and λ(2) are shown as a function of g/
√

ω0T0 for T0/ω0 = 6, 8,
10, and 12. These results show that λ/λ(2) ≈ 1 for g/

√
ω0T0 <

0.6, while λ/λ(2) increases steeply for g/
√

ω0T0 > 1.0. In
particular, taking g = 16.8 meV and ω0 = 4.3 meV, from
our previous calculations, and choosing T0/ω0 = 9.7, a value
of g/

√
ω0T0 = 1.24 is obtained; this leads to λ(2) = 0.32, as

calculated above in the second-order result, and to λ ≈ 1.1 to
all orders in g. Thus, this simple model shows a very important
increase in the value of λ, much closer to the experimental
result, due to the high-order contributions of g. This increase
in λ is also accompanied by an important increase in the
average number of phonons in the ground state of our sys-
tem, 〈nph〉 ≈ 3.5, this number indicating that there is a large
fluctuation of the phonon mode as corresponds to a strong
electron-phonon interaction. We should say that this simple
model has been used to check the validity of the universal
behavior of λ as a function of g(ρ0/ω0)1/2; trying to calculate
�(ω) for ω � ω0 is beyond the scope of this simple case.

Moreover, Fig. 3 also shows that g/
√

ω0T0 is a conve-
nient parameter for representing λ and λ(2) as a function of
the e-ph interaction g, because for the different values of
T0/ω0, λ presents a very similar behavior, indicating that up
to a reasonable approximation λ is a universal function of
g/

√
ω0T0; notice that in the limit of the semi-infinite chain,

the curves shown in Fig. 3 should converge, for small g, to
the function λ = 2(g

√
ρ0/ω0)2 with ρ0 substituting for 1/T0;

these arguments indicate that for the semi-infinite chain, with
ρ0 proportional to 1/T0, λ is close to a universal function of
g
√

ρ0/ω0, at least for λ < 3.0, confirming the validity of the
conjecture deduced from the DMFT-NRG calculations.

Then, for calculating λ for Sn/Ge(111)-(3 × 3), we come
back to those DMFT-NRG calculations and take for the Hol-
stein Hamiltonian ρ0 = 2.5 eV−1, ω0 = 4.3 meV, and g =
16.8 meV. These values yield g

√
ρ0/ω0 = 0.40 and λ =

1.30 ± 0.08 (see SM), in good agreement with the results
obtained from the PES experiments. We should mention that
the Sn/Ge(111) surface shows an important high-order contri-
bution of the e-ph interaction because of the small frequency
ω0 and the high density of states ρ0.

V. DISCUSSION AND CONCLUSIONS

We have found from experimental evidence that λ =
1.45 ± 0.1, a value much larger than the ones found for
Si(111)-(7 × 7) [16], and Ge-Si(111)-(5 × 5) [17]; combining
this result with our theoretical value, λ = 1.30, yields λ =
1.37 ± 0.10 which we consider to be a fair approximation to
the value of λ for the α-Sn/Ge(111)-(3 × 3) surface.

Regarding our theoretical calculation of the e-ph inter-
action, it is worth stressing that the interaction has been
analyzed by going beyond the second-order term in the g-
coupling parameter. Notice also that in our calculations for the
α-Sn/Ge(111) surface, g

√
ρ0/ω0 = 0.40, and that the second-

order calculation in g is only valid for g
√

ρ0/ω0 < 0.25 [33].
This suggests that the α-Sn/Ge(111) surface is highly nonlin-
ear in the e-ph coupling, with 〈nph〉 ≈ 3.5, and that the usual
way of defining the quasiadiabatic effective phonon-induced

attraction, measured by Unegative = 2g2/ω0 [36], should be
reconsidered.

At this point we argue as follows: Our calculations from the
second-order approximation yield that Unegative = 2g2/ω0 =
λ(2)/ρ0. Then, we suggest that, in order to include the
higher-order contributions, it seems convenient to define a
renormalized Unegative = λ/ρ0 which extrapolates the second-
order limit to higher values of g.

It is worth considering now the value of Unegative, as
deduced from the value of λ = 1.37 ± 0.1. This yields
Unegative = λ/ρ0 = 0.55 ± 0.06 eV, with this quantity being
close to, but slightly larger than, the value calculated for the
effective e-e interaction for the α-Sn/Ge(111)-(3 × 3) sur-
face, (U − V ) ≈ 0.43 eV [4]. From these figures we conclude
that the low-temperature phases of α-Sn/Ge(111), including
a possible superconducting state, should appear as a result of
a delicate balance between the e-ph and e-e interactions.

VI. METHODS

Photoemission experiments were performed at the high-
resolution branch of CASSIOPEE beamline at Soleil syn-
chrotron. The ultrahigh vacuum setup couples a surface
preparation chamber equipped with LEED and a high-
resolution ARPES chamber equipped with a manipulator
operating between 400 and 5 K and with a Scienta R4000
electron analyzer having a ±15◦ acceptance angle. Incoming
radiation and the normal to the detector center subtend a 45◦
angle. In our experiments, we settled the light polarization in
the plane defined by these two directions while the detector
slit was perpendicular to them. The valence band measure-
ments were performed at hν = 80 eV. The sample preparation
has been described elsewhere [4]. The 0.33-ML Sn surface
coverage was calibrated from the Sn 4d/Ge 3d intensity ratio,
surface state intensity, and the evolution of the LEED pattern.

In the DFT calculations we have used the QUANTUM

ESPRESSO code [38] with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [39] and the ultrasoft pseu-
dopotentials provided by the code. The (3 × 3) surface slab
was built with 11 Ge layers and 3 Sn adatoms in T4 positions
in the upper layer. The dangling bonds of the lowest Ge layer
are saturated by H atoms. The lower two Ge layers and the H
atoms are fixed in the simulations. See Supplemental Material
[21] for more details (see also Refs. [38–40] therein).
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