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Spatial quantization of exciton-polariton condensates in optically induced traps
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We study the formation of exciton-polariton condensates in potlike traps created by optical pumping in a planar
microcavity with embedded quantum wells. The trap is formed by a repulsive reservoir of incoherent excitons
excited by a ring-shaped nonresonant laser beam. Polariton condensates confined in a trapping potential are
subject to spatial confinement leading to energy quantization. We reveal experimentally the discrete spectrum
of polariton eigenstates in an optical trap that can be characterized by a pair of quantum numbers, azimuthal
and radial quantum numbers, that correspond to the number of nodes of a condensate wave function in the
corresponding directions. The occupation numbers of the eigenstates of a polariton condensate are determined
by the overlap integral of the condensate wave function and the exciton reservoir spatial density distribution.
The nonresonant pumping scheme enables engineering the shape and size of the trap, that allows to selectively
excite specific superpositions of the eigenstates of a polariton condensate in each experiment. We demonstrate
both single- and multiple-mode polariton lasing in an optical trap.
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I. INTRODUCTION

Exciton cavity polaritons, hereafter referred to as simply
polaritons, are light-matter quasiparticles formed due to the
strong coupling of photons in an optical microcavity and
excitons in quantum wells [1]. Being composite bosons, the
polaritons are able to undergo stimulated transitions to the
macroscopically occupied coherent quantum state of a dy-
namical Bose-Einstein condensate [2] analogous to one in
an ultracold atomic system [3]. Semiconductor microcavi-
ties can be considered as two-dimensional (2D) quantum
systems since the polaritons are confined in the structure
growth direction. It is well known [4,5], that bosonic con-
densation in ideal infinite 2D systems at finite temperatures
is not possible. Nevertheless, in real systems this limitation
is usually circumvented by the presence of an effective con-
fining potential for polaritons in the microcavity plane that
enables quasicondensation or the formation of bosonic con-
densates having a discrete energy spectrum. The confinement
can be provided by a lateral potential [2,6], provided by the
edges of a finite-size sample [7–15], by local modulations
of the cavity layer thickness (so-called mesas) [16,17], or
artificially generated by an external impact [18–22]. The po-
tentials created at the stage of growth of the sample have the
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advantage of stability in their optical and energy properties,
which, however, cannot be easily tuned. Micropillars are a
striking representative of structures with this type of con-
fining potential. In Refs. [10–15] a sample representing a
high-quality planar 5λ/2 AlGaAs distributed Bragg reflector
microcavity with a set of etched cylindrical micropillars of
different diameters is studied. The variation of the cavity
layer width leads to different exciton-photon energy detun-
ings in different micropillars. By selecting from an ensemble
of available micropillars, one can choose specific localiza-
tion conditions for the polaritons. However, fine tuning of
the properties of the localizing potential still remains im-
possible. The effect of the size of the micropillar on the
eigenstates of the confining potential has been discussed in
Refs. [14,15].

Alternatively, a trap for polaritons can be created by ap-
plying a local stress to the microcavity sample by pressing
on it with a thin pin from the backside [18,19]. Polaritons
nonresonantly excited by a laser pump at the side of the
trapping potential tend to reach its minimum and join the
condensate state. In this geometry, the spatial separation of
the polariton condensate and the excitation spot proves that
the coherence of the condensate is not inherited from the
excitation radiation. The depth of the strain-induced trap is
tunable, and it depends on the applied pressure. However, the
range of the tuning is limited by the thickness and mechanical
rigidity of the sample.
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Another option for trapping polaritons, which gives
much more flexibility, is by means of optically induced
traps [21,22]. Nonresonant optical pumping creates a reservoir
of incoherent excitons in a microcavity plane. Due to the
repulsive nature of polariton-exciton interactions, the exciton
reservoir, which is mostly localized under the pump spot, acts
as a potential barrier for polaritons. We are aware of multiple
publications on the properties of polariton condensates in op-
tical traps of different shapes [22–26] including a ring shape
created using axicons [22], and a multiple-spot shape [24,25].
One of the problems of interest is the formation of azimuthal
polariton currents in exciton-polariton condensates localized
in optical traps [25,26].

The formation of different modes of trapped polariton con-
densates was studied previously in optically induced annular
traps by Berger et al. [27]. It was found that with an increase
of the trap’s size and the pumping power, exciton-polariton
condensates with different orbital angular momenta (OAM),
which correspond to clockwise and anticlockwise polariton
currents, were formed. The state with a nonzero OAM was
described as a vortex in a localized polariton superfluid. The
existence of the polariton mode with definite nonzero OAM
was explained in terms of the interplay between the vortex
core size and the trap size.

In this paper, we study the problem of shaping and the
selective excitation of exciton-polariton condensates in a pot-
like optical trap induced by a nonresonant annular laser pump
in a planar microcavity. We observe experimentally both the
ground and the excited states of a polariton condensate in a
trap. Additionally, we perform real-space spectral imaging of
the condensate emission and observe that different condensate
modes correspond to single-particle quantum levels. While
the ground state has zero OAM, the excited states can carry
nonzero OAM, as it happens in atoms. The tunability of the
shape of the trap enables us to study the effect of the trap size
on the occupation of the condensate eigenstates.

II. EXPERIMENTS

We study a planar Al0.15Ga0.85As microcavity of width
5λ/2 with 12 embedded GaAs quantum wells and placed
between two high-quality (with a Q factor exceeding 104)
distributed Bragg reflectors (DBRs). The top (bottom) DBR
consists of 45 (50) pairs of AlAs/Al0.3Ga0.7As.

We use a Millenia-eV pumped Tsunami Ti:sapphire pulsed
picosecond laser tuned to a wavelength of 751 nm to excite
a polariton condensate in the sample. The laser beam had
passed through an acousto-optical modulator (AOM) to con-
trol the incident pump power. After AOM, the diffracted beam
was directed to a micromirror spatial light modulator (SLM)
(Texas Instruments model DLP9000, pixel size = 7.56 µm).
The output pattern on the SLM defines the spatial profile of
the pumping beam and, consequently, the shape of the trap.
After reflection from SLM, the light beam was focused on
the sample surface with a magnification factor of 4:125 by
using an F = 125 mm converging lens followed by a 50×
Mitutoyo microscope objective (focal length of F = 4 mm).
The photoluminescence (PL) of the condensate was collected
by the same objective in a backscattering geometry, filtered
with a long-pass spectral filter FELH800, and then detected by

FIG. 1. Photoluminescence of the polariton condensates excited
in potlike traps of different widths. The radii of the ring-shaped pump
profile are (a) R = 9 µm, (b) R = 9.4 µm, and (c) R = 10.4 µm. The
blue dashed circle shows the location of the optically induced trap.

a Meade DSI IV CMOS camera or by a 0.5-m Acton HRS-500
imaging spectrometer with a PIXIS-256 CCD camera. Each
spectrum was obtained by accumulating 108 independent
condensates.

In the experiment, we excite polaritons by a ring-shaped
optical pump. The radius of the ring, R, is changed in the range
9–11 µm while the width of the ring, d , is always equal to a
quarter of R (d = 2–2.5 µm). At a pumping power exceeding
the polariton-lasing threshold (Pth = 2.4 mW for the trap with
R = 9 µm, Pth = 2.7 mW for a trap with R = 9.4 µm, and
Pth = 3.3 mW for a trap with R = 10.4 µm), the polaritons
form a condensate inside the pump-induced optical trap. Here-
with, the shape of the condensate considerably depends on
the size of the trap. Figure 1 shows the polariton condensates
formed in optical ring traps of different radii. In a trap of
radius R = 9 µm [Fig. 1(a)] the polariton condensate occupies
a bell-shaped state in the center of the trap. Once the radius in-
creases to 10 µm [Fig. 1(b)], the condensate shape is changed
into an annulus with a density dip in the center of the trap.
A further increase in the radius to R = 10.4 µm [Fig. 1(c)]
results in the formation of a condensate with a bell-shaped
spot surrounded by an annulus ring centered in the trap.

To further understand the formation of the polariton
condensates in the trap, we have performed real-space mea-
surements of PL of a condensate emerging in a trap of
R = 9.4 µm at different pumping powers. To this end, the
condensate PL was focused on the slit of the spectrometer.
Figure 2 shows the distribution of the condensate PL spectrum
along the cross section of the trap. At the lowest pump power
[Fig. 2(a)], a single-energy condensate is formed. The two
symmetric spots on the tomography image showing the real
space and energy distribution of the polaritons certify the
symmetric ring shape of the condensate. Once the pumping
power is increased, the ring-shaped state is supplemented with
an additional state localized in the center of the trap which
is red detuned in energy [Fig. 2(b)]. A further increase in
pump power leads to the emergence of a triple-mode polariton
condensate [Fig. 2(c)]. It worth mentioning that the results of
real-space and spectrally resolved tomography measurements
shown in Figs. 1 and 2, show the accumulated PL signals from
multiple pumping pulses, so that we are unable to conclude
if the polariton condensates of different energies emerged
simultaneously or consecutively after different excitation
pulses.

The energy distribution of a polariton condensate in a
trap integrated over the cross section is shown in Fig. 3. To
distinguish between different modes in the measured spec-
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FIG. 2. Left side: Photoluminescence (PL) distribution intensity
of the polariton condensate in an optical trap of radius R = 9.8 µm as
a function of energy and real-space coordinate at different pumping
powers. Right side: The corresponding real-space images. (a) P =
1.2Pth, (b) P = 1.5Pth, and (c) P = 2.3Pth. The blue dashed circle
shows the location of the optically induced trap.

trum, we fit them by Gaussian functions with a fixed half
width at half maximum (HWHM) equal to 65 µeV. As one can
see by comparing traps of different widths, various numbers of
modes of the trap can be occupied depending on the width of
the trap and on the pumping power. In the smallest considered
trap of R = 9 µm [Fig. 3(a)], the two condensate modes occur.
At a weak pumping power (P = 1.1Pth), the lower mode (blue
curve), which, in fact, is the ground eigenmode of the trap,
dominates the upper (first excited) mode. With increasing
pumping power, the contribution of the upper mode to the
condensate PL increases and it becomes comparable to the
one of the ground mode (P = 1.5Pth). For a wider trap of
R = 9.4 µm [Fig. 3(b)], a single first-excited mode is replaced
by three modes of almost equal intensities flaring up with an
increase of pumping power. In the widest trap of R = 10.4 µm
[Fig. 3(c)], two and four modes are occupied simultaneously
at pumping powers of P = 1.1Pth and P = 1.4Pth, respec-
tively.

The spectral tomography of the condensate PL is an ef-
ficient method for analyzing its mode composition. It can
be performed by measuring the spectrum of each pixel in
the image by scanning the image of the condensate emis-
sion through the slit. All these spectra are collected into a
single three-dimensional (3D) array: the pixel intensity as a
function of x, y, and energy. A slice of this array at one fixed
energy represents the image of the condensate wave function

at a given energy [28]. The result of the real-space spectral
tomography of the condensate in a trap with R = 10.4 µm
and pumping power P = 1.6Pth is shown in Figs. 4(a)–4(d).
We reveal four polariton condensate states split in energy
and possessing different spatial distributions in the trap. The
shapes of the modes include a bell-like, single ring, i.e., a
single ring with a spot in its center or a double concentric ring
shape, respectively.

For the chosen trapping conditions, all four modes emit
simultaneously. However, a reduction in the radius or the
pumping power leads to a change in the set of emitting eigen-
modes. The normalized intensity of different modes of the
condensate as a function of the pumping power measured for
different radii of the trap is shown in Fig. 5. In the trap of
the smallest radius [Fig. 5(a)], only the two lowest condensate
modes occur for the considered pumping-power range. The
lowest mode is the most pronounced at a pumping power
not exceeding P ∼ 1.4Pth. With a further increase of P, the
second mode starts dominating, herewith the intensities of
both modes are comparable.

The most pronounced mode in the wider trap [Fig. 5(b)]
is the second (ring-shaped) mode, namely one which carries
a nonzero OAM. At a small pumping power, it remains the
only emitting mode. At a pumping power approximately in
the middle of the studied range, the first (ground) and the third
modes emerge. Their intensities approach the intensity of the
second mode with an increase of pumping power.

In a trap of radius R = 10.4 µm [Fig. 5(c)], the second
and third modes prevail. At the small pumping power, the
second mode is stronger in intensity. With increasing power,
the modes swap. The first and fourth modes, which do not
manifest themselves under weak pumping, appear with in-
creasing pumping power.

While the appearance of a set of polariton modes in a trap is
expected, in general, we observe that for traps of some specific
radii only the second (ring-shaped) mode is populated. In or-
der to clarify which process is responsible for the stabilization
of the ring-shaped condensates, we consider a single polariton
quantized in an infinite cylindrical potential that exponentially
depends on the radial coordinate. This simplest model con-
tains only two fitting parameters, namely, the polariton mass
and the exciton diffusion length defining the shape of the
potential. It predicts surprisingly well the shapes of polariton
modes observed in the experiment, as we show below.

III. POLARITON EIGENMODES OF A POTLIKE
POTENTIAL TRAP

While steady state solutions for a polariton condensate are
usually modeled with the generalized Gross-Pitaevskii equa-
tion, in order to find out which mode(s) are to be occupied
by the condensate in a trap, one should rather analyze a linear
Schrödinger equation for a single exciton polariton. This is
because below the condensation threshold all existing single
polariton modes may be occupied by some nonzero prob-
ability, while the time-averaged occupation number of any
mode is much less than 1, which is why polariton-polariton
interactions are not important. Eventually, the condensate
will be formed in a mode (linear combination of single-
polariton modes) that is characterized by the lowest threshold
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FIG. 3. Energy distribution of the intensity of the modes of the polariton condensate in traps of different radii at different pumping powers.
The radius of the trap is (a) R = 9 µm, (b) R = 9.4 µm, and (c) R = 10.4 µm. The pumping power is indicated in the panels. Black markers
show the results of the measurements, and colored curves show the fit to the spectra by the Gaussian functions with a fixed HWHM equal to
65 µeV. The number of condensate modes [from first (ground) to fourth] is indicated by the color of the curve (blue, red, green, and brown,
respectively).

to stimulated scattering. If radiative lifetimes of polaritons
in all modes of the trap are roughly equal, the condensate
will be formed in a linear combination of modes that has
the strongest overlap with the exciton reservoir. The largest
overlap means the lowest threshold to polariton lasing in this
case. It is important to note that the condensate as a whole
entity is characterized by a much higher effective mass than
a single polariton. The energy spectrum of excited states of
an already formed condensate may be studied following the
Bogoliubov–de Gennes approach based on the linearization
of the Gross-Pitaevskii equation. This spectrum would also
be discrete in a trap. Its study is beyond the scope of the
present work.

Now, to evaluate the shape of a single-particle wave func-
tion �(r), we solve the Schrödinger equation for a single
polariton localized in a potential trap,

−∇2� + U (r)� = E�, (1)

where the first and second terms on the left-hand side of the
equation are responsible for the kinetic and potential energy,

FIG. 4. Experimentally observed polariton modes at energies
E1 = 1.5275 eV, E2 = 1.5277 eV, E3 = 1.5279 eV, and E4 =
1.5281 eV (a)–(d) and simulated (e)–(h) lowest four polariton con-
densate eigenstates of a trap induced by a ring-shaped optical pump
with a radius of R = 10.4 µm at a power of P = 1.6Pth.

and U (r) is the trapping potential for polaritons provided
by the repulsive reservoir of optically induced incoherent
excitons, U (r) ∝ nexc(r). The density distribution of a reser-
voir in a linear regime follows the shape of the pump spot.

FIG. 5. Dependence of the relative intensity of the condensate
modes vs pumping power measured for traps with different radii:
(a) R = 9 µm, (b) R = 9.4 µm, and (c) R = 10.4 µm.
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FIG. 6. Wave functions of the eigenstates of the potential trap U (r) obtained from Eq. (1) at w = 0.1R. The set of quantum numbers
(n, l, m) characterizing eigenstates is given in the right lower corner of each panel.

To describe the polariton eigenstates confined in the trap, we
assume the exponential dependence of the reservoir density on
the distance from the trap, nexc(r) ∝ exp[−(R − r)/w], where
R is the radius of the trap and w is the diffusion length of
excitons.

Figure 6 shows the wave functions �(r) of the ten lowest
eigenstates of the trap U (r) obtained from Eq. (1). They are
quite similar to Laguerre-Gaussian modes of light and can be
quantified with the same set of quantum numbers (n, l, m),
which denote the number of nodes in the azimuth (n) and
radial (l) direction as well as the spatial orientation of the
mode (m). The number of eigenstates in the trap depends on its
height. The eigenstates shown in Figs. 6(a) and 6(f) reproduce
qualitatively the experimentally observed states in Figs. 4(a)
and 4(c), respectively. The quantum number m does not affect
the eigenenergy of the trapped states. This enables any steady-
state linear superposition of the eigenmodes, which differ in m
only. For example, the superposition of the eigenmodes �110

and �111 yields the condensate state shown in Fig. 4(b), while
the superposition of the eigenmodes �130, �131, �310, and
�311 yields the condensate state shown in Fig. 4(d).

As it was already mentioned, we assume that the conden-
sate will be formed in a linear combination of eigenfunctions
of the trap characterized by the largest overlap with the reser-
voir. For a given mode j characterized by the wave function
� j , the overlap integral is given by

I j =
∫

|� j (r)|2nexc(r)dr. (2)

The overlap integral as a function of the normalized ex-
citon diffusion length w/R for different condensate states is
shown in Fig. 7. If the diffusion length is much less than the
radius of the trap, the overlap integrals for all eigenmodes of
the condensate tend to zero. Conversely, if w considerably
exceeds R, the overlap integrals tend to their maximal value.
In the intermediate case corresponding to physically reason-
able conditions where w and R are of the same order, the
overlap integrals for different modes significantly differ from
each other. The integrals increase with increasing ratio w/R.
Herewith, as one can see, the higher in energy eigenstates
are characterized by larger overlap integrals, which means a

stronger gain from the pump. This clarifies the reason why
the polariton condensate tends to occupy the highest excited
states allowed by the trapping conditions and the pumping
regime. The inset in Fig. 7 shows schematically the wave
functions of the two lowest states in a potlike trap. This
scheme enables us to visualize the overlap of the exciton
reservoir with the polariton condensate wave functions in
the trap.

IV. CONCLUSION

We have studied the formation of exciton-polariton con-
densates in potlike traps induced by nonresonant optical
pumping with single-ring beams. Using the spectral tomog-
raphy of the real-space condensate PL, we have obtained the
spatial profiles of a set of quantized eigenmodes of an optical
trap. We have demonstrated that although the set of available
modes is similar for traps of different radii, the populations

FIG. 7. The overlap integral calculated after Eq. (2) for different
condensate modes as a function of the normalized exciton diffusion
length w/R. The inset shows schematically the ground (blue) and the
first excited (red) condensate modes in the trap potential (black).
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of the modes may be strongly different, as they depend on
the trapping and pumping conditions. Numerical solutions
of the Schrödinger equation for a model potential enabled us
to confirm that the polariton condensate states observed in
the experiment represent eigenstates of an optically induced
trap. The populations of the eigenmodes of the trap are deter-
mined by the balance of gain from the optical pumping and
losses of polaritons. We have shown numerically that the gain
governed by the overlap of the polariton wave function and
the exciton reservoir is larger for the higher-energy polariton
states as compared to the lowest-energy state. This explains
the predominant population of excited polariton condensate
modes in a trap under external pumping. The obtained re-
sults offer a method of controllable excitation of specific
modes of exciton-polariton condensates in optically induced

traps. The method can be further expanded to the study of
exciton-polariton condensates with internal polariton currents
characterized by nonzero topological charges.
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