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We have observed remarkable multiple-line electron spin-resonance spectra in sensitive terahertz laser pho-
toresponse measurements of the two-dimensional electron gas of an asymmetric InAs quantum well in the
integer quantum Hall effect regime. Near filling factor 7 with the magnetic field oriented at large angles θ from
the normal to the sample surface, rather than the expected single-electron spin-resonance line, we observed
several sharp pairs of features at fields across the corresponding quantum Hall plateau. At a unique angle
θc, the dominant central pair merges into a single line close to the estimated magnetic field of electron spin
resonance. For θ > θc this line splits into two sharper features whose separation in magnetic field increases with
increasing θ . Surprisingly, for θ < θc the central feature disappears. The explanation of this behavior, as well as
the observation of additional pairs of sharp features with larger magnetic-field separations, is based on strong
spin orbit coupling effects and the concomitant effective magnetic fields associated with pairs of oppositely
directed, persistent quantum Hall edge currents combined with the behavior of edge channels near the center of
the odd plateaus. Modeling the splitting of the spin resonances due to these effective spin orbit magnetic fields is
in reasonable agreement with observations. These results show that it is possible to probe the widths of quantum
Hall edge channels through the spectral specificity of the electron spin resonance and possibly manipulate spins
with THz photons having wavelengths several orders of magnitude larger than the edge-channel widths.
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I. INTRODUCTION

Spin orbit coupling and topology are two closely intercon-
nected concepts in condensed matter physics. Topologically
nontrivial phases in n dimensions are typically driven by spin
orbit coupling induced band inversions, which result in the
occurrence of n−1 dimensional “surface” channels. In two
dimensions these are quasi-one-dimensional edge channels
carrying a spin-polarized, dissipationless equilibrium current,
protected from backscattering by symmetry. The edge chan-
nels of the integer quantum Hall effect [1–3] are an essential
example of the importance of topological protection of such
edge states. A significant development in this context was the
prediction of a new class of topological states, topological
insulators, and the connected quantum spin Hall effect, and
their observation in HgTe quantum wells [4–7]. The connec-
tion between spin orbit coupling and topology has stimulated
research in both fundamental and applied directions. On the
one hand, the electron spin degree of freedom and/or the
stability and chirality of one-dimensional (1D) topological
channels may be exploited for developing new paradigms
for electronic devices and information technology [8–12]. A
key aspect in spintronics applications is the possibility of
spin orbit coupling enabled spin manipulation via electric
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fields [13,14]. On the other hand, fundamental electronic
parameters, such as the g factor and optical selection rules
and oscillator strengths of electric-dipole transitions involv-
ing spin flips, depend strongly on spin orbit coupling (see,
e.g., [15]). Studies of electron spin resonance in different
frequency regions can provide important information about
its strength and how it is affected by band structure and car-
rier density and, consequently, how strongly these properties
affect other phenomena. For example, excitation of spins via
electric fields, such as electric-dipole spin resonance (EDSR)
and combined cyclotron–spin resonances [15], can provide
easier access to probing and manipulating spins because of
their much larger oscillator strength in materials with large
spin orbit coupling. In this context HgTe, InSb, and InAs are
especially interesting because of their large spin orbit cou-
pling and the availability of quantum structures with excellent
electronic properties.

In systems with fully formed one-dimensional edge chan-
nels, as in the integer quantum Hall effect for two-dimensional
electron gases (2DEGs), or in the quantum spin Hall effect
from inverted HgTe quantum wells, the location of the con-
ducting channels is pinned close to the physical edges of the
sample [16–22]. However, although the topological protec-
tion of the conductance quantization is beneficial in many
cases, it makes the extraction of exact location and width
of these edge channels impossible from standard magneto-
transport measurements. Scanning probe measurements on
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GaAs 2DEGs have shown clear evidence of the edge channels
in GaAs/(AlGa)As heterostructures [20,23–26] and graphene
[21,27], but spatial resolution is limited. The present work,
which combines topologically protected states in the integer
quantum Hall effect with spin orbit induced magnetic fields,
shows how spin-resonance measurements could provide de-
tailed information about the formation and width of 1D edge
channels.

Motivated initially by theoretical predictions [13,14] of
strong electric-dipole spin resonance (EDSR) that is espe-
cially enhanced for large angles between applied magnetic
field and the sample plane, we have made low-temperature
magnetophotoresponse measurements on an InAs 2DEG in
the integer quantum Hall regime. The parameter space in-
vestigated in our experiments encompasses the fields and tilt
angles necessary to observe electron spin resonance estimated
for the electron density and effective g factor of our sample.
Unexpectedly, rather than the anticipated single-electron spin-
resonance line, we observed multiline spectra, the central pair
of which coalesces into a single line at a special tilt angle, θc,
and abruptly vanishes for θ � θc. We attribute these unusual
effects to local spin orbit coupling induced magnetic fields
of electrons in distinct incompressible quantum Hall edge
channels (QHECs) combined with the behavior of the edge
channels with tilt angle and magnetic field. Furthermore, our
studies show that it may be possible to manipulate spins local-
ized in edge channels that are typically tens of nanometers in
width, via high-frequency electric fields having wavelengths
λ > 100 μm that correspond to energies that are resonant with
the effective spin splitting. This type of spin manipulation
should also be possible in other examples of topologically pro-
tected quasi-one-dimensional channels with large spin orbit
coupling.

Most investigations of the quantum Hall effect (including
the extensive scanning probe studies referred to above) have
focused on GaAs/(AlGa)As heterostructures and graphene
mono- and multilayer structures due to their high quality,
widespread availability, and interesting physics. However,
the spin orbit coupling is relatively weak in these mate-
rials, e.g., in GaAs weak spin orbit coupling results in a
small effective band g factor for electrons (g∗ = –0.44); there
have been few studies of the combined effect of spin or-
bit coupling and QHECs on spin resonance. We report here
the results of our experimental low-temperature THz mag-
netophotoresponse measurements of electrons in a 2DEG of
an InAs quantum well, which have a much larger single-
particle conduction-band g value (g∗

sp ≈ −15). The multiple
lines appear in pairs, which suggests that these experiments
selectively probe electron spins in specific QHECs through
their spin resonance. We attribute the splitting of the line pairs
to electron momentum dependent effective magnetic fields
that result from spin orbit interaction generated by the local
currents within the QHECs. These different effective fields
lead to different total fields when combined vectorially with
the applied magnetic field. The equilibrium counterpropagat-
ing currents in the edge channels produce equal and oppositely
oriented spin orbit magnetic fields, BSO, in the plane of the
2DEG normal to the current direction. This allows one to
assign different components of the spin multiplet to different
channels, and to understand the dependence of the position

and width of the resonant dips in photoresponse on the applied
magnetic field B. The projection of B, B⊥ = Bcos θ , deter-
mines the details of the quantum Hall effect and the widths of
the edge channels, as well as the aforementioned vanishing of
the single spin-resonance dip for θ < θc. We argue below that
absence of any spin resonance for this case is due to vanishing
of the edge channels for fields greater than that corresponding
to filling factor ν = 7. The large spin orbit interaction [28,29]
and effective g factor of InAs both enhance selectivity. This
spin orbit coupling originates, in general, from both structural
and crystalline inversion asymmetries [30,31], but the former
usually dominates in InAs and we ignore the latter in the
remainder of this paper in the interest of simplicity.

Our experiments exploit the high sensitivity of the mag-
netotransport to changes in carrier temperature induced by
resonant absorption of high-frequency radiation in the vicinity
of the Zeeman energy [32–34], and thereby to investigate the
widths of the QHECs (incompressible strips), which depend
on their location relative to the edges across the width of the
sample (Hall bar). The edge-channel locations depend upon
the electrostatic depletion potential V(x), with the x direction
across the width of the sample, and the intersection of the
resulting electron density dependence ns(x), with the density
determined by the electrochemical potential in the 2D bulk
(and compressible strips). Our discovery and its interpreta-
tion show that addressing and manipulating electron spins
in different channels independently is possible because of
the spectral specificity of the spin resonance associated with
lateral position and spatial separation of the channels, which
can be of the order of the Hall bar sample width.

II. EXPERIMENTAL DETAILS

The heterostructure studied is a 15 nm InAs quantum
well sandwiched between two layers of Al0.35Ga0.65Sb grown
by molecular beam epitaxy along the [001] direction. The
layered structure of the sample is shown schematically in
Fig. 1. Although the sample is not intentionally doped, the
InAs quantum well hosts a 2DEG of density ns that results
from pinning of the chemical potential due to surface states
of the top Al0.35Ga0.65Sb layer. The electron density can be
varied from <7 × 1011 cm−2 to 1012 cm−2 through visible and
infrared light illumination, and the low-temperature mobility
of the 2DEG is approximately 3 × 105 cm2/V s at 4.2 K.

This structure was processed by standard optical lithogra-
phy and wet etching techniques into a large Hall bar geometry
(shown schematically in the inset to Fig. 2(c). The dimen-
sions of the Hall bar are as follows: length: 2 mm; width:
0.25 mm; separation between longitudinal contacts: 1.7 mm.
The resulting Hall bar was mounted in the variable temper-
ature insert of an Oxford Instruments optical-access 10 T
superconducting magnet system with room-temperature and
helium-temperature windows providing access to THz and/or
visible optical beams propagating either parallel or perpendic-
ular to the magnetic field. The sample was mounted in a holder
that allows rotation such that the normal to the sample surface
(and the plane of the 2DEG) could be varied with respect to
the magnetic field B by an angle θ in the plane perpendicular
to the long Hall bar axis.
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FIG. 1. Schematic diagram of the layered sample containing the
InAs quantum well grown by molecular-beam epitaxy. The GaSb
layer and the AlSb/GaSb superlattice are incorporated to trap impu-
rities and optimize mobility of electrons in the InAs quantum well.
N.B. The structure is not intentionally doped.

FIG. 2. Magnetotransport and photoinduced changes for B nor-
mal to the sample surface. (a) Change in the Hall resistance, �Rxy,
induced by the THz radiation (3.15 meV). (b) Photoresponse, �Rxx ,
at T = 4.2 K (blue) and T = 12 K (green). (c) Rxx (blue) and Rxy

(red) vs magnetic field (Iappl ≈ 3 μA rms). Filling factors ν = 5 and 7
are indicated by the shaded vertical bars. Inset: Experimental sample
configuration: the THz beam, collinear with the applied magnetic
field, is shown by the horizontal (orange) arrow.

In these measurements the magnetic field was applied at
angles of 38◦–43◦ with respect to the normal to the sam-
ple surface to place the center of the filling factor ν = 7
plateau at an applied field that makes the estimated Zeeman
energy equal to the photon energy (3.15 meV) of one of
the strongest and most stable THz lines of the Edinburgh
Instruments FIRL100 optically pumped molecular gas laser.
The mechanically chopped THz laser beam (linearly polarized
with output power of ∼25 mW) was focused by an off-axis
parabolic mirror onto the sample surface through the room-
temperature and He-temperature windows of the cryostat. The
THz beam propagation was parallel to the magnetic field, as
shown schematically in the inset of Fig. 2(c). During most
measurements, the sample was immersed in superfluid liquid
helium. Absorption of the chopped beam induces a resistance
change, �Rxx = Rxx (THz on)–Rxx (THz off), the photore-
sponse predominantly due to carrier heating of the 2DEG
[34–38]. The �Rxx signal containing both current modula-
tion and laser chopping frequencies was processed by a two
lock-in amplifier arrangement and the signal at the chopping
frequency (13 Hz) was demodulated and time averaged to
produce the desired photoresponse signal.

III. RESULTS

Figure 2 shows the simultaneously measured resistances,
Rxx and Rxy [Fig. 2(c)], and the corresponding photoresponse
signals [Figs. 2(a) and 2(b)] are obtained with the double-
modulation technique as a function of the applied field B for
θ = 0. At low temperature, the cyclotron-resonance absorp-
tion is observable only through its temperature modulation
of the amplitude of the rapid Shubnikov–de Haas (SdH)
oscillations in �Rxx (at these low fields). As a result, the
position of the cyclotron-resonance absorption is obscured
and the maximum in the modulated amplitude of the Rxx

oscillations is shifted substantially to higher fields than the
peak cyclotron-resonance absorption due to the exponential
growth of the oscillation amplitude with B [39]. The cyclotron
resonance becomes clearer at higher temperatures as the not
fully developed minimum that can be seen in Fig. 2(b) at
12 K, because of the marked reduction in amplitude of the
SdH oscillations. This minimum is still shifted to a higher
field than the absorption maximum. The magnetotransmission
measurements of the sample in situ at the same laser photon
energy show the cyclotron-resonance transmission minimum
at about 1 T. At higher fields and low temperature (�4.2),
where the quantum oscillations are more widely separated
and the quantum Hall plateaus appear in Rxy, the �Rxx signal
shows a double-peak structure that is due to a temperature dif-
ferential of the Rxx minima resulting from broad nonresonant
absorption in the structure below the active InAs layer. In the
following sections we concentrate on �Rxx at a series of tilt
angles θ in the vicinity of the ν = 7 QHE plateau in Rxy (and
the corresponding Rxx minimum) determined by the normal
component of the applied field, B⊥ = Bcosθ . For θ = 0 these
features are shown by the shaded vertical bars in Fig. 2 for
ν = 7 and 5.

Figure 3(a) shows the B dependence of �Rxx at several tilt
angles θ focusing on the field region immediately surrounding
filling factor ν = 7, which is determined by B⊥. We attribute

045301-3



A. V. STIER et al. PHYSICAL REVIEW B 107, 045301 (2023)

FIG. 3. (a) Angular dependence of �Rxx near ν = 7 for I =
170 nA rms at T = 1.6 K. A single dip appears at θc = (38.4 ± 0.4)◦

at B = 5.31 T, splits with increasing θ , and disappears for θ < θc.
Two pairs of satellite lines separated by larger applied fields are also
visible. Vertical arrows show the calculated fields of incipience (ν =
7) at each θ for ns = 7.1 × 1011 cm−2, obtained in situ in the Oxford
magnet system from Shubnikov–de Haas measurements. (b) Com-
parison of the θ = 39◦ photoresponse data with the corresponding
Rxy data taken in the same experiment. (c) Field scan up (blue) and
down (black) at 38.4◦ showing reproducibility and small hysteresis
due to sweep rate and time constant.

the single feature at B = 5.31 T for θ7c = 38.4◦ to electron
spin resonance of the 2DEG. Its field position is BESR, which
is found from h̄ωs = ETHz = |g∗|μBBESR and thus requires
knowledge of g∗ for electrons in the InAs quantum well at the
Fermi energy. The single-particle conduction-band g factor of
InAs is approximately–15, primarily due to its small energy
gap and large spin orbit interaction. We describe in detail in
the Appendix our estimate of g∗ for electrons at the Fermi
energy confined in a 15 nm quantum well from experimen-
tal “coincidence” measurements of low-field doubling of the
Shubnikov–de Haas oscillation frequency [40,41] with mod-
ifications introduced to account for the angular dependence
of electron-electron exchange and single-particle anisotropy
introduced by confinement [42–46].

This estimate yields |g∗| = 10.6, in remarkably good
agreement with the g factor obtained from the field position
of the single broader dip in Fig. 3(a) at 38.4◦ (|g∗| = 10.3),
which we have ascribed to electron spin resonance. Given the
complexity of the calculation and assumptions, this excellent
agreement is likely to be fortuitous. Nevertheless, it is con-
sistent with our assignment and our use of |g∗| = 10.3 in the
modeling shown in Fig. 6(a).

This single electron spin resonance feature vanishes for
θ < θ7c. We attribute this surprising result to two factors: (1)
B is too small to achieve resonance in the edge channel for
B < B7�, [see Fig. 4(c)], and (2) for B > B7�, when B is large
enough to satisfy the electron spin resonance condition, the
ν = 7 edge channels are no longer formed; the chemical po-
tential lies in nonconducting localized states associated with
the N = 3↑ Landau level in the latter case, and photoresponse
from spin resonance is not detectable. We discuss this in more
detail in Sec. V.

FIG. 4. Sample geometry and vector diagrams of the magnetic
fields for ν ≈ 7. �j i,o

edge (i, o, i.e., in, or out of the x-z plane along
±ŷ) are current densities. B is rotated in the x-z plane by θ from the
[001] (z direction) toward the [1̄1̄0] crystalline axes. The spin orbit
effective fields, BSO

i,o , lie in the plane of the 2DEG perpendicular to
the edge-channel currents. Panels (a–c) represent the low-field side
of incipience with B (light blue arrow) < Bh, Bc, and B� (dashed
black arrow), respectively. There are no edge channels for B > Bh,
Bc, or B�. Panel (b) shows the unique case for which BSO

i,o ≈ 0 and
Bc also satisfies the spin-resonance condition.

For θ > θ7c the single line splits into two resonances that
appear as individual dips, whose separation in B increases
while the individual lines narrow with increasing θ . The av-
erage position of the two dips shifts up in applied field B,
keeping B7cosθ ≈ constant. Furthermore, there are two more
widely separated doublets that can be seen at θ ≈ θ7c and
that only gradually shift in B with increasing θ . We attribute
these “satellite” lines to EDSR from edge channels associated
with the ν = 5 and ν = 3 plateaus, which are well below the
Fermi energy in the 2D bulk (see Fig. 5). Such behavior has
not been previously reported for GaAs [32–34] or Si [47].
We ascribe this unique behavior to strong spin orbit coupling
that electrons experience in QHECs in InAs. The basic idea
is related to that underlying the spin transistor [48], but in
the present case the electrons are confined to incompressible
quasi-1D QHECs with quantized conductance and suppressed
backscattering, rather than the 2D electrons in the channel
of the spin transistor. Our observations are consistent with
EDSR transitions between pairs of spin-split incompressible
quantum Hall edge channels, located at different positions
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FIG. 5. Landau levels plotted vs x from the left edge (edge cur-
rents o) toward the center for θ = θh > θc and Bh > Bc [see Fig. 3(a)
for the corresponding vector diagram]. Solid black dots are occupied
states and unfilled “donuts” are empty states. White arrows outlined
in black represent EDSR transitions in the incompressible QHECs
for ν = 5 and 7. Shaded regions are incompressible strips; white
backgrounds are compressible strips. The relative widths of the two
types are not to scale; compressible strips are always larger than
the incompressible strip that they surround. The incompressible strip
for ν = 6 corresponds to the cyclotron energy gap, whose driving
voltage is Vcyc = h̄(ωc − ωs )/e.

relative to the edges of the sample, and the significant spin
orbit fields associated with the electron momenta in channels
that are not at, or very close to, incipience. At incipience
the edge channels are located at the center and extend across
the width of the Hall bar. The spin orbit effective fields
add vectorially to the applied field for electron flow in edge
channels along the ±y direction in the x-y plane as shown
schematically in Fig. 4. In equilibrium the current flow along
the y axis is equal in magnitude and opposite in direction for
opposite edges, so one effective spin orbit field reduces the
total magnetic field and the other increases it. For a particular
filling factor ν this leads to two total fields (Btot

ν(i,o) ), and
thus possibly two applied fields for which the electron spin
resonance condition can be satisfied, depending on the angle
θ (see Fig. 4).

IV. THEORETICAL MODEL AND COMPARISON
WITH EXPERIMENT

As mentioned above, the basic physics underlying our
model and interpretation is based on the spin orbit effective
field generated by the electrons in equilibrium currents of the
topologically protected QHECs. This is combined with two
constraints: (1) the total magnetic field satisfies the electron
spin resonance condition; and (2) the normal component of the
same field determines the edge-channel electronic properties,
such as filling factor ν and location in the x direction relative
to the sample edges (and thus their widths).

To understand the details, quantify the conditions, and
justify our interpretation we begin by determining the total
magnetic field for a particular filling factor ν, Btot

ν(i,o), which
is the vector sum of the applied magnetic field and the ef-
fective Rashba spin orbit fields, BSO

ν(i,o); the subscripts denote

the filling factor region, and the direction of current in the
edge channel (“in” or “out”) as shown in Fig. 4. In the edge
channels these total fields determine the resonance condition,
which is set by the effective g factor, g∗. As shown in Fig. 3,
near the right edge of the sample (current in, subscript i) the
applied and Rashba fields add to produce a total field that is
higher (subscript h) than the applied field, and at the left edge
(current out, subscript o) they add to produce a lower total
field (subscript �).

Figure 4(a) shows the basic geometry for a particular angle
θ7h that is larger than the unique angle θ7c, and Figs. 4(b) and
4(c) show the situation for the unique angle θ7c and for an
angle θ7� that is smaller than θ7c, respectively. The persistent
edge currents ji,o

edge flow along the ±y directions that corre-
spond to {110} crystalline axes, independent of θ . As the axis
of the structural asymmetry lies along the growth direction z
([001]), the effective spin orbit magnetic fields, of magnitude
BSO

ν(i,o) = 2αRk
g∗μBB , lie in the x-y plane along ±x, perpendicular

to the edge currents along ±y. The latter are the directions of
the wave vector k = m∗v/h̄., where v is the electron velocity
vector and m∗ its effective mass. The resulting magnitude of
the total magnetic field can be written

Btot
ν(i,o)(θ ) = ±

√
B2cos2θ + (

Bsin2θ ± BSO
ν(i,o)

)2
, (1)

where the sign is determined by the direction of current flow
(+ for i and – for o). Thus for a particular angle θ , the two total
fields that can satisfy the spin-resonance condition are given
by the solutions to h̄ωs = ωTHz = g∗μBBtot

ν(i,o) where Btot
ν(i,o) is

a function of B, BSO
ν(i,o), and θ .We note that the lower applied

field at which this condition is satisfied corresponds to the
right edge channel in Fig. 3 (subscript i), while the current
in the left edge channel (subscript o) satisfies the condition at
higher applied field (closer to incipience). Both fields must be
lower than the corresponding incipience field, so that Bcosθ
leads to a chemical potential (EF at T = 0, in Fig. 4) that
does not lie in states associated with the 3↑ Landau level, i.e.,
ν < 7, where edge channels in the ideal case cease to exist.

We assert that the central resonance feature at θ = θ7c is
directly connected to the incipient formation of the ν = 7
incompressible QHECs. As indicated in Fig. 5, “incipience”
takes place at applied magnetic fields B corresponding to the
electrochemical potential in the gap between the Rxx conduc-
tance peaks for the N = 3↑ and N = 3↓ Landau levels (i.e.,
the ν = 7 Rxy plateau) at a field close to that corresponding
to complete filling of the N = 3↑ Landau-level states, where
N is the Landau quantum number (see Sec. V, Discussion).
The current in each incompressible edge channel is I = e2

h V ,
where h is Planck’s constant, e is the magnitude of the charge
of the electron, and V is the voltage drop across the channel,
independent of filling factor ν. However, the width wν of the
incompressible edge channel with an integer value of ν, which
separates two compressible regions, does depend on ν through
the local electron density profile, ns(x), along the x direction
in the vicinity of the edge channel, as discussed below.

The current in the incompressible spin-split edge channel
can be written as

Iν = e2

h

(
h̄ωs

e

)
= eηwνv, (2)
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where η = 1
2π l2

B
= e

h B cos θ is the Landau-level degeneracy
with lB the radius of the quantum cyclotron orbit (magnetic
length). The magnitude of the effective spin orbit field is given
in terms of the width wν by

BSO
ν(i,o) = 2

cosθ

αRm∗

h̄ewν

, (3)

where wν (x) depends on the location of the edge channel in
the x direction.

In equilibrium for a magnetic field along the z direction
the location of the edge channels along x is determined
by the intersection of the chemical potential in the 2D bulk
(and the compressible strips) with the electron density distri-
bution, ns(x). For our model we employ the simple expression
for ns(x) derived by Chklovskii et al. [17], ns(x)/ns =√

x/(2l + x), where ns is the bulk 2D value of the electron
density and 2l is the nonlinear screening length, to calculate
the approximate locations (and the corresponding widths) of
the various edge channels. We note that the actual [three-
dimensional (3D)] sample geometry is complicated, as are
the corresponding electrostatics. The band bending and the
large electron density in the well in the absence of intentional
doping is determined by the surface or interface pinning of
the electrochemical potential and the effects of etching and
deep-level defects. There has been discussion for many years
about the origin of the electrons populating InAs quantum
wells in this heterostructure system; see, e.g., [49]. Dealing
with these complexities is beyond the scope of the present
work, and for our purposes the Chklovskii expression is both
simple and, we believe, adequate.

For incompressible strips associated with integer ν, the
width is given by w2

ν ≈ κ h̄ωs/[e2|dns(x)/dx|x=xν
]. Here, κ

is the low-frequency dielectric constant, xν is the position of
the νth incompressible strip, and ns(xν ) = νη. That is, for a
given ν the locations of the edge channels are determined by
the positions in x of the intersections of ns = νη, with ns(x)
vs x, where the Landau-level degeneracy η is determined by
B⊥. The locations of the edge channels can be obtained from

ns(xν )

ns
=

√
xν

(2l + xν )
= Bcosθ

Bνcosθν

, (4)

where ns is the bulk 2D electron density in the absence of
depletion.

For small variations in θ and B about θν and Bν we find
from Eq. (4) the following expressions for the channel loca-
tion xν , and the derivative of the spatial variation of the density
[dn(x)/dx]x=xν

,

xν ≈ l

tanθν (θ − θν ) − B−Bν

Bν

, (5)

and

dns(x)

dx
|x=xν

≈ ns

l

[
tan θν (θ − θν ) − B − Bν

Bν

]2

. (6)

The variables θ and B are not independent, but for small
changes Eqs. (5) and (6) should be adequate for our purposes.
We use Eqs. (5) and (6) in conjunction with Eq. (3) to obtain
the spin orbit field in terms of the spatial derivative of the

FIG. 6. (a) Splitting of the spin-resonance dips deduced from
the photoresponse data (black squares and red dots) as indicated in
the inset. The solid lines are calculations of the splittings for ν = 7
and 5 with m∗ = 0.042 m, g∗ = –10.3, αR = 1.1 × 10−9 eV cm, and
ns = 7.05 × 1011 cm−2. (b) Widths wν of the QHECs vs tilt angle θ

calculated from Eq. (3) and the experimentally measured splittings;
the dashed lines are guides to the eye.

density profile,

BSO
ν = 2αRm∗

h̄
√

κ h̄ωs cos θν

√
dns(x)

dx
|x=xν

(7)

At incipience the width of the channels is approximately
the sample width, 250 μm. From Eq. (3) this yields a spin
orbit field of about 0.05 mT, which is negligible compared
to the applied field, so at incipience for θ = θ7c = 38.4◦,
Btot

7(i,o) ≈ B7c = BESR. Thus a single-resonance feature is ob-
served from two very wide overlapping channels, broadened
by disorder.

We focus now on the θ−B region close to this unique angle
θ7c. For θ and B close to such special points in the parameter
space, we can write BESR ≈ Btot

ν(i,o) = B ± BSO
ν sin θν and thus

(B − Bν ) ± BSO
ν sin θν = 0. (8)

Substituting for BSO
ν from Eq. (7) we have

±(B − Bν ) = �ν |Bν tan θν (θ − θν ) − (B − Bν )|, (9)

where the dimensionless parameter �ν = ν sin θν

π lSO

√
e2

κnsl h̄ωs
> 0

and the spin orbit length lSO = h̄2

m∗αR
. Finally, by combining

these results for fields and angles close to the special point
(B7c, θ7c in the present case) we find for the angular depen-
dence,

BSO
ν (θ ) ≈ �ν

1 + �ν

Bν

cos θν

(θ − θν ). (10)

Equation (10) allows us to relate the spin orbit field
of the edge channel to the tilt angle θ relative to the
unique incipience angle θ7c and to determine the approximate
magnetic-field splitting over small ranges of fields (∼0.5 T)
and angles (5◦) relative to this special point.

Figure 6(a) shows the magnetic-field separation of the cen-
tral feature and the next pair of resonances (the first pair of
satellite lines, as shown in the inset) as a function of θ . This
splitting is �ν ≡ |Btot

νi − Btot
νo | ≈ 2 sin θBSO

ν , which implies a
symmetry between the solutions for BSO

νi and BSO
νo , namely,

BSO
νi = −BSO

νo . The experimental results do not exhibit such a
simple symmetric relationship for the spin orbit fields, which
are always opposite in direction, but not equal in magnitude,
especially for the larger angles. The resonance for BSO

νo occurs

045301-6



ELECTRIC-DIPOLE SPIN RESONANCE AND SPIN … PHYSICAL REVIEW B 107, 045301 (2023)

at a smaller decrease in field from Bh than that for BSO
νi , so the

corresponding edge channel is wider and |BSO
νo | < |BSO

νi |. Nev-
ertheless, the contributions from the two edge channels add
to produce the total splitting and the sum is not significantly
different from the simple expression. For a representative set
of parameters the simple relationship yields numerical values
that are remarkably close to our experimental observations as
seen in Fig. 6(a).

We can also identify the first satellite pair of lines (the next
more widely separated dips in Rxx) as electron spin resonance
for incompressible QHECs with ν = 5 and estimate the corre-
sponding magnetic-field splittings (given in the figure). From
this model and the experimentally determined splittings �ν ,
we extract an estimate of the widths of the respective QHECs
at several values of θ , as shown in Fig. 6(b). The widths of the
v = 7 QHECs decrease significantly with increasing θ as they
move from the sample center toward the edges, as expected.
The depletion potential V(x) and electron density ns(x) change
much more rapidly close to the edges, and consequently the
QHEC width decreases very rapidly in that region, as it is
inversely proportional to the rate of decrease of ns(x). The
ν = 5 channel is little affected by changing θ as the Landau
levels associated with it lie energetically well below the Fermi
level in the 2D bulk and thus the corresponding pair of Lan-
dau levels, 2↑ and 2↓, are much closer to the edges at the
Fermi energy (see Fig. 5). Theoretically, the ideal width of
an incompressible QHEC is given by wν = √

2ν + 1lB [50].
These widths are in reasonable agreement with our experi-
mental results, e.g., on the ν = 7 plateau, where B⊥ ∼ 4.2 T,
lB = 12.6 nm, and this gives w7 ≈ 49 nm and w5 = 42 nm.
The values extracted from our splitting measurements and
Eq. (3) in the vicinity of ν = 7 lie in the range 60–180 nm,
and for ν = 5 the values are about 30–40 nm.

The disappearance of the central feature for θ = 38◦ < θ7c

remains to be explained in detail, and there are several sub-
tleties associated with the calculation and the location of the
EDSR lines that require further attention and explanation. We
address these issues in the following section.

V. DISCUSSION

Aspects of the experimental results show remarkably good
agreement with the model described in the previous section
for ν = 7 and 5, e.g., the existence of multiple lines, the
magnitudes of the field separations between pairs of lines, the
tilt-angle dependence of these splittings, and the single line at
θc. However, there are issues that we have not addressed in
detail, the most striking of which is the disappearance of the
spin resonance in the photoresponse for tilt angles less than
θc, as can be seen in Fig. 3(a) (N.B. the strong pair of dips is
associated with the ν = 5 plateau).

For several years a group at the Max-Planck Institute in
Stuttgart has studied the microscopic behavior of the Hall
voltage and current distributions across the width of sam-
ples under quantum Hall effect conditions. Their extensive
experimental (scanning probe) investigations at the nanoscale
combined with theoretical calculations have led to consider-
ably improved understanding of the edge channels and the
detailed behavior of the currents and Hall potentials, and have
helped us unravel some of the subtleties of our experimental

results (see, e.g., [20,23–26]). We summarize here results and
conclusions that are pertinent to our work: (1) On the plateaus
of Rxy vs Bcosθ in the vicinity of ν = int. (integer) there exists
a region of ν < int. (higher fields), over which the electrical
properties are dominated by 2D-bulk behavior and edge chan-
nels are not formed. (2) There is disorder of compressible and
incompressible regions in the vicinity of Bν=int., for a range
of magnetic fields both below and above. (3) For lower fields
on the plateau, where ν > int., edge channels (incompressible
strips) are formed and dominate the electrical behavior. (4)
For larger ν plateaus the field Bν=int . is higher than the field
corresponding to the apparent center of the respective plateau
(or the center of the corresponding minimum of Rxx).

To aid further discussion we refer to Fig. 5, which is a
sketch for the left edge of the energies of the Landau-level
spin pairs (3↑, ↓ and 2↑, ↓) showing the corresponding edge
channels (incompressible strips), the level occupancy, and the
location of EDSR transitions vs lateral position x for the
ν = 7 edge channels close to incipience. The Fermi energy
lies energetically in the Zeeman gap between 3↑ and 3↓,
such that all states associated with Landau-level 3↑ are filled,
so edge-channel formation is expected. The incompressible
strips for the ν = 7 and 5 edge channels are shown as vertical
shaded regions, with the strip for ν = 5 much narrower than
that for ν = 7 because of the more rapid change of ns(x)
closer to the edge. The incompressible strip for the ν = 6
plateau is also shown by a shaded region. The even-integer
incompressible strips are wider for a given x position because
of the larger energy separation between the 3↓ and 2↑ Landau
levels (about 3.3 h̄ωs), and the correspondingly larger driving
voltage, Vcyc = h̄(ωc − ωs)/e. In the following paragraphs, in
which we discuss the details of various aspects of the inter-
pretation, all discussion refers to the ν = 7 region of fields
and angles; therefore, in the interest of simplifying a complex
notation, we drop the ν subscript for the remainder of this
section.

The configuration of magnetic fields that corresponds to
the single broader dip in the photoresponse at θ = 38.4◦ = θc

is shown in Fig. 4(b). In this case, as discussed above, the
incompressible strips are located close to the center of the
sample in the x direction and the spin orbit fields are negligible
compared to the incipience field; thus the two total fields have
the same magnitude, Bc, and this is equal to BESR, the field
that satisfies the spin-resonance condition.

For the THz photon energy of 3.15 meV (25.4 cm−1) the
only θ and B that can satisfy both the incipience condition
and the resonance condition simultaneously are θc = 38.4◦
and Bc ≈ 5.3 T. We note that there is disorder in this region
(point 2 above) that may affect the exact position of incip-
ience and that also contributes to broadening of the EDSR
resonance(s). The pairs of narrower resonant dips that are
observed at larger tilt angles at significant field separations
from the incipience field correspond to edge channels that
are well formed, narrower, and less susceptible to disorder
because of their topological protection.

We turn now to more detailed discussion of smaller tilt
angles θ� < θc [see Fig. 4(c)], which correspond to the dis-
appearance of the central single dip associated with ν = 7.
The incipience field B�, determined by B�cosθ�, that corre-
sponds to the condition for exact filling of seven Landau
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levels, is smaller than Bc; thus it is too small to excite spin
resonance, B� < BESR. However, as mentioned previously, for
fields greater than the corresponding incipience field, edge
channels are not formed. Edge-channel formation requires
maintaining full population of the 3↑ Landau level, and this
requires B < B� < Bc. However, as can be seen from Fig. 4(c)
(and is verified by calculation), decreasing B at constant θ

cannot yield a total field greater than B�; i.e., the increase of
BSO

o can never overcome the decrease of B required to produce
it. As a result, BESR cannot be reached and edge-channel spin
resonance is not possible for the edge current out (o) of the
plane in Fig. 4(c). Therefore spin resonance can only occur
in this case via exciting transitions from compressible states
(the bulk 2D states and the compressible strips), but these
(localized) states do not contribute to electrical conductivity.
The photoresponse is sensitive only to changes in the con-
ductivity of the edge channels under the resonant absorption
of photons from the THz laser. We conclude that for θ < θc,
spin-resonance transitions are not observable in our photore-
sponse measurements, consistent with its initially puzzling
disappearance in the experiments for θ < θc.

This discussion has implications for θ = θh > θc, as well.
Incipience is achieved under these conditions at larger applied
magnetic fields, Bh > Bc, as shown schematically in Fig. 4(a).
We note that the calculated incipience field Bh for which the
3↑ Landau level is completely occupied is shifted to higher
fields than the center of the broad �Rxx minima for most
angles. The upright arrows in Figs. 3(a) and 3(b) indicate the
expected positions of the incipience fields at each θ based on
an electron density, ns = 7.1 × 1011 cm−2, determined from
the low-field Shubnikov–de Haas oscillation frequency. These
fields are higher than the centers of the broad background
minima in �Rxx, which appear approximately at the centers of
the corresponding Rxy plateaus. Figure 3(b), which compares
directly the �Rxx EDSR spectrum with the Rxy plateau for θ =
39◦, clearly shows both EDSR dips below the center of the
plateau and the field corresponding to ν = 7. These results are
consistent with the scanning probe results on GaAs/(AlGa)As
heterostructures discussed previously. As edge channels are
formed only for fields less than the incipience field, the higher-
field dip of the central pair at 43◦ would appear to be excluded,
as it lies about 75 mT higher than the incipience field (a
difference of 55 mT in B⊥). It is possible, however, that at and
near incipience, due to disorder and lateral inhomogeneities
with islands of compressible electron liquid embedded in an
incompressible electron sea, the applied field at incipience
is shifted even higher than we calculated. Also, these inho-
mogeneities could lead to different regions of incompressible
electrons forming distinct topologically protected channels at
slightly different fields. Thus a combination of disorder and
experimental and calculational uncertainties could account for
the observed behavior. We are more confident of the estimated
incipience fields for angles close to θc because the angle and
field for this singular case are clearly marked by the single
EDSR dip (within error caused by disorder), and the spin orbit
field is negligible.

For B < Bh the conditions for observation of spin reso-
nance can be achieved in both edge channels. The right edge
channel with current into the page (i) adds its effective spin
orbit field to the applied field to produce a larger total field,

as shown in Fig. 3(a). If B is close to Bh, the total field can be
≈0.4 T higher than Bc = BESR; in this case B must be reduced
enough that Btot

i ≈ B + BSO
i sinθ = BESR, overcoming the in-

crease of BSO
i that opposes the decrease of B. On the other

hand, the left edge channel produces a spin orbit field BSO
o that

is oppositely directed and therefore subtracts from the applied
field to produce a smaller total field, Btot

o ≈ B − BSO
o sinθ , that

can be tuned to BESR with a much smaller reduction in B.
Thus there are two applied fields that for two distinct values
of B < Bh give a total field equal to BESR, one for each edge
channel on opposite sides of the sample with a difference
in the contributions from BSO

i compared with that of BSO
0 .

This difference in applied field for the two different current
directions needed to achieve Btot = BESR is much smaller for
angles close to θc. There is also an asymmetry between the two
channels introduced by the applied current (see, e.g., [25,26])
that may contribute to the observed behavior, and which we
have not included in our analysis.

VI. SUMMARY AND CONCLUSIONS

In summary we have probed effects of Rashba-type spin
orbit interaction of quasi-2D electrons confined in an InAs
quantum well in incompressible quantum Hall edge channels
through sensitive photoresponse detection of electric-dipole
spin-resonance transitions under THz laser excitation. Multi-
ple sharp lines, whose positions depend on the tilt angle of
the applied magnetic field with respect to the normal to the
plane of the two-dimensional electron gas, appear as sharp
dips in the photoresponse. A single central line appears at a
unique angle θc and splits into two lines whose magnetic-field
separation increases with increasing θ , but which disappears
abruptly for θ < θc. We have developed a simple model of
this unusual behavior in the magnetic-field region expected
for electron spin resonance. Our model is based on the
equilibrium edge-channel electrostatics picture [17,18] of the
quantum Hall effect combined with the oppositely directed
spin orbit magnetic fields generated by the equilibrium cur-
rents in odd filling factor QHECs adding vectorially to the
applied field. The total field thus produced can be tuned to sat-
isfy the condition for THz EDSR for multiple applied fields,
usually two distinct values of B for each odd-integer edge
channel. For ν = 7 these channels are incipient and very broad
near the center of the sample width and move toward opposite
edges while narrowing as the field is decreased. For applied
field B greater than the incipience field there are no edge
channels formed and no corresponding EDSR is observed.
This model yields semiquantitative agreement with the exper-
imental results, and we believe that remaining uncertainties
are not large enough to affect our conclusions.

Similar effects should be observable in materials with
small spin orbit coupling such as GaAs or graphene, but with
much smaller splittings. For GaAs 2DEGs the splitting of the
central ESR feature should be roughly 1/5 of that seen in our
samples for a SO coupling parameter αR = 2 × 10−12eV m
and l = 200 nm [17]). In the absence of exchange enhance-
ment, g∗ = –0.44 for GaAs, and this yields a very small spin
splitting energy, which could make these edge-channel effects
difficult to observe. Most importantly, the splitting behavior
is only observable for magnetic fields oriented at significant
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angles θ to the normal to the sample surface. At normal
incidence (θ = 0) the two total magnetic fields in Eq. (1) are
equal in magnitude and thus yield a single resonance.
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APPENDIX: g-FACTOR DETERMINATION

The magnitude of the single-particle effective g factor of
InAs at the bottom of the conduction band (–14.6) is much
larger than that of, e.g., GaAs (–0.44), primarily because of
the much smaller energy gap of InAs (0.42 eV) relative to
GaAs (1.52 eV) (see [51] for relevant band parameters of
these materials). The smaller gap and stronger coupling of the
p-like and s-like bands at the Brillouin-zone center of InAs
lead to greater mixing of the spin orbit interaction of the p-like
states into the s-like conduction-band states and an increased
magnitude of the g factor. The stronger coupling of the bands
in InAs also leads to considerably larger nonparabolicity than
is found in GaAs. Consequently, we expect a substantially
decreased magnitude of the single-particle effective g factor
and a correspondingly larger effective mass (the bottom of
the band effective mass of InAs m∗ = 0.026 m) for electrons
whose energy is the quantum-well confinement energy plus
Fermi energy higher than the bottom of the bulk energy band.

To obtain an effective g factor to use in the calcula-
tions of the splittings for comparison with experimental
observations, we made an initial estimate of |g∗| from
measurements of low-field Shubnikov–de Haas oscillations
and the simple coincidence expression for Shubnikov–de
Haas oscillation frequency doubling [40,41]. This approach
yields |g∗|(m∗/m) = cosθd = 0.375 ± 0.005 at θd = 68◦ for
an electron density ns = 1012 cm−2 measured in the same
experiment. Here θd is the doubling angle. With an effective
mass m∗/m = 0.042 from cyclotron resonance measurements

in a separate magnet system at a photon energy of 10.4 meV
and ns ∼ 1012 cm−2 we find |g∗| = 8.9. With m∗/m = 0.038
from in situ cyclotron resonance measurements at a photon
energy of 3.15 meV and a lower electron density, ns = 7.1 ×
1011 cm−2, |g∗| = 9.9.

However, these simple estimates ignore many-electron
exchange effects and single-particle anisotropy due to con-
finement, both of which decrease the measured g factor with
tilt angle θ . Following Ref. [42], we account for exchange ef-
fects by first calculating the exchange contribution to the spin
splitting in the limit of large Landau quantum numbers [43]
and then using the modified coincidence expression given in
[44] to incorporate both a g factor contribution from exchange
(∝ cosθ ) and an anisotropic single-particle g factor [45,46].
From Eex = αh̄ωc and α = ln(2kF aB )

πkF aB
, where kF is the Fermi

wave vector, and aB is the effective Bohr radius, we obtain (for
ns = 1 × 1012 cm−2 and m∗ = 0.042 m) |gth

ex| = 7.1. We use
this theoretical exchange contribution in the modified coin-
cidence expression and find |gsp(θd )| = [ 1

m∗/m − |gth
ex|] cos θd ,

where θd is the angle at which the Shubnikov–de Haas
oscillation frequency doubles and gsp(θ ) is the anisotropic
single-particle g factor. In the region of coincidence Landau
quantum numbers are > 10, and use of the semiclassical
model, for which a constant exchange g factor can be defined,
is reasonable. We define total g values, g|| = g||,sp + gex, and
g(θ ) = gsp(θ ) + gex cos θ , and use results of Ref. [42] for the
ratio g||,sp

g⊥,sp
= 1.6, where g||,sp and g⊥,sp are the single-particle

g factors parallel and perpendicular to the quantization axis,
respectively. As this result was obtained for an InAs structure
with a narrow quantum well (3.5 nm) and different barrier
material, it can be considered only semiquantitative when
applied to the present sample. Assuming a cylindrically sym-
metric g tensor gsp(θ ) = [g2

||,spcos2θ + g2
⊥,spsin2θ ]

1/2
and this

ratio, we determine g||,sp and g⊥, sp for our sample from the
coincidence condition at θd = 68◦. The results are as follows:
|gsp(68◦)| = 5.5, |g||,sp| = 7.4, and |g⊥, sp| = 4.6. Using these
numbers we calculate the single-particle g factor and the total
effective g factor at θ = 40◦, the region of our experiments.
We find |gsp(40◦)| = 6.4 and, finally, |g∗(40◦)| = |gsp(40◦)| +
|gth

ex| cos 40◦ = 10.6. This result is in remarkably good agree-
ment with the value of g∗ obtained from the location of the
single-resonance dip shown in Fig. 3(a), especially in view of
the various approximations and assumptions involved in the
analysis. Although the excellence of the agreement may be
serendipitous, it supports our choice of |g∗| = 10.3 as reason-
able for the calculation shown in Fig. 6.
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