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In this paper, we consider a path integral formulation of the Hubbard model based on a Hubbard-Stratonovich
transformation that couples the auxiliary field to the local electronic density. This decoupling is known to have
a saddle-point structure that shows a remarkable regularity: The field configuration at each saddle point can be
understood in terms of a set of elementary field configurations localized in space and imaginary time which
we coin instantons. The interaction between instantons is short ranged. Here, we formulate a classical partition
function for the instanton gas that has predictive power. For a given set of physical parameters, we can predict
the distribution of instantons and show that the instanton number is sharply defined in the thermodynamic limit,
thereby defining a unique dominant saddle point. Decoupling in the charge channel conserves SU(2) spin symme-
try for each field configurations. Hence, the instanton approach provides an SU(2) spin-symmetric approximation
to the Hubbard model. It fails, however, to capture the magnetic transition inherent to the Hubbard model on the
honeycomb lattice despite being able to describe local moment formation. In fact, the instanton itself corresponds
to local moment formation and concomitant short-ranged antiferromagnetic correlations. This aspect is also seen
in the single particle spectral function that shows clear signs of the upper and lower Hubbard bands. Our instanton
approach bears remarkable similarities to local dynamical approaches, such as dynamical mean-field theory, in
the sense that it has the unique property of allowing for local moment formation without breaking the SU(2)
spin symmetry. In contrast to local approaches, it captures short-ranged magnetic fluctuations. Furthermore,
it also offers possibilities for systematic improvements by taking into account fluctuations around the dominant
saddle point. Finally, we show that the saddle point structure depends upon the choice of lattice geometry. For the
square lattice at half filling, the saddle-point structure reflects the itinerant to localized nature of the magnetism as
a function of the coupling strength. The implications of our results for Lefschetz thimble approaches to alleviate
the sign problem are also discussed.

DOI: 10.1103/PhysRevB.107.045143

I. INTRODUCTION

A strong local Coulomb repulsion between electrons leads
to the localization of charge degrees of freedom and to the
formation of local magnetic moments. As shown in Ander-
son’s seminal paper [1], local moment formation in metals
can be captured at the mean-field level by breaking the
spin-rotational symmetry. Generically, however, local mo-
ment formation is a dynamical effect in which the net moment
averages to zero over time, thus restoring the spin-rotational
symmetry. The success of the so-called dynamical mean-field
theory (DMFT) [2,3] is that it captures this phenomena. Local
moment formation and the associated short-range magnetic
fluctuations in metals present a key challenge in the un-
derstanding of strongly correlated electron systems and has
important implications for the understanding of transition
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metal oxides such as high-temperature superconductors [4] or
rare-earth heavy fermion materials [5,6].

The aim of this paper is to provide a framework that cap-
tures local moment formation in metallic environments. In
contrast to DMFT, both temporal and spatial fluctuations will
be taken into account. We will concentrate on the Hubbard
model on square and honeycomb lattices, working within a
path-integral formulationto derive our approximation from the
saddle-point structure. Clearly, the path-integral formulation
of the Hubbard model on a given lattice is not unique and the
saddle-point structure will depend on the specific treatment of
the interaction term. For instance, one can use a decoupling
where the real scalar field couples to the local magnetization.
As a consequence, the saddle-point structure will correspond
to states where the spin symmetry is broken. However, if the
integration over the scalar field is carried out exactly, the final
result will be spin-rotational symmetric and independent of
the decoupling channel.

As we want to describe local moment formation without
explicitly breaking the spin symmetry, we will adopt a path-
integral formulation where a real space- and time-dependent
scalar field couples to the local charge degree of freedom.
For this choice of Hubbard-Stratonovich (HS) transformation,
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FIG. 1. Spin-spin correlations, 1
3 〈Ŝx0 (T ) · Ŝx0+x(T )〉, for a field

configuration with one instanton at space time (X, T ). We consider
two values of x0. The left black circle corresponds to x0 = X . The
other value of x0 (right black circle) is far from the instanton. R1 and
R2 are two Cartesian coordinates of the lattice sites, displayed in the
units of the distance between nearest neighbors. These calculations
were performed on a 12 × 12 lattice at interaction strength U = 2.0κ

(see Secs. II A and II B for the notation).

SU(2) spin symmetry is present for all field configurations.
Solving the saddle-point equations under the assumption of
fields which are constant in space and time reduces to the para-
magnetic mean-field approximation to the Hubbard model [7]
in which the field vanishes.

We would like to go beyond this trivial solution and, in
particular, provide a map of all saddle points without the
restriction to fields which are constant in space and time.
We note that since the action is not necessarily real, one
generically has to continue the real scalar field to the complex
plane to achieve this goal. The motivation to do so is at least
twofold. On one hand, the saddle point structure is necessary
to formulate the so-called Lefschetz thimble decomposition
[8,9] that has the potential of alleviating the severity of the
negative sign problem [10,11]. In particular, each thimble is
attached to a saddle point, and the imaginary part of the action
is constant within the thimble. On the other hand, the very
structure of the (complex) saddle points can yield valuable
approximation schemes that can be improved at will. Here
we will consider the latter but concentrate on cases where the
action is real, as realized at the particle-hole symmetric point.
In this case, the complexification of the field is not required.

Finding saddle points is a daunting task. Here we use aux-
iliary field quantum Monte Carlo simulations to sample the
fields, and for each independent configuration, stop the Monte
Carlo sampling and integrate the steepest descent differential
equation so as to flow to the saddle point. This provides a
complete map. Remarkably, as was shown in Ref. [12], for the
honeycomb lattice at any coupling and for the square lattice
at strong coupling, the saddle-point structure is quite regular.
All saddles can be understood in terms of an elementary con-
figuration, an instanton, in which the fields differs from zero
only in a small space-time region. Physically, it corresponds
to the formation of a local moment at a given space-time point
and concomitant short-ranged antiferromagnetic (AFM) fluc-
tuations around this point (see Fig. 1). Under the assumption
of spatial locality, and as shown in Appendix B, the instanton
is characterized by a topological winding number

This instanton approach provides an interesting link be-
tween the structure of the path integral for the Hubbard model
and long-established methods in quantum chromodynamics
(QCD). Instantons were introduced almost 50 years ago in the
context of Yang-Mills theory [13] and are defined as topolog-
ically nontrivial solutions of the classical field equations in
Euclidean space with finite action. They very quickly found
many applications even in quantum mechanics, where they
describe the tunneling processes from one vacuum to another.
This is also the case in Yang-Mills theories where they de-
scribe tunneling processes between different degenerate vacua
which are labeled by different values of the winding number, a
topological index. In the context of QCD, they play an impor-
tant role in the explanation of the mechanism of spontaneous
breaking of chiral symmetry and applications of instantons
can be found in the solution of the U(1) problem and the
strong CP problem. Beyond the context of strong interac-
tions, instantons have related counterparts in the electroweak
sector, where the so-called sphalerons can lead to processes
that violate the baryon and lepton number conservation and
could potentially describe rare processes of baryon decay. The
instanton calculus has proven to be extremely powerful in
supersymmetric gauge theories where it allowed for example
the calculation of the exact β function. For more details on
field theoretical applications, we refer the interested reader to
Refs. [14,15]. Beyond physics, instantons also have fascinat-
ing applications in mathematics where, for example, they can
be used for the classification of four-manifolds [16].

Returning to QCD, the introduction of the concept of an in-
stanton led to the modeling of the QCD partition function as a
gas of instantons [17] that could allow for analytical treatment.
Later, however, it was understood that correlations between
instantons are extremely important for numerous phenom-
ena in QCD and one is forced to go beyond the mean-field
approximation and study numerically a liquid of instantons
where the ’t Hooft interaction is included to all orders [18].
Guided by these ideas, we will try to adapt this approach in the
framework of the Hubbard model to demonstrate that this kind
of approximations can lead to interesting and highly nontrivial
results in strongly correlated electron systems.

The key result of the paper is that we can define a classical
model of the instanton gas that reproduces the saddle-point
structure of the path integral for the Hubbard model for a HS
field coupling to the charge density. The only inputs needed to
completely define this classical model are the characteristics
of a single instanton and the two-body interaction between
these semiclassical objects. This description of the physics of
instantons through a pairwise short-ranged interaction appears
naturally through an analysis of the one- and two-instanton
configurations. With simple classical simulations, we can then
generate saddle-point field configurations, which can then de-
termine physical properties of the Hubbard model.

Before plunging into the technical details of the approach
we summarize our key results. Figure 1 shows the connec-
tion between the instanton and enhanced short-ranged AFM
correlations. Here we consider a configuration with a sin-
gle instanton saddle point, with the instanton located at the
space-time point (X, T ). We then plot the spin-spin correla-
tions 1

3 〈Ŝx0 (T ) · Ŝx0+x(T )〉, where Ŝx is the spin operator. One
will see that for x0 = X (lower left black circle), substantial
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FIG. 2. (a) Spectral functions in momentum space using the ALF
[19] implementation of the auxiliary field QMC. (b) The same spec-
tral functions obtained with instanton gas model. (c) The share of the
lower peak in the overall spectral weight along the same profile in
momentum space. Calculations were done for 12 × 12 lattice with
Nτ = 256 and βκ = 20 (see Secs. II A and II B for the notation).
The interaction strength is equal to U = 6.0κ , which is equal to the
bandwidth.

short-ranged correlations are present. On the other hand, far
from the instanton, where x0 corresponds to the upper right
black circle, no AFM order is observed beyond one lattice site.

We expect local moment formation to show up as upper
Hubbard bands in the single-particle spectral function. Fig-
ure 2 shows a comparison of results for this quantity between
the instanton gas approach and a full auxiliary field QMC
simulation [20,21] for the Hubbard model on the honey-
comb lattice in the magnetically ordered phase at U/Uc =
1.6, where Uc denotes the critical value of the interaction
where antiferromagnetism sets it and a mass gap is generated
[22,23]. Our instanton approach does not capture the SU(2)

U
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FIG. 3. A comparison of the average number of instantons ob-
tained from real QMC data with the analytical instanton gas model.
The QMC data corresponds to a 6 × 6 spatial size, with Nτ = 512
and βκ = 20.

symmetry breaking and hence no mass gap is generated at
the Dirac point k = K . However, local moment formation and
concomitant short-ranged AFM correlations capture the high-
energy properties, encoded in the so-called upper Hubbard
band.

Finally, Fig. 3 shows that the instanton number obtained in
the QMC simulation and in the analytical instanton gas model
show very good agreement. Thus, the instanton gas model
can be used to predict the dominant saddle point without
performing costly QMC simulations.

The paper is organized as follows: in Sec. II, we give a brief
description of the specific path integral formulation for the
Hubbard model employed in this paper. We also give a short
introduction to the Lefschetz thimble formalism. Section III
is devoted to the description of the structure of the saddle
points for the Hubbard model on the hexagonal lattice. This
includes a detailed account of the one-instanton as well as
many-instanton solutions. Section IV covers the construction
of a semianalytical instanton gas model. In Sec. V, we de-
scribe the physics following from the instanton gas model.
The last section (Sec. VI) presents preliminary results for
the saddle-point approximation to the Hubbard model on the
square lattice which is relevant for high-Tc superconductiv-
ity. We have included Appendices that discuss in full detail
ergodicity issues in the hybrid Monte Carlo (HMC) (Ap-
pendix A), analytical solutions for individual instantons with
emphasis on the topological winding number interpretation of
the instanton (Appendix B), Hessians for N-instanton saddle
points (Appendix C), details of the grand-canonical Monte
Carlo (GCMC) simulation for the classical instanton model
(Appendix D), and, finally, the relation of the instanton to the
Gutzwiller projection (Appendix E).

II. BACKGROUND

This paper builds on previous work [12] which employed
methods from lattice gauge theories to elucidate the physics
of the Hubbard model, both at half filling and at finite density.
The aim of this section is to recall the basic definitions and
setup to motivate the study of the saddle points and under-
stand the physics which they encode. This will motivate the
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formulation of an instanton gas model which captures much
of the physics of the Hubbard model.

A. Hubbard model

In this paper, the Hubbard model on a bipartite (square and
hexagonal) lattice is considered. The SU(2)-spin symmetric
form of the Hamiltonian is given by

Ĥ = −κ
∑
〈x,y〉

(â†
xây + b̂†

xb̂y + H.c.) + U

2

∑
x

q̂2
x + μ

∑
x

q̂x,

(1)

where â†
x and b̂†

x are creation operators for electrons and holes,
obtained from the creation-annihilation operators for spin-up
and spin-down electrons (ĉx,σ , ĉ†

x,σ , σ =↑,↓) via standard
substitution,

â†
x = ĉ†

x,↑, b̂†
x = ±ĉx,↓, (2)

where the sign in the second equation alternates depending on
sublattice. The charge operator is introduced via the relation
q̂x = n̂x,el − n̂x,h = â†

xâx − b̂†
xb̂x, κ is the hopping parameter,

U > 0 is the Hubbard interaction, and μ is the chemical
potential. From now on, we will express all dimensional pa-
rameters like U , inverse temperature β, etc., in the units of
hopping κ . This form of the Hamiltonian will be useful for the
functional integral approach where the interaction term will
be decomposed by the introduction of an auxiliary bosonic
field. Away from half filling, μ = 0, the theory suffers from
the notorious sign problem. This is a generic feature of a large
class of many-body theories and to deal with this problem, a
variety of different methods and techniques have been devised
[11,24–32]. The case of finite chemical potential will only
briefly be commented on, while the case of half filling will
be the main focus in all subsequent numerical and analytical
calculations.

At half filling, this model is known to exhibit a semimetal-
to-insulator transition ([22,23]). At large U , the Hubbard
model on the hexagonal lattice exhibits AFM order while at
small U it is a Dirac semimetal with no long-range order. The
critical coupling, Uc, at which this transition takes place, de-
fines an appropriate physical scale for the interaction strength.
In the functional integral approach, not only can one take into
account all quantum fluctuations which accurately describe
both phases, but one can also employ semiclassical methods.
These methods rely on knowledge of the stationary points
of the action and fluctuations around the solutions to these
saddle-point equations. One, in principle, could ask how the
character and importance of these saddle-point solutions vary
as the system passes through the phase transition. This is one
of the questions we have addressed in this paper.

B. Path integral formulation

This study involves the path integral formulation of the
Hubbard model. Previous studies have detailed this construc-
tion [19,33], which we briefly review here. The approach
starts with the standard expression for the partition function
as the trace of the quantum Boltzmann weight:

Z = Tr (e−βĤ ). (3)

Denoting the hopping term in Eq. (1) as Ĥ0 and the Hubbard
term as ĤU , one performs the following Trotter decomposition
of the Boltzmann weight Eq. (3):

Tr (e−βĤ ) = Tr (e−�τ Ĥ0 e−�τ ĤU )Nτ + O(�τ 2), (4)

where the Euclidean time step �τ ≡ β/Nτ has been intro-
duced and on the right-hand side of Eq. (4) there are Nτ

repetitions of the exponential factors involving the kinetic and
the Hubbard terms. In turn, 2Nτ Grassmann resolutions of the
identity are introduced, one between each exponential factor,
and the matrix elements of the exponential factors are then
computed. This is straightforward for the kinetic term, since
Ĥ0 is bilinear in the fermionic operators. To deal with the
four-fermion interaction term, continuous auxiliary bosonic
fields are introduced at each Euclidean time slice through the
usual Gaussian HS transformation:

e− �τ
2 Uq̂2

x ∼=
∫

dφxe− φ2
x

2U�τ
+iφxq̂x . (5)

After applying this to each factor of e−�τ ĤU in the Trotterized
Boltzmann factor and integrating out the Grassmann vari-
ables, one obtains the following expression for the functional
integral:

Z =
∫

Dφe−SB[φ] det Mel[φ] det Mh[φ],

SB[φ] =
∑
x,τ

φ2
x,τ

2U�τ
, (6)

where Mel and Mh are the fermionic operators for the electrons
and holes, respectively. The determinants of these operators
can conveniently be expressed as

det Mel = det

[
I +

Nτ∏
τ=1

D2τ−1D2τ

]
,

det Mh = det

[
I +

Nτ∏
τ=1

D2τ−1D∗
2τ

]
, (7)

where D2τ ≡ diag (eiφx,τ ) and D2τ+1 ≡ e−�τh have been intro-
duced. Both of these are NS × NS matrices, where NS is the
total number of spatial lattice sites. We have also introduced h,
which is the matrix characterizing the tight-binding Hamilto-
nian Ĥ0. From the form of the determinants in Eq. (7), one can
show that the integrand of the functional integral Eq. (6) is real
and positive-definite at half-filling since det Mel = det M∗

h .

C. Lefschetz thimbles and the gradient flow

To construct an effective theory based on a semiclassi-
cal approach to the path integral for the repulsive Hubbard
model on both the hexagonal and square lattices, one must
first quantitatively understand the saddle points of the theory.
The Lefschetz thimble decomposition of the partition function
serves as the mathematical basis for a precise study of these
saddle points. The idea of the Lefschetz thimbles approach
is to complexify the space of fields over which we integrate
in the functional integral. It is especially useful when the
action is complex and its oscillatory phase precludes the use
of importance sampling methods. Picard-Lefschetz theory, a
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generalization of Morse theory to complex manifolds, pro-
vides a framework by which this poorly behaved integral is
converted into a sum of strictly convergent integrals. Con-
sidering the most general form of the functional integral for
a generic lattice theory with N bosonic fields, one can write
[8,9]

Z =
∫
RN

D� e−S[�] =
∑

σ

kσZσ ,

where Zσ =
∫
Iσ

D� e−S[�], (8)

and σ labels all complex saddle points zσ ∈ CN of the action.
Here Iσ are the thimble manifolds attached to the saddle
points. These manifolds, defined below, are the generalization
of the contours of steepest descent in the theory of asymptotic
expansions. This is what is known as the Lefschetz thimble
decomposition of the functional integral. The saddle points
are determined by the condition

∂S

∂�

∣∣∣∣
�=zσ

= 0, (9)

while the integer-valued coefficients kσ encode the intersec-
tion of a manifold which we call the antithimble with the
original domain of integration. At half filling, all saddles lie
in the original, real space of fields. We stress here that if the
saddle points are nondegenerate (det ∂2S/∂�′∂�|�=zσ

�= 0)
and isolated, the relation Eq. (8) holds (for a generalization
to the case of gauge theory see Ref. [9]).

The Lefschetz thimble is a manifold associated with a
given saddle point. Let us endow the fields with an additional,
nonphysical temporal parameter t , and define the gradient
flow (GF) equation as

d�

dt
= ∂S

∂�
, (10)

where the bar denotes complex conjugation. The Lefschetz
thimble is the union of all fields �(t = 0) that satisfy the
boundary condition: �(t = 0) ∈ Iσ if �(t → −∞) → zσ .
Just as we have made an analogy between the thimble and the
contour of steepest ascent, there is a second manifold associ-
ated with each saddle point which is analogous to the contour
of steepest descent. This manifold is known as the antithimble,
Kσ , and consists of all possible �(t = 0) which end up at a
given saddle point zσ : �(t = 0) ∈ Kσ if �(t → +∞) → zσ .
As previously stated, kσ counts the number of intersections
of Kσ with RN , kσ = 〈Kσ ,RN 〉. Along a given thimble, the
imaginary part of the action is constant, and thus one can
rewrite the Lefschetz decomposition of the functional integral
as

Z =
∑

σ

kσ e−i Im S
∫
Iσ

D� e− Re S[�], (11)

which makes the previously mentioned claim of converting an
oscillatory integral to a sum of convergent ones abundantly
clear. Early success with this method centered around the
study of toy models without fermions. Recently, however, it
has been used to address the sign problem in both nontrivial,
low-dimensional relativistic field theories [24,29,31] as well
as in two-dimensional many-body systems [32,34].

As evident from Eq. (11), the application of the thimble
decomposition would be much easier if one knew the structure
of the saddle points, zσ , in advance. In this case, it would be
possible to simplify Eq. (11) by considering only the dominant
saddles or by using the Gaussian approximation to the inte-
grals. The instanton gas approach performs exactly this task:
it predicts the dominant saddle for the Hubbard model for a
wide range of parameters without prior QMC simulations.

III. STRUCTURE OF THE SADDLE POINTS FROM
QMC DATA

In previous studies [12], it was demonstrated how one can
numerically determine the Lefschetz thimbles decomposition
Eq. (8) at half filling, where the sign problem is absent and
all thimbles are confined to the real subspace RN . We first
generate configurations of the continuous bosonic auxiliary
fields according to their weight e−S , where

S = SB − ln(det Mel det Mh). (12)

In the next stage, we evolve the auxiliary fields according to
the GF equations in the inverse direction,

d�

dt
= − ∂S

∂�
, (13)

starting from each of these QMC-generated field configura-
tions. These flows converge to the local minima of the action
within RN , which are, of course, just the relevant saddle
points. At the end of such a procedure, we obtain a set
of saddle-point field configurations, distributed according to
their relative weight in the full partition function: Zσ /Z . This
distribution can be plotted as the histogram of the actions of
these various saddle-point field configurations. The technical
details of this procedure as well as some additional checks
(e.g., the question of ergodicity of QMC generator and the
continuum limit) can be found in Appendix A.

In general, the number and the form of the saddle-point
configurations critically depend on the way in which we intro-
duce the auxiliary fields [12]. In this paper, we are interested
in an analytical saddle-point approximation. Thus, we employ
the specific HS decomposition, where the scalar auxiliary field
φ is coupled to the charge density. In this particular case, the
saddle points are especially simple, as their histogram can be
seen to be a collection of equidistant discrete peaks, as clearly
displayed in Fig. 4. This regular saddle structure makes the
creation of an analytical saddle-point approximation relatively
straightforward.

A. Individual instantons

The discrete structure of the histograms which characterize
the values of the action of the saddle points has a particularly
simple explanation. As was already shown in our previous
work [12], all nonvacuum saddle points for this particular
choice of the HS transformation Eq. (5) are formed by a
collection of individual localized field configurations. For
convenience, we repeat here the plot, showing this type of
configuration for the auxiliary bosonic field (Fig. 5). One can
clearly see that φx,τ is localized both in Euclidean time and in
space. This field configuration is the solution for the Euclidean
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FIG. 4. Histograms depicting the relative contributions of the
various N-instanton saddles to the full partition function. The hor-
izontal axis corresponds to the action of an N-instanton solution,
offset by an amount equal to the action of the observed saddle
with the least number of instantons. One can clearly see that the
minimal number of observed instantons increases with increasing U .
These calculations were performed on a 6 × 6 lattice with Nτ = 512,
βκ = 20.

FIG. 5. Visualization of the φx,τ field for the saddle-point con-
figuration with one instanton. The widths of the vertical spindles
correspond to the value of |φx,τ | at a given spatial lattice site and
time step in Euclidean time. For clarity, we only draw the spindles
if |φx,τ | > ε, where ε is some suitably small threshold. To clearly
illustrate the spatial positions of the spindles within the lattice, we
also draw their projections on the τ = 275 plane. Calculations were
carried out on a 6 × 6 lattice with interaction strength U = 5.0κ ,
Nτ = 512, and βκ = 20.

equations of motions for the auxiliary field φx,τ following
from the action Eq. (12). We will henceforth refer to this
field configuration as an instanton. The detailed reasons for
this are outlined in Appendix B. The one subtlety is that we
should take into account the back reaction from the fermionic
determinant from the very beginning, as the bosonic part
of the action Eq. (6) is purely Gaussian. Each instanton is
defined by its location in space (including sublattice), posi-
tion of its center (where |φx,τ | is largest) in Euclidean time,
and the binary instanton-anti-instanton index. The instanton-
anti-instanton index reflects the symmetry of the integrand
in Eq. (5) with respect to the sign of the auxiliary bosonic
field. Thus, the anti-instanton configuration is related to the
instanton by simply inverting the sign of the auxiliary field at
each spatial lattice site and on all time slices, φx,τ → −φx,τ .

With this information at hand, the histograms in Fig. 4 can
be easily understood: the first bar, at Sσ = Svac, corresponds
to the vacuum field configuration (φx,τ = 0); the next bar, at
S(1), is the saddle with just one instanton located at a random
position inside the lattice, which is allowed by translational
symmetry; the third bar, at S(2), corresponds to the saddle with
two instantons, etc. The width of the bars does not substan-
tially increase as the number of instantons increases, which
means that the action of the N−instanton field configuration
is still approximately equal to S(N ) = Svac + N (S(1) − Svac).
Thus, the action of the N-instanton configurations is only
weakly dependent on the relative position of the instantons, at
least if the density of instantons is not too large. Therefore, we
can effectively describe the saddle points as a gas of weakly
interacting instantons. This conjecture is further supported by
the data shown in Fig. 6. This plot clearly illustrates that the
weight of the one-instanton saddle is proportional to both the
spatial size of the lattice and the inverse temperature,

Z1/Z ∼ NSβ, (14)

where Z1 is the sector of the partition function, corresponding
to the integral over the thimble attached to the one-instanton
saddle. Thus, the localized one-instanton field configuration
is not sensitive to the lattice size, provided that its dimensions
exceed the size of the instanton.

The next step is the study of N-instanton saddles and the
interaction of instantons. However, before we turn to the in-
stanton interaction, a few words are in order concerning the
continuum limit. Unlike the case of relativistic lattice field
theories, the limit of zero lattice spacing is only to be taken
for the Euclidean time direction. This is needed to be sure
that the error introduced in our Trotter decomposition of the
Boltzmann weight can be neglected. As we can see from
the analysis in Appendix A, the weights of the N−instanton
saddles are independent of the lattice spacing in Euclidean
time, and thus our numerical results are already effectively
at the continuum limit. This property should also be a require-
ment of the analytical saddle point approximation. However, a
certain complication stems from the fact that the saddles, like
the one shown in Fig. 5, are degenerate with respect to the con-
tinuum symmetry of translations in Euclidean time. Instead of
a single saddle, we in fact have a closed valley in configuration
space and it appears that the minimal approximation which
has a well-defined continuum limit is the Gaussian integral in
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FIG. 6. (a) The relative weight of the first nonvacuum thimble
with respect to the full partition function as a function of the inverse
temperature. The calculations were carried out on a 6 × 6 lattice,
with a Euclidean time step corresponding to Nτ = 512 at βκ = 20.
(b) The scaling of the relative weight of the first nonvacuum thimble
with the spatial system size at fixed βκ = 20 and Nτ = 512. The
interaction strength is fixed at U = 2.0κ for all plots.

all directions except that of the zero mode associated with the
translational symmetry in Euclidean time.

The removal of the zero mode taking into account the
collective coordinate factor is well-known in the instanton
calculus (see, e.g., Refs. [14,35]). For the sake of complete-
ness, we nevertheless consider here explicitly the analytic
expression for the partition function in the one-instanton sec-
tor in Gaussian approximation. Let φ(X,T )

x,τ be the one-instanton
configuration centered at the space time point (X, T ), where
the coordinate X = (ν, r) includes the spatial position of the
center of the instanton r (including the sublattice index) and
the binary instanton-anti-instanton index ν = ±1, while the
Euclidean time position is denoted by T ∈ [0; β ). All these
configurations belong to one valley O(1) =⋃T ∈[0;β ) φ

(X,T ),
with the instanton center T being its parameter:

∂S(φ)

∂φx,τ

∣∣∣∣
φ=φ(X,T ),T ∈[0;β )

= 0. (15)

We now approximate the action by considering Gaussian fluc-
tuations of the field around the saddle

S ≈ S(φ(X,T ) ) + 1
2

(
φx,τ1 − φ(X,T )

x,τ1

)
×H(1)

(x,τ1 ),(y,τ2 )

(
φy,τ2 − φ(X,T )

y,τ2

)
, (16)

where

H(1)
(x,τ1 ),(y,τ2 ) = ∂2S(φ)

∂φx,τ1∂φy,τ2

∣∣∣∣
φ=φ(X,T )

(17)

is the Hessian of the one-instanton saddle point. We denote the
eigenvalues of H(1) as λ

(1)
i , i = 0...NS − 1. This set contains

the zero mode, λ
(1)
0 = 0, due to the above-mentioned transla-

tional symmetry.
Now, Z1 can be written as the line integral along the curve

O(1) in configuration space:

Z1 = 2NS

∫
O(1)

dφ̃0ZP
1 ({φ(X,T )}), (18)

where the 2NS factor describes the trivial discrete spatial and
instanton-anti-instanton degeneracies and ZP

1 is what we will
refer to as the partial partition function. Here we have intro-
duced dφ̃0, which is the differential arc length of the O(1)

curve,

dφ̃0 = ∣∣∣∣φ(X,T +dT ) − φ(X,T )
∣∣∣∣, (19)

such that the length of the valley is

L(1) =
∫ β

0
dT

∣∣∣∣
∣∣∣∣φ(X,T +dT ) − φ(X,T )

dT

∣∣∣∣
∣∣∣∣. (20)

In practice, L(1) on the lattice is the collection of Nτ steps, each
corresponding to the shift T → T + �τ . Thus, according to
Eq. (20), L(1) can be approximated by the following finite
difference of field values:

L(1) = Nτ

√∑
x,τ

(
φ

(X,0)
x,τ − φ

(X,�τ )
x,τ

)2
. (21)

Alternatively, we can take into account that the field config-
uration φ

(X,T )
x,τ̃ is in fact a function of the difference τ̃ − T ,

where the dimensional Euclidean time index: τ̃ ∈ [0; β ): τ =
τ̃ /�τ . Thus,

L(1)

β
= ∣∣∣∣�φ(X,T )

∣∣∣∣ =
√√√√∑

x,τ

(
φ

(X,T )
x,τ+1 − φ

(X,T )
x,τ

�τ

)2

, (22)

where ||�φ(X,T )|| is the norm of the lattice derivative of the
one-instanton field configuration with respect to the physical
Euclidean time.

The partial partition function ZP
1 ({φ(X,T )}) describes the

Gaussian fluctuations around the configuration φ(X,T ) in all
directions except the one corresponding to the zero mode:

ZP
1

({
φ(X,T )

}) =
∫ NSNτ −1∏

i=1

dφ̃ie
−S(1)− 1

2

∑NS Nτ −1
i=1 λ

(1)
i φ̃2

i . (23)

Here, φ̃i are the coordinates in configuration space in the
directions of the corresponding eigenvectors of the Hessian
H(1), computed for the configuration φ(X,T ). Now, the eigen-
values of the Hessian λ

(1)
i and the value of ZP

1 ({φ(X,T )}) are
in fact independent of the coordinates of the instanton center
(X, T ). This means that the integral Eq. (24) boils down to just

Z1 = 2NSZP
1

({
φ(X,T )

}) ∫
O(1)

dφ̃0

= 2NSZP
1

({
φ(X,T )

})
L(1). (24)
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TABLE I. Here we display the valley lengths and Hessians for
the one-instanton saddles on lattices of two different sizes in Eu-
clidean time: Nτ = 256 and Nτ = 512. The remaining parameters are
fixed with the spatial size given by 6 × 6 with U = 2.0κ , κβ = 20.

Nτ L(1) (
det H(1)

⊥
det H(0) ) Z1

2NSZ0

256 62.699 0.124533 445.398
512 44.272 0.06208 445.355

Performing the Gaussian integral in Eq. (23), the final
expression for Z1 reads

Z1 = 2NSL(1)e−S(1)

√
(2π )NSNτ −1∏′

i λ
(1)
i

. (25)

Here, the product of the eigenvalues of the Hessian in the
denominator excludes the zero mode, for a total of NsNτ − 1
eigenvalues. To reproduce the empirical relation given in
Eq. (14), we restore physical units in Euclidean time accord-
ing to Eq. (22) to obtain

Z1 = 2NSβe−S(1) ∣∣∣∣�φ(X,T )
∣∣∣∣√ (2π )NSNτ −1∏′

i λ
(1)
i

. (26)

If the inverse temperature β is substantially larger than the
width of the instanton, the norm is independent of β and
we reproduce the desired, empirically determined scaling in
Eq. (14).

The absence of the zero mode in the product over eigenval-
ues in the denominator in Eq. (26) can be formally expressed
as follows:

det H(1)
⊥ = det

(
H(1) + P (1)

) =
NsNτ −1∏

i=1

λ
(1)
i , (27)

where det H(1)
⊥ corresponds to the result of the Gaussian

integral over all directions around the one-instanton saddle
point excluding the zero mode, and P (1) is the projection
operator on to the zero mode direction in configuration
space.

Finally, for the instanton structure of the partition function
(for which the N-instanton saddle is dominant in Z), we
only need their ratio with respect to the part of the partition
function corresponding to the vacuum saddle ZN/Z0. For the
one-instanton saddle, this means that what we really need to
compute is the following expression:

Z1

Z0
= 2NSL(1)e−S̃(1)

(
2π

det H(1)
⊥

det H(0)

)−1/2

, (28)

where S̃(i) = S(i) − Svac. In this expression, L(1) is �τ depen-
dent and thus the Gaussian fluctuations in the perpendicular
directions must be taken into account to achieve the �τ -
independent results in the continuum limit. In this case, the
�τ dependencies in L(1) and in the Hessian matrices com-
pensate each other. The numerical results for the expression
in Eq. (28) are shown in Table I. The independence of S̃(i)

on the step size in Euclidean time is shown in Appendix A.
Evidently, our simulations are already close to the continuum

	 i

i

1 instanton
2 instantons

 1
10
-5

 1
10
-4

 1
10
-3

 1
10
-2

 1
10
-1

 1
10
0

 0  1  2  3  4  5

FIG. 7. The five lowest eigenvalues of the Hessian matrices com-
puted at the one- and two-instanton saddle points. The calculations
were performed on a 6 × 6 lattice with interaction strength U =
6.0κ , Nτ = 512, and βκ = 20.

limit, as the final result for the ratio Z1/Z0 is practically �τ

independent.

B. Interaction of instantons

In the previous section, we have described in detail the
one-instanton saddle and its partition function. As the in-
teraction U becomes large, it becomes increasingly likely
for multi-instanton configurations to appear. While it may
be appropriate in some regimes to treat these systems as a
noninteracting gas of instantons, one would like to understand
the interaction between instantons. In this section, we consider
the two-instanton field configurations φ((X1,T1 ),(X2,T2 ))

x,τ , where
the coordinates (Xi, Ti ), i = 1, 2 define the positions of the
centers of the instantons.

The lowest eigenvalues of the Hessian for the one- and
two-instanton saddles are shown in Fig. 7. Here, λ0 corre-
sponds to the zero mode (in actual numerical computations
it is never exactly equal to zero due to the finite lattice spacing
in Euclidean time). However, for the two-instanton saddle, we
see that the next eigenvalue λ1 is still much smaller then all
λi for i > 1. This is what we refer to as a quasizero mode,
which occurs due to the symmetry by which the instantons
are shifted with respect to one another. Imagine two instantons
with fixed spatial positions X1 and X2. Then, one can vary their
time coordinates T1 and T2. The field configurations generated
in this way form a two-dimensional torus in configuration
space and the eigenvectors for λ0 and λ1 define tangent planes
to this torus.

As was done in Eq. (26), we would like to construct an ex-
pression for the partition function of the two-instanton saddle.
To faithfully represent the physics of the multi-instanton sad-
dle, we must take into account the change of the action along
the previously mentioned torus which defines the symmetry of
the two-instanton saddle. At the same time, we must guarantee
that our expression has a well-defined continuum limit in
Euclidean time, �τ → 0. This is encoded in the following
expression:

Z2 = 1

2

∑
X1,X2

W (2)(X1, X2), (29)
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where

W (2)(X1, X2) =
∫

dT̄ d�Te−S(X1,X2,�T )
√

g(X1, X2,�T )

×
(

NSNτ −1∏
i=2

2π

λi(X1, X2,�T )

)1/2

. (30)

As in the case of the one-instanton saddle, both coordinates Xi

include the spatial part with sublattice index and the binary
instanton-anti-instanton index. The action of the field con-
figuration, S(X1, X2,�T ), is characterized by the two spatial
locations and their separation in Euclidean time. The quantity√

g is the first fundamental form of the mapping of the surface
of the two-dimensional torus to the center of mass and relative
Euclidean time coordinates, (T̄ ,�T ), where

T̄ = T1 + T2

2
, (31)

�T = T1 − T2. (32)

Finally, the factor of 1
2 in Eq. (29) compensates for the double

counting, which appears due to the fact that the instantons
are indistinguishable. Thus, after the exchange X1 ↔ X2 and
T1 ↔ T2, we still arrive at the same saddle.

One can immediately notice that the integrand in Eq. (30)
is independent of T̄ , as this direction corresponds to the true
zero mode, where both instantons are simultaneously trans-
lated in the Euclidean time direction. We now can rewrite the
integrand of the above expression in a suggestive way,

U (2)(X1, X2,�T ) ≡ U (2)
S (X1, X2,�T ) + U (2)

g (X1, X2,�T )

+U (2)
λ (X1, X2,�T ), (33)

which we can identify as the two-body instanton interaction.
The individual terms in Eq. (33) each have a clear interpreta-
tion and meaning. The first term represents the change in the
action with respect to two, infinitely separated instantons:

U (2)
S (X1, X2,�T ) = S(X1, X2,�T ) − S(2). (34)

The next two terms come from re-exponentiating both the first
fundamental form and the zero-mode regulated determinant of
the Hessian matrix:

U (2)
g (X1, X2,�T ) = − 1

2 (ln g(X1, X2,�T )

− ln g(X1, X2,∞)), (35)

U (2)
λ (X1, X2,�T ) = 1

2

NSNτ −1∑
i=2

(ln λi(X1, X2,�T )

− ln λi(X1, X2,∞)). (36)

U (2)
g is computed using the triangulation of the surface of a 2D

torus formed by the field configurations of the two instanton
solutions. All potentials are normalized by their values at
infinitely large time separation between instantons. Together,
these can be taken as the starting point for a many-body theory
of pairwise-interacting semiclassical objects. The two-body
instanton interaction can be investigated numerically. This
is simply done, by hand, by combining two separate one-
instanton configurations of the auxiliary bosonic field, where
the instantons are located at two different lattice sites and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. The pairwise interaction of instantons and anti-instantons
as a function of their separation in Euclidean time for a fixed spatial
location. The plots in the left column [(a), (c), (e), (g)] correspond
to interaction between a pair of instantons, while the plots in the
right column [(b), (d), (f), (h)] correspond to the interaction between
an instanton and an anti-instanton. The first row [(a), (b)] shows
(anti)instantons at the same spatial lattice site, the second row [(c),
(d)] corresponds to (anti)instantons located at nearest neighbors (op-
posite sublattices), the third row [(e), (f)] corresponds to a spatial
separation of next-nearest neighbors, and the last row [(g, (h)] shows
the interaction of (anti)instantons located at sites which are separated
by two lattice unit vectors. In each case, we include a sketch of the
corresponding spatial configuration on the hexagonal lattice in the
inset. If U (2)

g is not shown, it means that its influence is small and

the U (2)
S + U (2)

λ + U (2)
g line coincides with the U (2)

S + U (2)
λ line. These

calculations were performed on a 12 × 12 lattice with βκ = 20 and
Nτ = 512, with interaction strength U = 4.6κ .

separated by a fixed distance in Euclidean time. The bosonic
term in the action, being Gaussian, is trivial, whereas the
fermion determinant on a fixed background can be computed
using the Schur complement solver [36]. Our findings are
illustrated in Fig. 8. Here, several profiles of U (2)(X1, X2,�T )
for the instanton-instanton and instanton-anti-instanton pairs
are plotted. As the instantons and anti-instantons are ultralocal
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FIG. 9. (a) The action of an instanton-instanton pair as a func-
tion of the spatial separation between the instantons. In this case,
zero action corresponds to the instantons being infinitely separated.
(b) The same situation but for an instanton-anti-instanton pair. These
calculations were performed on a 12 × 12 lattice with βκ = 20 and
Nτ = 512, and interaction strength U = 4.6κ . The (anti)instantons
are placed at the same Euclidean time slice. The spatial separation is
in units of the distance between nearest neighbors. In both cases, a
power-law fit has been added.

in space (almost delta-function-like), only separations up to
the distance of fourth-nearest neighbors on the hexagonal lat-
tice are displayed. The two-body interaction rapidly decreases
with increasing separation in Euclidean time as is visible
from each of the plots in Fig. 8. For reference, the difference
between the action of one instanton and the vacuum is equal
to S̃(1) = 6.5658 in this case. This means that, in general,
the interaction strength is at least one order of magnitude
smaller than the difference in action between the vacuum and
a single instanton. Thus, we can treat instantons as nonin-
teracting classical particles in 3D space, except for the case
when they occupy the same spatial site. This is the so-called
hard-core repulsion between instantons and anti-instantons
which also appears in semiclassical models for the vacuum
in QCD [37]. In addition to this, a noticeable effect is also
a local, attractive interaction between an instanton and an
anti-instanton on nearest-neighbor sites. The conclusion about
the locality of the instanton-instanton interactions is further
supported by the spatial profiles plotted in Fig. 9. In this case,
we plot only the variation of the action U (2)

S (X1, X2,�T = 0)
and omit the other two terms. It is clearly shown to rapidly
decrease with increased spatial separation. This implies that

an ultralocal interaction accurately captures the physics of the
saddle points.

However, there is a small caveat which we here note. Spe-
cial treatment is needed when we consider the instanton and
anti-instanton occupying the same spatial lattice site. In this
case, they can actually annihilate, which means that the val-
ley for the instanton-anti-instanton configuration is smoothly
connected to the vacuum saddle:{

X̃1 = (ν, r)

X̃2 = (−ν, r)
⇒ S(X̃1, X̃2,�T = 0) = Svac. (37)

When constructing a semiclassical model of instantons
and anti-instantons, a question naturally arises as to double
counting. This is due to the fact that the vacuum saddle and
Gaussian fluctuations around it were already taken into ac-
count by the factor e−Svac det H(0) in the approximate partition
function. One way to address this issue of double counting
is to consider the profile of the action and the corresponding
probability distribution e−S(X̃1,X̃2,�T ) along the coordinate �T .
If �T is small, we are close to the vacuum and the probabil-
ity distribution for the field configurations can be written in
Gaussian approximation as

PH
vac(�T ) = e−Svac− 1

2 H
(0)
i j φ(�T )iφ(�T ) j , (38)

where φ(�T )i is the field configuration for the instanton-anti-
instanton pair at the same spatial lattice site x separated in
Euclidean time by �T . For convenience, one can transform
the lattice coordinates (x, τ ) into one-dimensional indices i
and j via Eq. (C4). However, in reality, the probability dis-
tribution does not sharply vary with �T , since the action
stabilizes around S(2). Thus, the distinction between this real
probability distribution e−S(X̃1,X̃2,�T ) and PH

vac is exactly the
input needed from the instanton-anti-instanton saddle in the
case of equal spatial coordinates. As a result, in the case of
X1 = X̃1 and X2 = X̃2 [see Eq. (37)] we replace S(X1, X2,�T )
with Seff(X̃1, X̃2,�T ) in Eq. (33), where Seff(X̃1, X̃2,�T ) is
defined by the relation

e−Seff = e−S(X̃1,X̃2,�T ) − PH
vac(�T ). (39)

It is convenient to write this in the form

Seff(X̃1, X̃2,�T ) = S(X̃1, X̃2,�T ) + �eff(�T ), (40)

where we have introduced the following quantity:

�eff(�T ) = − ln
(
1 − e−S(X̃1,X̃2,�T )+Svac+ 1

2 Hi jφ(�T )iφ(�T ) j
)
.

(41)

Results for this correction term are shown in the correspond-
ing plot in Fig. 8(b), where the instanton and the anti-instanton
reside at the same site of the hexagonal lattice (illustrated in
the inset). As one would expect, its role rapidly decreases
with increasing �T , since Seff(X̃1, X̃2,�T ) is almost indis-
tinguishable from S(X̃1, X̃2,�T ) in this limit. However, in the
limit of small �T , the correction is extremely important. It
forms a sharp repulsive barrier, which prevents the instan-
ton and anti-instanton from annihilation, thus preventing the
double counting of the vacuum saddle in the saddle-point
decomposition.

In closing, we summarize the results of this section. The
saddle points for the Hubbard model on the hexagonal lattice

045143-10



INSTANTON GAS APPROACH TO THE HUBBARD MODEL PHYSICAL REVIEW B 107, 045143 (2023)

in the charge-density channel consist of individual localized
field configurations: instantons and anti-instantons. These
semiclassical objects form a weakly interacting gas in 3D
(also taking into account the localization in Euclidean time).
The only noticeable instanton-instanton or instanton-anti-
instanton interaction is a strong repulsion when they occupy
the same spatial lattice site and are closely separated in Eu-
clidean time. This notion will be used in the next section for
the construction of an analytical saddle-point approximation
which will be used to reproduce the physics of the full theory
as elucidated by our QMC calculations.

IV. INSTANTON GAS MODEL

Using analytical insights from Appendices B and C, as well
as the numerical data described in the previous section, we
can now switch to the construction of a weakly-interacting
instanton gas model. First, we derive the approximate analytic
expression for the free energy, only taking into account the
hardcore repulsion in the instanton-instanton and instanton-
anti-instanton pairs located at the same lattice site. As
mentioned before, the minimal approximation, which sup-
ports the correct continuum limit �τ = 0, is the one which
includes the Gaussian fluctuations around the saddle points.
We propose that the partition function can be written as

Z = Z0

(
1 +

∞∑
k=1

Zk

Z0

)
, (42)

where Z0 is the vacuum partition function which corresponds
to the Gaussian integral around the vacuum saddle point
φx,τ = 0 and Zk corresponds to the Gaussian integral around
the k−instanton saddle point.

For the one-instanton saddle point, we take the ratio Z1
Z0

from Eq. (28). For the k-instanton saddle point, the weight
within the Gaussian approximation can be computed using
the results from Appendix C; namely, we use Eq. (C8) and
neglect the variation of the first fundamental form

√
g along

the surface of the k torus formed by the saddle-point field con-
figurations. One should also exclude the volume in Euclidean
time and space, �βX , which is occupied by each instanton.
Putting this all together, the final expression for the ratio Zk

Z0
takes the following form:

Zk

Z0
= 1

k!

[ k∏
m=1

(βV − (m − 1)�βX )

]
22k

× e−kS̃(1)

(
L(1)

β

)k(det H(1)
⊥

det H(0)

)−k/2 1

(2π )k/2
, (43)

where V = NS/2 is the spatial volume of the lattice, and
the sublattice index is taken into account in the 22k multi-
plier alongside the instanton-anti-instanton degeneracy. The
multiplier k! comes from the fact that the instantons are indis-
tinguishable.

Formally, the sum over instanton sectors in Eq. (42) runs to
infinity. However, in practice, we should truncate it at kmax =
�βV/(�βX )�, when all free slots for instantons are taken. In
other words, we stop at the point where the entire space-time

volume is packed full of instantons. Under this assumption,
the expression for the ratio Z

Z0
can be summed exactly which

yields the following expression:

Z
Z0

= 1 +
kmax∑
k=1

kmax!

k!(kmax − k)!
γ k = (1 + γ )kmax, (44)

where we have introduced the quantity

γ ≡ 4√
2π

e−S̃(1)

(X�β

β

)
L(1)

(
det H(1)

⊥
det H(0)

)−1/2

. (45)

For practical calculations, we take X = 1 and �β equal to
the width of the instanton’s profile (Fig. 5) at half height. Both

the instanton profiles as well as the product L(1)( det H(1)
⊥

det H(0) )1/2 are
taken from the exact one-instanton saddle point.

Once we have the partition function for our gas of instan-
tons, the free energy density can be computed as follows:

f − f0 = − 1

βV
ln

Z
Z0

, (46)

where

f0 = − 1

βV
lnZ0 (47)

is the contribution to the free energy from the Gaussian in-
tegral around the vacuum saddle point. Using our previous
results, we find

f = f0 − 1

�βX ln(1 + γ ). (48)

The physics described by the model has been reduced to the
single parameter γ , which has temperature as well as coupling
dependence.

Before further addressing the physics encoded in these
expressions, we describe the predictions which can be made
for the structure of the thimble decomposition from the an-
alytical partition function. We are particularly interested in
the possibility of predicting the structure of the dominant
saddles which form the peaks in the distributions displayed in
Fig. 4. Since each saddle can be characterized by the number
of instantons, we can replot the distributions from Fig. 4 in
terms of the number of instantons. This is done in Fig. 10
with an additional fit of the data to a Gaussian form. As one
can see, the distributions can be quite precisely described
by these curves, whereby only two parameters (the mean C
and variance D) are needed to characterize them. Another
important effect which we observe is that the relative width
of the distribution goes down with the increased system size.
As one can see from the last plot in Fig. 10, the mean of the
distribution scales as ∼V , but the width scales much more
slowly. In fact, we will further show that the precise form of
the scaling of the width with the volume is ∼√

V . Thus, the
distribution for the density of the instantons will approach a
Dirac δ function in the thermodynamic limit. Therefore, in this
limit, it suffices to consider only saddles where the number of
instantons matches the mean value of the distribution.
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FIG. 10. The distribution of the number of instantons at various
interaction strengths obtained from QMC configurations. The top
two plots [(a), (b)] show the distributions obtained on 6 × 6 and
12 × 12 lattices, respectively, and the bottom plot (c) compares these
data in the case of large interaction strength U = 5.0κ . We note that
the x axis of the 12 × 12 lattice data is rescaled by a factor of 4 to
have the curves lie on top of each other and to make the compari-
son more straightforward. All these calculations were performed at
βκ = 20 and Nτ = 512. For each data set, a Gaussian fit of the lattice
data has also been performed—it is shown with the lines of the same
colors as corresponding data sets.

The distribution of the number of instantons can be ob-
tained from Eqs. (42)–(45) as Zk/Z in the limit V → ∞ after
we apply Stirling’s approximation to the factorials in Eq. (44).

The final expressions for the mean of the distribution C and the
variance D which follow from the instanton gas model are

C f = kmax
γ

γ + 1
, (49)

D f =
√

1

γ + 1
. (50)

From this, one sees that the physics of the saddles in the
charge-density-coupled channel can be accurately described
by the single parameter γ of our instanton gas model. As we
will demonstrate further, despite its apparent simplicity, the
model reproduces key features of the physics of the saddle
decomposition of the Hubbard model on the hexagonal lattice.

Going further, it would be crucial to quantify the im-
portance of interactions. Despite the relative smallness of
interactions with respect to the action of a single semiclas-
sical object, it is still worth checking whether they influence
the characteristics of the final distribution of the instanton
number. For this purpose, we construct a model of interacting
instanton gas, where the pairwise interaction profiles are taken
directly from our QMC data as described in Sec. II B. As the
number of instantons is one of the thermodynamic variables
of the system, it is necessary to work in the grand canonical
ensemble. The microscopic state of the system is defined by
the set of N coordinates for the individual instantons: {Xi, Ti},
i = 1...N . By generalizing Eqs. (29) and (30) to the case of an
N-instanton saddle and taking into account only pairwise in-
teractions, we arrive at the following grand canonical partition
function for the interacting instanton gas:

ζ =
∑

N

1

N!

∑
{Xi}

∫ N∏
i=1

dTi e− 1
2

∑N
i �= j U (2) (Xi,Xj ,Ti−Tj )+N ln γ̃ ,

(51)

where

γ̃ ≡ 1√
2π

e−S̃(1) L(1)

β

(
det H(1)

⊥
det H(0)

)−1/2

. (52)

As we did for the noninteracting instanton gas in Eq. (43), we
only consider the ratios Zk/Z0. We recall that the pairwise
interaction U (2)(Xi, Xj, Ti − Tj ) is defined in Eq. (33). This
model can be simulated using a classical GCMC, where the
number of instantons N can be changed in the updates along-
side with the coordinates (Xi, Ti ) of the instantons already
present in the system. The details of these calculations are
described in Appendix D while below we discuss the impor-
tant results of these classical simulations of the interacting
instanton gas model.

A comparison of the predictions from the instanton gas
model with the results from QMC for the structure of the
thimbles decomposition is shown in Fig. 11. To compare the
data for different lattice sizes in a uniform way, we plot the
density of the instantons C/V . To show that the variance scales
as

√
V , we plot D/

√
V to demonstrate the collapse of the data

obtained on different lattice volumes onto one curve. For the
mean of the distribution, C (Fig. 10), we used the QMC data on
6 × 6 and 12 × 12 lattices to check that, indeed, the data from
the full theory scales linearly with the volume. As we can see,
both the analytical model Eq. (49) and the classical GCMC
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(a)

(b)

FIG. 11. (a) A comparison of the instanton density obtained from
real QMC data with various instanton gas models. (b) The same
comparison but for the variance. The QMC data corresponds to
Nτ = 512 and βκ = 20.

simulations which include pairwise interactions Eq. (51) yield
a prediction for the mean of the distribution which is consis-
tent with the one obtained in our QMC calculations. Thus, one
could in principle predict the dominant thimble for a given set
of lattice parameters (including lattice size, temperature, and
interaction strength) even without doing actual QMC simula-
tions, which are much more expensive.

Furthermore, the classical GCMC simulations of the in-
stanton gas model Eq. (51) also provide an accurate prediction
for the variance, as shown in Fig. 11(b). In particular, we
obtain exactly the same results as QMC on a 6 × 6 lattice. In
addition, the QMC data for a 12 × 12 lattice which has been
rescaled by a factor of 2 exactly coincides with the data for the
6 × 6 lattice. This implies that unlike the mean C, the variance
D scales only as ∼√

V . These two facts together show that,
indeed, the distribution for the density of instantons, C/V ,
tends to the δ function in thermodynamic limit. As the pre-
diction from the analytical model in Eq. (50) was obtained
exactly in the thermodynamic limit, V → ∞, this model does
not provide a good estimate for the variance on a finite lattice
volume.

V. PHYSICS FROM THE INSTANTON
GAS APPROXIMATION

In this section, we will concentrate on further physical
predictions of the instanton gas model. First, we will con-
sider the possibility to describe the semimetal to AFM phase

d
F

/d
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U
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exact QMC
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FIG. 12. (a) Double occupancy obtained from the instanton gas
model and from QMC data. (b) AFM susceptibility obtained from
the analytical model. In both cases, the instanton profiles and actions
are obtained on the 6 × 6 lattice with Nτ = 512 and βκ = 20 were
used as input. QMC data were obtained on the same lattice.

transition, which is one of the most prominent features of the
Hubbard model on the hexagonal lattice. Second, we consider
the evolution of the electron density of states away from the
Dirac point with increasing interaction strength.

A. Local magnetic fluctuations and long-ranged order

Starting from our simple expression for the free energy of
the ensemble of instantons in Eq. (48), one can obtain further
thermodynamic quantities by taking appropriate derivatives.
In particular, the derivative of the free energy density, f ,
with respect to the Hubbard interaction gives us the double
occupancy, which is defined as

〈n̂x,↑n̂x,↓〉 = ∂ f

∂U
. (53)

In practice, the derivative of the free energy over the interac-
tion is computed by noting that γ is a function of U and taking
the appropriate partials, ∂U γ and ∂U f0. The latter quantity
can be directly obtained in the Gaussian approximation for
Svac(U ), whereas det H(0)(U ) can be computed numerically
for a fixed spatial lattice size. The profiles for �β(U ), S̃(1)(U ),
L(1)(U ) and det H(1)

⊥ (U ) are obtained from the exact one-
instanton field configurations we have obtained from our GF
procedure discussed previously.
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FIG. 13. The distribution of the squared spin across the hexago-
nal lattice for background field configuration consisting of a single
instanton (a) or two instantons (b). What is plotted is the difference
between the squared spin at a given lattice site x in the presence
of semiclassical objects and its value for the vacuum configuration:
〈Ŝ2

x 〉|Ninst − 〈Ŝ2
x 〉|vac. A base-10 logarithmic scale is used for the color

scale. Both instantons are located at the same Euclidean time slice
where the spin operator is measured. This calculation refers to a 12 ×
12 lattice with βκ = 20 and Nτ = 512, with interaction strength
U = 2.0κ . R1 and R2 are Cartesian coordinates of the lattice sites,
displayed in the units of the distance between nearest neighbors.

The double occupancy as a function of interaction strength
is plotted in Fig. 12(a). As one can see, we can success-
fully describe the increasing localization of electrons with
increasing interaction strength. To understand how the reduc-
tion of the double occupancy comes about, we consider the
local moment〈

Ŝ2
x

〉− 〈Ŝ2
x

〉
U=0 ≡ 1

4

[
1
2 − 2〈n̂x,↑n̂x,↓〉] (54)

at the saddle-point field configurations (Fig. 13). This quantity
is computed using the fermionic propagator calculated at the
saddle-point configuration of the auxiliary field. The distri-
bution is shown both for the one- and two-instantons saddle
points, where the centers of the instantons are located at the
same time slice. As one can see, each instanton generates a
localised region of excess spin, or reduced double occupancy,
around the instanton center.

Figure 12(a) equally plots the double occupancy obtained
with the Algorithm for Lattice Fermions [19] implementa-
tion of the finite-temperature auxiliary field QMC [20]. As
in the instanton approach, local moment formation leads to
a decrease of double occupancy. Owing to Eq. (53), we ex-

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16 18

R
2

R1

-0.01

-0.005

0

0.005

0.01

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12

R
2

R1

0

1

2

(a)

(b)

FIG. 14. (a) Charge-charge correlations, 1
4 〈q̂x0 (T ) · q̂x0+x(T )〉,

for a field configuration with one instanton at space-time (X, T ).
We consider two values of x0. The left black circle corresponds to
x0 = X . The other value of x0 (right black circle) is far from the
instanton. R1 and R2 are two Cartesian coordinates of the lattice sites,
displayed in the units of the distance between nearest neighbors.
The corresponding plot for the spin-spin fluctuations can be found
in Fig. 1. (b) Ratio of spin-spin and charge-charge correlators on
the same one-instanton saddle 4〈Ŝ(3)

x0
(T )Ŝ(3)

x0+x(T )〉/〈q̂x0 (T )q̂x0+x(T )〉
centered at the location of the instanton x0 = X . The calculation was
done on the same lattice as for Fig. 13(a).

pect double occupancy to show nonanalytical behavior at the
Gross-Neveu transition located at Uc/κ � 3.8. The QMC data
hints to nonanalytical behavior, whereas the instanton gas
solution exhibits a very smooth curve. We will see below that
this stems from the fact that the instanton approach does not
capture the onset of the magnetic ordering and the resulting
mass generation. We again note that the reduction of double
occupancy is a dynamical effect that cannot be obtained at
the mean-field level without breaking time-reversal symmetry
[1,38].

Figure 14(a) shows the charge-charge ( 1
4 〈q̂xq̂y〉) corre-

lations at the one-instanton saddle, in the vicinity of the
instanton and for reference away from it, where the correlator
coincides with its vacuum values. The plot should be com-
pared with the corresponding spin-spin correlator 〈Ŝ(3)

x Ŝ(3)
y 〉

displayed in Fig. 1. The spin and charge correlators are equal
in the vacuum. Both are zero if x and y are on the same sublat-
tice and negative if x and y are at different sublattices. Around
the instanton, both correlations are substantially enhanced,
spin correlations remain AFM with the largest correlations
still between points on different sublattices. The charge cor-
relators change signs. The ratio 4〈Ŝ(3)

x Ŝ(3)
y 〉/〈q̂xq̂y〉 plotted in
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Fig. 14(b) shows that the spin-spin correlations dominate over
charge-charge correlations in the vicinity of the instanton.
In particular, at lattice sites x and y that belong to different
sublattices and where both spin-spin and charge-charge corre-
lators acquire their largest values, spin correlations dominate.
In summary, these figures demonstrate that the increased spin
localization at the instanton core is surrounded by local AFM
correlations. This key result is also shown in Fig. 1.

We next investigate long-range spin order characteristic of
the AFM phase. The most obvious quantity to check is the
spin susceptibility. It can be computed via the second deriva-
tive of the free energy with respect to an external, alternating
magnetic field

χ = ∂2 f

∂m2

∣∣∣∣
m→0

, (55)

where we introduced the explicit staggered mass term in the
Hamiltonian Eq. (1):

Ĥm = m

( ∑
x∈1st sublat

(n̂x,el + n̂x,h) −
∑

x∈2nd sublat

(n̂x,el + n̂x,h)

)
.

(56)

This mass term contains the symmetry of the AFM order-
ing on the hexagonal lattice rewritten in terms of electrons
and holes. Similarly to the calculation of the double occu-
pancy Eq. (53), we compute the susceptibility using numerical
derivatives of Svac(U, m), det H(0)(U, m), det H(1)

⊥ (U, m),
etc., with respect to the mass parameter m. These derivatives
can be obtained from the corresponding one-instanton profiles
at finite m after the application of the GF equations to the con-
figurations generated in QMC simulations, in exactly the same
manner as was done for m = 0. This is possible due to the fact
that the small staggered mass term does not alter the structure
of the saddle points in the charge-coupled representation of
the functional integral. The dependence of the susceptibility
on the interaction strength is shown in Fig. 12(b). As is appar-
ent, the susceptibility does not form a peak, signaling a phase
transition but rather increases monotonically. Unfortunately,
we can not extend our results much beyond U = 10...15, since
the instantons become so densely packed that their interaction
and the modification of their profiles due to mutual influence
become really important. In this case, the approach similar
to the instanton liquid model in QCD should be developed,
which is beyond the scope of our paper. Taking into account
these limitations, we conclude that the instanton gas approach
captures local moment formation, but not the onset of long-
ranged AFM ordering.

An additional argument in favor of the instanton as a path
integral representation of a localized spin is presented in Ap-
pendix E, where we describe the technique which allows us
to connect certain paths in the path integral to the properties
of the ground-state wave function. Using this technique, we
show that the ground state corresponding to the instanton
is local Gutzwiller projection which suppresses the double
occupancy at the site occupied by the instanton.

B. Single-particle spectral function

The spectral function of a single hole in an AFM de-
fines a rich problem that has been extensively investigated
with various methods. One expects the low-energy region
to be captured by a spin polaron and a broad high energy
spectral weight that is referred to as the upper Hubbard band
[38–42]. Clearly, the instanton approach will not capture spin-
polaron since there are no spin waves—Goldstone modes of
the broken global symmetry—that will dress the doped hole.
However, local magnetic fluctuations and the reduction of the
double occupancy have the potential to account for the upper
Hubbard band. It is very appealing to adopt a parton con-
struction to account for the rich structure of the single-particle
spectral function [43,44]. As an example, one can consider
the orthogonal fermion representation of the Hubbard model
[45,46]. Consider

Ĥ = −t
∑

〈i, j〉,σ
f̂ †
i,σ f̂ j,σ ŝz

i ŝ
z
j + U

4

∑
i

ŝx
i , (57)

where f̂ †
i,σ is a fermion operator and ŝx,z

i , Pauli spin matrices
acting on an Ising degree of freedom per site. The above
defines a Z2 lattice gauge theory since

Q̂i = (−1)n̂i ŝx
i (58)

is a local conservation law. Here n̂i =∑σ f̂ †
i,σ f̂i,σ and one will

readily see that Q̂2
i = 1. Imposing the Gauss law,

Q̂i = 1. (59)

Equation (57) reduces to the Hubbard model. The physical
electron is a composite object,

ĉ†
i,σ = f̂ †

i,σ ŝz
i , (60)

and using the Gauss law, we obtain

ŝx
i = (−1)n̂i = 4(n̂i,↑ − 1/2)(n̂i,↓ − 1/2) (61)

such that Eq. (57) maps precisely onto the Hubbard model.
Within this framework, the low-energy spectral function ac-
counts for the electron as described by a bound state of the
f electron and an Ising spin. The high energy is a contin-
uum where the composite object has disintegrated. We note
that such a composite fermion interpretation of the single
particle spectral function is equally appealing in the realm
of heavy fermion systems [47,48]. We now compare the in-
stanton approach to the auxiliary field QMC simulations, and
will use the framework of the aforementioned parton picture
to interpret the results. To produce the data for the instan-
ton calculation, we first generate M sets of N (r) coordinates
{X (r)

k , T (r)
k } of instantons, where r = 1...M and k = 1...N (r)

using classical GCMC for the instanton gas model Eq. (51).
The details of this approach are described in Appendix D.
Using these coordinates for the instanton centers, we combine
together the exact profiles of single instantons centered at
these coordinates to get M saddle-point field configurations:

φ(r)
x,τ =

N (r)∑
k=1

φ

(
X (r)

k ,T (r)
k

)
x,τ , r = 1...M. (62)

In this expression, we do not take into account the change of
the instanton profiles due to the overlap between different in-
stantons. This approximation holds due to the relatively small
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FIG. 15. A comparison of the density of states at the Dirac point obtained from QMC data (left column) with that obtained from the
instanton gas model (right column). All calculations correspond to a spatial volume of 12 × 12 with βκ = 20 and Nτ = 256, while the
corresponding interaction strength in units of κ is displayed on each plot. The analytical continuation has been performed with stochastic
MEM.

density of the instanton gas for the given range of the inter-
action strength. Once the configurations have been generated,
we average the fermion propagator over these M saddle-point
field configurations and obtain the spectral function using the
ALF implementation [19] of the stochastic maximum entropy
method [49,50].

In accordance with the above discussion, we expect the
biggest mismatch between the instanton approach and auxil-
iary field QMC at low energies; namely, in the vicinity of the
Dirac point (see Fig. 15). The QMC results are plotted in the
left row, while the results from the instanton gas model data
are shown in the right row. As one can see, the QMC results
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FIG. 16. (a) The Euclidean-time fermion propagator at the Dirac
point in momentum space, obtained from the instanton gas model
with hardcore repulsion. Spatial volumes of 6 × 6, 12 × 12, and
18 × 18 are compared at U = 6.0κ , with Nτ = 256 in each case.
(b) The electron density of states obtained after analytical continu-
ation performed with stochastic MEM.

show the appearance of a mass gap starting from U ≈ 4.0κ ,
while the spectral function obtained within the instanton gas
approximation is always concentrated at zero energy. Thus,
the formation of a mass gap cannot be described in this simple
saddle-point approximation. This, along with the failure to
reproduce long-range AFM order are two features that are not
sensitive to the instantons. A more detailed analysis of the
spectral functions within the instanton gas approximation is
presented in Fig. 16. In this figure, we check the dependence
of the spectral functions at the Dirac point on the spatial lattice
size. For smaller lattices, we observe noticeable broadening of
the spectral function. This broadening is a consequence of the
fact that the 6 × 6 lattice is roughly the size of the cluster of
local AFM ordering in the vicinity of the centers of instantons
(see Figs. 13 and 1). Once the lattice size increases, the simu-
lations start to reflect the absence of long-range AFM ordering
and the width of the spectral function decreases. We thus
can conclude that, physically, the increase of the instanton
density with increasing U corresponds to the increasing local
AFM correlations while still not reproducing the long-range
ordering of spins.

As shown in Fig. 2(b), at U = 6κ , the instanton gas spectral
function compares remarkably well with the auxiliary field
QMC result of Fig. 2(a), provided that we just shift it by
the mass gap. Thus, our instanton approach reproduces the

salient features of the high-energy spectral function that can
naturally be accounted for within a parton picture of the
single-particle spectral function. The upper Hubbard band is
most pronounced in the vicinity of the � point. To quan-
tify this, the relative weight of the upper Hubbard band, we
plot the share of the lower peak in the whole spectral func-
tion [Fig. 2(c)]. We use the local minimum between peaks
as the delimiter. Again, the QMC and instanton gas curves
show remarkably similar behavior, and thus we can conclude
that the instanton gas model provides an accurate picture of
the single-electron spectral functions both in the weak- and
strong-coupling limits, away from the Dirac point.

We now provide a detailed study of the spectral function
at the � point, where high-energy spectral weight is most
pronounced. A comparison of the QMC results with those
obtained from auxiliary field QMC is shown in Fig. 17. By
construction, the instanton approach satisfies the sum rule:∫

dωA(k, ω) = π. (63)

At U = 0, all the spectral weight is located at ω = ±3κ . As
one increases the Hubbard U , one observes a clear transfer
of spectral weight from this peak to higher frequencies. This
phenomena already occurs prior to the magnetic transition
and is pronounced both in the QMC and in the instanton gas
approach. We have equally checked that the observed transfer
of spectral weight at large U is not a finite-size effect. The
corresponding data is shown in Fig. 18, where we compared
the results for the instanton gas model on spatial lattice vol-
umes of 6 × 6, 12 × 12, and 18 × 18. The observed spectral
functions are almost identical, which is a nontrivial check
of the instanton gas model. On the whole, the comparison
between the QMC and instanton gas approach is very good,
especially if a rigid shift is taken into account to accommodate
for the mass gap that develops at U > Uc � 3.8κ . Hence, the
instanton gas model does capture the high-energy spectral
weight. Within the parton approach, this finds a natural inter-
pretation since the electron corresponds to a composite object
that breaks down at high energies, giving rise to incoherent
spectral weight.

For a more detailed analysis of the spectral functions at the
� point, we plot the location of the upper and lower edges—as
determined by the peak positions—of the spectral function in
Fig. 19. Within an exact solution to the Hubbard model, we
expect the charge gap to scale as U in the strong coupling
limit, and the width of the spectral function, as defined by
the difference in energy between the upper and lower edges
of the single electron spectral function, to scale as κ . This
statement is supported by numerical exact diagonalization of
the t-J model in which the charge gap is infinite but the width
of support of the single particle spectral function is set by the
kinetic energy [43]. As apparent from the data in Fig. 19, we
see that the QMC supports this statement since both the lower
and upper edges of the spectrum grow as a function of U,
but the difference remains, to a first approximation, constant.
As argued previously, the instanton approach captures the
high-energy physics but fails in the low-energy sector, in the
sense that a charge gap is not produced. In fact, for a Dirac
system, and excluding exotic physics such as the formation of
a quantum spin liquid ground state, a mass gap can only occur
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FIG. 17. Spectral functions at the � point obtained from QMC data with Ising fields (left column) and from the instanton gas model with
hardcore repulsion (right column). The calculations were performed on a 12 × 12 lattice with βκ = 20 and Nτ = 256, while the corresponding
interaction strength is shown on each plot.

provided that symmetry breaking occurs. This shortcoming
of the instanton approach shows up in Fig. 19: while the
upper edge grows as a function of U , the lower edge actually
decreases.

VI. SQUARE LATTICE HUBBARD MODEL

We now briefly apply the same techniques to the Hubbard
model on the square lattice to investigate the differences and
similarities with the hexagonal lattice. The physics of the
Hubbard model on the square lattice at the particle-hole sym-
metric point is different, since a Stoner instability suggests
that the AFM insulating phase is present for any infinitesimal
U in the ground state [51]. There are, however, some indi-
cations [51,52] that there is a crossover from Slater-like to

Heisenberg-like fluctuations at around U = 5κ . Since a par-
tial particle-hole transformation maps the repulsive Hubbard
model onto the attractive one, this parallels the BCS to BEC
crossover [53].

Now we turn to the picture of the saddle points, obtained
with exactly the same procedure as described in Appendix A.
At large U , we mainly find the same highly localized in-
stantons, with their density increasing with increasing U .
However, the picture is quite different at U < 5κ: In this case,
we observe not only instantons but also domain-wall solu-
tions, that are constant in Euclidean time and form barriers
that divide the lattice in space. An example of such a solution
is shown in Fig. 20(b). It is a spatial map of the charge-
coupled auxiliary field φx,τ (we do not show the Euclidean
time dynamics, since the field is independent of time). In the
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FIG. 18. Comparison of the spectral functions at the � point for
different spatial volumes in the instanton gas model with hardcore
repulsion. The interaction strength is equal to U = 6.0κ and inverse
temperature βκ = 20.

configuration depicted in this plot, the saddle point consists of
two domain walls which intersect at a right angle.

The relative weight of the domain walls, instantons, and
the vacuum saddle (φx,τ = 0) in the partition function as a
function of interaction strength U is shown in Fig. 20(a). At
small U , the partition function can be fully described by the
integrals attached to the vacuum and domain-wall saddles.
At larger U , there is a relatively smooth transition to the
instanton-dominated region. Interestingly, the crossover be-
tween these two regimes coincides with the above-mentioned
crossover from a Slater to a Heisenberg antiferromagnet.
From the present data, it is remarkable to see that the saddle
point approximation captures this crossover. We expect that
the connection between the ground state properties and the
saddles can be established using the formalism described in
Appendix E. However, the detailed study of this subject is
beyond the scope of the current paper.
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FIG. 19. The energies corresponding to the upper and lower
peaks in the single electron spectral function at the � point in
the strong coupling limit U > 3.5, where the two-peak structure
becomes apparent (see Fig. 17 for the full profiles). All data were
produced on a 12 × 12 lattice at Nτ = 256 and βκ = 20. The hard-
core repulsion model was used for the instanton gas approach.
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FIG. 20. (a) The relative weight of instantons, domain walls, and
vacuum saddle in the full partition function for the square lattice
Hubbard model. These were obtained from the configurations gen-
erated in QMC on the square lattice, followed by the application of
GF. The data was generated on a 8 × 8 square lattice with βκ = 20,
Nτ = 512. (b) An example of a domain-wall configuration at U =
1.5κ . The color scale shows the value of the auxiliary field φ.

VII. CONCLUSION

We have considered the exact saddle points for the path
integral formulation of the Hubbard model, where the con-
tinuous auxiliary field is coupled to the charge density. The
saddle points have been obtained both numerically and analyt-
ically without restriction to constant fields in space and time.
Remarkably, the general saddle-point field configuration can
be decomposed into a collection of instantons. An individual
instanton is a solution of the classical Euclidean equations of
motion for the auxiliary scalar field, which is localized both
in space and Euclidean time and determined by taking into
account the back reaction of the fermionic determinant.

As a result of the above, we can define a Gaussian approx-
imation to the partition function, where the Gaussian integral
is taken around the N-instanton saddle point. This integral has
a well-defined continuum limit with respect to the Euclidean
time discretization. The study of the two-instanton saddle
reveals that the characteristics of this saddle (e.g., action,
Hessian, etc.) are almost independent of their relative posi-
tion such that we can treat instantons as weakly interacting
classical pointlike objects in 3D space-time.

Using this knowledge, we have constructed an instanton
gas model that can be solved using both analytical approaches
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and classical GCMC simulations. A comparison with unbi-
ased QMC simulations shows that this model gives correct
predictions for the structure of the dominant saddle point.
While this feature is probably not so useful at half filling,
it would be interesting to extend this approach away from
half filling. As was shown in Ref. [12], the instantons for the
Hubbard model retain their structure even at nonzero chemical
potential. The only difference is that, according to the general
logic of the Lefschetz decomposition, these instantons are
now shifted in complex space, which means that the auxiliary
fields acquire complex values. However, the profiles for both
the real and imaginary parts of the auxiliary fields remain
localized in space and time. Thus, it would be interesting to
construct a similar instanton gas model for these complex field
profiles. If successful, we might obtain an accurate prediction
for the dominant saddle point even away from half filling.
Combined with the demonstrated sharpness of the distribution
of the instanton density in the thermodynamic limit, this gives
us an opportunity to replace the sum over Lefschetz thimbles
by one integral over the thimble attached to the a priori known
dominant saddle point.

The structure of the saddle points provides a very interest-
ing approximation to the Hubbard model. Given the partition
function of the instanton gas, we can use classical Monte
Carlo methods to sample it. The instanton configurations
can then be translated into auxiliary field configurations for
which the fermion determinant and various equal-time and
time-displaced correlation functions can be computed. Us-
ing this scheme, we can elucidate the physical content of
a single instanton located at a space-time point (X, T ) by
computing the spin-spin and charge-charge correlation func-
tions. The individual instanton generates a local moment and
concomitant short-ranged AFM fluctuations in space. The
instanton approximation fails to capture long-ranged AFM
order but certainly describes metallic states in the presence
of short-ranged magnetic fluctuations. By computing the
single-particle spectral function, we have observed remark-
able agreement with unbiased quantum Monte Carlo results
provided that, in the magnetically ordered state, we account
for the mass gap by a rigid shift in frequency.

As mentioned above, the saddle-point approximation fails
to capture the formation of long-range AFM order. However,
this failure might not be so important away from half filling,
since the long-range order rapidly breaks down with increased
doping. Thus, the proposed instanton gas approach, despite its
deficiencies at half filling, might be even more suitable for the
approximate calculations at finite chemical potential, where a
severe sign problem hinders our ability to get unbiased results
using QMC simulations.

The instanton gas approach is a thermodynamically well-
defined approximation such that low-temperature properties
of metals subject to AFM fluctuations can be investigated.
In this context, it is very desirable and feasible to consider
the Hubbard model on the square lattice at half-filling and
in the strong-coupling limit, where we observe the instanton
structure of the path integral. The lack of long-range mag-
netic order actually plays to our advantage since a trivial
gap will not open even at the particle-hole symmetric point
where the negative sign problem is absent. The properties of
this metallic state and its relation to theories of nearly AFM

Fermi liquids reviewed in Ref. [54] certainly deserves further
attention.
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APPENDIX A: OBSERVATION OF INSTANTONS
IN THE QMC DATA

This Appendix describes technical aspects regarding the
determination of saddle points from the QMC data. Since
we can only use continuous auxiliary fields to construct the
saddle-point approximation, we employ the standard tech-
nique of updating the continuous fields in QMC simulations—
the HMC. This updating procedure is based on Hamiltonian
dynamics for the auxiliary field. The main issue is the absence
of ergodicity in such simulations for the Hubbard model when
only one auxiliary field is used [57]. Following Ref. [57], we
employ the two-field approach to overcome this issue. In this
approach, the interaction term is split into two terms using the
Fierz identities

U

2
q̂2

x = αU

2
q̂2

x − (1 − α)U

2
ŝ2

x + (1 − α)Uŝx, (A1)

where ŝx = n̂x,el + n̂x,h is the spin operator and α ∈ [0, 1] is
an extra, nonphysical parameter. Thus, in addition to Eq. (5),
for α �= 1, one must also introduce a second auxiliary field
coupled to the spin

e
�τU (1−α)

2 ŝ2
x ∼=

∫
dχx e− χ2

x
2�τU (1−α) eχx ŝx . (A2)

This generalized HS transformation serves several purposes.
It solves the ergodicity problems associated with the HMC as
infinite energy barriers appear which separate regions where
the electron(hole) determinant has different signs. This was
first noted in Refs. [58] and further applied in Refs. [57,59].
This particular representation is also advantageous as it works
for nonlocal interactions, unlike methods that employ discrete
auxiliary fields. The form of the functional integral is slightly
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FIG. 21. (a) The profile of the action during the downward flow
to the saddle points. This procedure essentially amounts to the
solution of the gradient flow equation in Eq. (13). Four different
configurations are shown, each ending at a different saddle. (b) The
distribution for the final actions obtained after the application of
the downward gradient flow to the set of configurations generated
with HMC. These calculations were performed on a 12 × 12 lattice
with βκ = 20 and Nτ = 512, with interaction strength U = 2.0κ and
α = 0.99.

modified when the spin-coupled field is introduced following
Refs. [57,60,61], taking the form

Z =
∫

Dφx,τ Dχx,τ e−Sα det Mel det Mh,

Sα[φx,τ , χx,τ ] =
∑
x,τ

[
φ2

x,τ

2α�τU
+ (χx,τ − (1 − α)�τU )2

2(1 − α)�τU

]
,

(A3)

where the determinants of the fermionic operators are given
by

det Mel,h = det

[
I +

Nτ∏
τ=1

e−�τhD̃τ

]
. (A4)

Here we have introduced the matrices D̃τ ≡ diag (e±iφx,τ +χx,τ ),
in analogy with the case which only involved the charge-
coupled field.

The two-field formalism solves the ergodicity issues in the
HMC simulations. Therefore, we are free to use the action
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FIG. 22. (a) Relative weight of the thimble attached to the first
nontrivial saddle with respect to the full partition function, Z1/Z , as a
function of the α parameter. These calculations were performed on a
6 × 6 lattice with Nτ = 512, βκ = 20. (b) A comparison of the his-
tograms obtained for Nτ = 256 and Nτ = 512 with other parameters
fixed (6 × 6 lattice, βκ = 20, α = 0.99). The interaction strength is
fixed at U = 2.0κ for all plots.

in Eq. (6) in HMC both for the generation of configurations
and for the subsequent solution of the GF equations. Several
examples depicting the flow-time history of the action during
GF are shown in the Fig. 21(a). However, we are interested in
the case of α = 1, whereby only the charge-coupled field φ

is present. In practice, we recover this limit by setting α ≈ 1
and taking the limit α → 1. If α is reasonably close to 1,
we already recover the equidistant discrete peaks in the final
histogram for the action after GF (see Fig. 21(b) and more
detailed study [12]). The weights of the peaks are stable in the
limit α → 1, as demonstrated in Fig. 22(a). Thus, our strategy
can indeed be used to determine the structure of saddle points
in the limit α = 1. We always use α = 0.99 in the QMC
calculations presented in this paper.

As a final check, we repeat the simulations for the same
physical parameters but at different values of Nτ . This is to en-
sure that systematic effects due to discretization in Euclidean
time are under control. As one can see in Fig. 22(b), the
histograms do not change. We can therefore conclude that the
continuum limit �τ → 0 indeed exists and with our typical
setup of βκ = 20 and Nτ = 256, we are reasonably close
to it.
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APPENDIX B: ANALYTICAL SOLUTION FOR
INDIVIDUAL INSTANTON

In developing the functional integral approach to the Hub-
bard model, we have integrated out the fermionic degrees of
freedom leaving us with a theory that only involves bosonic
degrees of freedom. The tradeoff is that the theory involves
a nonlocal quantity, namely, the fermionic determinant. To
obtain the saddle-point equations for the auxiliary field, φ,
we must first re-exponentiate the fermion determinant which
gives the following form for the effective Euclidean action:

S = SB − ln(det Mel det Mh). (B1)

To make the process of taking the continuum limit in Eu-
clidean time clearer, we make the trivial rescaling φx,τ →
�τφx,τ . As a result, the bosonic action reads

SB[φ] =
∑
x,τ

φ2
x,τ�τ

2U
, (B2)

and the exponents in the even blocks of the fermionic deter-
minants are written as D2τ ≡ diag (ei�τφx,τ ).

From Eq. (B2), one sees that the bosonic part of the action,
SB, is Gaussian, and thus any potentially nontrivial solution
to the saddle-point equations for the auxiliary fields can only
be achieved by taking into account the contribution from the
fermion determinant in the background of a given bosonic
field configuration.

To obtain the saddle-point equation for the bosonic field
φx,τ , it is convenient to express the electron (hole) operator in
the following basis:

Mel =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I D1 0 0 ... ... 0
0 I D2 0 ... ... 0

... ...
. . .

. . . ... ... ...

... ... ... I D2τ ... ...

... ... ... ... I D2τ+1 ...

... ... ... ... ...
. . .

. . .

−D2Nτ
... ... ... ... ... I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B3)

where each entry represents a block of size NS × NS . In a
similar way, the fermion propagator can be written in terms
of NS × NS blocks:

M−1
el =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 ... ... ... ... ... ḡ2Nτ

ḡ1 g2 ... ... ... ... ...

... ḡ2 g3 ... ... ... ...

... ...
. . .

. . . ... ... ...

... ... ... ḡτ gτ ... ...

... ... ... ...
. . .

. . . ...

... ... ... ... ... ... g2Nτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

The off-diagonal blocks ḡi satisfy the following relation:

ḡτ+1 = D−1
τ+1ḡτ Dτ , (B5)

which is reminiscent of the forward propagation relation for
the equal-time Green’s function in the BSS-QMC algorithm
[62]. One can relate the blocks in Eq. (B4) on the diagonal to

the blocks below the diagonal using

gτ = I − Dτ ḡτ , (B6)

which simply follows from MelM
−1
el = I . We note that the

Euclidean time index for the blocks gτ and ḡτ takes values
from 1 to 2Nτ , in accordance with the employed scheme
for the decomposition of the Boltzmann weight at each time
slice. Using the well-known relation for the derivative of the
logarithm of the fermion determinant

∂ ln det M

∂φx,τ

= Tr

(
M−1 ∂M

∂φx,τ

)
, (B7)

one can obtain the following expression for the derivative of
the action Eq. (B1) with respect to the bosonic auxiliary fields:

∂S

∂φx,τ

= �τ
φx,τ

U

−�τ
(
ḡ2τ

xxiei�τφx,τ − (ḡ2τ
xx

)∗
ie−i�τφx,τ

)
. (B8)

This relation is used not only in numerically determining the
fermionic force in HMC calculations but can also be used to
determine the saddle points of Eq. (B1). These are obtained
from the relation

∂S

∂φx,τ

= 0. (B9)

One then obtains the following form for the saddle-point equa-
tion:

φx,τ = −U Im
{
ḡ2τ

xxei�τφx,τ
}
, (B10)

which relates the bosonic field to the Green’s function. In
the continuum limit, �τ → 0, the saddle point Eq. (B10)
becomes

φx,τ = −U Im ḡ2τ
xx, (B11)

where we have taken into account that Re ḡτ
xx = 1

2 , for all
τ , which follows from particle-hole symmetry. To close the
system of equations, we add the equations for the fermionic
propagator at a given background of the auxiliary field. Apply-
ing the BSS-QMC forward propagation relation in Eq. (B5)
twice, one obtains the following equations:

ḡ2τ+2 = D−1
2τ+2D−1

2τ+1ḡ2τ D2τ D2τ+1,

= diag (e−i�τφx,τ+1 )e�τhḡ2τ diag (ei�τφx,τ )e−�τh.

(B12)

The various terms on the right-hand side of Eq. (B12) can
be expanded to linear order in �τ . Then, remembering the
saddle-point relation Eq. (B11), φ can be eliminated in favor
of ḡ. Finally, after taking the continuum limit, �τ → 0, one
obtains

dgxx(τ )

dτ
= −κ

∑
〈x,y〉

(gxy(τ ) − gyx(τ ))

dgxy(τ )

dτ
= iUgxy(Im gxx(τ ) − Im gyy(τ ))

− κ

⎛
⎝∑

〈z,x〉
gxz(τ ) −

∑
〈z,y〉

gzy(τ )

⎞
⎠. (B13)
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This set of equations completely determines the semiclassical
description of fermions propagating in the background of an
instanton. In particular, the correlations between winding and
the number of instantons and anti-instantons can be under-
stood from this set of equations (see below).

Alternatively, this set of equations can also be derived from
the Euclidean-time Heisenberg equations of motion

dÂ

dτ
= [Ĥ, Â], (B14)

where we consider the following fermion bilinear operators:

Â = â†
xây, b̂†

xb̂y, â†
xâx, b̂†

xb̂x (B15)

and the Hamiltonian Ĥ is taken from Eq. (1).
After substitution of Eq. (B15) into (B14), the operator

analog of Eq. (B13) can be written as

dâ†
xâx

dτ
= −κ

∑
〈x,y〉

(â†
y âx − â†

xây)

dâ†
xây

dτ
= Uâ†

y âx(b̂†
xb̂x − b̂†

yb̂y)

− κ

⎛
⎝∑

〈z,y〉
â†

z âx −
∑
〈z,x〉

â†
y âz

⎞
⎠ (B16)

These operator relations, when applied to expectation values,
take the exact same form as Eq. (B13) in the mean-field limit.
As usual, when working in the mean-field approximation, one
assumes that the expectation of four-fermion terms factorize

〈â†
xâyb̂†

xb̂x〉 ≈ 〈â†
xây〉〈b̂†

xb̂x〉. (B17)

After this factorization, we arrive at exactly the same equa-
tions as Eq. (B13), taking into account that gxy = 〈âxâ†

y〉.
The system of equations Eq. (B13) can be further simpli-

fied if we take into account the fact that the exact instanton
solutions observed in the QMC results of the previous sec-
tion are ultralocal in space, namely, the bosonic field φx,τ

is sharply concentrated (measured by its magnitude |φ|) at
one lattice site. A further simplification occurs if one takes
into account the C3 symmetry of the hexagonal lattice, and
the rapid decay of the equal-time fermionic propagator with
increased spatial separation between source and sink. It turns
out that this rapid decay is also a consequence of the ob-
served locality of the instanton field configurations. In fact, the
propagator is identical to that of freely propagating fermions
everywhere except in the close vicinity of the instanton core.
Our assumptions about the equal-time fermion Green’s func-
tion, computed in the background of an instanton centered
at spatial lattice site x, can be summarized as follows: we
take into account only Im gxx(τ ) and g〈xy〉(τ ), and the latter
components of the Green’s function are equal for all three
nearest neighbors.

Under these assumptions, Eq. (B13) simplifies greatly and
takes the form

d

dτ
Im gxx(τ ) = 6κ Im gxy(τ )

d

dτ
Im gxy(τ ) = iUgxy(τ ) Im gxx(τ ) + iκ Im gxx(τ ). (B18)

Separating the real and imaginary parts of the above equa-
tions gives the following set of coupled, first-order differential
equations:

ḋ (τ ) = 6κb(τ ), (B19)

ḃ(τ ) = Ud (τ )(a(τ ) + G−1), (B20)

ȧ(τ ) = −Uḃ(τ )d (τ ), (B21)

where gxy(τ ) = a(τ ) + ib(τ ), Im gxx = d (τ ), and we have de-
fined the dimensionless ratio G ≡ U/κ . From Eqs. (B20) and
(B21), it is straightforward to see that the solutions can be
written in the form

a(τ ) = −G−1 + R cos θ (τ ), (B22)

b(τ ) = R sin θ (τ ), (B23)

d (τ ) = θ̇ (τ )

U
, (B24)

where R is a dimensionless constant determined by the initial
conditions far away from the center of instanton, where the
Green’s function gxy(τ ) tends to its vacuum value. For the
imaginary part, this means that Im gxy = b → 0, thus θ → 0.
For the real part, this means that Re gxy|vac = −G−1 + R.
Finally, inserting Eq. (B24) into Eq. (B19), one obtains a
second-order differential equation for the angle

θ̈ (s) = sin θ (s), (B25)

where we have introduced the rescaled Euclidean time s ≡
τ
√

6κUR. One recognizes Eq. (B25) as the equation of mo-
tion satisfied by a physical pendulum where the angle between
the vertical and the pendulum has been shifted by π . Thus, the
vacuum corresponds to the upper position of the pendulum,
and the instanton solution corresponds to the trajectory θ (τ ),
which starts near the upper position of the pendulum, spends
a large time in its vicinity, then quickly performs a rotation
through the bottom position. If the initial velocity θ̇ is large
enough to make one or more full rotations during the period
sfull = β

√
6κUR, we have a solution with Ninst instantons. If

the initial velocity is not large enough to pass over the highest
point, the pendulum goes in the opposite direction during
the second half of the period and we have an instanton-anti-
instanton solution.

The number of instantons can be connected to the initial
conditions of the pendulum using the analogy with classical
mechanics. Energy conservation in this case takes the form

θ̇2

2
+ cos θ = E0. (B26)

Then, the initial conditions for the Ninst solution can be written
as θ |τ=0 = 0, θ̇ |τ=0 = √

2(E0 − 1), and E0 is defined by the
number of instantons:

sfull

Ninst
= 2

∫ π

0

dθ√
2(E0 − cos θ )

. (B27)

Example solutions of Eq. (B25), with initial conditions cor-
responding to a single instanton and instanton-anti-instanton
pair are shown in Fig. 23. One can see how the single instanton
solution corresponds to the transition of θ angle between two
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FIG. 23. Analytical profiles for instantons obtained from
Eq. (B25) for the case of single-instanton [(a), (b)] and instanton-
anti-instanton [(c), (d)] solutions. (a) and (c) show the derivative θ̇ ,
while the plots (b) and (d) show the θ angle itself.

equivalent values 0 and 2π , while θ returns to 0 in the case of
the instanton-anti-instanton saddle. This observation allows us
to introduce the winding number

W = 1

2π

∫ β

0
dτθ (τ ), (B28)

which is equal to the difference between the number of instan-
tons and anti-instantons at a given site.

APPENDIX C: HESSIANS FOR N-INSTANTON
SADDLE POINTS

In this Appendix, the properties of the Hessians around
saddle points containing one or more instantons are discussed
in further detail. This is necessary, as the treatment of the
Hessian is a crucial ingredient of the instanton gas model.

For the construction of the analytical saddle point ap-
proximation, we need the ratio of the determinants for the
one-instanton saddle and the vacuum saddle. This follows
from the fact that all the weights of the nontrivial saddles can
be computed in relation to the weight of the trivial vacuum
saddle point. Thus, after excluding the zero mode correspond-
ing to the translations in Euclidean time direction Eq. (27), we
arrive at the expression

det H(1)
⊥

det H(0)
= det(H̃(1)

⊥ ) = det((H(1) + P (1) )(H(0))−1). (C1)

With high accuracy, the projection operator P (1) to the zero
mode direction can be computed through a finite-difference
derivative of the instanton field configuration in the Euclidean
time direction. This is due to the fact that this derivative
approximates the direction which is tangent to the valley in
configuration space, which is formed by the degenerate saddle

P (1)
i j = ViV j

|V|2 , (C2)

Vi(x,τ ) = φ(X,T )
x,τ − φ(X,T +�τ )

x,τ . (C3)

Here (X, T ) refers to the location of the instanton center,
and the one-dimensional indices are related to the 2 + 1D
coordinate (x, τ ) via the expression

i = 2N1N2τ + x0N1N2 + x1N2 + x2, (C4)

with

x1 = 0...N1 − 1, x2 = 0...N2 − 1, x0 = 0, 1, (C5)

being the two 2D coordinates and sublattice indices defining
the spatial position of the lattice site. Here N1 and N2 are the
lattice sizes in the two spatial directions.

Due to the fact that the instanton configurations are local,
the reduced Hessian H̃(1)

⊥ matrix is quite sparse: If the second
derivative involves the fields far away of the center of the
instanton, the corresponding elements of H(1) are indistin-
guishable from the ones in H(1) and they compensate each
other in Eq. (C1).

To demonstrate the sparsity of the H̃(1)
⊥ matrix, we display a

visualization of its elements (H̃(1)
⊥ )i j in Fig. 24(a). The indices

i, j are connected to the corresponding 2 + 1D coordinates
of the fields via the same expressions Eq. (C4). Figure 24(a)
shows that the matrix is indeed quite sparse: Elements, which
substantially deviate from zero are located along the main
diagonal and in the vicinity of the index which maps back
to the coordinates of the center of the instanton. In fact, we
have checked that it is sufficient to compute the determinant
of the small block encompassing the center of the instanton,
illustrated by the red rectangle in Fig. 24(a).

Now let us now consider the two-instanton saddle point.
Unlike the previous consideration in Sec. III B, we neglect
the interaction effects. This means that we assume that the
instantons are far away from each other (which is generally
true for the saddles with a low density of instantons), and we
neglect the change in the action caused by the shift of one
instanton with respect to another. Thus, there are two zero
modes and the reduced Hessian H̃(2)

⊥ for the two-instanton
saddle point is defined as

det H(2)
⊥

det H(0)
= det(H̃(2)

⊥ ) = det((H(2) + P (1) + P (2) )(H(0) )−1),

(C6)

where the projectors to the zero modes are computed via finite
differences corresponding to the shifts of only one of the two
instantons:

P (I )
i j = V (I )

i V (I )
j

|V (I )|2 V (1)
i(x,τ )

= φ((X (1),T (1) ),(X (2),T (2) ))
x,τ − φ((X (1),T (1)+�τ ),(X (2),T (2) ))

x,τ V (2)
i(x,τ )

= φ((X (1),T (1) ),(X (2),T (2) ))
x,τ − φ((X (1),T (1) ),(X (2),T (2)+�τ ))

x,τ .

(C7)

Here φ((X (1),T (1) ),(X (2),T (2) ))
x,τ refers to the field configuration

for two instantons, whose centers are located at the points
(X (1), T (1) ) and (X (2), T (2) ).

The reduced Hessian matrix, H̃(2)
⊥ , is shown in Fig. 24(b).

If the instantons are far away from each other, the identical
nonzero blocks corresponding to the single-instanton config-
urations are split along the main diagonal. This means that
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(a)

(b)

FIG. 24. (a) Absolute values of the elements of the reduced
Hessian for the one-instanton saddle. The red rectangle denotes the
region of the Hessian matrix which is sufficient to calculate the full
determinant with high precision. (b) The elements of the reduced
Hessian for the two-instanton saddle. To highlight the most important
part of the matrix, we only plot the points where the element of the
matrix is larger than 0.01. The conversion of the 2 + 1D coordinates
to a linear index is done according to the rule Eq. (C4). These calcu-
lations were performed on a 6 × 6 lattice with Nτ = 256, βκ = 20,
U = 5.0κ .

within the approximation of noninteracting instantons, the
determinant of the reduced Hessian H̃(N )

⊥ for the N-instanton
saddle point can be approximately computed as

det H(N )
⊥

det H(0)
≈ [det((H(1) + P (1) )(H(0))−1)]N . (C8)

Due to its simplicity, this expression will be used in the con-
struction of the analytical partition function for the instanton
gas model. A numerical proof of this expression is presented
in Fig. 25.

FIG. 25. Numerical proof for the Eq. (C8). ln det H(0) is shown
for the vacuum, and ln det H(N )

⊥ is shown for the N-instanton saddle.
The calculations were performed on a 6 × 6 lattice with βκ = 20,
U = 2κ and Nτ = 256.

APPENDIX D: GRAND CANONICAL MONTE CARLO FOR
INSTANTON GAS MODEL

In this Appendix, we describe the algorithm used for
sampling the instanton gas model with the grand canonical
partition function given by Eq. (51). The state of the system
is described by the set of N coordinates {Xi, Ti}, i = 1...N .
Ti ∈ (0, β ) is the Euclidean time coordinate of the ith instan-
ton and

Xi = (νi, ri ), (D1)

where νi = −1, 1 is the instanton-anti-instanton index and ri

is the spatial coordinate of the ith instanton. The spatial co-
ordinate contains three components, including the sublattice
index [see Eq. (C4)].

The grand canonical Monte Carlo utilizes a Markov chain
where each update consists of two stages: In the first stage,
we update each coordinate of the instantons one by one, and
in the second we change the total number of instantons.

The individual updates of the instantons’ coordinates
(Xi, Ti ) → (X̃i, T̃i ) are made according to the standard
Metropolis algorithm. The proposal distribution is defined
according to the following rules:

(1) The new value of the Euclidean time coordinate T̃i is
chosen according to the Gaussian distribution, with standard
deviation DT , centered about the old coordinate. Here DT is
used as the set up parameter to tune the acceptance rate.

(2) The new type of the instanton ν̃i is chosen between
instanton (1) and anti-instanton (−1) value with equal proba-
bility.

(3) Proposals for the spatial coordinates and the sublattice
index in X̃i are made simultaneously: We chose whether to
move the instanton to one of the nearest-neighbors or to leave
it at the same site. The probability is equal (25%) for each
variant, since we have three nearest neighbors on the hexago-
nal lattice.

The Metropolis accept-reject step is made on the basis of
the difference between the probability density for the old and
the new configurations after the update of the coordinates for
the ith instanton. According to Eq. (51), the probability to
accept the new coordinates (X̃i, T̃i ) reads

P(1)
i = min

(
e−�E (1)

i ; 1
)
, (D2)
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where

�E (1)
i =

N∑
j=1

(U (2)(X̃i, Xj, T̃i − Tj ) − U (2)(Xi, Xj, Ti − Tj )).

(D3)

The update of the configuration size N is made according
to the following algorithm:

(1) We choose whether to increase or decrease the config-
uration size N by one with equal probability.

(2) If we have chosen to increase the number of instantons,
N → N + 1, we generate the new coordinates (X̃ĩ, T̃̃i ) with
uniform distributions and insert them in the configuration at
a random index ĩ = 1...N + 1. The combined total proposal
probability TN→N+1 can be written as

TN→N+1 = 1

N + 1

1

β

1

2NS
. (D4)

This expression reflects the uniform distribution of the index ĩ
of the new instanton, and also the uniform distributions of the
spatial coordinates, Euclidean time coordinate, as well as the
instanton-anti-instanton index. The probability of the inverse
process corresponds to the simple choice of one instanton for
deletion. Thus,

TN+1→N = 1

N + 1
. (D5)

These expressions are then combined into the Metropolis
probability for the acceptance of the new configuration with
the additional instanton:

P(2)
ĩ

= min

( 1
(N+1)! e

γ̃−�E (2)
ĩ TN+1→N

1
(N )!TN→N+1

; 1

)
, (D6)

where

�E (2)
ĩ

=
N+1∑

j=1; j �=ĩ

U (2)(Xĩ, Xj, T̃i − Tj ). (D7)

Note, that in this case, unlike the case of Eq. (D2), we should
take into account the changing factorials in Eq. (51). The final
expression for the acceptance probability reads as

P(2)
ĩ

= min

(
eγ̃−�E (2)

ĩ 2NSβ

N + 1
; 1

)
, (D8)

(3) If we have chosen to decrease the number of in-
stantons, N → N − 1, we select one of the instantons for
removal (again with equal probabilities). Thus, the proposal
probabilities for the forward and inverse transitions can be
written as

TN→N−1 = 1

N
(D9)

and

TN−1→N = 1

N

1

β

1

2NS
. (D10)

Subsequently, the Metropolis acceptance probability can be
obtained in the same manner as Eq. (D11),

P(3)
ĩ

= min

(
Ne−γ̃+�E (3)

ĩ

2NSβ
; 1

)
, (D11)
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FIG. 26. The distribution of the number of instantons obtained
from classical grand canonical Monte Carlo for instantons. The first
two plots [(a), (b)] show the results for the model which incorporates
the full interaction profile (obtained from the 6 × 6 and 12 × 12
lattices), while the last plot (c) shows the distribution for the case
where only a hardcore repulsion between the instantons is taken into
account. For all these calculations, βκ = 20. Gaussian fits are also
included (shown with lines of the same colors as the corresponding
data sets).

where

�E (3)
ĩ

=
N∑

j=1, j �=ĩ

U (2)(Xĩ, Xj, T̃i − Tj ), (D12)

and ĩ is the index of the instanton selected for deletion.
As a test of the classical Monte Carlo, we plot the dis-

tributions of the instanton number for different interaction
potentials (Fig. 26). As one can see, the distributions are
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FIG. 27. (a) The average number of instantons, taken as the
center of the distribution, from the classical grand canonical Monte
Carlo simulations of the instanton gas model, taking into account
only hardcore repulsion. (b) The variance of the distribution for
the number of instantons from the same simulations. All data are
obtained at βκ = 20. Note the rescaling of the data points for the
12 × 12 and 18 × 18 lattices.

perfectly fitted by Gaussian curves, in full agreement with the
QMC data displayed in the Fig. 10. We also notice that the
distributions are only slightly dependent on the exact form of
the interaction profiles: one can compare Fig. 26(a), which
corresponds to the full interaction profiles with Fig. 26(c),
where only hardcore repulsion of the two instantons at the
same site was taken into account.

We also check that the center of the distribution scales
linearly with the lattice volume V [Fig. 27(a)] and the width of
the distribution scales as

√
V [Fig. 27(b)], again in agreement

with the QMC data.

APPENDIX E: INSTANTONS AND
THE GUTZWILLER PROJECTION

In this Appendix, we show how to establish a connection
between the instantons and the ground-state wave function.
To characterize the properties of the ground state following
from the instanton approximation in a more intuitive way, we
choose to work in the basis of occupation numbers. In this
basis, the state at each site x is labeled by two numbers nx,el =
0, 1 and nx,h = 0, 1, which characterize the number of elec-
trons and holes. Due to the fact that the creation-annihilation
operators for electrons and holes, used in the Hamiltonian

Eq. (1), are directly connected to those for electrons with spin
up and spin down,

â†
x = â†

x,↑, b̂†
x = ±âx,↓, (E1)

where the sign in the latter equation alternates depending on
the sublattice index, the states with fixed number of electrons
and holes can be rewritten in terms of electrons with spin up
and spin down. Here is an example for a single site:

|nel = 0; nh = 0〉 → |n↑ = 0; n↓ = 1〉,
|nel = 0; nh = 1〉 → |n↑ = 0; n↓ = 0〉,
|nel = 1; nh = 0〉 → |n↑ = 1; n↓ = 1〉,
|nel = 1; nh = 1〉 → |n↑ = 1; n↓ = 0〉. (E2)

Thus we can always return to the representation in terms of
spin-up and spin-down electrons, despite the fact we are work-
ing in terms of electrons and holes for numerical convenience.

The general wave functions for each configuration
{nx,el; nx, h} can be obtained as

|nx,el; nx,h〉 =
∏

x:nx,el=1

â†
x

∏
x:nx,h=1

b̂†
x|0〉, (E3)

where |0〉 is the quantum state corresponding to the empty
lattice. Here we consider only the states at half filling:∑

x

nx,el =
∑

x

nx,h = NS

2
= V. (E4)

Our aim is to look at the decomposition of interacting ground
state |�int〉 (as it appears in the instanton gas approximation)
in terms of the vectors |nx,el; nx,h〉. Thus, we need to compute
the scalar products 〈�int|nx,el; nx,h〉 within the instanton gas
approximation. It is convenient to start with the vacuum state
for the tight-binding Hamiltonian |�tb〉, which is defined as a
filled Dirac sea

|�tb〉 =
∏

k;σ=1,2

ĉ†
k,σ

|0〉, (E5)

where

ĉ†
k,1 =

∑
x

V (−)
x (k)â†

x, ĉ†
k,2 =

∑
x

V (−)
x (k)b̂†

x (E6)

is the creation operator for the state with negative energy and
V (−)

x (k) is the corresponding eigenvector of single-particle
tight-binding Hamiltonian for the momentum k. Thus, we
have

|nx,el; nx,h〉 = Â({nx,el; nx,h})|�tb〉, (E7)

where

Â({nx,el; nx,h}) =
∏

x:nx,el=1

â†
x

∏
x:nx,h=1

b̂†
x

∏
k;σ

ĉk,σ . (E8)

Within the formalism of projective QMC [62,63], we consider
the following combination of traces:

A = Tr
(
e−Ĥβ Âe−(Ĥ0−Evac

tb )βP
)

Tr(e−Ĥβ )

∣∣∣∣
β→∞
βP→∞

= 〈Oint|Â|Otb〉〈Otb|Oint〉, (E9)
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where βP serves as the projection parameter, Ĥ is the full
interacting Hamiltonian Eq. (1), Ĥ0 is its tight-binding part
and Evac

tb is the energy corresponding to the tight-binding
ground state |�tb〉. After the Trotter decomposition Eq. (3)
and HS decomposition Eq. (4) are made in both traces and the
fermionic fields are integrated out, we arrive at the expression

A ≈
∑
{φinst}

Ael
{x:nx,el=1}({φ})Ah

{x:nx,h=1}({φ})

∣∣ det Mproj
el ({φ})

∣∣2∣∣ det Mel({φ})
∣∣2 .

(E10)

Here det Mel({φ}) is defined in Eq. (7) and det Mproj
el ({φ})

is essentially the same except that it includes the additional
exponent with projection:

det Mproj
el = det

[
I + e−βPh

Nτ∏
τ=1

D2τ−1D2τ

]
. (E11)

The observables in Eq. (E10) are defined as the determinants
of V × V matrices:

Ael
{x} =

∣∣∣∣∣∣∣
g̃x1k1 ... g̃x1kV

... ...
...

g̃xV k1 ... g̃xV kV

∣∣∣∣∣∣∣, (E12)

where

g̃xik j =
∑

y

V (−)
y (k j )gxiy, (E13)

with the fermionic propagator for electrons gxiy computed
at the zeroth time slice in the projected fermionic operator
Eq. (E11). Ah

{x} is the same with the exception of the complex
conjugation of the fermionic propagator gxiy in Eq. (E13).

The approximation in Eq. (E10) is due to the usage of
the sum over only dominant saddle-point field configurations
{φinst} instead of the sum over all configurations of the aux-
iliary field. In fact, we will use only the field configurations
with one or more instantons at the origin in order to better
understand the properties of the ground state following from
the presence of these semiclassical objects.

As the factor 〈Otb|Oint〉 in Eq. (E9) is some constant which
is independent of the occupation numbers {nx,el; nx,h}, we can
use the non-normalized probability distribution

|A|2 ∼ ∣∣〈Oinst
int

∣∣{nx,el; nx,h}
〉∣∣2, (E14)

following from the approximate expression Eq, (E10) to gen-
erate the configurations {nx,el; nx,h} employing standard MC
techniques. We finally obtain a set of basis vectors |nx,el; nx, h〉
distributed according to their weight within the interacting
ground state |Oinst

int 〉 corresponding to the instanton gas approx-
imation.

To characterize this distribution, we plot the ratio of the
frequencies

Rx = F ((↑)x OR (↓)x)

F ((↑↓)x OR (..)x)
, (E15)

where F ((↑)x OR (↓)x) corresponds to the frequency of
the configurations {nx,el; nx,h} with isolated spin up or spin
down at the site x within the whole set of such configura-
tions generated in the Monte Carlo process. (↑↓)x denotes the
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FIG. 28. The ratio of frequencies Rx from Eq. (E15). These
calculations were performed on the one instanton saddle on a 6 × 6
lattice with βκ = 20, U = 6κ , and Nτ = 512. The instanton is lo-
cated at the origin.

configuration where both spin orientations are present on this
site. (..)x refers to the empty site. Both these configurations
correspond to nonzero charge at the corresponding lattice site.
The connection of spin-up and spin-down indices to the occu-
pation numbers {nx,el; nx,h} can be established via Eq. (E2).

The map of frequencies Rx is plotted in Fig. 28, where
we generate configurations {nx,el; nx,h} on the basis of a
one-instanton saddle in Eq, (E10). We clearly see that the
configurations with single spin (up or down) at the origin
(where the instanton is located) are more frequent than the
configurations with nonzero charge. This result directly cor-
roborates the results displayed in Figs. 12 and 13 in the main
text where the increased spin localization was observed with
increasing instanton density.

Noting that the Gutzwiller projection can be used to de-
scribe this increasing localization, we check how well the
ground state following from the saddle-point approximation
can be described by the local Gutzwiller ansatz:

|�G〉 = P̂x(η)|Otb〉, (E16)

where the operator P̂x is defined as

P̂x(η) = N e−ηq̂2
x , (E17)

and the normalization constant is obtained from the condition
〈�G|�G〉 = 1:

N =
√

2

e−2η + 1
. (E18)

We will consider several instantons located at a single
spatial site but separated in Euclidean time. Thus, the spatial
site x in Eq. (E16) coincides with the location of the center
of the instantons in the saddle point field configuration. To
characterize the projection Eq. (E16) in a simpler way, we
rewrite it in terms of the particle number operators n̂x,el and
n̂x,h:

P̂x(η) = − 2(n̂x,el + n̂x,h − 2n̂x,eln̂x,h) sin ω

+
√

2 cos

(
π

4
− ω

)
, (E19)
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FIG. 29. (a) Dependence of the θ angle in the Gutzwiller pro-
jection for the optimal description of the N instanton saddle point.
All instantons are located at the same spatial site and placed equidis-
tantly in Euclidean time. (b) Overlap between two variants of probe
wave function and the wave function following from the N-instanton
saddle. These calculations were performed on a 6 × 6 lattice with
βκ = 20, U = 6κ , and Nτ = 512.

where

cos

(
π

4
− ω

)
= 1√

e−2η + 1
. (E20)

The real parameter ω is tuned to maximize the overlap
of the two states 〈Oinst

int |�G〉 = 〈Oinst
int |P̂x(η)|�tb.〉. This quan-

tity can be obtained analogously to Eqs. (E9) and (E10),
where the operator Â is replaced by the operator P̂ from
Eq. (E20) and the observable A in Eq. (E10) is replaced by the
corresponding observable for the operator P̂. The unknown
constant 〈Otb|Oinst

int 〉 can be computed within the instanton gas
approximation via the sum

∣∣〈Otb

∣∣Oinst
int

〉∣∣2 =
∑
{φinst}

∣∣ det Mproj
el ({φ})

∣∣2∣∣ det Mel({φ})
∣∣2 . (E21)

As we are looking at the properties of the ground state cor-
responding to a set of instantons located at the same spatial
site, only this multi-instanton saddle-point field configuration
is included in the sum Eq. (E21).

The results are shown in Figs. 29(a) and 29(b). First, we
look at the dependence of ω on the number of instantons
[Fig. 29(a)]: the angle grows almost linearly. Second, we
plot the dependence of the scalar product 〈OG|Oinst

int 〉 for this
optimal ω on the number of instantons and compare it with
〈Otb|Oinst

int 〉 [Fig. 29(b)]. As one can see, the overlap with the
tight-binding vacuum quickly decays as the instanton num-
ber increases, but the overlap with the Gutzwiller Ansatz
is stable and takes the value 0.95. Thus, we can conclude
that the instanton gas approximation corresponds well to the
Gutzwiller projection, with the added dynamics in Euclidean
time allowing us to go beyond the properties of the ground
state and to look at the properties of the spectral function, as in
Fig. 2.
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