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Unprotected edge modes in quantum spin Hall insulator candidate materials

Nguyen Minh Nguyen ,1 Giuseppe Cuono ,1 Rajibul Islam,1 Carmine Autieri ,1,2,*

Timo Hyart ,3,4,1,† and Wojciech Brzezicki 1,5,‡

1International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
2Consiglio Nazionale delle Ricerche CNR-SPIN, UOS Salerno, I-84084 Fisciano (Salerno), Italy
3Computational Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences,

Tampere University, FI-33014 Tampere, Finland
4Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland

5Institute of Theoretical Physics, Jagiellonian University, ulica S. Łojasiewicza 11, PL-30348 Kraków, Poland

(Received 20 September 2022; revised 13 December 2022; accepted 13 January 2023; published 26 January 2023)

The experiments in quantum spin Hall insulator candidate materials, such as HgTe/CdTe and InAs/GaSb
heterostructures, indicate that in addition to the topologically protected helical edge modes, these multilayer
heterostructures may also support additional edge states, which can contribute to scattering and transport. We
use first-principles calculations to derive an effective tight-binding model for HgTe/CdTe, HgS/CdTe, and
InAs/GaSb heterostructures, and we show that all these materials support additional edge states which are
sensitive to edge termination. We trace the microscopic origin of these states back to a minimal model supporting
flat bands with a nontrivial quantum geometry that gives rise to polarization charges at the edges. We show that
the polarization charges transform into additional edge states when the flat bands are coupled to each other and to
the other states to form the Hamiltonian describing the full heterostructure. Interestingly, in HgTe/CdTe quantum
wells the additional edge states are far away from the Fermi level so that they do not contribute to the transport,
but in the HgS/CdTe and InAs/GaSb heterostructures they appear within the bulk energy gap, giving rise to
the possibility of multimode edge transport. Finally, we demonstrate that because these additional edge modes
are nontopological it is possible to remove them from the bulk energy gap by modifying the edge potential, for
example, with the help of a side gate or chemical doping.
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I. INTRODUCTION

The theory of the quantum spin Hall (QSH) effect predicts
the existence of helical edge modes, which are topologically
protected against elastic backscattering from all perturba-
tions obeying time-reversal symmetry, and various materials
have been predicted to support the QSH insulator phase
[1–4]. Experimentally, signatures of edge mode transport have
been observed in several of the candidate materials such as
HgTe/CdTe quantum wells [5], InAs/GaSb bilayers [6], and
WTe2 [7]. However, experimental studies have also led to
discrepancies with the simple theoretical models. In WTe2

the protection length of the edge transport is only a few
tens of nanometers [7], and even in the more extensively
studied InAs/GaSb and HgTe/CdTe quantum wells the best
protection lengths reached so far are on the order of a few
micrometers [6] and a few tens of micrometers [8], respec-
tively. There is still no consensus about the interpretation of
the observed short protection lengths but various mechanisms,
such as magnetic impurities [9], phonons [10], dynamic
nuclear polarization [11,12], spontaneous time-reversal sym-
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metry breaking [13,14], charge puddles [15], charge dopants
[16], and interaction effects [17], may contribute to the break-
down of topological protection.

The quality of the edge transport can be improved with
the help of impurity doping in InAs/GaSb bilayers [6] and
gate training in HgTe/CdTe quantum wells [8], indicating
that there likely exist some additional unprotected low-energy
states, which are contributing to the breakdown of the topo-
logical protection and which are influenced by these sample
preparation techniques. In certain experiments unprotected
edge states have been observed also more directly. Namely,
in InAs/GaSb bilayers, in the absence of impurity doping,
multimode edge transport has been experimentally observed
in the trivial regime [18]. In HgTe/CdTe quantum wells
the additional states seem to be sufficiently far away from the
Fermi level so that they do not contribute to transport, but the
dynamical properties suggest that the topological edge states
are surrounded by additional states contributing to scattering
[19]. The microscopic origin of these additional states remains
unknown in both materials.

In this paper, we use first-principles calculations to derive
an effective tight-binding model for HgTe/CdTe, HgS/CdTe,
and InAs/GaSb heterostructures, and we show that all these
materials support additional edge states which are sensitive
to the edge termination. We trace the microscopic origin of
these states back to a minimal model of a buckled honeycomb
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TABLE I. Tight-binding parameters (in eV) of different materials.

Parameters HgTe HgS CdTe InAs GaSb AlSb

Vsa −5.8329 −12.1315 −6.1832 −7.8000 −5.4804 −4.2606
Vsc 0.2069 −1.5535 1.6395 −3.5834 −5.5334 −3.0847
Vpa 3.1483 −1.1909 2.3251 −0.1424 −0.2514 0.4210
Vpc 7.6916 5.4898 7.4584 4.1314 2.8382 3.9110
Vssσ −1.2569 −0.1162 −1.2431 −0.1424 −0.2514 0.4210
Vsa pcσ 1.7229 2.8306 1.6379 −1.4257 −1.5325 −1.6150
Vsc paσ 1.4834 1.1517 1.5463 1.4669 1.2761 1.3486
Vppσ 2.2132 1.5759 2.0139 2.2223 2.200 2.0384
Vppπ −0.9830 −0.4231 −0.9875 −1.1509 −1.1513 −1.1146
λa 0.3943/2 −0.0159/2 0.5350/2 0.2083/2 0.4423/2 0.4237/2
λc 0.7216/2 0.7651/2 0.1950/2 0.2856/2 0.1246/2 0.0306/2
Ef 3.32248 −1.33027 3.32331 0.173742 0.293268 1.71368

lattice of anions and cations. This system is the minimal
building block for constructing HgTe/CdTe, HgS/CdTe, and
InAs/GaSb heterostructures, and it supports flat bands with
nontrivial quantum geometry that gives rise to polarization
charges at the edges [20]. We show that the polarization
charges transform into additional edge states when the flat
bands are coupled to each other and to the other states to
form the Hamiltonian describing the full heterostructure. In
HgTe/CdTe quantum wells the additional edge states are far
away from the Fermi level so that they do not contribute to the
transport, but in the HgS/CdTe and InAs/GaSb heterostruc-
tures they appear within the bulk energy gap, giving rise to
the possibility of multimode edge transport, in agreement with
experiments [18,19]. Finally, we demonstrate that because
these additional edge modes are nontopological, it is possible

to remove them from the bulk energy gap by modifying the
edge potential, for example, with the help of a side gate or
chemical doping, providing a possible explanation for the
mysterious improvement of the quality of the QSH effect with
the help of impurity doping in InAs/GaSb bilayers [6] and
gate training in HgTe/CdTe quantum wells [8]. We note that
trivial helical states were also reported in a recent theoretical
work on InAs/GaSb heterostructures [21].

II. HETEROSTRUCTURE HAMILTONIAN
AND NONTOPOLOGICAL EDGE STATES

Our starting point are the Hamiltonians for HgTe, HgS,
CdTe, InAs, GaSb, and AlSb bulk crystals,

H(k) = 12 ⊗ hA ⊗
(

0 eik3

0 0

)
+ 12 ⊗ hB ⊗
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0 eik1

0 0

)
+ 12 ⊗ hC ⊗
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(
0 ei(k3−k2 )

0 0

)
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(

1 0
0 0

)
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(2)

h(l, m, n) =

⎛
⎜⎜⎝

Vssσ lVsc paσ mVsc paσ nVsc paσ

−lVsa pcσ l2(Vppσ − Vppπ ) + Vppπ lm(−Vppπ + Vppσ ) ln(−Vppπ + Vppσ )
−mVsa pcσ lm(−Vppπ + Vppσ ) m2(Vppσ − Vppπ ) + Vppπ mn(−Vppπ + Vppσ )
−nVsa pcσ ln(−Vppπ + Vppσ ) mn(−Vppπ + Vppσ ) n2(Vppσ − Vppπ ) + Vppπ

⎞
⎟⎟⎠, (3)

Lx = i

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠, Ly = i

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠, Lz = i

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠, Ea(c) =

⎛
⎜⎜⎝

Vsa(c) 0 0 0
0 Vpa(c) 0 0
0 0 Vpa(c) 0
0 0 0 Vpa(c)

⎞
⎟⎟⎠,

(4)

where the tight-binding parameters for each material, given
in Table I, have been derived from first-principles density-
functional theory (DFT) calculations. To obtain the tight-
binding with first-neighbor hopping parameters, we impose
to the tight-binding model to fit the DFT band structure
at the high-symmetry points extracting the on-site energies,

the hopping amplitudes, and the spin-orbit couplings as fit-
ting parameters. More technical information is provided in
Appendixes A and B. Here, the unit cell of the zinc-
blende crystal structure contains two lattice sites, anions and
cations, at positions (0,0,0) and (1/2, 1/2, 1/2) with lattice
translation vectors being n1 = (1, 1, 0), n2 = (−1, 1, 0), and
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FIG. 1. Schematic illustration of the hopping matrices hα (α =
A, B,C, D) between the nearest-neighbor lattice sites in zinc-blende
crystals. Each cation (green) and anion (red) supports one s orbital
and three p orbitals so that hi are 4 × 4 matrices.

n3 = (0, 1, 1). Each site in the unit cell supports one s orbital
and three p orbitals, hα are 4 × 4 matrices describing the
hopping amplitudes between the different orbitals of cations
and anions [parametrized by Vssσ , Vsa pcσ , Vsc paσ , Vppσ , and Vppπ

in Eq. (3)] along the different directions α = A, B,C, D as
depicted in Fig. 1, matrices Ea(c) contain the on-site energies
Vsa(c) and Vpa(c) of the s and p orbitals of the anions (cations), σα

are Pauli spin matrices, Lα are the 4 × 4 angular momentum
matrices, λa(c) is the spin-orbit coupling strength at the anion
(cation) site, and E f is the Fermi energy.

The two-dimensional (2D) Hamiltonian H2D(k1, k2) of a
quantum heterostructure XWX /YWY /XWX , consisting of WX unit
cells of material X (insulating barrier), WY unit cells of ma-
terial Y (quantum well), and WX unit cells of material X
(insulating barrier), stacked along the n3 direction, can be
written as

H2D(k1, k2) =
∑

i

|i〉〈i| ⊗ H0(k1, k2, i)

+
(∑

i

|i〉〈i + 1| ⊗ H1(k1, k2, i) + H.c.

)
, (5)

where |i〉 is the basis state for the ith unit cell along the n3

direction, and

H0(k1, k2, i) =

⎧⎪⎨
⎪⎩

HX
0 , 0 < i � WX ,

Hy
0 , WX < i � WX + WY ,

HX
0 , WX + WY < i � 2WX + WY ,

(6)

H1(k1, k2, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

HX
1 , 0 < i < WX ,

HXY
1 , i = WX ,

Hy
1 , WX < i < WX + WY ,

HXY
1 , i = WX + WY ,

HX
1 , WX + WY < i � 2WX + WY ,

(7)

with HX
0 (k1, k2) and HX

1 (k1, k2) obtained from the Fourier
decomposition of H(k) [Eq. (1)] of material X ,

H(k) = H0(k1, k2) + eik3 H1(k1, k2) + e−ik3 H†
1 (k1, k2). (8)

We assume that the hopping matrices between the different
materials HXY

1 can be written as

HXY
1 = (1 − x)

HX
1 + Hy

1

2
, (9)
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FIG. 2. Energy gap Egap and topological invariant ν as a function
of the quantum well thickness WHgTe in a CdTe10/HgTeWHgTe

/CdTe10

heterostructure. The transition from the topologically trivial ν = 0 to
nontrivial ν = 1 phase takes place at WHgTe,c = 12 unit cells.

allowing us to turn the coupling between the materials on and
off by changing x continuously from 0 to 1. This is useful in
the following when we study the microscopic origin of the
nontopological edge modes. If not otherwise stated we use
x = 0 so that the coupling is turned on. We have benchmarked
the tight-binding model by studying the topological phase
transition in CdTe/HgTe/CdTe quantum wells. As shown in
Fig. 2 we obtain a transition from a topologically trivial to
nontrivial phase at WHgTe,c = 12 unit cells in approximate
agreement with previous studies [2,3].

To study the edge state spectra of these materials we
consider one-dimensional ribbons of width W ′ along the n2

direction,

H1D(k1) = 1W ′ ⊗ H ′
0(k1) + D ⊗ H ′

1(k1) + Dᵀ ⊗ H ′†
1 (k1),

(10)
where

D =
W ′−1∑

i=1

|i〉〈i + 1|, (11)

and H ′
0(k1) and H ′

1(k1) are obtained from the Fourier decom-
position

H2D(k1, k2) = H ′
0(k1) + eik2 H ′

1(k1) + e−ik2 H ′†
1 (k1). (12)

Based on previous studies we expect that CdTe/HgTe/CdTe
quantum wells support a pair of counterpropagating helical
edge states connecting through the bulk gap in the topo-
logically nontrivial regime WHgTe > WHgTe,c [2,3,5], whereas
we expect that there are no edge states in the trivial
regime WHgTe < WHgTe,c. However, we find that the spectra of
CdTe/HgTe/CdTe and CdTe/HgS/CdTe compounds support
additional edge states as shown in Figs. 3 and 4, respectively.
In the case of CdTe/HgTe/CdTe, the additional edge states
appear at energies far away from the bulk gap so that they
do not contribute to the transport, but in CdTe/HgS/CdTe
the edge states are observed inside the bulk gap, giving rise
to the possibility of multimode edge transport. We find that
these additional edge states can appear in nontrivial and triv-
ial heterostructures, and in Fig. 4 we also demonstrate that
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FIG. 3. Edge state spectrum of a topologically nontrivial
CdTe10/HgTe16/CdTe10 heterostructure with width W ′ = 300 unit
cells. The colors (normalized to maximum absolute values) indicate
the projection of the eigenstates onto 20 unit cells located at the left
(blue) and right (red) edges of the system. Two pairs of topological
helical edge states connect the conduction and valence band through
the bulk gap. Additionally, there exists a large number of nontopo-
logical edge states far away from the Fermi level.
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FIG. 4. Edge state spectrum of a topologically trivial
CdTe10/HgS8/CdTe10 heterostructure with width W ′ = 300
unit cells. In the presence of spin-orbit coupling we have used
the same colors as in Fig. 3 (states localized at the right edge are
red), whereas in the absence of spin-orbit coupling (λ1,2 = 0) the
projection on the right-hand side is indicated with black. Inset: Local
density of states (LDOS) as a function of position n2 close to the
right edge for the edge states at k1 = π (green dots).

k1/π

En
er

gy
(e

V)

0.0 0.8 1.0
-0.2

-0.1

0.0

0.2

0.1

0.2 0.4 0.6

FIG. 5. Edge state spectrum of a topologically trivial
AlSb10/InAs10/GaSb10/AlSb10 heterostructure with width
W ′ = 300 unit cells.

spin-orbit coupling does not play a significant role in the
appearance of nontopological edge states. Finally, in Fig. 5
we demonstrate that this type of nontopological edge states
appear also in topologically trivial AlSb/InAs/GaSb/AlSb
heterostructures inside the bulk gap, giving rise to the pos-
sibility of multimode edge transport. In our calculations the
nontopological edge modes are mostly localized on one of
the edges because we have used particular edge terminations,
determined by Eq. (10), in the construction of the ribbons. The
dependence on the termination highlights the nontopological
nature of the edge modes, but in real materials the edges are
not expected to be perfectly ordered, and therefore we expect
that the nontopological edge modes are distributed on both
edges. In fact, for another stacking direction we indeed find
that the edge states appear on both sides of the system (see
Appendix C). The rest of the paper is devoted to the under-
standing of the microscopic origin and the other properties of
the nontopological edge states.

III. MINIMAL MODEL

In order to understand the microscopic origin of the non-
topological edge modes, in this section we consider a model
for a buckled honeycomb lattice of anions and cations, which
can be considered to be the minimal building block for
constructing HgTe/CdTe, HgS/CdTe, and InAs/GaSb het-
erostructures. We note that this minimal model supports flat
bands with nontrivial quantum geometry that gives rise to po-
larization charges at the edges [20]. In Sec. IV we demonstrate
that the polarization charges transform into additional edge
states when the flat bands are coupled to each other and to
the other states to form the Hamiltonian describing the full
heterostructure.

The minimal model can obtained from the full three-
dimensional Hamiltonian [Eq. (1)] by projecting the model to
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FIG. 6. (a) Buckled honeycomb lattice of anions (red) and
cations (green) describing the minimal model. The directions in this
two-dimensional system correspond to n1 and n3 in the original three-
dimensional model [Eq. (1)]. (b) The Zak phases of the flat bands
of the model give rise to an accumulated end charge proportional
to the width of the ribbon W because of an additional symmetry
that allows for the decomposition of the Hamiltonian into diagonal
blocks. Each dashed rectangle represents four states, labeled as p1,
p2, p3, and s due to their orbital contents, of a single zigzag chain.
The states represented by purple (blue) disks form 3 × 3 (1 × 1)
diagonal blocks after decomposition. The black lines indicate that the
states connected by them go to the same block. The dashed black line
denotes a coupling, which is present only in the cylinder geometry
with periodic boundary conditions in the transverse direction.

s orbitals of cations and p orbitals of anions, neglecting the
spin-orbit coupling terms and setting k2 = π . Furthermore,
we set E f = 0 for simplicity. This way we obtain a buckled
honeycomb lattice shown in Fig. 6(a). The 2D bulk Hamilto-
nian of this system is

H2D(k1, k3) = H‖(k1) + (eik3 H⊥ + H.c.), (13)

and the 1D Hamiltonian of a W unit cells wide ribbon is

H1D(k1) = 1W ⊗ H‖(k1) + (D ⊗ H⊥ + H.c.), (14)

where

H‖(k1)

E0
=

⎛
⎜⎜⎝

ηs eik1 − 1 −eik1 + 1 −eik1 − 1
e−ik1 − 1 ηp 0 0

−e−ik1 + 1 0 ηp 0
−e−ik1 − 1 0 0 ηp

⎞
⎟⎟⎠,

H⊥
E0

=

⎛
⎜⎜⎝

0 2 2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, E0 = Vsc paσ√

3
, ηs = Vsc

E0
, ηp = Vpa

E0
.

Here, D is a W × W matrix of the form (11). If we assume
a periodic boundary condition in the transverse direction,
corresponding to a cylinder geometry instead of a ribbon, the
matrix D is replaced by

T =
W −1∑
i=1

|i〉〈i + 1| + |W 〉〈1| = D + |W 〉〈1|. (15)

The spectrum of H(k1, k3) is flat in the direction of k3 and
there are two completely flat bands,

E1,2(k1) = 1
2 [ηp + ηs ∓

√
56 + (ηp − ηs)2 − 8 cos k1],

E3 = E4 = ηp. (16)

According to our knowledge the Hamiltonian H(k1, k3) is
topologically trivial in all classifications. Nevertheless, we
find end states, evolving from the dispersive states |E1(k1)〉
and |E2(k1)〉, when the system is finite along the k1 direction.
The end states are localized on one end of the system and
they can be constructed analytically using the non-Bloch wave
ansatz described in Ref. [22] (see Appendix D). The charge
density of the end states has a decay length

ξ = 1

2 ln 3
, (17)

and the energies of the end states are given by

E1,2(−i ln 3) = 1

2

(
ηp + ηs ∓

√
128

3
+ (ηp − ηs)2

)
. (18)

Importantly, we obtain these end states with the same energies
E1(2) and localization length ξ for all values of k3 so that the
number of end modes is proportional to the width W of the
ribbon. The existence of the end modes depends on the lattice
termination, so that with the termination used in Appendix D
all of the end modes are localized at the right end of the
system.

The non-Bloch wave ansatz [22] tells us that there cannot
be end states evolving from the flat bands E3 and E4, because
the energies generically must be of the form En(q) with some
complex q, so that the flat bands cannot give rise to a state of
energy different than ηp. However, the flat bands can still lead
to a charge accumulation at the ends of the system due to the
Zak phase [20]. Typically, such a kind of quantum geometric
effect on the charge accumulation is small because the Zak
phase is only defined modulo 2π but we find that in our system
the accumulated charge scales with the width W of the ribbon
because of an additional symmetry of the system.

Namely, we can transform the ribbon Hamiltonian (14)
[and the cylinder Hamiltonian with periodic boundary con-
ditions (15)] as

H1D(k1) → U†H1D(k1)U , U = 1W ⊗ U, (19)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
cos k1

2√
3−cos k1

1√
2

−i sin k1
2 e−i

k1
2√

3−cos k1
2

0

− cos k1
2√

3−cos k1

1√
2

i sin k1
2 e−i

k1
2√

3−cos k1
2

0

2i sin k1
2√

3−cos k1
0

− cos k1
2 e−i

k1
2√

3−cos k1
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

leading to W identical 1 × 1 blocks,

B1 = E0(ηp), (21)
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FIG. 7. (a) Band structure of minimal model ribbon of width
W = 8 unit cells in the n3 direction. The flat bands have a degen-
eracy 16, whereas the highest and lowest dispersive bands E1,2(k1)
are sevenfold degenerate and the other dispersive bands E‖1,2(k1)
are nondegenerate. (b) LDOS of flat bands for a single zigzag
chain of length L = 100 unit cells as a function of position n1

with the accumulated charge quantized at both ends. (c) Accumu-
lated charge as a function of thickness W along the n3 direction.
We have used Vsc = −1.5535, Vpa = −1.1909, Vsc pa = 1.1517, Ef =
−1.330 27 (in meV) corresponding to HgS.

W − 1 identical 3 × 3 blocks,

B3 = E0

⎛
⎝ ηp

√
6 − 2 cos k1 0√

6 − 2 cos k1 ηs

√
8

0
√

8 ηp

⎞
⎠, (22)

and one 3 × 3 block,

B′
3 = E0

⎛
⎝ ηp

√
6 − 2 cos k1 0√

6 − 2 cos k1 ηs c
√

8
0 c

√
8 ηp

⎞
⎠,

where c = 0 (c = 1) for the ribbon (cylinder) geometry. A
schematic view of how the different states, represented by
the columns of matrix U , contribute to each block is shown
in Fig. 1(b). Each of the B3 blocks contains one flat band
with energy ηp and two bands with energies E1,2(k1) given
in Eq. (16). In the cylinder geometry with c = 1, block B′

3
is identical to B3, but in the ribbon geometry with c = 0
the block B′

3 contributes a flat band with energy ηp and two
dispersive bands with energies

E‖1,2(k1) = 1
2 [ηp + ηs ∓

√
24 + (ηp − ηs)2 − 8 cos k1].

(23)
The energy bands of a ribbon with c = 0 are shown in
Fig. 7(a). Every B3 block and B′

3 block with c = 1 contributes
two end states with energies E1,2(−i ln 3) if the system is
opened in the k1 direction, whereas B′

3 with c = 0 contributes
two end states with energies E‖1,2(−i ln 3).

Because of the block decomposition the accumulated
charge at the end of the ribbon, when it is opened in the k1

direction, is related to the sum of the Zak phases of the dif-
ferent blocks. From an explicit calculation, using the standard
prescription

γp = 1

i

∫ 2π

0
〈Ep(k)|∂k|Ep(k)〉 (24)

and the analytical form of the eigenvectors, we get that the
Zak phases of the flat bands from the blocks {B1, B3, B′

3} are

γ1 = π, γ3 = − π√
3
, γ ′

3 = −c
π√

3
. (25)

Thus, inspired by Ref. [20], we expect that the difference
of the left and right boundary charges due to the geometric
phases of the flat bands is

Q = 1

π
(W γ1 + [W − 1]γ3 + γ ′

3). (26)

Indeed, we numerically find that

Q =
{

1√
3

+ W
(
1 − 1√

3

)
, c = 0,

W
(
1 − 1√

3

)
, c = 1,

(27)

demonstrating that Eq. (26) correctly describes the accumu-
lated boundary charge, which increases proportionally to the
width W of the system [see Figs. 7(b) and 7(c)].

Note that the above considerations are valid also when we
set k1 = π as a starting point and consider a 2D system in the
k2-k3 plane leading to a 1D ribbon or cylinder Hamiltonian
H̃1D(k2) analogous to Eq. (14). Despite both Hamiltonians
being apparently quite different, we show in Appendix E that
they are related by a unitary transformation in the case of
cylinder geometry and differ only in block B′

3 in the case of
ribbon geometry. In the former case the end states and the
number of flat bands are the same as for H1D(k1) whereas in
the latter one the number of edge states (flat bands) is smaller
by two (larger by two) because of the difference between B′

3
blocks (see Appendix E).

IV. CONNECTION BETWEEN THE NONTOPOLOGICAL
EDGE STATES AND THE FLAT BANDS

IN THE MINIMAL MODEL

Next, we demonstrate that the nontopological edge states
indeed originate from the flat bands of the minimal model
by interpolating between the Hamiltonians and following the
evolution of the edge states.

We first notice that similar nontopological edge
states are obtained both in the full heterostructure of
CdTe10/HgS8/CdTe10 and in HgS8 [Figs. 8(a) and 8(b)].
Indeed, by interpolating between coupled x = 0 and
uncoupled x = 1 systems of HgS8 and CdTe10, as described
in Eq. (9), we find that the majority of the edge states at the
high-symmetry point k1 = π remains unchanged throughout
the evolution [Fig. 8(c)], despite the fact that the coupling
has a large impact on the bulk state energies. Moreover, by
studying the eigenvectors we conclude that the edge states
are located in the HgS system. Therefore, we conclude that
the CdTe barriers are not important for understanding the
additional edge modes.
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FIG. 8. (a), (b) Edge state spectra of CdTe10/HgS8/CdTe10 and
HgS8 of width W ′ = 300 unit cells in the n2 direction, respectively.
(c) Evolution of eigenenergies at k1 = π as a function of x interpolat-
ing between coupled (x = 0) and uncoupled (x = 1) systems of HgS8

and CdTe10 as described in Eq. (9). (d) Evolution of eigenenergies at
k1 = π from HgS8 (x′ = 0) to the minimal model (x′ = 1).

We can further trace back the origin of additional edge
states from the HgS8 system to the minimal model by inter-
polating the model parameters

�P(x′) = (1 − x′) �PHgS + x′ �Pmin (28)

between the HgS parameters

�PHgS = {
Vsa ,VscVpa ,Vpc ,Vssσ ,

×Vsa pcσ ,Vsc paσ ,Vppσ ,Vppπ , λa, λc, E f
}

(29)

and the minimal model parameters

�Pmin = {
Vsa ,Vsc ,Vpa ,Vpc , 0,Vsc paσ ,Vsa pcσ , 0, 0, 0, 0, E f

}
.

(30)
By following the evolution of the edge states of HgS (x′ = 0)
to the minimal model (x′ = 1) we find that the edge states are
indeed connected to the flat bands of the minimal model [see
Fig. 8(d)].

V. EFFECT OF EDGE POTENTIAL ON
THE NONTOPOLOGICAL EDGE STATES

We have argued that the additional edge states are not
topological. This suggests that it should be possible to remove
them from the energy gap between the valence and conduction
bands by applying an edge potential, for example, with the
help of a side gate. In Fig. 9 we show the edge state spectra of
CdTe10/HgS8/CdTe10 in the presence of an additional on-site
potential δ applied on the lattice sites at the right edge of
the system. By decreasing the value of δ we find that all
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FIG. 9. Edge state spectra of CdTe10/HgS8/CdTe10 of width
W ′ = 300 unit cells with an on-site potential δ applied on the lat-
tice sites at the right edge of the system. The values of the on-site
potential are (a) δ = −0.1 eV, (b) δ = −0.15 eV, (c) δ = −0.2 eV,
and (d) δ = −0.3 eV.

nontopological edge states can indeed be removed from the
bulk gap.

VI. CONCLUSIONS

We have shown that HgTe/CdTe, HgS/CdTe, and
InAs/GaSb heterostructures support additional edge states
which are sensitive to edge termination, and we have traced
the microscopic origin of these states back to a minimal model
supporting flat bands with a nontrivial quantum geometry that
gives rise to polarization charges at the edges. Moreover, we
expect that additional edge states appear each time the edge
cuts the s-p chains of the minimal model. Nontopological
edge states have been observed in quantum spin Hall insulator
candidate materials deteriorating the quality of the quantum
spin Hall effect. Importantly, our results suggest that these
states can be removed from the bulk energy gap by modifying
the edge potential, for example, with a side gate or chemical
doping.
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APPENDIX A: COMPUTATIONAL DETAILS OF
THE DENSITY-FUNCTIONAL CALCULATIONS

We performed electronic structure calculations by using
the VASP [23] package based on the plane-wave basis set
and projector augmented-wave method [24]. A plane-wave
energy cutoff of 250 eV has been used. We have performed the
calculations using a 8 × 8 × 8 k-point Monkhorst-Pack grid in
the presence of SOC with 512 k points and in the absence of
SOC with 176 k points in the independent Brillouin zone. For
the treatment of exchange correlation, the modified Becke-
Johnson exchange potential together with a local density
approximation for the correlation potential scheme [25,26]
have been considered. In particular, we have an improvement
in the band gap [27], and consequently an improvement in
the spin-orbit splitting close to the gap. Similar settings for
the DFT calculations were used to describe HgTe and InAs
[28,29].

After obtaining the Bloch wave functions ψn,k, the Wannier
functions [30,31] are built up using the WANNIER90 code [32].
To extract the low-energy properties of the electronic bands,
we have used the Slater-Koster interpolation scheme to obtain
a long-range tight-binding model with the Wannier function
method [32]. To obtain the first-neighbor tight-binding model,
we require the tight-binding model to fit the DFT band struc-
ture at the high-symmetry points 
, X , and L. Regarding
the spin orbit, we extracted the effective SOC of the anion
λa from the formula 3λa = E (
8) − E (
7), where 
8 and

7 anion energy levels were obtained from first-principles
calculations [33], and the same was done for the cation λc.
Note that in Ref. [33] we used a different notation where 3λa

2 =
E (
8) − E (
7). Following this procedure, we obtained the
hopping parameters, the on-site energies, and the spin-orbit
constants. The experimental lattice constants, which coincide
with those used in our DFT calculation except for HgS, are
reported in Table II. For HgS we have used a larger lattice
constant a0 = 6.835 Å to obtain that the effective SOC is close
to zero.

We demonstrate why the effective spin-orbit λa is nega-
tive for the p state of S in HgS [36]. First, we consider a
Hamiltonian containing the Hg d states and anion p states
with the respective bare SOC defined λbare

Hg-d and λbare
a and we

diagonalize the Hamiltonian to calculate the effective spin

TABLE II. Experimental lattice constant at 8 K for HgTe and at
300 K for HgS, CdTe, at 0 K extrapolation for InAs, GaSb, and AlSb.
All the values are in Å.

HgTe HgS CdTe InAs GaSb AlSb
[34] [34] [34] [35] [35] [35]

a0 6.460 5.851 6.480 6.050 6.082 6.128

orbit λa ∝ E (
8) − E (
7) as a function of the bare param-
eters. We define the difference between the on-site energies
�ε1 = Vpa − Vdc > 0. We calculate the eigenvalues of the
Hamiltonian at the 
 point. In order to evaluate analytically
the effective SOC, we perform the Löwdin approximation
projecting on the anion subspace, obtaining

λa ≈ λbare
a −

H2
pxa,dyzcλ

bare
Hg-d(

�ε1 − 3
2λbare

Hg-d

)(
�ε1 + λbare

Hg-d

) , (A1)

where Hpxa,dyzc is the matrix element that connects the px-a
and dyz-c orbitals calculated at the 
 point. If we consider the
conditions |�ε1| � λbare

Hg-d , we obtain

λa ≈ λbare
a −

(
Hpxa,dyzc

�ε1

)2

λHg-dbare . (A2)

We can observe that the leading correction term to the bare
spin orbit is always negative. The validity of this formula is
restricted to the region close to the 
 point, however, that is the
interesting region for this class of compounds. This correction
to the bare SOC is present in the entire HgX (X = S, Se, Te)
family, however, it is quantitatively more relevant in HgS.

APPENDIX B: DANGLING BONDS IN
DENSITY-FUNCTIONAL CALCULATIONS

Here, we will show how to handle the dangling bonds using
density-functional theory in this material class. To do that, we
will consider the CdTe4/HgTe9/CdTe4 case that is the most
difficult to treat due to the large size of the constituent atoms.
Figure 10(a) shows the 2D QW with unsaturated dangling
bonds of the anion on top (Te terminated) and the cation on
the bottom (Cd terminated). The band structure of the unsat-
urated crystal structure is shown in Fig. 11(a). We observe a
metallic phase due to unsaturated edge states not related to
the topology. Due to the large size of Cd and Te atoms, the
saturation of the dangling bond with hydrogen atoms does not
yield a good effect. To overcome this the dangling bonds of
the anions are saturated with sodium atoms and cations are
saturated with iodine atoms, as shown in Fig. 10(b). When
we saturate the dangling bonds, we recover the band structure
of the topological insulator as shown in Fig. 11(b). The 2D
QW with these dangling bonds is an insulator by nature with
the band inverted at the 
 point if the thickness of HgTe is
sufficiently large. After considering the dangling bonds, the
tight-binding model gives a satisfactory description of the
electronic properties of the system. This saturation refers to
the (001) top and bottom surface of the heterostructure and is
expected to work similarly for other surfaces.

Additionally, the adatoms could aggregate [37]. Further
investigations are needed to establish the results for this case.
The necessity to use large unit cells, SOC, and an exchange
functional for strongly correlated electrons makes these cal-
culations for adatoms in HgTe quite challenging. Recent
results were performed for magnetic bulk impurities in HgTe
[33,38],
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FIG. 10. Crystal structure of the 2D QWs grown along the (001)
orientation with (a) unsaturated dangling bonds on the top and bot-
tom surface with stoichiometric concentration. (b) Dangling bond
saturated with I and Na on the anion and cation surfaces, respectively.

APPENDIX C: HETEROSTRUCTURES GROWN
IN THE (110) DIRECTION

In the main text we have studied heterostructures grown
along the direction of the lattice vector n3. This means that
the top and the bottom surfaces are perpendicular to the (001)
direction and the side surfaces (edges) are perpendicular to the

FIG. 11. Band structure of the 2D QWs with (a) unsaturated
dangling bonds on the top and bottom surface. (b) Dangling bond
saturated with I and Na on the anion and cation surface, respectively.
After saturation the DFT band structure resembles the tight-binding
Hamiltonian band structure.
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FIG. 12. Edge state spectra for heterostructures grown
in the (110) direction: (a) CdTe10/HgTe16/CdTe10 and
(b) CdTe10/HgS8/CdTe10. The widths are W ′ = 150 unit cells
in the n′

2 direction.

(111̄) and (11̄1) directions. However, another typical growth
direction of heterostructures is (110). Therefore in this Ap-
pendix we check how the results change when we consider
this growth direction instead of the one considered in the
main text. To address this issue we consider our tight-binding
model with the unit cell doubled along the n3 direction and the
new translation vectors being n′

1 = (1,−1, 0), n′
2 = (1, 1, 0),

and n′
3 = (0, 0, 2). The layers of the heterostructure are now

stacked along n′
1 given the top and bottom surfaces as perpen-

dicular to the (110) direction and the side surfaces or edges
perpendicular to the (001) and (11̄0) directions.

For these new heterostructures we again construct 2D
Hamiltonians H2D(k′

2, k′
3), as in Eq. (5), for which we consider

open-edge versions H1D(k′
3), as in Eq. (10), to verify the

presence of the additional edge states at the (11̄0) surface
of the system. As previously, we define W ′ as a width of the
1D ribbon described by H1D

k′
3

. As we can see from the spectra
shown in Fig. 12, we still find additional edge states in the
HgTe/CdTe and HgS/CdTe heterostructure. Additional edge
states of CdTe/HgTe/CdTe lie outside the band gap, whereas
for the CdTe/HgS/CdTe heterostructure they appear inside
the gap and there is an equal number of them on both edges,
in contrast to the cases discussed in the main text.

APPENDIX D: ANALYTICAL DERIVATION OF THE END
STATE ENERGIES AND WAVE FUNCTIONS

In this Appendix we calculate the eigenenergies and the
wave functions for the end states of the minimal model Hamil-
tonian (13), when the system has a finite length L along the k1

direction. By using the Fourier decomposition

H(k1, k3) = H0(k3) + eik1 H1(k3) + e−ik1 H†
1 (k3), (D1)

the Hamiltonian for the system can be written as

H1D(k3) = 1L ⊗ H0(k3) + D ⊗ H1(k3) + Dᵀ ⊗ H†
1 (k3),

(D2)
where D is the L × L matrix of the form (11). The eigenstates
|ψ〉 = ∑L

j=1 | j〉 ⊗ |φ j〉, where | j〉 is the basis state describing
the jth unit cell along the k1 direction and |φ j〉 is the spinor
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describing the state within the unit cell, must satisfy

H†
1 (k3)|φ j−1〉 + H0(k3)|φ j〉 + H1(k3)|φ j+1〉 = E |φ j〉, (D3)

for j = 2, 3, . . . , L − 1 and the boundary equations

H0(k3)|φ1〉 + H1(k3)|φ2〉 = E |φ1〉,
H†

1 (k3)|φL−1〉 + H0(k3)|φL〉 = E |φL〉. (D4)

We write an ansatz for the end states (n = 1, 2) as

|φn, j (q)〉 = Aqei jq|En(q)〉 + Bqe−i jq|En(−q)〉,
where the energies

E1(2)(q) = 1
2 [ηp + ηs ∓

√
56 + (ηp − ηs)2 − 8 cos q]. (D5)

and spinors |E1(2)(q)〉 are obtained from the dispersive bulk
states by replacing the momentum k1 with q. Therefore, the
ansatz automatically satisfies Eq. (D3). Importantly, here q is
an imaginary number so that the ansatz describes a state local-
ized at the end of the system. Note that |φn, j (q)〉 also contains
dependence on k3 which is however not essential here. Using
the boundary conditions we find in the thermodynamic limit
L → ∞ for both n = 1, 2 and any k3 that q = −i ln 3 so that
the charge density has a decay length

ξ = 1

2 log 3
. (D6)

All end states localized at the right end of the system, and their
energies are

E1(2)(−i ln 3) = 1

2

(
ηp + ηs ∓

√
128

3
+ (ηp − ηs)2

)
. (D7)

APPENDIX E: k1-k2 DUALITY OF THE MINIMAL MODEL

Consider the minimal model obtained as in Sec. III. Now,
instead of setting k2 = π we take k1 = π . The 2D bulk Hamil-
tonian of this system is

H̃2D(k2, k3) = H̃‖ + [eik3 H̃⊥(k2) + H.c.], (E1)

and its spectrum does not depend again on k3. The 1D Hamil-
tonian of the W unit cell wide cylinder (c = 1) is

H̃1D
c=1(k2) = 1W ⊗ H̃‖ + [T ⊗ H̃⊥(k2) + H.c.], (E2)

which we will compare to the previous case of the k2 = π

Hamiltonian,

H1D
c=1(k1) = 1W ⊗ H‖(k1) + (T ⊗ H⊥ + H.c.). (E3)

Here, T is defined by Eq. (15), H‖(k1) and H⊥ are defined in
Sec. III, and

H̃‖
E0

=

⎛
⎜⎜⎝

ηs −2 2 0
−2 ηp 0 0
2 0 ηp 0
0 0 0 ηp

⎞
⎟⎟⎠, (E4)

and

H̃⊥(k2)

E0
=

⎛
⎜⎜⎝

0 −e−ik2 + 1 −e−ik2 + 1 e−ik2 + 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠.

(E5)

By a close inspection of the 1D chains described by the
Hamiltonians (E2) and (E3) we find a duality relation between
these two Hamiltonians given by

H1D
c=1(k1) = V†H̃1D

c=1(k2 = −k1)V, (E6)

where V is a unitary operator,

V =
{

P3P2P1GQ, W ∈ 2N + 1,

P3P2P1G, W ∈ 2N.
(E7)

Here, P1,2,3 are the site permutations,

P1 = 1W ⊗

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠, (E8)

P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 1 0
0 · · · 0 0 1 0 0
0 · · · 0 1 0 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E9)

and

P3 = 1W ⊗

⎛
⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠. (E10)

Note that P1 and P3 only reshuffle sites inside the unit cell
consisting of four sites whereas the order of the unit cells
remains unchanged. On the other hand, the P2 operator reverts
the whole chain and shifts sites by one in a cyclic manner. The
remaining constituents of V are the alternating gauge matrix,

G =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 −1 0 0
0 0 1 0
0 0 0 −1
...

. . .

⎞
⎟⎟⎟⎟⎠ ⊗

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠,

(E11)
and operator Q acting on the first unit cell,

Q =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ ⊗

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 1 0
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗ 14. (E12)

From Eq. (E6) and the results of Sec. III it follows that for a
cylindrical geometry along k3 the H̃1D

c=1(k2) Hamiltonian splits
into W identical 1 × 1 blocks,

B̃1 = E0(ηp), (E13)
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and another W identical 3 × 3 blocks,

B̃3 = E0

⎛
⎝ ηp

√
6 − 2 cos k2 0√

6 − 2 cos k2 ηs

√
8

0
√

8 ηp

⎞
⎠,

(E14)

under transformation W = V U . The same transformation W
used on a ribbon-geometry (c = 0) Hamiltonian

H̃1D
c=0(k2) = 1W ⊗ H̃‖ + [D ⊗ H̃⊥(k2) + H.c.], (E15)

with D defined by Eq. (11) gives almost the same block
structure with one of the 3 × 3 blocks substituted by

B̃′
3 = E0

⎛
⎝ηp 0 0

0 ηs

√
8

0
√

8 ηp

⎞
⎠. (E16)

Concluding, we have found that for cylindrical geometry the
Hamiltonians H1D

c=1(k1) and H̃1D
c=1(k2) have the same band

structures and the same end states. In the case of the ribbon
geometry H̃1D

c=0(k2) has two more (less) flat (dispersive) bands
compared to H1D

c=0(k1), following from the difference between
blocks B̃′

3 and B′
3. The number of end states in this case is

smaller by two because the B̃′
3 having no dispersion cannot

contribute any, unlike B′
3.
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