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Exact solution for the filling-induced thermalization transition in a one-dimensional fracton system
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We study a random circuit model of constrained fracton dynamics, in which particles on a one-dimensional
lattice undergo random local motion subject to both charge and dipole moment conservation. The configuration
space of this system exhibits a continuous phase transition between a weakly fragmented (“thermalizing”) phase
and a strongly fragmented (“nonthermalizing”) phase as a function of the number density of particles. Here, by
mapping to two different problems in combinatorics, we identify an exact solution for the critical density nc.
Specifically, when evolution proceeds by operators that act on � contiguous sites, the critical density is given
by nc = 1/(� − 2). We identify the critical scaling near the transition, and we show that there is a universal
value of the correlation length exponent ν = 2. We confirm our theoretical results with numeric simulations. In
the thermalizing phase the dynamical exponent is subdiffusive, z = 4, while at the critical point it increases to
zc � 6.
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I. INTRODUCTION

An isolated system with many degrees of freedom is ther-
malizing if it is able to dynamically act as a bath for all
of its small subsystems and thus bring them all to thermal
equilibrium with each other. The eigenstate thermalization
hypothesis (ETH) extends these considerations to specific
quantum states, by asserting that when a large thermalizing
system is in an energy eigenstate, the reduced density operator
of each of its small subsystems is the same as in the cor-
responding standard thermal ensemble (see, e.g., Refs. [1,2]
for reviews of ETH). The last few decades have seen intense
interest in systems and states that fail to thermalize or to
obey the ETH, and which therefore cannot be described by
conventional equilibrium thermodynamics even at arbitrarily
long times. Some prominent examples include many-body
localized states [3–9] and quantum scar states [10–25].

The recently-identified fracton systems [26–35] provide
yet another pathway by which a system can fail to thermalize.
In fracton systems, thermalization can be avoided because of
kinetic constraints on the system’s dynamics, which prevent
the system from exploring the full set of states consistent
with the conserved quantities. A now-paradigmatic example
of fracton dynamics is that of a one-dimensional system of
charges for which both the charge and dipole moment are
conserved. The dipole moment conservation ensures that a
single, isolated charge cannot move freely through the system,
unless an opposite-facing dipole is simultaneously created
from the vacuum [31,36]. Recent work has shown that when
such a system evolves under local dynamics, the configuration
space associated with a given symmetry sector can become
“fragmented” [37–41]. That is, the set of all microstates that
are consistent with a given value of charge and dipole moment
may separate into many dynamically disconnected sectors

which are mutually inaccessible by the dynamics. Here we
refer to these dynamically disconnected sectors as “Krylov
sectors.”

Fragmentation of the symmetry sector, where it occurs,
may happen in either a weak or a strong way [37,39]. Un-
der weak fragmentation, there is a dominant Krylov sector
that contains the vast majority of states in the symmetry
sector, such that in the limit of infinite system size the prob-
ability that a randomly chosen state is contained within the
largest Krylov sector approaches unity. When there is strong
fragmentation, on the other hand, even the largest Krylov
sector contains a vanishingly small fraction of the symme-
try sector. If we assume that the dynamics is ergodic within
each Krylov sector, then in the latter case no initial state
is able to thermalize, while in the case of weak fragmenta-
tion a randomly chosen initial state will, with a probability
that approaches unity in the thermodynamic limit, thermal-
ize. Thus, as a shorthand, throughout this paper we refer to
the transition between strong and weak fragmentation as the
“thermalization transition.”

Initial work on the thermalization transition in fracton sys-
tems focused on the effect of varying the spatial range � of
the operators governing dynamical evolution, or on varying
the size q of the local Hilbert space at each site [39,42–
45]. When � or q is large enough, the system thermalizes
under either random dynamics or certain types of Hamiltonian
dynamics, while small � and q prevent thermalization. In a
recent paper, however, Morningstar et al. [46] showed that the
thermalization transition may also be effected by changing the
filling of the system for fixed � and q. Here, as an example,
we focus on the case of a one-dimensional lattice of sites
for which the charge at each site can be any non-negative
integer. If the average filling n of the lattice satisfies n � 1,
then a typical state consists of rare charges that are well
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separated from each other. Since isolated charges are unable
to move while satisfying the dipole moment constraint (and
since negative values of the charge are forbidden), this system
is unable to evolve under the action of local operators, and it
fails to thermalize. On the other hand, when n � 1 local oper-
ators can easily rearrange charges locally while satisfying the
dipole moment constraint, and the system thermalizes. Thus,
varying the filling n allows one to study the thermalization
transition in terms of a continuous variable (unlike � and q,
which are discrete), and thus to identify the critical exponents
and critical scaling associated with the transition.

In this paper, we focus on the model introduced in the
previous paragraph (which we define more precisely below),
which differs slightly from that of Ref. [46], and we study
the filling-induced thermalization transition. In addition to
numeric simulations, we provide exact solutions for the size
of the symmetry sector and also the size of what appears to
be the largest Krylov sector in the large-system limit. These
solutions, which we obtain by a mapping to two separate
problems in combinatorics, provide us with exact solutions for
the critical filling nc as a function of gate size �. Specifically,

nc = 1

� − 2
. (1)

We are also able to exactly identify the correlation length
exponent ν = 2, which is universal to all models of this type.
Numerical simulations suggest a large dynamical critical ex-
ponent zc � 6, consistent with the results in Ref. [46].

II. MODEL

We consider a “bosonic” system of N indistinguishable
particles moving on a one-dimensional (1D) lattice of size
L with closed boundary conditions. Each site x, with x =
0, 1, . . . , (L − 1), has an occupation number given by a non-
negative integer, nx = 0, 1, 2, . . . . The system evolves by a
random sequence of �-site local gates, as illustrated in Fig. 1.
The gates are each chosen randomly from the set of operators
that conserve both the charge N and the dipole moment P,
with N = ∑

x nx and P = ∑
x nxx. Since the fragmentation of

the Hilbert space arises from the classical charge and dipole
moment constraints, we are able to restrict our attention to an
effectively classical Markov dynamics for which each oper-
ator takes a given charge state (a string of definite values of
nx) to another given charge state. This approach is equivalent
to the the recently described “automaton dynamics” method
[47–50].

This restriction of the dynamics to classical charge states
implies that each operator is chosen from a small, finite
set. For example, in the case � = 3 any allowed opera-
tor is a multiple of only two nontrivial actions, which we
denote U3,±. Specifically, U3,± makes the transformation
{nx−1, nx, nx+1} → {nx−1 ± 1, nx ∓ 2, nx+1 ± 1} for some lo-
cation x, as illustrated in Fig. 1. In our dynamics, each
operator is chosen randomly from one of these possibilities
and then applied to a random set of � contiguous sites. If
the operator does not produce a valid basis state, i.e., if one
of the occupation numbers would become negative, then no
operation is applied.

FIG. 1. An illustration of the dynamics with charge- and dipole-
conserving three-site gates U3,±. The circuit (above) shows the
sequence of random operations, while the balls (below) illustrate the
occupation numbers of the state. Yellow balls represent the starting
positions of particles involved in the first two applied operators, blue
balls represent the final positions of these particles, and gray balls
show particles that remain in place. These two operations are the
only three-site gates for our model.

For a given charge N and system size L, there is some finite
number of basis states which all have the same given dipole
moment P. We refer to this set of states as the symmetry sector.
Within the symmetry sector, there may be states which cannot
be evolved into one another through the application of only
local dipole-conserving gates of size �. For example, in the
case L = 5, N = 3, and P = 6, the two states (1,0,1,0,1) and
(0,0,3,0,0) are dynamically disconnected when � = 3 despite
belonging to the same symmetry sector. We refer to each sub-
set of the symmetry sector for which any pair of states within
the subset can be reached one from another through local gates
as a Krylov sector. The Krylov sectors are dependent on the
gate size �, while the symmetry sectors are not. For example,
when � = 2 all Krylov sectors contain only a single state since
there are no nontrivial two-site operators that conserve both
charge and dipole moment; in the limit � = L each symmetry
sector consists of only a single large Krylov sector since all
possible N- and P-conserving transformations are possible.

With these definitions, we can concretely define a ther-
malized system in terms of the proportion of states within
a symmetry sector that belong to its largest Krylov sector
(LKS). Specifically, we define the quantity D = DLKS/Dsym,
where DLKS is the number of basis states within the largest
Krylov sector and Dsym is the number of basis states in the
corresponding symmetry sector. The thermalized phase is
characterized by D → 1 in the limit L → ∞ with n = N/L
held fixed, while the localized phase exhibits instead D → 0.

III. SOLUTION FOR THE CRITICAL FILLING

In this section we present results for the size Dsym of the
symmetry sector and the size DKS of a specific Krylov sector
(which, as we discuss below, is apparently the largest Krylov
sector). By considering the scaling of Dsym and DKS with the
system size L, we are able to precisely identify the critical
density nc associated with the thermalization transition. We
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restrict our attention primarily to the symmetry sector with
dipole moment P = N (L − 1)/2, whose average local charge
density is symmetric about the center of the system. Through-
out this section we focus on the smallest nontrivial gate size
� = 3; the generalization to larger � is provided in Sec. IV.

A. Scaling conjecture for localized and thermalized regimes

We begin by conjecturing that in the localized phase
n < nc, the relative size D of the LKS is exponentially small
in the system size L, while 1 − D is exponentially small in
the thermalizing phase n > nc. This conjecture is supported
by numerical observations in Refs. [37,39], as well as our
own numeric simulations. Under this conjecture, all Krylov
sectors must occupy an exponentially small fraction of the
symmetry sector in the localized phase. Likewise, in the ther-
malized phase, all Krylov sectors other than the LKS occupy
an exponentially small fraction of the symmetry sector.

In the remainder of this section we demonstrate the exis-
tence of a particular Krylov sector that occupies a power-law
fraction of the symmetry sector at the filling n = 1. Given our
scaling conjecture about D, such a Krylov sector can only
exist precisely at the critical filling. Consequently, the value
of nc must be equal to nc = 1 (for gate size � = 3). As we
argue below, the Krylov sector we identify is very likely to
be the LKS, which allows us to study the critical scaling of D
near the transition.

B. Size of the symmetry sector

In order to identify the critical filling, we first study how
the size of the symmetry sector scales with L and n. For this
question we can exploit an exact analogy between the number
of states in the symmetry sector and the number of nonde-
creasing lattice paths in a square grid that enclose a fixed area.
The key idea is that one can define a “height field” y(x) defined
for discrete values x by y(x) = ∑

w�x nw [45,51]. This height
field has an end point y(L − 1) = N that is fixed by the total
charge, and an area under the curve

∑
x y(x) = N (L − 1) − P

that is fixed by the dipole moment. Thus, the number of states
in the symmetry sector is equal to the number of such curves
with fixed end point and fixed area. An example is shown in
Fig. 2.

Fortunately, this latter problem has been studied in the
mathematical literature [52–54]. In the limit of large N and
L, the number of nondecreasing integer lattice paths has been
shown to follow [52]

Dsym(N, L, P)

�
(

N + L − 1

N

)
N

(
P;

N (L − 1)

2
,

N (L − 1)(N + L)

12

)

�
√

3

πn(n + 1)L2

(
(n + 1)(n+1)

nn

)L

× exp

[ −6P̃2

n(n + 1)L2(L − 1)

]
. (2)

Here N (v; μ, σ 2) denotes a normal distribution for the vari-
able v with mean μ and variance σ 2, and P̃ = P − N (L −
1)/2 is the dipole moment relative to a coordinate system with

FIG. 2. Analogy between nondecreasing integer lattice paths and
symmetry sector states. The x axis corresponds to position and each
particle corresponds to a one unit move in the y direction. This
construction guarantees that the area bounded between the curve and
the y axis is equal to the dipole moment of the state.

its origin at the center of the system. This expression can be
roughly understood as follows. If the dipole constraint (or, in
analogy, the area constraint) is removed, then the number of
lattice paths can be found by straightforward combinatorics to
be (N + L − 1

N ). Intuitively, symmetric states (lattice paths with
area half of the rectangle) are the most likely, and as L → ∞
the likelihood of a given value of P̃ follows a Gaussian distri-
bution.

Notice, in particular, that at n = 1 the value of Dsym at P̃ =
0 scales with system size as 4L/L2 = 4N/N2.

C. Size of the Krylov sector containing the uniform state

Now that the asymptotic scaling of the size Dsym of the
symmetry sector is understood, we consider the fraction of the
symmetry sector that is occupied by a specific Krylov sector.
In particular, we consider the Krylov sector containing the
uniform state (nx = 1 for all x). This Krylov sector belongs to
the symmetry sector with N = L and P̃ = 0. As we now show,
for this specific Krylov sector we can make use of another
exact analogy to a problem in combinatorics.

In order to find the size of the Krylov sector containing
the uniform state, we draw an analogy to a classic problem
in combinatorics: the number of unique scoring sequences of
an N-team round robin tournament [55,56]. A round robin
tournament is a directed graph in which each of the N nodes
(“teams”) is connected to all N − 1 other nodes, as shown
in Fig. 3. An outgoing (incoming) edge at a particular node
corresponds to that team winning (losing) its matchup with the
team at the other end of the edge. An ordered list of numbers
of outgoing edges from each vertex makes up a “scoring
sequence” for a given tournament graph, that is, a “scoring
sequence” is the rank-ordered record of how many games
were won by each team. We make an analogy to this problem
by relating the number of wins by each of the N teams to the
positions of the N particles in our system.

For example, a tournament in which one team loses
all of their games, one team wins one game, one team
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FIG. 3. Analogy between tournament scoring sequences and
states in the apparent LKS. On the left are tournament graphs for
N = 5 teams, with the score of each team (the number of outgoing
edges) labeled. A given scoring sequence corresponds to a particle
distribution, with the number of wins for each team corresponding
to the position x of a particle. In this analogy, it is clear that U3,±
corresponds to flipping the result of a game between two teams that
that have either the same number of wins (U3,+) or a number of wins
that differ by 2 (U3,−). Note, particles are indistinguishable in our
dynamics and in this figure are only labeled for clarity.

wins two games, and so on would have a scoring se-
quence {0, 1, 2, . . . , N − 1}. In our analogy, this sequence
corresponds to a single particle at each lattice position. Fur-
thermore, the action of a local gate U3,± is analogous to
flipping the outcomes of certain games in the tournament.
If two teams have the same number x of wins (by analogy,
two particles have the same position x) and then the result of
the game between them is flipped, then one team decreases
its win total by 1 and the other team increases its win total
by 1 (one particle hops left to position x − 1 and one hops
right to position x + 1). Thus, by flipping the outcome of this
game we have performed a U3,+ gate centered at the position
x. Similarly, by flipping the outcome of a game in which a
team with x + 1 wins defeated a team with x − 1 wins, we can
effectively apply a U3,− gate. While flipping the outcome of
some games would effectively implement longer-range gates
(if the two teams involved have a number of wins that are
different by more than 2), we show in Appendix A that there
is a one-to-one mapping between the set of states within
this Krylov sector and the set of scoring sequences, so that
the effect of any such long-ranged gate can be equivalently
produced by a sequence of local gates. Thus, we have shown
that the number of states in the Krylov sector that contains the

uniform state is equivalent to the number of unique scoring
sequences in an N-team round robin tournament.

Having made this analogy, we can understand the size of
this Krylov sector by looking up the result for the number
of unique scoring sequences in the mathematical literature.
Specifically, Refs. [55,56] show that

DKS ∼ 4N

N5/2
(3)

at large N � 1.
One can now compare Eq. (3) with the size Dsym of the

corresponding symmetry sector, given by Eq. (2). For the cor-
responding density n = 1 and dipole moment P̃ = 0, Eq. (2)
gives Dsym ∼ 4N/N2, which means that the Krylov sector con-
taining the uniform state occupies a fraction D ∼ 1/N1/2 of
the symmetry sector. From the exponential scaling conjecture
of Sec. III A, a Krylov sector occupying a power-law fraction
of the symmetry sector can only exist precisely at n = nc.
Hence, we conclude that nc = 1.

D. Size of the LKS at n � nc

We now conjecture that the Krylov sector containing the
uniform state, considered in the previous subsection, is pre-
cisely the LKS at n = 1 and P̃ = 0. This conjecture can be
checked by explicit numerical enumeration of all states in
the symmetry sector when L is not too large; this procedure
confirms our conjecture for L � 15.

Another way to motivate the conjecture that the LKS con-
tains the uniform state is to notice that any Krylov sector can
be uniquely labeled by a “fully extended state” for which
no U3,+ operations can be applied. Such a fully extended
state must have nx = 0 or 1 for all 1 � x � L − 2, with any
remaining charges on the boundaries (x = 0 and x = L − 1).
One can show (see Appendix B) that no two different states
satisfying both of these criteria can belong to the same Krylov
sector. By labeling each Krylov sector by its corresponding
fully extended state, we can now identify the LKS by selecting
the fully extended state that allows for the largest number of
other states to be accessed through successive applications
of the U3,− operation. Since the interior of a fully extended
state is sparsely populated, excess particles on the boundary
are effectively trapped for N = L and cannot spread into the
bulk of the system. Therefore, states with many charges on the
boundary are dynamically connected to relatively few other
states. This intuition suggests that the fully extended state
corresponding to the LKS is the one with the least amount
of charge on the boundaries. For the case of N = L, this state
is precisely the uniform one. Hence, the relative size of the
LKS D(n = 1) ∼ 1/

√
L.

Let us now extend this result to the case n < 1, for which
N < L. The key idea is that for n < 1 the LKS still contains
a fully extended state with a long chain of ∼N successive
1’s, surrounded by zeros on either side. Applying gates to this
state may change the occupation numbers in the middle of the
chain, but the surrounding zeros always remain inert. Thus,
the corresponding LKS is very similar to that of a system at
the critical filling and a smaller system size nL.

More precisely, we can argue, using similar logic
as above, that the LKS must either contain the state
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A = {0, . . . , 0, 1, 0, 1, 1, 1, . . . , 1, 1, 1, 0, 1, 0, . . . , 0} if N
and L have the same parity (both odd or both even), or the
state B = {0, . . . , 0, 1, 1, . . . , 1, 1, 0, 1, 1, . . . , 1, 1, 0, . . . , 0}
if N and L have opposite parity. A and B represent “nearly
uniform” states in the case where the number of particles is
not large enough to fill the entire system uniformly. Here we
focus on the case of N and L having the same parity, although
the reasoning for both cases is the same. We now compare
the number of states that are accessible starting from state
A to the number of states that are accessible from a state
with N − 2 centered particles (i.e., removing the leftmost and
rightmost particles from state A) and to the number of states
that are accessible from a state with N + 2 centered particles
(i.e., adding two new particles to fill the empty spaces just
to the right of the leftmost particle and just to the left of
the rightmost particle in state A). Let us refer to the size
of the Krylov sectors containing these two modified states
as DN−2 and DN+2, respectively. The number that we care
about, DLKS, is bounded from below by DN−2 and from above
by DN+2. Since DN±2 describe the number of LKS states
in a system of size N ± 2 with uniform filling nc = 1, it
follows that 4(N−2)/(N − 2)5/2 � DLKS � 4(N+2)/(N + 2)5/2.
From this inequality we conclude that

DLKS ∼ 4nL

(nL)5/2
(4)

for all n � 1.
Equations (2) and (4) allow us to write the relative size D of

the LKS for n � 1 for the case of a symmetric dipole moment
(P̃ = 0):

D = DLKS

Dsym
∼ n + 1

n3/2
√

L

(
(4n)n

(n + 1)(n+1)

)L

. (5)

The second equality corresponds to the limit nL � 1.
Notice that the factor in parentheses, (4n)n/(n + 1)(n+1), is

smaller than unity for all n < 1, and thus the LKS (and subse-
quently all other subsectors) occupies an exponentially small
portion of the symmetry sector as L → ∞. This exponential
scaling is consistent with our conjecture in Sec. III A, and
demonstrates that n < 1 corresponds to strong fragmentation.
Exactly at the critical filling, the relative size of the LKS has
a power-law decay with system size:

D(n = nc) ∼ 1√
L

. (6)

Equations (5) and (6) are verified numerically in Fig. 4.
In Appendix C we generalize the argument in this sec-

tion to arbitrary gate size � � 3, and we obtain nc = 1/(� −
2). In Sec. IV we present an alternative, shorter derivation
of this result for nc by considering a system with periodic
boundary conditions.

E. Numerical results for D

The most straightforward numerical procedure for study-
ing the relative size D of the LKS is to list all the possible
states that have a given N and P and then sort them into their
respective Krylov sectors for � = 3. This type of exact enu-
meration is only possible for sufficiently small L and N since
the size of the symmetry sector grows exponentially in L.

FIG. 4. The relative size of the apparent LKS as a function of
filling n and system size L. (a) For n � 1, the relative size D of
the LKS approaches the scaling suggested by Eq. (5) in the limit
L → ∞ with no fitting parameters. Increasingly dark symbols corre-
spond to progressively larger system size. (b) Exactly at the critical
filling n = 1, D decays as ∼L−1/2. This transition from exponential
decay at n < 1 to power-law decay at n = 1 is indicative of the
thermalization transition.

However, recursive algorithms based on the analogy presented
in the previous subsections, and detailed in Appendix D, can
be used to extend to larger system sizes. In Fig. 4(a) we verify
the scaling of D (for the conjectured LKS) given by Eq. (5) at
n < 1. Figure 4(b) shows the value of D at n = nc = 1, which
verifies Eq. (6).

IV. EXTENSION TO ARBITRARY GATE SIZE

So far we have focused primarily on the case of dynamics
with three-site gates. We now consider the extension of our
results to arbitrary (integer) gate size � � 3. Our goal is to
demonstrate that the critical density nc = 1/(� − 2), as men-
tioned in the Introduction.

Our strategy for proving that nc = 1/(� − 2) is to consider
the case of two slightly different values of n that both ap-
proach 1/(� − 2) in the limit L → 0. We show that the larger
of these two fillings has D → 1 in the limit L → ∞, while
the smaller filling gives D → 0 in the limit L → ∞. This
difference establishes the critical filling nc = 1/(� − 2) in the
limit L → ∞.

Our arguments are considerably simplified by focusing on
the case with periodic boundary conditions, which produces
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FIG. 5. The relative size D of the LKS for systems with periodic boundary conditions, as measured by numeric simulations. The value of
D is plotted as a function of the filling n for different values of the gate size �. Data shown here correspond to system size L = 241 and is
averaged over 1000 random choices of the initial state (see Appendix F for a full description of the simulation protocol). The vertical dashed
lines show the predicted critical filling 1/(� − 2).

the same critical density in the limit L → ∞. In this case,
we should be careful to define the dipole moment modulo
the system size, so that its value is unchanged when, say,
two particles are initially at x = 0 and then one hops to
x = L − 1 while the other hops to x = 1. Thus, for peri-
odic boundary conditions we define the dipole moment as
P = (

∑L−1
x=0 nxx) mod L. If we further restrict our considera-

tion to values of N and L that are coprime, then we can show
that all possible values of P produce equivalent sets of states
and are therefore equivalent to each other. This equivalence
is apparent if one imagines the process of taking a particular
state and shifting the origin of the coordinate axis x. This shift
produces an equivalent state with a different value of P. By
doing such shifts one can reach any value of P, and therefore
when N and L are coprime all possible values of P have the
same Dsym and DLKS.

It is also useful to note that any local �-site gate that
conserves both charge and dipole moment can be decomposed
into a sum of simple gates that correspond to pairs of particles
hopping either toward or away from each other by one site.
That is, we need only consider the successive application of
gates Uk,± = {±1,∓1, 0, . . . , 0,∓1,±1}, where 3 � k � �

and there are k − 4 zeros.
We begin by considering a system with N particles and

a number of lattice sites given by L = N (� − 2) + 1, so that
the average particle density n = [1 − 1/L]/(� − 2) is slightly
smaller than 1/(� − 2). We now imagine the process of pro-
ducing a “fully extended state” starting from an arbitrary
initial state within a particular symmetry sector (we need not
specify the value of P since for the case of periodic boundaries
all values of P are equivalent). Specifically, we repeatedly
apply Uk,+ operators (for 3 � k � �) until there is at most
one particle in every set of � − 2 contiguous sites. (Note
that if any set of � − 2 contiguous sites has more than one
particle, then there is some operator Uk,+ that can be applied.)
This procedure can only produce a single unique final state,
comprising N units of the sequence {1, 0, . . . , 0} with � − 3
zeros, and one additional zero whose position determines the
dipole moment P. Thus, since any arbitrary initial state can be
connected to the same fully extended state, it follows that all
states within the symmetry sector belong to the same Krylov
sector, and hence that D = 1. (Notice that for the case of pe-

riodic boundary conditions we have D = 1 exactly at n � nc,
even for finite L, unlike the case of closed boundary condi-
tions.) In Appendix E we demonstrate more rigorously that
all states with L = N (� − 2) + 1 are dynamically connected
to a unique fully extended state.

Let us now consider the process of constructing a fully ex-
tended state from an initial state with one additional lattice site
L = N (� − 2) + 2, so that n = [1 − 2/L]/(� − 2) is slightly
smaller than in the previous case. Repeated applications of
Uk,+ eventually produce a fully extended state that is similarly
composed of many repeating units {1, 0, . . . , 0} with � − 3
zeros. There are still N such units, but, unlike in the previous
case, there are now two additional zeros to be placed some-
where among them. Since there is more than one extra zero to
be placed, the positions of these extra zeros are not uniquely
specified by the dipole moment P. Indeed, the number of pos-
sible positions for the zeros in the fully extended state grows
linearly with the system size L, and different fully extended
states cannot be evolved one into another. Since there are
an extensive number of fully extended states, each belonging
to a different Krylov sector, it is natural to conclude that
the symmetry sector must become increasingly fragmented as
L → ∞, and consequently that D → 0.

Formally, this last logical step has the status of a conjec-
ture: we are conjecturing that none of the ∼L distinct Krylov
sectors is dominant in the sense of occupying all but an expo-
nentially small portion of the symmetry sector. But, given that
the difference between the various fully extended states that
label the Krylov sectors is only the placement of two zeros,
we consider it to be a very natural conjecture, which implies
that D → 0 in the limit L → ∞.

Thus, since we have demonstrated that a density n =
[1 − 1/L]/(� − 2) produces D = 1 and a density n = [1 −
2/L]/(� − 2) produces D → 0 in the limit L → ∞, it follows
that the critical density must be equal to 1/(� − 2).

We numerically confirm the relation nc = 1/(� − 2) using
simulations of systems with periodic boundary conditions.
Our approach is to begin with a randomly selected initial state
from the symmetry sector with a given P and then repeatedly
apply Uk,+ operations (for 3 � k � �) until the system has
reached a fully extended state. We repeat this process for many
random choices of the initial state, and we estimate D by the
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frequency with which the most commonly encountered fully
extended state is reached. The results are shown in Fig. 5 for
different gate sizes ranging from � = 3 to 7.

V. CRITICAL EXPONENTS OF THE
THERMALIZATION TRANSITION

A. Correlation length exponent

Using the previous result for the critical density nc, we
can explore the critical behavior near the transition. We first
examine the correlation length exponent ν defined by ξ ∝
1/(nc − n)ν . Here, ξ has the meaning of the typical length
of a locally thermalized region within the nonthermalizing
phase n < nc. Within such locally thermalized regions, the
local particle density exceeds nc. As the global density n is
increased towards nc, the typical length of these segments
diverges.

The universal value of the correlation length exponent ν =
2 can be seen by the following simple argument. If the average
particle density of the system is n < nc, then a randomly cho-
sen region of size L0 � 1 has a charge N0 that is drawn from
a probability distribution with mean μ0 = nL0 and a variance
σ 2

0 that is proportional to the number of sites L0 in the region.
In order for the region to be locally thermalized, the number
of charges in the region should exceed ncL0. Such a statistical
fluctuation is reasonably likely only when N0 − μ0 is of order
σ0 or smaller. Equating these two quantities gives an expres-
sion for the typical length ξ = L0 of a locally thermalized
region (n − nc)ξ ∼ √

ξ or, in other words, ξ ∼ 1/(nc − n)2.
At a more precise level, one can calculate the probability

p(n, L0; nc) that a region of length L0 contains at least ncL0

particles. In Appendix G we present a full calculation of
this probability along with numerical results for p(n, L0; nc)
obtained by randomly sampling the symmetry sector. We find
that the probability p(n, L0; nc) decays exponentially at large
L0 as exp(−L0/ξ ), with

ξ � 2nc(nc + 1)

(nc − n)2
. (7)

This result establishes that ν = 2.

B. Dynamical exponent

Our numerical simulations also enable us to estimate
the dynamical exponent zc that describes the characteristic
timescale of the dynamics at the critical point. We charac-
terize the dynamics using the time- and position-dependent
two-point correlation function

C(x, t ) = 〈[
nx0+x(t0 + t ) − n

][
nx0 (t0) − n

]〉
, (8)

where nx(t ) denotes the particle number at site x and time t
and 〈. . . 〉 denotes an average over all choices of x0 and t0.
This correlation function C(x, t ) can be defined by simulating
the dynamics via the circuit in Fig. 1 starting from an initial
state that is chosen randomly from the set of all basis states
in the symmetry sector. We define our unit of time such that
L gates are applied during one time step. Results for C(x, t )
are produced by averaging over many random choices of the
initial state and its subsequent evolution.

FIG. 6. Scaling of the correlation function C(x, t ) at the critical
point n = 1 for dynamics with three-site gates. We scale the value
of the correlation function and the position coordinate by the value
x0(t ) at which the correlation function is first equal to zero. Curves
correspond to different values of the time, logarithmically spaced
from t = 102 (light blue) to 107 (dark blue). The inset shows that
the growth of x0 with t can be fit to a power law with exponent z
larger than 5.

In order to estimate the dynamical exponent, we attempt to
scale the position coordinate and the value of C(x, t ) such that
curves C(x, t ) corresponding to different times t collapse onto
a single curve when plotted as C(x, t )x0 versus x/x0(t ) for
some choice of x0(t ). A natural choice is to define x0(t ) as the
position of the first zero of the correlation function at the time
t , i.e., C(x0(t ), t ) = 0. If we assume that x0(t ) takes the form
of x0(t ) ∼ t1/z, then we can extract the dynamical exponent
zc from fitting this curve. Performing this fit for early times,
10 < t < 105, gives a value zc ≈ 5.2, while doing so at later
times, 105.5 < t < 107, gives zc ≈ 6.2. (The numerical results
in Fig. 6 are converged statistically, in the sense that including
only half as many simulated trajectories in the numerical
average produces an indistinguishable plot.) Therefore, we
can say that estimating zc in this way gives zc = 5.7 ± 0.5.
This result is in qualitative agreement with Ref. [46], which
found a slow dynamical exponent of zc � 7 in a similar sys-
tem with constrained dynamics. This large value of zc should
be contrasted with the universal hydrodynamics x ∼ t1/4 that
has been established in the thermalizing phase for dipole-
conserving fracton systems [43,45,46,57–59].

We caution, however, that our results do not show con-
vincing scaling of the correlation function; even at the latest
times, different curves C(x, t )x0 do not completely collapse
onto each other when plotted as a function of x/x0(t ). Our
numerical results for x0(t ) also show some deviation from the
power-law trend at the largest values of t , toward (perhaps)
larger values of zc. We thus consider that the dynamics at the
critical point remains to be completely understood, and we
leave this for future work.

VI. CONCLUSION

Fracton systems represent a new frontier for the physics of
thermalization and localization, in which the thermalization
transition is driven by kinetic constraints on the dynamics
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rather than by any kind of disorder. While such a transition
can be effected by discrete variables like the size of local
gates or the local Hilbert space dimension at each site [39,42–
45], varying the filling n of the system allows one to access
the thermalization transition as a continuous phase transition
[46]. Here we have provided the first exact solutions for the
filling-induced thermalization transition, focusing on the crit-
ical filling nc and the dynamical exponent ν. The model we
explore differs only slightly from the one in Ref. [46], namely,
by allowing an unlimited (positive) occupation of each site
rather than by restricting each site to occupation numbers
n = 0, 1, 2. This difference has enabled us to exploit exact
analogies to known problems in combinatorics.

It is worth noting that the phenomenology of the tran-
sition in our model coincides with what was demonstrated
in Ref. [46] for the case where the maximal filling at each
site nmax = 2, down to the critical filling. In Ref. [46], the
authors considered the case of gate size � = 4 and they found
a critical filling which was very close to 1

2 = 1/(� − 2). (By
a “particle/hole” symmetry n ↔ nmax − n, their model also
exhibits a transition at n = 3

2 .) While the analogies we used to
derive nc = 1/(� − 2) are not exactly applicable for systems
with finite nmax, there may be straightforward arguments to
extend our result for the critical filling to such systems.

Also similar to Ref. [46], our model exhibits a large ap-
parent dynamical exponent zc. Our best estimate from scaling
of the two-point correlation function gives zc ≈ 5.7 ± 0.5, but
given the imperfect scaling and trend toward larger apparent
values of zc at larger times, we take this value to be a lower-
bound estimate. Reference [46] reports zc ≈ 7 ± 0.5, which
they similarly take as a lower bound. Given these large values
and the imperfect scaling, it may be that the correlation length
at the critical point does not have a power-law scaling with
time, and therefore that zc is not well defined. This conjecture
may be a fruitful focus of future work.
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APPENDIX A: PROOF OF THE ANALOGY BETWEEN THE
NUMBER OF STATES REACHABLE FROM THE UNIFORM

STATE AND THE NUMBER OF TOURNAMENT
SCORING SEQUENCES

In Sec. III C we drew an analogy between the size of
the Krylov sector containing the uniform state (conjectured
to be the LKS) and the number of scoring sequences in a
round robin tournament. In that argument, we demonstrated
that flipping the result of a game is analogous to applying a
dipole-conserving gate. However, this gate only acts on � = 3
contiguous sites if we flip the result of a game between two
teams with the same number of wins (or the reverse of this
operation), as shown in Fig. 7. On the other hand, flipping the
result of a game between, say, a team that has one win and a
team that has seven wins would be equivalent to a seven-site

FIG. 7. Allowed game flips that correspond to three-site dipole-
conserving operations. The game flips on the left correspond to U3,±
and the game flips on the right leave the scoring sequence unchanged
and thus correspond to the identity operation.

gate. In this Appendix, however, we prove that all scoring
sequences can be reached through only three-site operations.

Claim:
(A) All tournaments contain the scoring sequence

{0, 1, 2, . . . , N − 1}. This sequence corresponds to the state
with one particle at every site, which we have argued belongs
to the LKS.

(B) Given a valid scoring sequence {x1, x2, . . . , xN } for an
N-team round robin tournament, if there are two teams i and
i + 1 such that xi = xi+1, one can apply U3,+ and create a new
valid scoring sequence. If there are two teams i and i + m such
that xi + 2 = xi+m, one can apply U3,− and create a new valid
scoring sequence. This establishes that all states in the LKS
correspond to valid scoring sequences.

(C) Starting from any valid scoring sequence for an N
round robin tournament, we can reach the scoring sequence
{0, 1, 2, . . . , N − 1} through the repeated application of U3,+
operators. Therefore, all valid scoring sequences correspond
to a state in the LKS.

Together, (A)–(C) show that all valid scoring sequences
correspond to a state in the LKS and that all states in the
LKS correspond to a valid scoring sequence, thus establishing
a one-to-one mapping between the sets. This mapping guar-
antees that the sets are the same size.

Proof.
(A) For N = 1, the only scoring sequence is {0}. Assume

that {0, 1, 2, . . . , N − 1} is valid for an N-team tournament.
Then, if we add an additional team that beats every other team,
the newly added team will have N wins and no other team’s
score will change. Thus, {0, 1, 2, . . . , N − 1, N} is a valid
scoring sequence for an N + 1 tournament. By induction, part
(A) is proven.

(B) Intuitively, U3,± corresponds to flipping the outcome
of a game with certain conditions, as shown in Fig. 7, and
therefore still produces a valid tournament. More formally,
a valid scoring sequence {x1, x2, . . . , xN } is defined by three
criteria [60]:

(1) 0 � x1 � x2 � · · · � xN � N − 1.

(2) yk = ∑k
i=1 xi �

(k
2

)
.

(3) yN = ∑N
i=1 xi = (N

2

)
.

We will show that the action of a three-site gate preserves
these three conditions. First, condition (3) is always satisfied
under the application of U3,± since both simply shift a win
from one team to another while the total yN remains fixed.
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Now, let us assume that there are exactly m � 2 teams with
the same score, so as to allow for the application of U3,+. By
requirement (1), these teams are consecutive in the scoring
sequence and thus xi < xi+1 = xi+2 = · · · = xi+m < xi+m+1.
Once the U3,+ gate is applied, xi+1 will decrease by one while
xi+m increases by one, leaving the order the same. Conse-
quently, yi+1 through yi+m−1 will all decrease by one while the
remaining yi’s remain the same. Therefore, in order for this
operation to be legal, we must require that the original yi+1

through yi+m−1 satisfy requirement (2) with a strict inequality.
In order to show that this strict inequality is always obeyed,
we will consider by contradiction the case when condition
(2) is an equality for yk with i + 1 � k � i + m − 1 [i.e.,
∃ yk such that yk = (k

2

)
]. One can see the intuitive mean-

ing of this equality condition by noting that any subset of
k teams in a tournament plays exactly

(k
2

)
games amongst

themselves. Therefore, since all of these
(k

2

)
games appear as

wins for teams in that subset condition (2) is an equality when
those k teams lose all games against teams not in the subset.
Since teams in the subset can only beat other teams in the
subset, xi � k − 1 for i � k. For teams outside the subset, this
condition guarantees they win at least k games (as they beat
everyone in the subset) and, therefore, xi � k for i > k. Thus,
if yk = (k

2

)
, then xi � k − 1 for i � k while xi � k for i > k.

Therefore, if condition (2) is equality at k, then xk < xk+1. By
negation, if xk = xk+1 (since xk cannot be greater than xk+1),
then condition (2) is a strict inequality at k. Consequently, if
xi < xi+1 = xi+2 = · · · = xi+m < xi+m+1, then condition (2) is
a strict inequality for yi+1 through yi+m−1 and the U3,+ gate
can be applied.

If we now consider a scoring sequence in which two teams
differ by exactly two points, then it is straightforward to show
that the U3,− operation can be applied. Let xi < xi+1 = · · · =
xi+m < xi+m+1 with xi + 2 = xi+m+1. Then, in this case, the
order is preserved while xi is increased by one and xi+m+1

is decreased by one. Further, the values yi through yi+m are
all increased by one while the rest are unchanged. Thus,
condition (2) is trivially satisfied and the U3,− gate can be
applied.

Since we know that {0, 1, . . . , N − 1} corresponds to the
state of one charge at every site, which belongs to the LKS,
and the application of U3,± (the only operators needed to reach
every state in the LKS) results in a valid scoring sequence,
then every state in the LKS corresponds to a scoring sequence.

(C) Consider an arbitrary scoring sequence. While there
are two teams that have the same score, repeatedly apply the
U3,+ operation, which is always allowed by claim (B). The
only case in which this process terminates is when the scor-
ing sequence {0, 1, . . . , N − 1} is reached. Since this scoring
sequence corresponds to a state in the LKS, and since only
three-site gates were applied, it follows that the original scor-
ing sequence must have also corresponded to a state in the
LKS. Therefore, every valid scoring sequence corresponds to
a state in the LKS.

With both (B) and (C), along with the fact that a scoring
sequence cannot correspond to two different fracton states
and vice versa, we prove that the number of valid scoring
sequences for an N-team round robin tournament is equal to
the number of states in the LKS for N = L.

APPENDIX B: LABELING KRYLOV SECTORS
BY UNIQUE FULLY EXTENDED STATES

As part of the argument for the size of the LKS in Sec. III C,
we state that a Krylov sector can be uniquely labeled by
its corresponding fully extended state, for which no U3,+
operations are possible. Here, we will argue this point more
strongly.

Let us assume, for the sake of contradiction, that there
exists a Krylov sector with arbitrary N , L, and P that con-
tains two fully extended states X and Y . We will denote the
occupation numbers of the two fully extended states as {nX

i }
and {nY

i }.
Since X and Y belong to the same Krylov sector, we can

create a sequence of U3,± operations that connect them. Let
us imagine the sequence of operations that transforms X into
Y . Suppose that the leftmost site in which X and Y differ is
xa for some index a. If we assume, without loss of generality,
that nY

a > nX
a , then the extra particle at site a must have been

taken from sites i > a since X and Y are identical at all smaller
index. Therefore, the sequence of operations that transforms
X into Y must include an operator U3,+ applied at i = a + 1,
which brings the extra particle to site i = a. In order for this
operation to be possible, there must have previously been two
or more particles at site i = a + 1. Since nX

a+1 � 1 (by defi-
nition of a fully extended state), applying U3,+ at i = a + 1
requires again that a particle came from i > a + 1. Repeating
this logic, we see that constructing the state Y apparently
requires an operation U3,+ to be applied at i = L − 2, and thus
nL−2 � 2. Since X is fully extended, nX

L−2 � 1, so applying
U3,+ at i = L − 2 requires that a particle must have come from
the right of it. However, this is impossible since no operation
can be applied on the boundary (i = L − 1). In short, the par-
ticle that arrives at site i = a must be brought from the right,
but by the definition of a fully extended state this extra particle
can be taken neither from the bulk of the state nor from the
rightmost boundary, and thus we arrive at a contradiction. So,
we must have X = Y .

Therefore, there cannot be two fully extended states within
a single Krylov sector, and consequently each Krylov sector
can uniquely be labeled by its corresponding fully extended
state.

APPENDIX C: GENERALIZING THE TOURNAMENT
ANALOGY TO ARBITRARY GATE SIZE

In Sec. III C we made an analogy between the size of the
Krylov sector containing the uniform state and the number of
scoring sequences in a round robin tournament. This analogy
allowed us to prove that nc = 1 for the case of gate size � = 3.
Here we consider the extension of this argument to generic
gate size �. Specifically, we can make an analogy to the
number of scoring sequences in an (� − 2)-fold round robin
tournament, in which each team plays every other team � − 2
times. We will show that the number of scoring sequences in
an N team (� − 2)-fold tournament is equal to the number
of states in the Krylov sector that contains the state X =
{1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1}, where
there are N ones and � − 3 zeros between each one.
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The definition of a scoring sequence {x1, x2, . . . , xN } for
such a tournament is [55]

(1) 0 � x1 � x2 � · · · � xN � (� − 2)(N − 1).
(2) yk = ∑k

i=1 xi � (� − 2)
(k

2

)
.

(3) yN = ∑N
i=1 xi = (� − 2)

(N
2

)
.

We will now generalize the argument laid out in Ap-
pendix A. We begin by noticing that the scoring sequence
{0, � − 2, 2(� − 2), . . . , (N − 1)(� − 2)} satisfies these con-
ditions and corresponds to the state we have called X .
Therefore, we have a mapping between one state in the (� −
2)-fold tournament and a state in the Krylov sector.

Next, it is clear that any �-site gate is equivalent to flipping
the result of a particular game. Therefore, any sequence of
�-site gates that transforms the state X to a different state Y
in the Krylov sector can be represented as a series of game
outcome flips that takes the fully extended scoring sequence
to a different one. This mapping ensures that every state in the
Krylov sector corresponds to a scoring sequence.

Finally, we will show that given a scoring sequence in
which two teams score differ by less than � − 2, applying
Uk��,+ results in a new valid scoring sequence. Begin by as-
suming we start with some scoring sequence {x1, x2, . . . , xN }
where xi + k = xi+m with 0 � k < � − 2 such that a Uk,+ gate
can be applied to take xi → xi − 1 and xi+m → xi+m + 1. As-
sume that there ∃ j with i � j < i + m such that

∑ j
i′=1 xi′ =

y j = (� − 2)
( j

2

)
. This condition guarantees that teams one

through j only win games amongst themselves and lose all
other games. Therefore, since i � j, xi � ( j − 1)(� − 2) and
since i + m > j xi+m � j(� − 2). Consequently, we arrive
at xi+m − xi � � − 2 which contradicts the construction that
xi + k = xi+m with 0 � k < � − 2. Therefore, by contradic-
tion, we see that if two teams differ by 0 � k < � − 2, then
there is no y j = (� − 2)

( j
2

)
and thus applying Uk,+ will result

in a valid scoring sequence satisfying (1)–(3).
This process will only terminate when all teams’ scores

differ by at least � − 2. The resulting scoring sequence is
unique, by the argument in Appendix B, and is precisely X .
Therefore, all scoring sequences are reachable from X . This
mapping ensures that every scoring sequence corresponds to
a state in the Krylov sector.

Together, these arguments form a one-to-one mapping
from states in the Krylov sector containing X to the number
of scoring sequences in an N-team (� − 2)-fold tournament.
Now we can turn to finding the number of scoring sequences
in an N-team (� − 2)-fold tournament.

From the definition given by conditions (1)–(3) above, we
follow the argument laid out in Ref. [61]. First, we restrict
ourselves to considering the case of N = 2M. Then we can
consider two sets of M numbers that fully determine the
original scoring sequence:

(i) ai = xi for 1 � i � M.

(ii) bi = (� − 2)(2M − 1) − x2M+1−i for 1 � i � M.
Here, the ai encode the first M numbers in the scoring

sequence and the bi encode the remaining M. With these
new quantities, we can impose new constraints that imply
conditions (1)–(3). Counting the number of scoring sequences
of this type provides a lower bound for the total number of
scoring sequences.

Assume ai and bi meet the following constraints:

(4)
∑M

i=1 ai = ∑M
i=1 bi.

(5) a1 � a2 � · · · � aM = (� − 2)(M − 1).
(6) ak � (� − 2)(k − 1).
(7) b1 � b2 � · · · � bM = (� − 2)(M − 1).
(8) bk � (� − 2)(k − 1).
From these constraints it is straightforward to show that

(4) implies (3) while (5) and (6) imply (1). Additionally,
constraint (6) implies (2) for k � M. Furthermore, conditions
(7) and (3) imply (2) when M + 1 � k � 2M.

Since conditions (4)–(8) imply (1)–(3), any valid sets of ai

and bi will also correspond to a valid scoring sequence. Thus,
counting the number of valid sets of these new variables gives
us a lower bound on the number of scoring sequences.

Now we notice that if we denote
∑M

i=1 ai = T , then the
total number of sets fulfilling (4)–(8) is given by Z:

DKS

(
n = 1

� − 2
; �, M

)
� Z =

(�−2)M2∑
T =1

f (T ; M, �)2, (C1)

where f (T ) is the number of sets of ai such that (4)–(6)
are satisfied. The square comes from the fact that the bi are
defined in exactly the same manner and have the same sum.
Additionally, the sum T has to be between 1 and (� − 2)M2

[although many of those values will have f (T ; M, �) = 0].
Next, we apply Jensen’s inequality to Eq. (C1) to obtain

Z � 1

(� − 2)M2

⎛
⎝(�−2)M2∑

T =1

f (T ; M, �)

⎞
⎠

2

. (C2)

From this expression we notice that the summation is exactly
the number of nondecreasing lattice paths from the origin
to the point (M − 1, (� − 2)(M − 1)) that stay at or above
the line y = (� − 2)x. This combinatorics problem, the “weak
ballot problem,” is solved exactly by the (� − 2)-Catalan num-
bers [62]:

(�−2)M2∑
T =1

f (T ; M, �) = 1

(� − 2)M + 1

(
(� − 1)M

M

)
. (C3)

Combining Eqs. (C2) and (C3), we obtain

DKS � 1

(� − 2)M2

[
1

(� − 2)M + 1

(
(� − 1)M

M

)]2

� (� − 1)

2π (� − 2)3�M5

(
(M(� − 1))M(�−1)

MM (M(� − 2))M(�−2)

)2

∼ 1

M5

(
(� − 1)(�−1)

(� − 2)(�−2)

)2M

. (C4)

Remembering that N = 2M we arrive at

DKS � 1

N5

(
(� − 1)(�−1)

(� − 2)(�−2)

)N

. (C5)

Now that we have have a lower bound for the size of the
Krylov sector, we can obtain an upper bound from the size
of the symmetry sector. By construction, we have L = (� −
2)(N − 1) + 1, which corresponds to n = 1/(� − 2) in the
limit of infinite system size. At this density, the size of the
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symmetry sector is given by Eq. (2):

Dsym ∼ 1

L2

(
(n + 1)(n+1)

nn

)L

∼ 1

N2

⎛
⎝(

1
�−2 + 1

)( 1
�−2 +1)

1
�−2

1
�−2

⎞
⎠

(�−2)N

∼ 1

N2

(
(� − 1)(�−1)

(� − 2)(�−2)

)N

. (C6)

With this expression, we now have an upper and lower bound
on the size of the Krylov sector, both of which have the same
exponential factor. Putting these together gives a relative size
of the Krylov sector

DKS ∼ 1

Nα

(
(� − 1)(�−1)

(� − 2)(�−2)

)N

(C7)

with 2 � α � 5. The lower bound on DKS can be tightened
directly from Ref. [55] to 2 � α � 5

2 . From this expression,
along with the conjecture that D is exponentially small below
nc and 1 − D is exponentially small above nc, we can extract
the critical filling. It is clear that at n = 1/(� − 2) the symme-
try sector and a Krylov sector both have the same exponential
scaling. Therefore, at this density, we have found a Krylov
sector that makes up a power-law fraction of the symmetry
sector and, thus, nc = 1/(� − 2).

If we further conjecture that α = 5
2 is constant in � and that

the Krylov sector we are considering is the largest one (using
arguments similar to those in the main text), then we can
obtain the scaling of D for n � nc. With these assumptions,
we arrive at

D ∼ n + 1

n3/2
√

L

⎛
⎝( (�−1)(�−1)

(�−2)(�−2) n
)n

(n + 1)(n+1)

⎞
⎠

L

(C8)

for n � nc = 1/(� − 2).

APPENDIX D: ALGORITHM FOR DETERMINING
THE SIZE OF LARGEST KRYLOV SECTOR

This Appendix is largely based on Ref. [63] and general-
izes the result from N = L to any N and L such that either
N � L or (N + L) = 1 (mod 2). Reference [63] presents a
recursive algorithm for calculating the number of unique scor-
ing sequence in an N round robin tournament. It begins by
defining a function fM (P, y) that counts the number scoring
sequences 0 � x1 � x2 � · · · � xN = y with the following
constraints:

(1)

N∑
i=1

xi = P. (D1)

(2)

k∑
i=1

xi �
(

k

2

)
. (D2)

Notice that fN (N (N − 1)/2, N − 1) is the number of scor-
ing sequences for an N-team round robin tournament in which
the maximum score is N − 1. To find the total number of
scoring sequences one can simply sum fN (N (N − 1)/2, k)
for �(N − 1)/2� � k � N − 1. This quantity can be calcu-
lated by now noticing the following recursive definition for
fM (P, y):

f1(P, y) =
{

1 if P = y � 0,

0 otherwise,
(D3)

fM (P, y) =
{∑P

k=0 fM−1(P − y, k) if P − y �
(M−1

2

)
,

0 otherwise.
(D4)

This prescription allows for efficient calculation of the
function fM (P, y) and, therefore, the number of unique scoring
sequences. We can then use our analogy between the number
of scoring sequences and the size of the LKS in order to
extend this algorithm to calculating the size of the LKS for
any N and L such that either N � L or (N + L) = 1 (mod 2).
In order to extend this formula, we notice that Eq. (D2)
reaches equality for all k exactly with the scoring sequence
{0, 1, 2, . . . , N − 1}. In the analogy to fractons, this scoring
sequence corresponds to the uniform state. We notice that this
is the fully extended state (see Appendix B). Further, since all
states in the LKS can be reach from the uniform state through
only the applications of Uk,− operations, we are able to define
a similar constraint based on this unique state [for all of the
LKS for any N and L such that either N � L or (N + L) =
1 (mod 2)]. If we label the fully extended state in the LKS
as X = X1, X2, . . . , XN (where 0 � Xi � Xi+1 � N − 1), then
Eq. (D2) becomes

k∑
i=1

xi �
k∑

i=1

Xi. (D5)

Therefore, we can define a new equation z(N, L, k) =∑k
i=1 Xi based on the fully extended X in the LKS with N

and L. Then, we have a new recursive function gM (N, L, P, y),
defined as

gM (N, L, P, y) =
{

1 if P = y � 0,

0 otherwise,
(D6)

gM (N, L, P, y)

=
{∑P

k=0 gM−1(P − y, k) if P − y � z(N, L, k),
0 otherwise.

(D7)

With this new function, we now have an efficient way in which
to calculate number of states in the LKS:

LKS(N, L) =
N−1∑
k=0

gN (N, L, N (L − 1)/2, k). (D8)

While this method will work generally for any P, we restrict
ourselves to thinking about the case of P = N (L − 1)/2 in
which we have a conjectured structure of the fully extended
state.
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APPENDIX E: UNIQUENESS OF THE FULLY EXTENDED
STATE FOR PERIODIC BOUNDARY CONDITIONS

In this Appendix we consider the question of whether a
fully extended state can exist, and whether it is unique, when
the system has periodic boundary conditions. We focus on
the case where the gate size � = 3. A fully extended state
is defined as a state for which no operations U3,+ can be
applied. For the case of closed boundary conditions, it is
clear that a sequence of repeated applications of the operator
U3,+ must eventually terminate since each application of U3,+
increases the system’s quadrupole moment Q = ∑

x nxx2 by
two. Therefore, since the fully extended state has a finite value
of Q, there can be no infinite cycle of U3,+ gates and, thus, a
fully extended state must exist. However, when the system has
periodic boundaries Q can only be defined (mod L2), and thus
the previous argument does not guarantee the existence of a
fully extended state. In the remainder of this Appendix we
demonstrate that any state with N < L cannot be subjected to
an infinite cycle of U3,+ operators, and thus it must eventu-
ally reach a fully extended state consisting of only zeros and
ones. We then show that this fully extended state is uniquely
specified for a given starting state.

Consider an arbitrary starting state with some given values
of N , L, and P (mod L). For the sake of contradiction, assume
that there are an infinite set of U3,+ gates that never reach a
fully extended state. Since there are a finite number of states,
there must be some state X that returns to itself after a finite
set of gates have been applied. Let us denote the number of
U3,+ gates applied at site x in during cycle as ax. It is clear
that since the charge is conserved during cycle,

ax−1(modL) − 2ax + ax+1(modL) = 0 for all x.

The only solution to this set of equations is a0 = a1

= · · · = aL−1 = a. Therefore, any cycle consists of the same
number of U3,+ operations being applied at every site. Now,
imagine marking a particle any time it is moved by one of
these gates in the cycle. The first gate marks two particles. If
the next gate is not applied to a site immediately adjacent to
the first, then it will also mark two new particles, while if it
is applied to a site adjacent to the first gate it will mark at
least one new particle. In general, a gate will mark at least
two minus the number of gates previously applied adjacent
to that site. Therefore, by the time a gate has been applied to
every position, which is guaranteed whenever a > 0, there are
at least L marked particles. Thus, any infinite cycle requires
that N � L. Conversely, for N < L, the repeated application
of U3,+ gates must eventually terminate by producing a state
for which no site x has nx > 1, i.e., a fully extended state.
Therefore, for the cases considered in Sec. IV, N = L − 1 and
N = L − 2, a fully extended state is guaranteed to exist.

We can now prove that the fully extended state is unique,
following a proof presented in Ref. [64]. Consider an arbitrary
initial state with N < L and assume for the sake of contra-
diction that there are two different sequences of U3,+ gates
that reach different fully extended states. We can denote the
sequences of U3,+ operations by X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , ym}, where xi (yi) denote the position of the ith
gate in the first (second) set of gates. Since the two sequences
reach different final states starting from the same initial state,

there must be some first instance k, where xk �= yk . Since a
gate can be applied at xk to the state reached after the first
k − 1 gates, there must be at least two particles at xk . Since the
final state will not have two particles at any site, there must be
some future gate such that k′ is the next instance in Y where
yk′ = xk to ensure that this site eventually reaches less than
two. So, despite not applying the gate to xk at the kth step,
there must be some future step k′ that does.

Since this gate is applied later in the Y sequence, we
can modify the order of this sequence by moving yk′ to the
kth position. This move changes the Y sequence to Y ′ =
y1, . . . , yk−1, yk′ , yk, yk+1, . . . , yk′−1, yk′+1, . . . , ym. This new
sequence is still valid since we know that yk′ = xk is a valid
gate to apply at step k since Y is the same as X up to this
point. Further, since there are no yi = yk′ for k � i < k′, and
all other positions have a charge greater than equal to what
its value would have been without the application of yk′ , the
remaining gates are allowed. Therefore, Y ′ contains all the
same gates as Y , and so reaches the same final state, but is now
identical to X up to at least the first k + 1 gates. By repeating
this procedure of swapping the order of gate application in Y ,
we will eventually reach a point when the new sequence is
equal to X . At this point, it is clear that X and Y must be the
same up to the order of the gates applied. Therefore, the fully
extended states that they reach must be identical.

These two proofs together establish that a system with
periodic boundary conditions has a unique fully extended state
any time N < L. In fact, the arguments presented here can
be equally applied to the case of closed boundary conditions,
which recovers the result presented in Appendix B.

APPENDIX F: ALGORITHM FOR SELECTING
A RANDOM STATE

Here we present an algorithm for selecting a random state
from the symmetry sector with a particular charge N and

FIG. 8. Numerically estimated probability that a segment of
length L0 segment has particle density n � nc. We generate 375
random states with L = 10 000 with values of the average density
n ranging from 0.6 (bottom curve) to 0.8 (top curve). For each
curve, we sample 100 random segments of length L0 and calculate
the probability that the segment is locally thermalized (its density
exceeds nc = 1). Our numerical results closely match the theoretical
result of Eq. (G1), and they display exponential decay with L0 in the
range 1 � L0 � L.
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dipole moment P. If we consider periodic boundary con-
ditions, then generating a random state for a system with
GCD(N, L) = 1 can be done as follows:

(1) Draw a random variable N0, which corresponds to
the number of particles at the first site of the system.
N0 is drawn from the probability distribution p(N0) =(N−N0+L−2

L−2

)
/
(N+L−1

L−1

)
which comes from the number of states

for the remaining N − N0 particles on the L − 1 sites divided
by all possible states. Place N0 particles at the first site.

(2) Consider the remaining sites and particles of the sys-
tem, i.e., update N → N − N0 and L → L − 1.

(3) Repeat steps 1 and 2 until N and/or L reaches 0.
(4) The resulting state has some dipole moment P. If we

shift all of the particles one space to the right, then we will in-
crease the dipole moment by N which is guaranteed to change
the dipole moment since P is defined modulo L. Continue
shifting the state until the desired P is reached.

APPENDIX G: DERIVATION OF THE CORRELATION
LENGTH EXPONENT

In the main text we give a heuristic argument for the cor-
relation length exponent ν = 2. Here we make that argument
more rigorous. To do so, we calculate the probability that a
given segment of a state is locally thermalized, i.e., it has
a filling that exceeds the critical value. If there is a well-
defined correlation length ξ , this probability should decay
exponentially with the size of the segment, and the expo-
nential decay constant defines ξ . As before, we will assume
that GCD(N, L) = 1. This assumption ensures that to create
a random state (detailed in Appendix F) one can ignore the
dipole constraint and then circularly shifting the origin of
the coordinate axis. Therefore, the probability p(n, L0) that
a segment of length L0 contains at least N0 = ncL0 particles is
given by

p(n, L0) =
N∑

N0=ncL0

(N0+L0−1
L0−1

)(N−N0+L−L0−1
L−L0−1

)
(N+L−1

L−1

) . (G1)

In Fig. 8 we compare this expression with results obtained from numerical simulations, which show strong agreement.
Equation (G1) can be rearranged to obtain

p(n, L0) = N!(L − 1)!

(L0 − 1)!(L − L0 − 1)!(N + L − 1)!

N∑
N0=ncL0

(N0 + L0 − 1)![(n + 1)L − N0 − L0 − 1]!

N0!(N − N0)!

= N!(L − 1)![(nc + 1)L0 − 1]![(n + 1)L − (nc + 1)L0 − 1]!

(L0 − 1)!(L − L0 − 1)!(N + L − 1)!(ncL0)!(nL − ncL0)!

N−ncL0∑
N ′

0=0

N ′
0∏

i=1

[(nc + 1)L0 − 1 + i](nL − ncL0 − i)

(ncL0 + i)[(n + 1)L − (nc + 1)L0 − 1 − i]
.

(G2)

Roughly, the expression inside the summation on the last line contributes most when N ′
0, and thus i, is small with respect to

nL − ncL. Therefore, the product simplifies to {n(nc + 1)/[nc(n + 1)]}N ′
0 in the limit of 1 � L0 � L and fixed n. Therefore,

p(n, L0) � N!(L − 1)![(nc + 1)L0 − 1]![(n + 1)L − (nc + 1)L0 − 1]!

(L0 − 1)!(L − L0 − 1)![(n + 1)L − 1]!(ncL0)!(nL − ncL0)!

N−ncL0∑
N ′

0=0

(
n(nc + 1)

nc(n + 1)

)N ′
0

� N!L![(nc + 1)L0]![(n + 1)L − (nc + 1)L0]!

(L0)!(L − L0)![(n + 1)L]!(ncL0)!(nL − ncL0)!

L0(L − L0)[(n + 1)L]

L(nc + 1)L0[(n + 1)L − (nc + 1)L0]

nc(n + 1)

nc − n

� N!L![(nc + 1)L0]![(n + 1)L − (nc + 1)L0]!

(L0)!(L − L0)![(n + 1)L]!(ncL0)!(nL − ncL0)!

nc(n + 1)

(nc + 1)(nc − n)
. (G3)

Through several applications of Stirling’s approximation and subsequently taking the limit where L and L0 go to infinity we
arrive at

p(n, L0) � nc(n + 1)

(nc + 1)(nc − n)

√
nL(nc + 1)[(n + 1)L − (nc + 1)L0]

2πL0(L − L0)(n + 1)nc(nL − ncL0)
exp

(
−nL(nc + 1)[(n + 1)L − (nc + 1)L0]

L0(L − L0)(n + 1)nc(nL − ncL0)

)

×
(

nn[(n + 1)L − (nc + 1)L0](n+1)

(n + 1)(n+1)(L − L0)(nL − ncL0)n

)L(
(nc + 1)(nc+1)(L − L0)(nL − ncL0)nc

nnc
c [(n + 1)L − (nc + 1)L0]nc+1

)L0

� n + 1

nc − n

√
nc

2π (nc + 1)L0

(
(nc + 1)(nc+1)nnc

nnc
c (n + 1)nc+1

)L0

= n + 1

nc − n

√
nc

2π (nc + 1)L0
e

ln
(

(nc+1)(nc+1)nnc

nnc
c (n+1)nc+1

)
L0

≡ n + 1

nc − n

√
nc

2π (nc + 1)L0
e−L0/ξ . (G4)
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This last expression defines the correlation length by equating the exponential factor in the expression for p(n, L0) with
exp[−L0/ξ ]. Therefore, we arrive at

ξ (n) � −1

ln
( (nc+1)(nc+1)nnc

nnc
c (n+1)nc+1

) � 2nc(nc + 1)

(n − nc)2
. (G5)

This last equality corresponds to the limit nc − n � nc, and recovers the expected result ν = 2.
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