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Competing spin-valley entangled and broken symmetry states in the N = 1 Landau level of graphene
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The nature of states in the quantum Hall regime of graphene in higher Landau levels remains poorly under-
stood partly because of the lack of a model that captures its valley-dependent symmetry breaking interactions.
In this paper we develop systematically such a model, which interestingly, and in contrast to the N = 0 Landau
level, features not only pure δ function interactions, but also some of its derivatives. We show that this model can
lead to qualitatively new ground states relative to the N = 0 Landau level, such as ground states with entangled
spin and valley degrees of freedom that compete with simpler broken symmetry states. Moreover, at half-filling
we have found a new phase that is absent in the N = 0 Landau level which combines characteristics of a
valence-bond solid and an antiferromagnet. We discuss the estimation of parameters of this model based on
recent compressibility experiments.
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I. INTRODUCTION

The quantum Hall regime in graphene realizes a rich land-
scape of broken symmetry and topological states, stemming,
in part, from the near fourfold degeneracy of its Landau
levels (LLs) associated with its valley and spin degrees of
freedom [1]. Most studies to date have focused in the N =
0 LL with transport and magnon transmission experiments
favoring an antiferromagnetic (AF) state at neutrality [2–6],
whereas scanning tunnel microscope (STM) experiments re-
porting evidence for Kekulé-type valence-bond solids and
charge density-wave states (CDW) [7–9].

However, the nature of states realized in the N = 1 LL and
higher LLs of graphene remains a widely open problem. Un-
derstanding these higher Landau levels is important because
they could harbor fundamentally new quantum states of matter
with no analogs in other material platforms. For example,
Ref. [10] reported evidence for even denominator states in the
N = 3 LL of monolayer graphene. This is a highly unusual
observation because in traditional two-dimensional electron
systems there are no fractional quantum Hall (FQH) states at
such high Landau levels but rather broken symmetry states,
such as stripes tend to appear [11]. The fact that non-Abelian
FQH states tend to appear in higher Landau levels, makes the
case for truly exotic states [10] a provocative one.

But one of the main obstacles that hinders developing
a precise understanding of these intriguing higher LLs of
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graphene is the lack of a model that systematically cap-
tures their valley-dependent symmetry-breaking interactions.
Therefore, one of the main purposes of our paper is precisely
to derive such a model. We will show that, interestingly and in
contrast to the N = 0 LL [12], the N = 1 LL model contains
interactions that are not pure δ functions [13].

Our second important goal will be to determine the ground
states of this model at various partial integer fillings. We
will show that these states can be qualitatively distinct from
those realized in the N = 0 LL. For example, at quarter-filling
(to be denoted by ν̃ = 1). We will show that the model can
have ground states that are spin-valley entangled. Moreover,
when two components are filled (to be denoted by ν̃ = 2), we
will show that a new type of Kekulé-antiferromagnetic state
appears which is absent in the N = 0 LL. We will see that
based on the parameters estimated in Ref. [13], graphene is
expected to be in a delicate competition between an AF and a
CDW state. However, as we will discuss, these parameters are
possibly missing some important terms.

II. MODEL AND SYMMETRIES

Although the long-range part of the Coulomb interaction is
typically the dominant term in the Hamiltonian, it possesses a
large degree of symmetry that leaves the quantum Hall ground
states undetermined. Therefore, it is crucial to account for the
corrections that reflect the lower symmetry of the underlying
graphene lattice to select the ground states [1,12,14–18]. A
convenient model to capture these symmetry-breaking inter-
actions in the N = 0 LL was introduced by Kharitonov in
Ref. [12]. This model can be viewed as a projection into the
N = 0 LL of a more general model introduced by Kharitonov
[12] and Aleiner et al. [19] that includes all possible δ-
function interactions allowed by symmetries. There is no
study to this date that has constructed an analogous model
in the N = 1 LL that includes all possible short-distance
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FIG. 1. (a) Graphene unit cell and its lattice symmetries (top)
and its reciprocal unit cell (bottom). (b) Phase diagram at ν̃ = 1. It
contains four phases: CDW, KD, and the two entangled phases, the
AFI and the CAF.

interactions allowed by symmetry, although a related model
containing some of these terms was introduced in Ref. [13].

We begin by reviewing the continuum model of short-range
symmetry-breaking interactions of Aleiner et al. [19] in the
absence of a magnetic field. This is described by the following
Hamiltonian:

H = HD + HC + HA, (1)

with

HD = vF

∑
i

(
τ i

z pi
xσ

i
x + pi

yσ
i
y

)
(2)

being the linearized single-particle Hamiltonian around the
Dirac points,

HC =
∑
i< j

e2

ε|ri − r j | ,

the Coulomb interaction, and

HA =
∑
i< j

⎧⎨
⎩

∑
α,β

VαβT i
αβT j

αβ

⎫⎬
⎭δ(ri − r j ), (3)

the sublattice-valley-dependent interactions. We have defined
T i( j)

αβ = τ
i( j)
α ⊗ σ

i( j)
β ⊗ si( j)

0 , and τ
i( j)
α , σ

i( j)
β , si( j)

0 α, and β =
0, x, y, z to be the Pauli matrices acting on valley, sublattice,
and spin, respectively.

By denoting the valley (sublattice) states as |τ 〉(|σ 〉) with
τ (σ ) = ±1 corresponding to the K, K ′ (A, B) valleys (sublat-
tices), then the action of lattice symmetry on these states is
given by

C6|τ, σ 〉 = Z−τσ |−τ,−σ 〉,
Mx|τ, σ 〉 = |τ,−σ 〉,

(4)
My|τ, σ 〉 = |−τ, σ 〉,

TR1,2 |τ, σ 〉 = Z±τ |τ, σ 〉,
with Z = ei(2π/3). C6 is the rotation by π/3, Mx, and My the
two mirrors and TRi the translations by the two basis vectors
of graphene [see Fig. 1(a) for the illustration of these sym-
metries]. These symmetries reduce the couplings of Eq. (3) to

nine independent couplings satisfying the following relations
[19]:

F⊥z ≡ Vxx = Vyx,

Fz⊥ ≡ V0x = Vzy,

F⊥⊥ ≡ Vxz = Vy0 = Vyz = Vx0,

F0⊥ ≡ Vzx = V0y,

F⊥0 ≡ Vyy = Vxy,

Fzz ≡ V0z,

Fz0 ≡ Vz0,

F0z ≡ Vzz. (5)

III. PROJECTED MODEL IN THE N = 1 LANDAU LEVEL

By projecting HA from Eq. (1) with the constraints in
Eq. (5), one obtains the following Hamiltonian of symmetry-
breaking interactions in the N th LL:

HN
A =

∑
i< j

{
V N

z (ri j )τ
i
zτ

j
z + V N

⊥ (ri j )τ
i
⊥τ

j
⊥
}
, (6)

with τ i
⊥τ

j
⊥ = τ i

xτ
j

x + τ i
yτ

j
y (see section S-II of [20] for fur-

ther details). As we see, there is an effective U (1) valley
conservation arising from the underlying lattice symmetries.
Specifically, for the N = 1 LL we have

Vz,⊥(ri j ) =
2∑

n=0

gz,⊥
n ∇2nδ(ri j ). (7)

Here gz,⊥
n are independent constants that parametrize the pro-

jected interactions that are linear combinations of those in
Eq. (5) [20]. Therefore, we have a model with six independent
parameters characterizing the interactions in the N = 1 LL, in
contrast to the more restricted model of Ref. [13] with only
two parameters. The model of Ref. [13] is a special case of
our Eq. (7) in which gz

0,1 = g⊥
0,2 = 0. Note, in particular, that

in our model the n = 0 terms in Eq. (7) are pure δ-function
interactions, which are absent in Ref. [13] (see section S-IV
of [20] for further details).

On the other hand, if we project HA onto the N = 0 LL
we obtain the model from Ref. [12] for which the interactions
would include only pure δ functions (see section S-II of [20]
for further details),

Vz,⊥(ri j ) = gz,⊥δ(ri j ). (8)

Therefore, the main difference between the model of Eq. (7)
for the N = 1 LL and the model of Ref. [12] for the N = 0 LL
is the existence of interactions which are not pure δ functions.1

As we will show, this leads to several important differences in
the physics of these two Landau levels.

1We are neglecting Landau-level mixing effects that can generate
interactions with a longer range than δ functions as explained in
Ref. [21].
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IV. MEAN-FIELD GROUND STATES

We will now derive the Hartree-Fock (HF) functional for
the Hamiltonian of Eqs. (6) and (7) and obtain the phase
diagram in the integer fillings of the N = 1 LL, ν̃ = 1 (ν̃ = 2)
when one (two) out of the four valley-spin degenerate LLs are
filled.2 We consider the competition of translational invariant
integer quantum Hall ferromagnets that can be described
by a particle-hole condensate order parameter of the form
〈c†

X1τ1s1
cX2τ2s2〉 = Ps1s2

τ1τ2
δX1,X2 with Xi labeling intra-LL guiding

center coordinates. Here c†
Xτ s denotes the electron creation

operator with valley τ and spin s, and P is the projector in
spin-valley space into either a one-dimensional subspace
(for ν̃ = 1) or a two-dimensional subspace (for ν̃ = 2).
The general form of the Hartree-Fock functional is then
(EHF[P] ≡ 2A

N2
φ

EHF[P]),

EHF[P] =
∑

i=x,y,z

[
uH

i (Tr{TiP})2 − uX
i Tr{(TiP)2}], (9)

with uH,X
⊥ = uH,X

x = uH,X
y . Therefore, the possible ground

states depend only on four effective Hartree and exchange
constants, uH

z , uX
z , uH

⊥, uX
⊥, which are linear combinations

of the constants gz,⊥
n that appear in Eq. (7). Moreover, whereas

in the N = 0 LL the Hartree and the exchange constants are
forced to be equal, uH

z,⊥ = uX
z,⊥ [12], in the N = 1 LL they are

independent due to the appearance of non-δ interactions (see
section S-III of [20] for further details). Similar functionals
have been proposed, however, phenomenologically for the
N = 0 LL to capture the physics beyond the δ functions in
Refs. [21,22].

We will consider general spin-valley entangled variational
states [21–24]. The following two orthonormal spinors can be
used to uniquely parametrize the state characterized by P in
Eq. (9),

|F 〉1 = cos
a1

2
|η〉|s〉 + eiβ1 sin

a1

2
|−η〉|−s〉,

|F 〉2 = cos
a2

2
|η〉|−s〉 + eiβ2 sin

a2

2
|−η〉|s〉. (10)

Here |η〉 and |s〉 are states parametrized by unit vectors η

and s in the spin and valley Bloch spheres, respectively, and
a1,2 and β1,2 are real constants. Note that, in general, these
states might not be separable into a tensor product of spin and
valley components and, therefore, can account for spin-valley
entanglement [22]. For ν̃ = 1, we take P = |F1〉〈F1|, and for
ν̃ = 2, P = |F1〉〈F1| + |F2〉〈F2|.

V. GROUND STATES FOR ν̃ = 1

As discussed in Ref. [22], the energy functional in this case
reduces to

E ν̃=1
HF = cos2 a1

{
�zη

2
z + �⊥η2

⊥
}
, (11)

with �z = uH
z − uX

z , �⊥ = uH
⊥ − uX

⊥, and η2
⊥ = η2

x + η2
y (see

section S-V-A) of [20] for further details). The resulting

2The partial filling of ν̃ = 3(ν̃ = 2) is equivalent to ν̃ = 1(ν̃ = 4)
by a particle-hole conjugation.

TABLE I. Competing states at ν̃ = 2 and their wave functions.

States appearing at ν̃ = 2

States Wave functions {|F 〉1, |F 〉2}

CDW {|ẑ〉 |s〉, |ẑ〉 |−s〉}
KD {|η⊥〉 |s〉, |η⊥〉 |−s〉}
Ferromagnet {|ẑ〉 |s〉, |−ẑ〉 |s〉}
AF {|ẑ〉|s〉, |−ẑ〉|−s〉
Kekulé antiferromagnet (KD-AF) {|η⊥〉|s〉, |−η⊥〉|−s〉}

phase diagram is shown in Fig. 1(b) and contains four phases.
These are a CDW with η = ẑ, s = ẑ, and a1 = 0, and a
Kekulé distortion (KD) state with η = η⊥, s = ẑ, and a1 = 0.
Interestingly, we see that also spin-valley entangled phases
with a1 = π/2, appear when �z > 0 and �⊥ > 0. These
entangled phases are degenerate in the absence of Zeeman
fields, but in their presence, they split antiferrimagnetic
phase (AFI) with η = ẑ, s = ẑ, and a1 = π

2 and the canted
antiferromagnet (CAF) with η = η⊥, s = ẑ, and a1 = π

2 as
discussed in Ref. [22].

Note that in the N = 0 LL, �z = �⊥ = 0, and, therefore,
all of the above states would be degenerate and with a vanish-
ing HF energy.

VI. GROUND STATES FOR ν̃ = 2

The HF functional for ν = 2 is more difficult to minimize
analytically. To make progress, we first consider the subset of
states from Eq. (10) without spin-valley entanglement. These
can be classified into the valley active states [25],

|F 〉1 = |η1〉|s〉, |F 〉2 = |η2〉| − s〉, (12)

in which the valley degree of freedom varies, and the spin
active states,

|F 〉1 = |η〉|s1〉, |F 〉2 = |−η〉|s2〉, (13)

in which the spin degree of freedom varies. We first minimize
the energy functional within this subspace and then perform
a quadratic expansion of all possible deviations of parameters
that account for spin-valley entangled states (see sections S-
V-B), VI, VII of [20] for further details. For simplicity we will
also neglect the Zeeman term that is typically weak compared
to the interaction terms [2,26,27]. In contrast to ν̃ = 1 for
ν̃ = 2 we find that whenever a spin-valley disentangled state is
energetically favorable it is also an exact local minima of the
energy with respect to all possible quadratic deviations that
include spin-valley entanglement. This indicates that these
spin-valley disentangled states are also possibly exact global
minima of the energy.

Following this procedure, we find a total of five possible
ground states for ν̃ = 2 that are realized as a function of the
four Hartree and exchange parameters uH

z , uX
z , uH

⊥, and uX
⊥.

These possible five states are listed in Table I (see section
S-V-B) of [20] for further details). To visualize the energetic
competition among these five phases, we have chosen to
draw two-dimensional phase diagrams as functions of the two
Hartree parameters ũH

z,⊥ = uH
z,⊥/|�z − �⊥| for fixed values of

�z = uH
z − uX

z and �⊥ = uH
⊥ − uX

⊥. We find that there are a
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FIG. 2. (a) Phase diagram at ν̃ = 2 when �z < 0, �⊥ >

0, and|; �z < �⊥ for �z/�⊥ = −1. According to the estimates of
Ref. [13] (see section S-II of [20] for further details), graphene
is located at the dot at the origin and, therefore, at the boundary
between the CDW and AF phases. (b) Phase diagram at ν̃ = 2
when �z, �⊥ > 0, �z < �⊥ for �z/�⊥ = 1/2. This contains a
new phase, the KD-AF, which does not appear in the N = 0 LL.
The thick black boundaries represent special first-order transitions
(phases become unstable coincidentally with their energy crossing)
whereas the orange ones indicate ordinary first-order transitions (en-
ergies cross but phases remain metastable).

total of seven different kinds of phase diagrams depending
on the values and signs of �z,⊥. Two of these representative
phase diagrams are depicted in Fig. 2, and the remainder
are presented in (see section S-V-B) of Ref. [20] for further
details).

Interestingly, according to the model and the estimates of
Ref. [13], uH

z = uH
⊥ = 0, uX

z > 0, and uX
⊥ < 0 (see section

S-IV of [20] for further details). This means that graphene in
the N = 1 LL would have a phase diagram, such as the one in
Fig. 2(a), and it would be located exactly at the origin of this
phase diagram, which we indicate by a black dot in Fig. 2(a).
Therefore, we see that the model and the parameter estimates
of Ref. [13] place graphene right at the boundary between the
CDW and the AF states. We note that even at this boundary,
these phases remain stable against spin-valley entangled
rotations (see section S-VII of [20] for further details).

One of the interesting qualitative differences that we have
found in the N = 1 LL is the existence of a new phase that fea-
tures a combination of Kekulé state and antiferromagnet, that
we term the KD-AF. In this phase one set of electrons has an
XY vector in the valley sphere with spin up whereas the others
occupy the opposite valley vector with spin down as described
in Table I. This phase occupies the red region in Fig. 2(b).

In Figs. 2(a) and 2(b) the phase transitions represented
by black thick lines are a special type of first-order tran-
sitions, in the sense that at these lines the energy of two
states is the same, and the quadratic expansion around them
indicates an instability (or, in other words, the states do not
remain metastable upon crossing this line). This makes these
boundaries interesting as they are expected to be highly sen-

sitive to perturbations which could lead to new phases or
phase coexistence as discussed in Ref. [21], and they could
harbor larger symmetries, as in the SO(5) symmetry in the
AF-Kekulé transition found in the N = 0 LL [28]. The phase
transitions represented by orange lines indicate ordinary first-
order transitions, namely, at these lines there is an energy
crossing between two states but both of these states remain
metastable in the immediate vicinity of these lines.

VII. DISCUSSION

We have constructed a general model consistent with the
lattice symmetries of graphene that describes the short-range
corrections to the Coulomb interaction in its higher LLs. We
have applied, in particular, this model to determine the sponta-
neous symmetry-broken ground states at integer fillings of the
N = 1 LL. We have found several important qualitative dif-
ferences with respect to the N = 0 LL. First, we showed that
when a single component of the N = 1 LL is filled (ν̃ = 1),
our model can lift the degeneracy to select the ground states, in
contrast to the N = 0 LL where states remain undetermined.
Moreover, interestingly, among the possible competing states
at ν̃ = 1, we find that spin-valley entangled phases can ap-
pear. On the other hand, when two components are filled
(ν̃ = 2), we have found a qualitatively new state that is absent
in the N = 0 LL, which features a combination of Kekulé
and antiferromagnet character and that we have termed the
Kekulé-antiferromagnet state. We caution that phases in the
N = 1 LL which nominally have the same spin-valley vector
as their counterparts in the N = 0 LL, might still experimen-
tally look quite different, for example, in STM measurements
because of the different orbital character of the N = 1 LL vs
N = 0 LL orbitals.3

We have shown that the related model for the N = 1 LL
that appeared in Ref. [13] is missing terms that are allowed
by symmetry and is a special case of our model (6). In
particular, Ref. [13] is missing the intersublattice scattering
interactions that appear in Eq. (3). By taking the parameters
from Ref. [13], we find that graphene will be near the phase
boundary separating the CDW and AF states. However, this
prediction should be taken carefully because of the aforemen-
tioned absence of A-B scattering processes in the model of
Ref. [13]. These processes are known to be crucial in the
N = 0 LL, because they give rise to “g⊥” interaction in Eq. (8)
that ultimately is needed to stabilize the AF or Kekulé states
that are reported in experiments [7–9,13,29]. We see no reason
why these intersublattice scattering terms would be negligible
in the higher Landau levels. We hope our paper stimulates
future experiments to better narrow down the states and pa-
rameters realized in the N = 1 and higher LLs of graphene.

3Despite these differences, phases in the N = 1 LL vs N = 0 LL
with the same spin-valley vectors would have the same pattern of
spin and lattice point-group symmetry breaking.
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