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Interaction-induced analog of a non-Hermitian skin effect in a lattice two-body problem
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We present a theoretical study of the quantum states of two repelling spinless particles in a one-dimensional
tight-binding model with a simple periodic lattice and open boundary conditions. We demonstrate that, when
the particles are not identical, their interaction drives nontrivial correlated two-particle states, such as bound
states and edge states, and induces interaction-induced flat bands. We show that the localization of the center of
mass of the two particles enforces the localization of their relative motion, which means formation of the bound
states. While the considered system is Hermitian, an insight into the bound states is provided by an approximate
effective non-Hermitian model for the relative motion that features the non-Hermitian skin effect.
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I. INTRODUCTION

In recent decades, topology-inspired ideas have become a
universal framework to characterize various natural phenom-
ena. First, topological excitations, solitons, and vortices were
found in various systems with nonlinearity and interactions
[1]. Next, it was understood that even noninteracting peri-
odic systems, described by linear equations, can be assigned
quantized topological indices, and localized excitations arise
at the boundaries where such indices exhibit an abrupt change
[2,3]. Such localized excitations, topological edge states, can
form from different species of particles, from electrons to
photons to mechanical vibrations [4]. Even more recently,
self-induced edge states with nontrivial topology assisted by
nonlinearity became a subject of active studies [5–8]. An-
other aspect of the interplay of topology and interactions that
involves not only the edge states but also the bound states,
has been put forward in Refs. [9,10]. It has been understood
that topological nontrivial Hamiltonians may be realized in
the systems of several interacting particles even without any
physical boundaries. In this case, one of the particles can
provide a boundary that traps another particle, thus forming
a bound state. This localization mechanism has a certain
similarity with the one discussed in Refs. [6,11]; however, it
also involves the so-called non-Hermitian skin effect [12–17],
which means localization of the bulk eigenstates in the non-
Hermitian system. As a result, the relative motion of the two
particles with respect to each other becomes restricted. One
could term such kind of states as “topologically bound,” in
contrast to usual topological edge states. These bound states
are related to the topology of the complex spectrum of non-
Hermitian systems [18,19], rather than the topology of the
wave functions which is behind the edge states in topological
insulators and superconductors [2,20]. Importantly, the bound
states considered in Refs. [9,10,21,22] also required the non-
reciprocity and/or non-Hermiticity of the system even in the
absence of interaction.
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Here, we show that topologically bound states and a series
of interaction-induced flat bands can be realized in an even
simpler situation of two distinguishable interacting particles
of different masses under open boundary conditions. At the
single-particle level the model is reciprocal and Hermitian,
while contact repulsion drives complex two-particle correla-
tions and localizations. All these two-particle correlations are
just a consequence of the different masses of the two particles.
While localization of light particles on the heavy ones has
been analyzed in literature [23–26], here we show that the
resulting bound states can be interpreted as a result of the
non-Hermitian skin effect arising for the relative motion in
the presence of interactions. Contrary to Refs. [27,28], the
non-Hermiticity is not explicitly built in the model at the
single-particle level and contrary to Ref. [29], that studied
the breakdown of Hermiticity due to the specially engineered
nonlocal quantum nonlinearity, we consider only the local
interaction term. The effective non-Hermiticity arises in our
problem only from the simplified description for the rela-
tive motion of interacting particles in the reference frame
where their center of mass is localized. Hence, our results
provide a mechanism how the topologically nontrivial effect,
usually considered for non-Hermitian systems, can arise also
in the interacting Hermitian system. Since considered cor-
related states do not require any special lattice engineering,
as in a Su-Schrieffer-Heeger (SSH) model [7,30,31], or even
unusual long-ranged couplings as in the case of waveguide-
coupled atom arrays [6,32], they should be readily observable.
A suitable platform could be lattices of trapped cold atoms,
where bound states of two interacting identical particles have
been observed [33]. Notably, the two-particle model with dif-
ferent masses has been considered before in detail [34–36].
In Ref. [36] even the formation of a single flat band has been
predicted for the structure with an impurity. Here, however,
instead of the impurity we consider open boundary conditions.
Moreover, we obtain a series of flat bands with different ener-
gies instead of a single flat band.

The rest of the paper is organized as follows. Section II
presents the model and outlines our main results. Section III
contains the qualitative analytical argument for the formation
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(a) (b) topologically bound state

(c) two-particle edge state

(d) two-particle flff at band

FIG. 1. (a) Schematics of the energy dispersion branches E (k)
for two distinguishable particles in a one-dimensional lattice.
(b)–(d) Correlated states arising from a two-particle interaction:
(b) topologically bound state of two particles, (c) two-particle edge
state, and (d) two-particle flat-band state, where one of the particles
is localized and the other one is delocalized.

of the topologically bound state in this model. Next, in
Sec. IV, we discuss the calculated eigenstates of the two-
particle Schrödinger equation. Section V details the origin of
interaction-induced flat bands in our system and some details
are reserved for Appendix.

II. MODEL

We consider a paradigmatic one-dimensional (1D) tight-
binding model of two different spinless particles 1 and 2, that
exhibit a contact repulsion, as described by the Hamiltonian

H =
∑
ν=1,2

[
N∑

n=1

ενb(ν)†
n b(ν)

n +
N−1∑
n=1

[
tνb(ν)†

n b(ν)
n+1 + H.c.

]]

+ U
N∑

n=1

(
b(1)†

n b(1)
n

)(
b(2)†

n b(2)
n

)
. (1)

Each of the particles is characterized by a site energy ε1,2

and a tunneling constant t1,2, that yield the dispersion laws
εν (k) = εν + 2tν cos k in the absence of the interactions (k
is the quasimomentum). The two corresponding dispersion
curves are schematically shown in Fig. 1(a). Their curva-
tures (particle masses) differ since t1 �= t2. Here, the operators
b(1,2)† describe the creation of the particles in bands 1 and
2. Since the considered problem has exactly one particle in
each of the bands, and these two particles are distinguishable,
[b(1)†, b(2)†] = 0, it is not important for the studied problem
whether the particle statistics is bosonic or fermionic.

Our goal is to examine the role of the interaction term
[the last line in Eq. (1)] on the two-particle correlations in
the strong interaction regime when |U | � |t1,2|. Namely, we
demonstrate that for a finite number of sites N this model
has quite a rich structure of two-particle eigenstates |�〉 ≡∑

nm ψnmb(1)†
n b(2)†

m |0〉, including bound states [Fig. 1(b)], two-
particle edge states [Fig. 1(c)], and also unusual two-particle
correlated states where one of the particles is localized and
the second one is not [Fig. 1(d)]. We show that such two-
particle states are degenerate with respect to the heavier
particle position and form a series of flat bands [37].

-2 0 2
-3

-2

-1

0

1

2

-1

-0.5

0

0.5

1(b)(a)

(c)
(d)

FIG. 2. (a) Scheme of the interaction of two particles with the
center-of-mass wave vector K . (b) Interaction-induced Su-Schrieffer-
Heeger model with the couplings indicated above the arrows.
(c) Localization parameter |χ (A)

1 |2 − |χ (B)
M |2 depending on the ratio of

the tunneling constants t2/t1 and on the center-of-mass wave vector
K . (d) Winding of the complex energies, Eq. (3), in the bulk around
the coordinate origin.

III. TOPOLOGICALLY BOUND STATES

We start the analysis by writing the two-particle
Schrödinger equation for the wave function ψnm =
χn−m exp[iK (n + m)], where K is the center-of-mass wave
vector and the amplitude χ characterizes the relative motion.
For simplicity we always consider a situation where the order
of particles is fixed, that is, either n > m or n < m. This can
be viewed as a two-particle version of the Bethe ansatz. The
interacting two-particle model is then formally equivalent
to the single-particle model on the right-angular discrete
billiard in two dimensions (2D), as shown in Fig. 2(a). Such
discrete billiard was recently analyzed in detail in Ref. [38],
but neither bound nor localized states were considered there.
Vertical and horizontal motion in the 2D lattice correspond to
the motion of the first and second particle, respectively. In the
relative reference frame such model corresponds to a zigzag
chain with two sites per unit cell, that we will label A and
B [thick line in Fig. 2(a)]. The Schrödinger equation for the
amplitude χn assumes the form

εχ (A)
n = (t2 + t1/z)χ (B)

n + (t1 + t2/z)χ (B)
n−1,

εχ (B)
n = (t2 + t1z)χ (A)

n + (t1 + t2z)χ (A)
n+1, (2)

where z = eiK and n = 1, 2 . . . . As soon as the wave-function
amplitude, describing the center of mass motion, exponen-
tially decays in space (i.e., Im K �= 0), the system, Eq. (2),
realizes a non-Hermitian Su-Schrieffer-Heeger model [18,19],
illustrated in Fig. 2(b). Such model features the non-Hermitian
skin effect [12,13,16,17]: all its eigenstates can become local-
ized at the edge. This feature is specific for a non-Hermitian
system and it is related to the nontrivial winding number of
the eigenvalues of Eq. (2) in the bulk for a periodic solution of
the form χn ∝ eiκn, where κ is the eigenvector [39–41]. The
complex eigenenergy is given by

E (κ ) = ±
√

t2 + t1/z + (t1 + t2/z)e−iκ

×
√

t2 + t1z + (t1 + t2z)eiκ . (3)

045131-2



INTERACTION-INDUCED ANALOG OF A NON-HERMITIAN … PHYSICAL REVIEW B 107, 045131 (2023)

-2 0 2
0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

-1 0 1
0

50

-2 -1 0 1 2
0

50

-2 -1 0 1 2
0

50

FIG. 3. (a) Density of states depending on the value of the tun-
neling constants t2/t1 for N = 101. (b)–(d) Cross sections of (a) for
three different values of t2/t1, indicated on graphs and also shown by
horizontal lines in (a).

It can be directly checked that for z �= 1, t2 �= t1, Eq. (3) winds
once around the point E = 0 as κ changes from −π to π , as
shown in Fig. 2(d). In order to see how the eigenstates become
localized one can, e.g., substitute χ (B)

n = 0 into the second of
Eq. (2) and find

χ (A)
n ∝

(
t1z + t2
t2z + t1

)n

. (4)

Thus, as soon as |t1| �= |t2| and |z| �= 1, the states become lo-
calized which turns out to be a generic topological feature. In
order to better illustrate this we have plotted numerically the
localization parameter |χ (A)

1 |2 − |χ (B)
M |2, averaged over all the

eigenstates, for a finite number of unit cells n = 1, . . . , M =
20 depending on the ratio t1/t2 and on the center-of-mass
parameter z. The calculation demonstrates the formation of
localized states either at the left edges (red shading) or at the
right edges (blue shading), in agreement with Eq. (2). While
the calculations here and below correspond to the limit of
infinitely strong interaction U , the results remain qualitatively
the same for finite but large |U | � |t1,2|.

Our analysis thus predicts that for different masses of two
strongly interacting particles their center-of-mass motion, de-
scribed by K , and their relative motion, described by χ , are not
independent but rather coupled in a topologically nontrivial
way. By virtue of the non-Hermitian effect the localization of
the center of mass enforces constraints on the relative motion,
i.e., formation of the bound states. Next, we will show by a
rigorous numerical calculation of the two-particle eigenstates
that the center of mass can be localized indeed in a finite 1D
array and that the bound states form.

IV. TWO-PARTICLE EIGENSTATES

We present the two-particle state as � =∑N
n=1

∑N
m=n+1 ψnmb(1)†

n b(2)†
m |0〉, and solve numerically the

Schrödinger equation H� = E� with the Hamiltonian
equation (1) for the two-particle amplitudes ψnm in the limit
U → ∞. We use ε1 + ε2 as a reference point for the energy,
which is equivalent to setting ε1,2 = 0. Figure 3 presents the
density of states (DOS) numerically calculated for varying

FIG. 4. Energy of the two-particle states depending on the value
of the tunneling constants t2/t1 calculated for N = 101 and t1 = 1.
The intensity of grayscale shading corresponds to the inverse spacing
between neighboring levels. Dotted line shows the dependence E =
2(t1 − t2). Horizontal arrows indicate the energies E = 2t1 cos k,
with the values of k given near each arrow. Dotted parabolas show
the energies of the corresponding states calculated up to the second
order in t2.

ratio t2/t1. This ratio of the two tunneling constants t2/t1
turns out to be the key parameter of the model. Panel (a)
shows the DOS as a color map, and panels (b)–(d) show the
plots of the DOS vs the energy E for three characteristic ratios
of t2/t1. Importantly, the DOS is a strongly nonmonotonous
function of energy. First, it features van Hove singularities at
the energies E = ±2(t1 − t2), corresponding to the extrema
of single-particle dispersions 2t1,2 cos k. These singularities
manifest themselves as sharp maxima that are best seen
for t2 = 0, when they are located at E = ±2t1 [see the
bottom of Figs. 3(a) and 3(d)]. However, there also exist
additional sharp peaks in the DOS, not associated with the
van Hove singularities. These extra sharp peaks are indicated
by two vertical arrows in each of the panels of Fig. 3.
They correspond to the almost-degenerate states and arise
from the interplay of the discreteness of the system and the
interactions. The presence of such peaks can be also seen
in Fig. 4 where we show the same energy levels separately.
In order to highlight the presence of degenerate states,
corresponding to the interaction-induced flat bands, the
intensity of the grayscale shading represents the inverse level
spacing. In such way the degenerate states become brighter
and stand out. Several sets of such states are highlighted
by the dotted parabolas, that correspond to the DOS peaks
discussed above. The two arrows in Fig. 3 correspond to the
parabolas labeled as π/3 and 2π/5 in Fig. 4. The origin of
such notation will be discussed in Sec. V. The eigenstates ψnm

at these DOS peaks feature unusual two-particle correlations.
Figure 5 examines in detail the spatial profile of the eigen-

states for t2/t1 = 0.4 (a), (b) and t2/t1 = 0.8 (c), (d). The left
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FIG. 5. (a), (c) Energies of two-particle states vs inverse participation ratio (IPR) calculated for t2/t1 = 0.4 (a) and t2/t1 = 0.8 (c). Open
symbols indicate specific eigenstates, with the corresponding wave functions shown in (b) and (d). Right y axis shows by the blue-shaded
curves the density of states for all the states with the IPR larger than 0.3.

panels (a) and (c) present the inverse participation ratio (IPR),
which is defined as

∑
nm |ψnm|4/(

∑
nm |ψnm|2)2 depending on

the eigenstate energy. The larger the IPR the stronger the
eigenstate localization. The calculation shows that most of the
eigenstates are spatially extended, that is, they have an IPR
much smaller than unity. However, there exist also groups of
almost degenerate states with high IPR. They correspond to
the points in Figs. 5(a) and 5(c) lying on the same vertical
lines. The same is evidenced by the density of states peaks,
shown in Figs. 5(a) and 5(c) by the curves with blue shading,
corresponding to the right abscissa axis. The two vertical lines
in Fig. 5 indicate the same peaks in the density of states that
are denoted by the arrows in Fig. 3. We also note the presence
of a large central peak at E = 0. This peak is associated with
the chiral symmetry of the problem and corresponds to the
states with a checkerboard profile, localized on only part of
the sites of the square lattice, that is, ψnm �= 0 when n and m
have different parity [38]. If only nearest-neighbor couplings
are included, all these states are exactly degenerate. Since
they form a large degenerate subspace, their spatial profile is
not well defined. Depending on what linear combination is
chosen, one can obtain strongly localized states with a large
IPR, as can be seen in Figs. 5(a) and 5(c). In our numerical
calculation, we have added a small additional second nearest-
neighbor coupling of 0.0002 for the first particle. This does
not significantly affect the state energy but fixes the gauge for
degenerate states. In this work, however, we are interested in
the states with E �= 0, that are gauge independent.

The panels in Figs. 5(b) and 5(d) show the spatial profiles
|ψnm|2 for several characteristic two-particle states, indicated
by symbols in Figs. 5(a) and 5(c). The abscissa and ordinate
on these plots correspond to the coordinates of the two par-
ticles. Crucially, the spatial distribution of the two-particle
correlations is highly inhomogeneous. For example, the first
two states in Fig. 5(b) (diamond and square symbols), corre-
spond to both particles localized at the edge of the lattice. This
is a two-particle edge state, akin to Fig. 1(c). The next two
states (circle and down-pointing triangle) realize the situation
when one particle is relatively localized and the other one is
spread over the whole lattice. This is the state in Fig. 1(d).
There exist many such states that differ only by a position

of the localized particle. Since they are degenerate, they can
be seen as an interaction-induced flat band. The last state in
Fig. 5(b) (upward-pointing triangle) is also a two-particle edge
state, but with a different energy.

As the ratio of the tunneling constants increases to t2/t1 =
0.8, the eigenstates become generally less localized in space,
as can be seen in the overall increase of the IPR in Fig. 5(c)
as compared to Fig. 5(a). This is expected, since the origin
of localization is the difference of the particle masses. A less
expected effect is that the relative motion of the particles for
larger t2/t1 also becomes constrained. Namely, the first three
states in Fig. 5(c) (diamond, square, and circle symbols) can
be interpreted as the two-particle bound states, localized at
the edge. The last two states (triangles) are of somewhat inter-
mediate character. They resemble both the above-mentioned
state where only one of the particles is localized and also the
two-particle bound state.

Thus, our rigorous numerical calculations confirm the for-
mation of two-particle bound states, localized at the structure
edge, in agreement with the non-Hermitian SSH model in
Fig. 2(b). In order to further support the connection of the
formation of a bound state with the non-Hermitian skin effect
we analyze in Fig. 6 in more detail the eigenstate in Fig. 5(d),
indicated by a circle. In the main part of Fig. 6 we present
the cuts of the distribution |ψnm|2 along the direction cor-
responding to the relative motion of the two particles. The
specific points used for the cuts are indicated by the zigzag
lines in the inset, that also shows the same spatial distribution
|ψnm|2. All of the cuts decay with the distance which reflects
the confinement of the two particles to each other. The dif-
ference between the cuts corresponds to the localization of
the center of mass at the edge of the structure. Fitting this
decay we were able to extract the center-of-mass localization
parameter z ≡ exp(iK ) ≈ −0.85 for this eigenstate. Next, we
have used this parameter in the effective non-Hermitian SSH
model, Eq. (2). The resulting distribution of the eigenstate
of the effective model with the closest energy is shown in
Fig. 6 by open circles. This state decays in space and the
scale of the decay satisfactorily reproduces the results of full
numerical calculation (filled symbols). This agreement sup-
ports our interpretation of the formation of the bound state
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FIG. 6. Two-particle wave function of the “topologically bound”
state depending on the distance l between the two particles. Filled
triangles with different orientation correspond to the different center-
of-mass coordinates n = 22 . . . 26. The points have been obtained
by cutting the total wave function |ψmn| in the direction of the
relative motion along the colored zigzag lines, shown in the inset.
Open circles correspond to the eigenstate of the system, Eq. (2),
calculated for z ≡ exp(iK ) = −0.85 for the most localized state with
E ≈ −0.259t1, which is indicated by a circle in Figs. 5(c) and 5(d).
Other calculation parameters are t2/t1 = 0.8 and N = 101.

as a result of a non-Hermitian skin effect for the relative
motion.

The fact that such bound states arise only for relatively high
values of t2/t1, close to unity, also well agrees with the non-
Hermitian SSH model. It is clearly seen in Fig. 2(c) that the
darker color, which means stronger localization, corresponds
to the regions with t2/t1 close to unity.

The analysis above leaves two more open questions. First,
what is the specific origin of the center-of-mass localization
at the edge? Second, how and why form the flat bands, i.e.,
almost degenerate eigenstates? These questions turn out to be
related and will be addressed in the next section.

V. INTERACTION-INDUCED WANNIER-STARK LADDER

The formation of degenerate and localized states can be
most easily understood in the limit when t2 
 t1, that is, when
one of the two particles is much heavier than the other one. In
this case the motion of the heavier particle can be considered
as a perturbation. This means that the triangular lattice in
Fig. 2 separates into vertical columns of varying height (blue
color). One can first find the eigenstates within each column
and then describe the coupling between the columns ∝ t2.
The column height variation imposes an additional potential,
that depends on the column height. Such model with coupled
columns is in fact very similar to the tight-binding model for
the particle on a 1D lattice in a constant electric field, that is
described by a Wannier-Stark ladder [42–44]. We stress that
the considered Stark-like localization is quite distinct from the
many-body Stark localization studied in Refs. [45,46], since
there is no external electric field in the system. The effective
electric field appears only because of the interactions.

In order to formally derive the model with coupled columns
we start by writing the Schrödinger equation in a tight-binding
model for every column, that is,

t1(ψm−1,n + ψm+1,n) = εψm,n (5)

with the open boundary conditions, m = 1, . . . , n − 1. Its
eigenstates are the usual standing waves

ψ (ν)
mn ≈

√
2

n − 1
sin k(ν)

n m, where k( j)
x = π j

n
, (6)

m, ν = 1, 2, . . . , n − 1, with the energies

ε(ν)
n = 2t1 cos k(ν)

n . (7)

Importantly, for each n = 3, 6, . . ., that is divisible by 3, there
exists an eigenstate with an integer ν = n/3, so that cos k(ν)

n =
1/2 and ε(ν)

n = t1. We now take into account the coupling
between the states, Eq. (6), i.e., the interaction between the
“columns” that is proportional to the tunneling constant t2:

〈ν, n|ν ′, n + 1〉 ≡ t2

n−1∑
m=1

ψ (ν)
m,nψ

(ν ′ )
m,n+1

= −t2
1√

n(n − 1)

sin k(ν)
n sin k(ν ′ )

n+1

cos k(ν)
n − cos k(ν ′ )

n+1

. (8)

We can now formally write the system of equations describing
coupled columns

ε(ν)
n ψ (ν)

n + 〈ν, n|ν ′, n + 1〉ψ (ν)
n+1 + 〈ν, n|ν ′, n − 1〉ψ (ν)

n−1

= ε(ν)
n ψ (ν)

n . (9)

This is equivalent to rewriting the original two-particle
Schrödinger equation into the standing-wave basis only for
one of the particles.

We now assume that ν = n0/3 with an integer n0 � 1 and
take into account only one standing wave ν. Next, we expand
the matrix element, Eq. (8), in the limit where k(ν) ≈ π/3.
This results in the following equation:

[F (n − n0) + α(n − n0)2]ψn + τ (ψn+1 + ψn−1) = εψn,

(10)

with the rescaled energy ε = E/t1 − 1, the parameter
F = π/

√
3n0 being the dimensionless electric field,

α = −π (6
√

3 + π )/18n2
0 and τ = 3

√
3t2/(2πt1). The

index ν is dropped for simplicity. Contrary to the original
Wannier-Stark model, here we also take into account the
quadratic correction to the potential ∝ α. As shown in
the Appendix, for |α| 
 |F | the system, Eq. (10), has an
eigenvalue

ε = −2α
τ 2

F 2
≈ −0.98

(
t2
t1

)2

= const(n0), (11)

corresponding to the state of the Wannier-Stark ladder lo-
calized at the site n = n0. We stress that the eigenenergy,
Eq. (11), does not depend on the column height n0. This means
the formation of a set of degenerate states differing by the
value of n0. These are exactly the states in Fig. 5(b) shown
by the diamond, square, circle, and down-pointing triangle.
Their energies are given by |E | = t1 − t2

2 /t1, in agreement
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with Eq. (11). This expression is plotted by the parabola with
big red dots in Fig. 4 and perfectly agrees with the result of
exact numerical calculation.

A similar analysis can be made for the other DOS
peaks. We show several values of k(ν), namely, k(ν) =
π/4, 3π/8, 2π/5, 3π/7, 4π/9, and the corresponding ener-
gies 2t1 cos k(ν) by the horizontal arrows in Fig. 4. This
Wannier-Stark-like model describes both localization and
degeneracy of the spectrum in the limit when t2 
 t1. At
small values of t2 the dependence of the energies on t (2) is
parabolic and can be calculated by the perturbation series,
E (t2) = E (t2 = 0) − νt2

2 /t1. The corresponding expressions
are plotted in Fig. 4 as dotted parabolas, with the coefficient
ν = 2, 1, 2/3, 1/2, 1/3, 1/4 corresponding to the parabolas
from top to bottom. For larger value of t2 the coupling con-
stant τ increases and the localization becomes weaker, but
still survives. At the same time, due to the coupling be-
tween center of mass and relative degrees of freedom, the
two particles become bound to each other as discussed in
Sec. III. This can be seen from a comparison of the states
shown by diamonds and squares in Figs. 5(b) and 5(d). Our
numerical analysis thus indicates that with the increase of t2/t1
there occurs a transformation from the states where a light
particle is localized on the immobile heavy one to the two-
particle bound states, localized as a whole at the edge of the
structure.

Our consideration has been focused on the simplest
tight-binding model with only nearest-neighbor couplings.
Numerical calculation shows that all the types of eigenstates
shown in Fig. 5, including the “topologically bound” states,
survive also if longer-ranged couplings are included provided
that these couplings are weaker than the nearest-neighbor
couplings. The results are generally more sensitive to the
couplings between second or other even-numbered nearest
neighbors that break the chiral symmetry of the problem. The
spectrum loses mirror symmetry around the point ε = 0 and
the flat-band degeneracy is broken. Couplings between the
neighbors with an odd distance (first, third, etc.), keep the
chiral symmetry. While they also break the flat-band degen-
eracy, their overall effect on the spectrum and eigenstates is
weaker.

VI. SUMMARY AND OUTLOOK

To summarize, we have considered a discrete two-particle
problem in a one-dimensional tight-binding model without
any non-Hermiticity at the single-particle level. We have
demonstrated that when the particles are not identical, com-
plex correlated states can result from their interaction, that can
be linked to a non-Hermitian topological physics. It remains
to be understood what happens in the many-body case and in
more complicated lattices.
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APPENDIX: PERTURBATION THEORY

Here we analyze in more detail the Wannier-Stark-like
model, Eq. (10), in the limit where |α| 
 1. We first start
from the simpler case where also |τ | 
 1. The energy of the
eigenstate that is localized at the site n = n0, can be then found
by a simple second-order perturbation theory in τ , accounting
for the coupling of this site to its two neighbors:

ε ≈ τ 2

F − α
+ τ 2

F + α
≈ 2ατ 2

F 2
. (A1)

Since α/F 2 does not depend on the number of the point n0,
where the first particle is localized, the states for different
points n0 are degenerate.

The interesting finding is that the answer, Eq. (A1), re-
mains valid even if τ ∼ 1, provided that still |α| 
 1. To
prove this we account for the term α(n − n0)2 in Eq. (10) by
a first-order perturbation theory in α. For α = 0 Eq. (10) have
eigenstates

ψn = Jn(−2τ/F ). (A2)

The first-order perturbation theory correction is given by

α

∞∑
n=−∞

|Jn(−2τ/F )|2n2. (A3)

We will now show that this sum is exactly equal to Eq. (A1)
for an arbitrary value of τ/F . For this we explicitly use the
fact that Eq. (A2) is an eigenstate of Eq. (10) for α = 0. This
means that

αn2J2
n (−2τ/F ) = ατ 2

F 2
[Jn−1(−2τ/F ) + Jn+1(−2τ/F )]2

= τ 2

F 2

[
J2

n−1(−2τ/F ) + J2
n+1(−2τ/F )

+ 2Jn−1(−2τ/F )Jn+1(−2τ/F )
]
. (A4)

The summation over n can be now performed analyti-
cally. The first two terms in the square brackets in the
right-hand side yield unity because of the normalization con-
dition

∑
n J2

n (−2τ/F ) = 1. The last term is zero because
Jn+1(−2τ/F ) and Jn−1(−2τ/F ) are two different eigenstates
of the Wannier-Stark problem, Eq. (10), with α = 0, hence
they are orthogonal to each other. This leads to the result,
Eq. (A1).
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