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Realization of the topological Hopf term in two-dimensional lattice models
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It is known that a two-dimensional spin system can acquire a topological Hopf term by coupling to massless
Dirac fermions whose energy spectrum has a single cone. But it is challenging to realize the Hopf term in
condensed matter physics due to the fermion-doubling in the low-energy spectrum. In this work we propose a
scenario to realize the Hopf term in lattice models. The central aim is tuning the coupling between the spins
and the Dirac fermions such that the topological terms contributed by the two cones do not cancel each other.
To this end, we consider px and py orbitals for the Dirac fermions on the honeycomb lattice such that there are
totally four bands. By utilizing the orbital degrees of freedom, a θ = 2π Hopf term is successfully generated for
the spin system after integrating out the Dirac fermions. If the fermions have a small gap m0 or if the spin-orbit
coupling is considered, then θ is no longer quantized, but it may flow to multiple of 2π under renormalization.
The ground state and the physical response of a spin system having the Hopf term are discussed.
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I. INTRODUCTION

Most topological phases can be described by topological
terms in their path integral. In continuous quantum field the-
ory, the topological terms do not depend on the metric of
space-time. For instance, integer and fractional quantum Hall
liquids [1,2] and chiral spin liquids [3–5] are described by
Chern-Simons terms in the effective gauge theory. On the
other hand, the Haldane phase for a spin chain with inte-
ger spin is described by a topological θ -term [6,7] which is
quantized to an integer times 2π if the space-time manifold
is closed. Topological θ -terms can also be used to describe
topological insulators [8]. Systems having topological terms
in their path integral can also be gapless. A typical example
is the spin-1/2 antiferromagnetic Heisenberg chain which has
π -quantized θ -term or Wess-Zumino-Witten term in its La-
grangian [9]. Consequently, the system is gapless and respects
the Lieb-Schultz-Mattis theorem [10]. Among the gapped
phases, some have nontrivial topological orders which are
characterized by fractional excitations (called anyons) or chi-
ral edge states, but some do not have anyonic excitations
and contain no topological order. However, the nontrivial
topological terms indicate that if certain symmetry is present,
gapped systems with trivial topological orders can still have
protected edge states. The ground states of these systems are
known as the symmetry protected topological (SPT) states
[11–13] which are adiabatically connected to a trivial state if
the protecting symmetry is explicitly broken.

The simplest Bosonic SPT phase is the spin-1 Haldane
phase. Although one-dimensional (1D) SPT phases are more
precisely described by projective representations and classi-
fied by the second group cohomology of the symmetry group
[14,15], the Haldane chain was originally understood from the
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topological field theory, namely (1 + 1)-dimensional SO(3)
nonlinear sigma model (NLSM) with topological θ -term, i.e.,
Snlsm = ∫

dxdt[(∂t n)2 − (∂xn)2] + Sθ , where ∂t , ∂x denote ∂
∂t

and ∂
∂x , respectively, n(x, t ) is a vector field in space-time, and

Sθ = θ

4π

∫
dxdtn · ∂t n × ∂xn.

The above effective action can be derived from the micro-
scopic lattice model—the spin-1 Heisenberg model (θ = 2π ).
If space-time is closed, then the θ -term quantizes to 2πS
times the skyrmion number N of the spin configuration in
the space-time manifold. The integer N ∈ π2(S2) = Z is es-
sentially the mapping degree from space-time manifold S2

to the symmetric space of the SO(3) group (which is also
S2). When summing over all the configurations with different
skyrmion numbers, the system becomes short-range corre-
lated and gapped. If the system has a boundary, then the
θ -term eiSθ can be identified with the Berry phase of the spin- 1

2
edge states [16]. Therefore, the NLSM with θ -term (called
topological NLSM) successfully describes the Haldane phase.

The SO(3) topological NLSM was generalized to higher
dimensions to describe and classify general bosonic SPT
phases [17]. In d-spacial dimensions, associated with the
dynamical term of SO(d + 2) NLSM, one can construct a
θ -term,

Sθ = 2πK
V

∫
dd xdtεμ1...μd εi1...id

(
ni1∂μ1 ni2 ...∂μd nid+1

)
,

where V is the volume of the sphere Sd+1 and Sθ

(2πK ) ∈
πd+1(Sd+1) = Z is essentially the mapping degree from the
space-time manifold Sd+1 to the symmetric space Sd+1 of
the group SO(d + 2). This SO(d + 2) NLSM can be used to
describe and classify bosonic SPT phases whose symmetry
group is a certain subgroup of SO(d + 2) × ZT

2 , where ZT
2

stands for the time-reversal symmetry [17].
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In (2 + 1) dimensions, a special kind of θ term is the Hopf
term [see Eqs. (1) and (2)] in SO(3) NLSM. The Hopf term
originates from the Hopf map from the space-time manifold
S3 to the symmetric space S2, which has π3(S2) = Z distinct
topological classes. The Hopf term can change the statistics
of the skyrmions [18,19]. Hence, if a spin system contains a
Hopf term in its Lagrangian and if its ground state is gapped
without spontaneous symmetry breaking, then it may contain
either intrinsic topological order [20,21] or symmetry pro-
tected topological order [22]. A possible way to obtain the
Hopf term is coupling the spins to Dirac fermions [23–25]. In-
tegrating out the fermions gives rise to a θ = π Hopf term for
the spins which cannot be obtained in a perturbative way. A
consequence of the π -quantized Hopf term is that a skyrmion
traps a fermion in its core and carries 1/2 angular momentum
[18,25].

However, lattice model realizing the Hopf term in their
Lagrangian is still lacking. Owing to the fermion doubling
theorem, a single Dirac cone cannot be obtained in lattice
models without fine-tuning.

One should couple the spin system to at least one pair of
Dirac cones. However, a straightforward coupling essentially
results in a cancelation in the topological term. Therefore, one
needs to introduce more degrees of freedom for cancelation.
In the rest part of the paper, we illustrate that a Hopf term
can be obtained by introducing px, py orbitals to the fermions.
We further show that the resultant ground state belongs to a
SU (2) symmetry protected SPT phase. This provides a pos-
sible scheme to obtain topological terms for other symmetry
groups and then to prepare for the corresponding SPT phases.

The rest part of the paper is organized as the following.
In Sec. II we discuss in detail the scenario of obtaining a
θ = 2π Hopf term by coupling spins to lattice Dirac fermions.
The physical consequences of the Hopf term are discussed
in Sec. III. Since the Dirac cones may have a small gap in
real materials, in Sec. IV we discuss the effect of the mass
or spin-orbit coupling for the Dirac fermions. Section V is
devoted to the conclusions and discussions.

II. HOPF MODEL FROM MASSLESS DIRAC FERMIONS

A. Continuum model: A single Dirac cone

First, we briefly review the scenario proposed by Abanov
and Wiegmann [23,24] on the appearance of the Hopf term in
the Lagrangian of spin systems by coupling to massless Dirac
fermions. Suppose there are massless spin-1/2 fermions ψ (r)
forming a dispersion with a single Dirac cone Ek = |k| in the
momentum space. The action of the massless Dirac fermions
is

S0 =
∫

d2xdtψ̄ iγ μ∂μψ,

where {γ μ, γ ν} = 2gμν with g = diag(1,−1,−1) the space-
time metric and ψ̄ = ψ†γ0. From now on we will replace∫

d2xdt with
∫

d3x. Then we couple the fermions to a two-
component spin field z = (z1, z2)T via

Sint = mψ̄σψ · n(x),

with n = z†σz, z†z = 1 and m the magnitude of the spin which
can be considered as a constant. If the spin field n(x) is

uniform in space-time, then the Dirac fermions obtain a finite
mass and open a gap with a dispersion Ek = √

m2 + k2.
If the vector field n(x) is a smooth function of space and

time, then integrating out the fermions will result in a Hopf
term for the spins (see Appendix A)

Shopf = π sgn(m)H (n), (1)

with

H (n) = − 1

4π2

∫
d3xεμνλaμ∂νaλ (2)

the Hopf invariant for the mapping from the space-time man-
ifold S3 to the S2 formed by n. Here aμ = −iz†∂μz where z
is the eigenstate of n · σ known as the spin coherent state.
The Hopf invariant H (n) is nonlocal in forms of n (later
we will give an expression in forms of local variables). The
derivation of the above Hopf term is subtle because Eq. (1) is
invariant under small variations of the field n(x) thus it cannot
be obtained in a perturbative way. Besides the Hopf term, a dy-
namical SO(3) NLSM term is also obtained by integrating out
the fermions. Therefore, one obtains the (2 + 1)-dimensional
SO(3) topological NLSM,

Snlsm =
∫

d3x
{1

λ
[(∂t n)2 − (∇n)2] + θH (n)

}
, (3)

with θ = π sgn(m) and λ = 8π
|m| . In later discussions, we will

call the above model as the “Hopf (NLSM) model.”

B. Lattice model: A pair of Dirac cones

Now we try to realize the Hopf model (3) via micro-
scopic lattice models. We should first introduce the massless
Dirac fermions. As a well-known candidate, the graphene
[26] with the honeycomb lattice structure can host massless
Dirac fermions in the low-energy limit. Owing to the fermion
doubling, a couple of Dirac cones, called valleys, appear at
the fermi level under half filling. However, as shown below,
straightforwardly adding the contribution of the two cones
results in a cancelation in the topological term. One needs to
seek for more degrees of freedom and to carefully design the
coupling between the fermions and the spins. We then provide
an accessible scenario.

1. No Hopf term from graphene

The tight-binding Hamiltonian for electrons (with a single
pz-orbital) in the graphene reads H0 = ∑

〈i, j〉,σ=↑,↓(tc†
iσ c jσ +

H.c.), where only the nearest-neighbor hoppings are con-
sidered. The two sublattices are labeled by A and B, and
the lattice translation group is generated by a1 = x̂, a2 =
1
2 x̂ +

√
3

2 ŷ. Accordingly, the bases in the reciprocal lattice
are given by b1, b2 with ai · b j = 2πδi j . When diagonaliz-
ing the Hamiltonian in momentum space, one finds two
Dirac cones in the energy bands locating at K = 1

3 b1 +
2
3 b2 = ( 2π

3 , 2
√

3π
3 ) and K ′ = 2

3 b1 + 1
3 b2 = ( 4π

3 , 0). The ef-
fective Hamiltonian at K and K ′ are given by HK+k =
v(kxγ

x + kyγ
y) and HK ′+k = v(−kxγ

x + kyγ
y), respectively,

where v is the fermi velocity and k = (kx, ky) is a small rel-
ative momentum. Introducing the low-energy bases ψ†(x) =
[ψ†

KA(x), ψ†
KB(x), ψ†

K ′A(x), ψ†
K ′B(x)], then the effective theory
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for the graphene is described by

Sgrph =
∫

d3x[iψ†∂tψ + iψ†(Vzγ
x∂x + γ y∂y)ψ],

where γ x,y,z are three Pauli matrices acting on the sublat-
tice indices A, B, and Vz = diag(1,−1) acts on the valley
indices K and K ′. The fermi velocity has been rescaled as v =
1. Denoting γ 0 = −γ z, γ 1 = γ 0γ x, γ 2 = γ 0γ y with (γ 0)2 =
1, (γ 1)2 = (γ 2)2 = −1, the above action can be written in a
relativistic form,

Sgrph =
∫

d3xψ̄ (iγ 0∂0 + iVzγ
1∂1 + iγ 2∂2)ψ,

where ∂0,1,2 ≡ ∂t,x,y and ψ̄ = ψ†γ 0.
Now we decorate a spin to each lattice site. The expectation

value of the angular momentum of the spin at site i is 〈Si〉 =
ni. We assume that ni is a smooth function of the site index i.
The decorated spins couple to the electrons via the following
Hamiltonian

H1 =
∑

i

f (i)mC†
i σCi · ni

=
∑
k,q

mC†
k γ zσCq · nk−q, (4)

with C†
i = (c†

i↑, c†
i↓),Ck = ∑

i Cieik·ri , and f (i) = 1 if i ∈ A
sublattice and f (i) = −1 if i ∈ B sublattice. In this forms of
coupling, the fermions on A and B sublattices feel opposite
magnetic momenta, which indicates that at short distance the
decorated spins exhibit anti-ferromagnetic correlation.

Projecting onto the low-energy subspace, the effect action
reads

Seff =
∫

d3xψ̄ (iγ 0∂0 + iVzγ
1∂1 + iγ 2∂2 + mn · σ + Lint )ψ,

where Lint stands for the intercone coupling term. For
convenience, we adopt a new set of bases ξ †(x) =
[ψ†

KA(x), ψ†
KB(x), ψ†

K ′B(x),−ψ
†
K ′A(x)] (compared with the

original bases, the order of ψ
†
K ′A and ψ

†
K ′B are exchanged, and

a minus sign is added to ψ
†
K ′A), under which the above action

is transformed into

Seff =
∫

d3xξ̄

(
2∑

μ=0

iγ μ∂μ + Vzmn · σ + L′
int

)
ξ .

We first ignore L′
int such that the two cones are decoupled.

The Vz matrix in the mass term indicates that the two Dirac
cones at K, K ′ have opposite signs of mass. Consequently, the
Hopf terms contributed from the two valleys exactly cancel
each other and only a dynamic term remains in the end. As
shown in Appendix C, the intercone coupling term L′

int does
not generate any topological term neither.

In summary, the Dirac cones of the pz-orbit electrons on
the honeycomb lattice cannot generate nontrivial topological
terms for the decorated spins.

2. Hopf term from a four-band model

Now we consider the px, py orbitals on the honeycomb
lattice [27,28]. Unlike the pz orbit which only forms π bonds,
the px, py orbits also form σ bonds. For convenience, we
introduce the eigen bases of the orbital angular momentum
operator lz, i.e., ci±σ = 1√

2
(cixσ ± iciyσ ). We further hide the

FIG. 1. (a) Cartoon picture of the honeycomb lattice. The purple
arrows stand for decorated spins on each site. (b) The bases for the
reciprocal lattice and the Brillouin zone.

spin indices and denote Ci± = 1√
2
(Cix ± iCiy). Ignoring the

spin-orbit coupling, then the tight binding model with nearest-
neighbor hopping reads

H =
∑
〈i, j〉

(hi j
++C†

i+Cj+ + hi j
+−C†

i+Cj− + hi j
−+C†

i−Cj+

+ hi j
−−C†

i−Cj− + H.c.),

where hi j
±± are bond-dependent hopping constants

with the relation hi j
+− = (h ji

+−)∗ = h ji
−+. We label the

three bonds linking A sublattice and B sublattice as
u = (0,−

√
3

3 ) = 1
3 a1 − 2

3 a2, v = ( 1
2 ,

√
3

6 ) = 1
3 a1 + 1

3 a2,w =
(− 1

2 ,
√

3
6 ) = − 2

3 a1 + 1
3 a2 [as shown in Fig. 1(a)], then

hi j
++ = hi j

−− = 1
2 (Vπ + Vσ ), hi j=u

+− = 1
2 (Vπ − Vσ ),

hi j=v
+− = 1

2 (Vπ − Vσ )ei2π/3, hi j=w
+− = 1

2 (Vπ − Vσ )ei4π/3,

where Vσ ,Vπ are the hopping integral of the σ, π bonds,
respectively. Some materials such as the Ge or As layer on
the SiC substrate are approximately described by the above
model [28].

The above model has four energy bands, the intermediate
two bands touch each other at K, K ′ and form Dirac cones,
respectively (see Fig. 2). The Hamiltonian can be written in
momentum space as

H =
∑

k

C†
kHkCk, (5)

FIG. 2. The Dirac cone band structure of the honeycomb fermion
model with px, py orbitals.
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where C†
k = (C†

kA+,C†
kA−,C†

kB+,C†
kB−),Hk = ( 0 hk

h†
k 0 ) with hk

a two-by-two matrix whose entries are given by

(hk )11 = (hk )22 = 1

2
(Vπ + Vσ )

[
1 + 2 cos

kx

2
ei

√
3

2 ky

]
,

(hk )12 = 1

2
(Vπ − Vσ )

[
1 + 2 cos

(
kx

2
+ 2π

3

)
ei

√
3

2 ky

]
,

(hk )21 = 1

2
(Vπ − Vσ )

[
1 + 2 cos

(
kx

2
− 2π

3

)
ei

√
3

2 ky

]
.

At the K and K ′ points, hk reduces to hK = (0 3
2 (Vπ − Vσ )

0 0 )

and hK ′ = ( 0 0
3
2 (Vπ − Vσ ) 0), respectively. It is obvious that

the energy eigenvalues of Hk at K, K ′ are 3
2 (Vπ −

Vσ ), 0, 0,− 3
2 (Vπ − Vσ ), where the zero energies modes give

rise to two Dirac cones which connect the second and the third
bands.

It can also be seen that the zero-energy eigenspace at
K is spanned by C†

K,A−,C†
K,B+, while at K ′ the zero-energy

eigenstates are C†
K ′A+,C†

K ′B−. Since the low-energy physics is
determined by the quasiparticles in the vicinity of the cones in
the two intermediate bands, it will be convenient to introduce
the following bases for the low-energy subspaces


†
k = (ψ†

K+k,B+↑, ψ
†
K+k,B+↓,−ψ

†
K+k,A−↑,−ψ

†
K+k,A−↓,

ψ
†
K ′+k,A+↑, ψ

†
K ′+k,A+↓, ψ

†
K ′+k,B−↑, ψ

†
K ′+k,B−↓).

We further denote the matrices Vx,y,z, γ
x,y,z to act on the

valley index (K and K ′) and the band index (correspond to the
second and the third bands in the original band structure which
hosts the Dirac cones), respectively. Projecting the original
Hamiltonian (5) onto the low-energy subspace, we obtain the
effective k.p Hamiltonian for small k,

Heff =
∑

k


†
k Hkk,

Hk = v(kxγ
x + kyγ

y).

with v =
√

3
4 (Vπ − Vσ ) < 0.

Again, we decorate a spin to each site and couple them
to the fermions. But if the coupling takes the same form of
Eq. (4), namely, electrons on A and B sublattices fell opposite
magnetic momentum of the decorated spin, then the topolog-
ical terms contributed from the two Dirac cones will cancel
each other as happened to the graphene.

However, if the direction of the spin momentum n(x)
is sensitive to the orbital angular momentum lz = ±1 such
that the electrons with lz = 1 and lz = −1 feel the opposite
magnetic momenta from the decorated spin, namely, if the
coupling takes the form (we have put back the spin index)

H1 =
∑

i

m(C†
i+σCi+ · ni − C†

i−σCi− · ni )

=
∑
k,p

m(C†
kA+σCpA+ − C†

kA−σCpA−

+C†
kB+σCpB+ − C†

kB−σCpB−) · nk−p, (6)

then the Hopf terms contributed from the two cones may have
the same sign and there will be a nonzero topological term for
the ni field after integrating out the fermions.

To verify the above conjecture, we will explicitly integrate
out the fermions. Projecting the coupling term (6) onto the
low-energy subspaces, we obtain

PH1P−1 = m
∑
k,p

nk−p · 
†
k σγ zp,

where P stands for the projection operator onto the subspace
spanned by the bases 

†
k=0. Noticing that the intercone scat-

tering process vanishes automatically, therefore n field cannot
couple the K+k fermions with K ′+p fermions.

Rescaling the fermi velocity |v| = 1 and introduc-
ing the matrices γ 0 = −γ z, γ 1 = −γ 0γ x, γ 2 = −γ 0γ y with
{γ μ, γ ν} = gμν , then in the continuum limit the effective ac-
tion of the coupled system reads (for details see the Appendix)

Seff =
∫

d3x̄(x)

[
2∑

μ=0

i∂μγ μ + mn(x) · σ

]
(x), (7)

where ̄ = †γ 0. In the above effective action, the two val-
leys couples to the vector field n(x) in the same way.

Therefore, from the previous discussion, we finally obtain
the Hopf model (3) with θ = 2π after integrating out the
fermions,

Shopf = 2π sgn(m)H (n), (8)

where H (n) is defined in Eq. (2).

3. θ = π term from fermions at the critical point

In the above discussion, the spins are coupled to a pair of
Dirac cones. Under fine tuning, it is possible to gap out one of
the cones (e.g., by breaking some symmetry) and keep the rest
cone massless. Another possibility is that at the critical point,
for instance from a trivial band insulator to a Chern insulator
with Chern number C = 1, there will be a single Dirac cone in
the first Brillouin zone. In this case, if we couple the spins to
the fermions, then a Hopf term with θ = π may be obtained,
in which case a skyrmion is interpolated by a fermion doublet.

However, if the ground state does not spontaneous break
the SO(3) symmetry, then the fermions cannot dynamically
obtain a mass [29]. Therefore, it is likely that the ground state
belongs to a gapless phase [29,30].

In contrast, when θ = 2π and if the ground state does not
break the SO(3) symmetry, a skyrmion excitation traps two
fermions in its core. The two fermions form a spin triplet
owing to the spin-Hall effect (see Sec. III B) which costs a
finite pair-breaking energy recalling that the ground state is
spin-singlet. Hence, the intrinsic excitations are bosonic and
gapped.

III. CONSEQUENCE OF THE HOPF TERM

A. The Hopf model and the principal chiral NLSM

In the previous discussion, the Hopf term was written in
terms of aμ which is nonlocal in forms of n. It was shown that
the Hopf term is local in forms of the spinor field z [19], with
aμ = −iz†∂μz. Now we introduce an SU (2) element

g(x) = exp

{
− i

σ z

2
ϕ

}
exp

{
− i

σ y

2
θ

}
exp

{
− i

σ z

2
ω

}
, (9)
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such that

z = g

(
1
0

)
(10)

and n = z†σz = (sin θ cos ϕ, sin θ sin ϕ, cos θ )T . The corre-
spondence from g (or z) to n is many to one because the angle
ω does not appear in n. Introducing the Berry connection
Aμ = g−1∂μg = ∑

m Am
μσ m, it is easily checked that aμ in

Eq. (2) is the z component of Aμ, namely Az
μ = aμ.

Furthermore, it can be verified that εμνλAx
μ∂νAx

λ =
εμνλAy

μ∂νAy
λ = εμνλAz

μ∂νAz
λ, so the Hopf term (8) can also be

written as

Shopf = − 2π

24π2

∫
d3xεμνλTr(Aμ∂νAλ)

= − 2π

24π2

∫
Tr(g−1dg)3. (11)

Similarly, the dynamical term of the SO(3) NLSM can also
be written informs of SU (2) group elements (see Appendix F),

SSO(3)dyn =
∫

d3x
1

λ
[(∂t n)2 − (∇n)2]

=
∫

d3x
1

λ
Tr(∂μg∂μg−1 + gσ z∂μg−1gσ z∂μg−1).

(12)

It is necessary to clarify the symmetry group and the way
it acts on the variables. It seems that the Hopf model (3)
has SO(3) symmetry, but under the condition z†z = 1 the
field n(r) actually describes S = 1/2 spins, so the symmetry
group is better identified as SU (2). Supposing h ∈ SU (2) is a
symmetry operation, then it acts on n in the following way:

hn̂h−1 = n · hσh−1 =
∑
i, j

niD
(vec)(h) jiσ j,

where D(vec)(h) is the vector representation of h and

n̂ = n · σ = 2zz† − I = gσ zg−1.

So under the symmetry operation h, n varies as a vector nj �→∑
i D(vec)(h) jini and g varies as

g �→ hg. (13)

Namely, h acts on g by left multiplication. We call the group
formed by these symmetry operations as SU (2)L.

The action (12) together with Eq. (11) is closely related to
the O(4) NLSM with θ term [31–33] or the SU (2) principal
chiral NLSM [22,30] with K = −1,

SSU(2)pc =
∫

d3x
1

λ
Tr(∂μg∂μg−1) − 2π

24π2

∫
Tr(g−1dg)3.

(14)

Actually, the Hopf model and the SU(2) principal chiral
NLSM model share the same topological term but differ by
their dynamical terms.

The different dynamical terms result in different symmetry
groups. We have shown that the Hopf model has SU (2)L

symmetry. But the SU (2) principal chiral NLSM is invariant
under both left multiplication g �→ hg and right multiplication

g �→ gh−1, thus the symmetry group of Eq. (14) is SU (2)L ×
SU (2)R/Z2 � SO(4).

However, if the coupling constant λ of the dynamic term
is initially not very small, it may flow to infinity λ → ∞
under renormalization group (RG). Consequently, the system
falls in a topological phase where the ground state and the
low-energy physics are dominated by the topological θ -terms.
In this limit, the Hopf model and the SU (2) principal chiral
NLSM have similar physical properties. In the following we
will show that in the strong coupling limit the ground state of
the Hopf model belongs to a SPT phase.

B. The root SU(2) SPT phase

As pointed out in Ref. [18], in the presence of a Hopf
term Shopf = θH (n), a skyrmion-type solition has angular mo-
mentum θ/2π and hence has statistical angle θ . Since the
Hopf term (8) derived from the lattice model has θ = 2π ,
so the skyrmions obey bosonic statistics under braiding. This
suggests that the resultant ground state is possibly a SPT state.

In Ref. [22], it was shown that in the strong coupling
limit the ground state of SU (2) principal chiral NLSM is
both a SU (2)L SPT phase and an SU (2)R SPT phase. Notice
that the second part of the dynamical term (12) in the Hopf
model breaks the SU (2)R symmetry but preserves the SU (2)L

symmetry. Therefore, the strong coupling phase of the Hopf
model is essentially an SU (2)L SPT phase. In later discussion,
we will eliminate the subscript L and will simply call the
symmetry group SU (2)L as SU (2) when it does not cause
confusion.

The SU (2) SPT phases have Z classification where each
value of K ∈ Z stands for a distinct SPT phase. Since the
θ = 2π Hopf model corresponds to the K = −1 phase, thus
it is the root phase of SU (2) SPT phases because K = −1
generates the Z classification.

The SU (2) SPT phases are characterized by their gapless
edge excitations (if the symmetry is unbroken) and the non-
trivial spin-Hall effect. The spin-Hall conductance according
to the probe field Az is quantized to [22]

σ z
xy = K

4π
= 2K S2

2π
,

which is an even integer times S2

2π
with S = 1/2. The spin-

Hall effect is not a surprise since the Hopf term is in the
same form with the Chern-Simons term for gauge fields. The
Chern-Simons term is the low-energy effective theory of Hall
effects and its edge excitation spectrum is chiral. However,
as an SPT state, the energy spectrum should be nonchiral. It
seems to be a paradox that spin-Hall effect is chiral but the
energy spectrum of the edge is nonchiral.

Noticing that the bulk topological θ term provides a Wess-
Zumino-Witten (WZW) term of the edge, the low-energy
theory of the edge can be described by

Sedge =
∫

dxdt

(
1

λ
Tr(∂μg∂μg−1) + Lint

)

− 2π

24π2

∫
Tr(g−1dg)3,
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where the Lint term breaks the SU (2)R symmetry and results
in a dynamical term of the SO(3) NLSM [9]. It was shown
that the SO(3) NLSM plus the K = −1 WZW term can be
identified with the (1 + 1)D SO(3) NLSM plus a θ = π topo-
logical term, in which the energy spectrum is gapless and the
critical theory falls in the same class of the K = −1 WZW
model. Therefore, in the low-energy limit, we can set Lint = 0
and λ = 8π at the fixed point.

From the non-Abelian bosonization theory [34], at the
fixed point the WZW model decouples into gapless left
mover J+ = i 1

2π
∂+gg−1 and right mover J− = −i 1

2π
g−1∂−g

with ∂± = 1√
2
(∂t ∓ ∂x ). The left mover J+ carries SU (2)L

charge (since it is covariant under the action g �→ hg) and the
right mover J− is a SU (2)L singlet (since it is invariant under
the action g �→ hg), and they satisfy the equation of motion
∂+J− = 0 and ∂−J+ = 0 as long as the SU (2)L symmetry is
unbroken. Hence, if the boundary of the Hopf model preserves
all the symmetries, then the edge theory of the Hopf model
will flow to the fixed point of the WZW model whose gapless
excitations are nonchiral in energy but chiral in symmetry.

The gapless spectrum and nonzero spin-Hall effect reflects
that the edge theory is anomalous and cannot be realized in
pure 1D given that the symmetry acts in a local manner.

However, if the band structure of the fermions contains
more than two Dirac cones, then the spin system coupled to
the fermions may acquire a Hopf term with θ = 2πK with
|K| � 2. The resultant ground state belongs to the SU (2) SPT
phase in the Kth class. Alternatively, the Kth class SU (2) SPT
phase can also be obtained by stacking K layers of root phases
which are weakly coupled to each other.

C. SO(3) SPT for integer spins

In the following, we discuss the case where there are still
two Dirac cones but the decorated spin is larger than one-half
S > 1/2. In this case, the derivation of Eq. (8) remains valid
besides that we should take the following replacement z →√

2Sz, aμ → 2Saμ, m → 2Sm, and

Shopf (S) = 2π (4S2) sgn(m)H (n). (15)

This corresponds to a SU (2) SPT phase with K = −4S2. The
spin-Hall conductance according to the probe field Az is

σ z
xy = K

4π
= −2S2 1

2π
.

If S is an integer, then it is natural to identify the symme-
try group as SO(3). Introducing the matrix Ãμ = h−1∂μh =∑

m Ãm
μLm, where h ∈ SO(3) and Lx,y,z are three generators of

SO(3). Then we have Ãz
μ = 2aμ, and the topological term (15)

can be written as

Shopf = −2π (4S2)
1

4π2

∫
d3xεμνλaμ∂νaλ

= −2π (4S2)
1

16π2

∫
d3xεμνλÃz

μ∂ν Ãz
λ

= −2π (4S2)
1

2 × 48π2

∫
d3xεμνλTr[Ãμ∂ν Ãλ]

= −2π (4S2)
1

2 × 48π2

∫
Tr(h−1dh)3.

This is the SO(3) principle chiral NLSM with K = −4S2,
which corresponds to a SO(3) SPT phase (which requires K
is multiple of 4) with the spin-Hall conductance

σ z
xy = K

4π
= −2S2 1

2π
,

which is always quantized to an even integer in unit of 1
2π

.
Compared with the previous discussion, the spin-Hall conduc-
tance remains the same if the symmetry group is interpreted
as SU (2). As expected, for integer spin system there is no
essential difference to consider the symmetry group as SO(3)
or SU (2).

IV. HOPF TERM FROM MASSIVE DIRAC FERMIONS

A. With a constant mass m0

In the above discussion, we have assumed that the Dirac
fermions are massless before coupling to the spins. In the
following we add a constant mass term such that the Dirac
fermions open a gap. If the Chern number is zero, then the
effective Lagrangian reads

Seff =
∫

d3x ̄

(
2∑

μ=0

iγ μ∂μ + m0Vz

)
;

if the Chern number is ±1, then the effective Lagrangian is

Seff =
∫

d3x ̄

(
2∑

μ=0

iγ μ∂μ + m0

)
.

The mass m0 may be generated by symmetry breaking pertur-
bations or result from spin-orbit coupling (SOC).

First we assume that the m0 mass term does not break
the SU (2) symmetry. When coupled to the decorated spins,
we should add m̄n̂ to the Lagrangian. Due to the m0̄

term, when deriving the effective theory one should expand
the inverse of the operator

DD̄ = ∂2 + m2
0 + m2 + 2m0mn̂ + imγ μ∂μn̂

in polynomials of 1
∂2+m2

0+m2 (see Appendix D for details).
Except for the case where m0 = 0, in the above expansion
there are infinite terms contributing to the topological term.
The sum of all these terms determines the value of θ . Denoting
x = m0

m , then

θ (x) = −2sgn(m)32π2
∞∑

N=1

f2N+1, (16)

fk (x) = − xk−3(√
1 + x2

)2k−1 η(k),

with η(k) = 2k−4(k−1)
4kπ

(2k−3)!!
(2k−2)!! . Interestingly, the value of θ is

independent on the sign of m0. The numerical estimation of
θ (x) in Eq. (16) is shown in Fig. 3.

Notice that the two mass terms m0̄ and m̄n̂ com-
mute with each other. When the two mass terms are close
in magnitudes, namely when |m0

m | → 1, then the total energy
gap will approach to zero. Consequently, the series (16) di-
verge as |m0

m | → 1. Away from this singular point |m0
m | = 1,
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FIG. 3. The value of θ (x) as a function of x = m0
m with θ (−x) =

θ (x). Here we have summed over the first M = 100 000 terms in the
series (16). The function θ (x) diverges at |x| = 1 with increasing M.
Between the two dashed red lines, θ flows to 2π under RG. Blow the
lower dished red line, θ flows to 0.

the series converges well and the sum is a continuous func-
tion as |m0

m | < 1 or |m0
m | > 1. For reason that will be given

later, the special values θ = 2Nπ are of importance and each
defines a class. The values of θ locating in the vicinity of
2Nπ with |θ − 2Nπ | < π are considered to belong to the
class associate with θ = 2Nπ . For instance, in the region
|m0

m | < 0.57, |θ ( m0
m ) − θ (0)| < π with θ (0) = 2π . Therefore,

the region |m0
m | < 0.57 is considered as belonging to the same

class with m0 = 0, θ = 2π . When 0.57 < |m0
m | < 1, the value

of |θ | increases rapidly and eventually blows up.
On the other side, when |m0

m | exceeds 1, θ ( m0
m ) decreases

rapidly from ∞ to 0 with increasing |m0
m |. In the region |m0

m | >

1.35, |θ ( m0
m ) − θ (∞)| < π where θ (∞) = 0. Therefore, the

region |m0
m | > 1.35 is considered as belonging to the trivial

class with m0 = ∞, θ = 0.
The criterion for the equivalence classes for the values of

θ is bases on RG. Here we assume that in the strong coupling
phase (where λ is big such that the dynamic term is unim-
portant) the RG flow of the Hopf model (3) is similar to that
of the SU (2) principal chiral NLSM [30]. This assumption is
reasonable because the two models have the same topological
term and in the strong coupling phase the topological term
dominates the low-energy physics.

With the vanishing of the dynamic term, the value of θ

flows to a nearby fixed point. According to Ref. [30], the fixed
points include the unstable ones θ = (2N + 1)π and the stable
ones θ = 2Nπ with N ∈ Z.

From the above expression (16) of θ , it can be inferred that
if |m0

m | < 0.57, then |θ − 2π | < π , it will flow to a stable fixed
point 2π . Therefore, a small constant mass with |m0

m | < 0.57
has the same effect with m0 = 0 in the sense of RG. For
this reason, the SPT phase corresponding to θ = 2π is robust
against small perturbations to the fermions. Similarly, a large
constant mass results in a vanishing topological term for the
spins because when |m0

m | > 1.35, the absolute value of θ is less
then π and will flow to 0 under RG.

B. The effect of spin-orbit coupling

Now we briefly discuss the effect of SOC in the fermions.
SOC has two direct consequences: (I) the Dirac cones at the

K, K ′ points are gapped out; (II) the SU (2) spin rotation sym-
metry is gone and the resultant symmetry group is a discrete
group. For simplicity, we only consider the term descendant
from λsoS · L.

In the following, we first illustrate that the topological term
is still present when SOC is considered. Then we show that
even if the symmetry group is no longer SU (2), the resultant
ground state is still a SPT state which is protected by a discrete
group.

We treat the λso term as perturbation, and project it onto the
two intermediate bands near the fermi level. It turns out that
when λso is not big then the K valley is still dominated by the
px + ipy orbit, and the K ′ valley is dominated by the px − ipy

orbit. In the presence of λso, one should expand the inverse of
the operator

DD̄ = ∂2 + m2 + λ2
so + λsom{σ z, n̂} + imγ μ∂μn̂

in polynomials of 1
∂2+m2+λ2

so
. As derived in Appendix E, the

topological term resulting from SOC is qualitatively the same
as the one with a constant m0 discussed in Sec. IV A. The raw
value of θ is generally not quantized but it can flow to a nearby
quantized value under RG. Specially, when λso is small (i.e.,
λso
m < 0.83), then θ will flow to 2π .

As mentioned, SOC reduces the symmetry group to a dis-
crete one. The honeycomb lattice has a sixfold rotation C6

symmetry, when considering SOC this C6 symmetry is still
present given that the symmetry operation is a combination
of sixfold lattice rotation and the corresponding spin rotation.
For simplicity, we will consider the twofold rotation C2 =
(C6)3, which form a Z2 group. Furthermore, the classification
of SPT phases protected by a point group symmetry can be
obtained by treating the point group as an onsite symmetry
group [35]. The physical properties of SPT phases for a point
group symmetry is also parallel to those of the SPT phases
for the corresponding onsite symmetry [35–37].Therefore, in
the following we just treat the above Z2 group as an onsite
symmetry group.

Supposing that we first turn off SOC such that the effective
model is the Hopf model with K = −1. The corresponding
SPT phase has a nontrivial spin quantum Hall effect with Hall
conductance σ z

xy = 2K S2

2π
. Consequently, a probe field with

spin flux 2π
S [38] (this is equivalent to gauging the SU (2)

symmetry) is “associated” a spin quantum number σ z
xy

2π
S =

2KS owing to the spin-Hall effect. Since the symmetry group
would be reduced to Z2 by SOC, it is interesting to consider
a nontrivial Z2 flux, namely π

S . Obviously, a Z2 flux π
S is

“associated” spin −S. Furthermore, since the symmetry group
is SU (2), the Z2 flux can be “attached” with spin quantum
number nS with n ∈ Z. Therefore, considering the “associ-
ated” spin KS and the “attached” spin nS, the statistical angle
by braiding two Z2 fluxes is given by [39]

φ = π

S

KS

2
+ π

S
nS

=
(K

2
+ n

)
π.

The first term comes from the “associated” spin KS resulting
from the spin-Hall effect. The factor 1

2 is owing to the fact
that only one of the two phases, namely the Berry phase by
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moving the “associated” spin by a semicircle around the flux
and the Berry phase by moving the flux by a semicircle around
the “associated” spin, need to be counted [40]. The second
term comes from the “attached” spin which is not related
to the spin-Hall effect. So the factor 1

2 is absent. The above
expression of the statistical angle φ indicates that when K is
odd, the Z2 fluxes obey sermionic statistics, while when K is
even, the statistics of the Z2 fluxes can be either fermionic or
bosonic depending on the value of n ∈ Z.

However, we recall that in two dimensions (2D) the
Z2 symmetry group protects two different SPT phases
[12,35,41,42], one is trivial and the other is nontrivial. Re-
markably, in the nontrivial Z2 SPT phase the Z2 fluxes (by
gauging the Z2 symmetry) obey sermionic statistics while
in the trivial SPT phase the Z2 fluxes obey trivial bosonic
statistics or fermionic statistics [42].

From the above discussion, we can conclude that the K =
−1 SU (2) SPT phase corresponds to the Z2 SPT phase when
SOC is turned on, given that SOC reduces the SU (2) symme-
try to Z2 (or a discrete group containing Z2 as a subgroup) and
that the resultant topological term flows to θ = 2π (namely,
in the class K = −1). Although spin-Hall conductance is no
longer well defined owing to the absence of conserved spin,
the Z2 symmetry can still protect anomalous edge excitations
[41–43].

V. CONCLUSIONS AND DISCUSSIONS

In summary, we proposed a microscopic lattice model to
realize the Hopf term in 2D spin systems. In our scenario, the
spins couples to gapless Dirac fermions with both spin and
orbit degrees of freedom, where the orbit degrees of freedom
play an important role. The key point is that the magnetic
moment of the spin is sensitive to the angular momentum lz
of the orbitals of the electron: if lz = 1, namely if the orbital
is in the state px + ipy, then the electron feels a magnetic
momentum parallel to n, but if lz = −1, then the electron will
feel a magnetic momentum anti-parallel to n where n is a
smooth function of space and time. We also discussed the case
in which the Dirac fermions have a small gap before coupling
to the spins. In this case the value of θ is not quantized but
we argue that under RG it will flow to a nearby fixed point
which is quantized. The resultant ground state is an SPT phase
protected by SU (2) or SO(3) symmetry. We further show
that when spin-orbit coupling is considered an SPT phase
protected by a discrete symmetry group can be obtained. This
scenario might be generalized to realize other topological
terms associated with the nontrivial mappings from space-
time to spheres, for instance, π4(S2) = π4(S3) = Z2.

Our model shed light on the experimental realization of the
Hopf topological term and the corresponding SPT phases. The

most challenging part of experimental implimentation is that
the coupling between the fermions and the spins depends on
the status of the orbitals of the fermion.
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APPENDIX A: DERIVATION OF THE HOPF TERM FROM
A SINGLE DIRAC CONE

We start from the relativistic action

S0 =
∫

dx3ψ̄ (iγ μ∂μ + mn̂)ψ,

where n̂ = n · σ and γ μ satisfy {γ μ, γ ν} = gμν . The quantity
in the integrant is the Lagrangian density L = ψ̄ (iγ μ∂μ +
mn̂)ψ .

From the Grassman formula

eiSeff =
∫

Dψ̄Dψei
∫

d3xL = det(iγ μ∂μ + mn̂),

we have

Seff = −i ln det(iγ μ∂μ + mn̂)

= −iTr ln(iγ μ∂μ + mn̂)

= −iTr ln D,

where we have define D = iγ μ∂μ + mn̂. Further defining D̄ =
−iγ μ∂μ + mn̂, it follows that

DD̄ = ∂2 + m2 + imγ μ(∂μn̂),

where the bracket means that the differential operator ∂μ only
acts on n̂. In latter discussion we will remove this bracket
without causing confusion. The inverse of DD̄ can be ex-
panded in polynomial series of 1

∂2+m2 as the following:

1

DD̄
= 1

∂2 + m2 + imγ μ∂μn̂

= 1

∂2 + m2

[
1 +

∞∑
k=1

(
− imγ μ∂μn̂

1

∂2 + m2

)k]
.

Introducing the variance δn̂ = δn · σ, then we have δD =
mδn̂. The variance of the effective action reads

δSeff (n) = −iTr(δDD−1)

= −iTr[δDD̄(DD̄)−1]

= −iTr

{
mδn̂(−iγ μ∂μ + mn̂)

1

∂2 + m2

[
1 +

∞∑
k=1

(
− imγ μ∂μn̂

1

∂2 + m2

)k
]}

. (A1)
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In the above calculations, we have regarded m as a large quantity. Hence, in later discussion we will only keep the lowest
order of m both in the dynamic terms (to the power of m1) and in the topological term (to the power of m0) [23,24].

Since the further calculations will frequently estimate the trace of ( 1
∂2+m2 )n over continuous indices, we first prove a general

result for N � 2

Tr

(
1

∂2 + m2

)N

= i|m3−2N |
4(2N − 3)π

(2n − 3)!!

(2N − 2)!!
. (A2)

The trace can be calculated in momentum space,

Tr

(
1

∂2 + m2

)N

= i
∫

dx3

(
1

∂2 + m2

)N

= i
∫

d3 p
(2π )3

1

(p2 + m2)N

= i
∫ ∞

0

d p

2π2

p2

(p2 + m2)N

= i|m3−2N |
2π2

∫ π
2

0
dθ sin2 θ cos2N−4 θ

= i|m3−2N |
2(2N − 3)π2

∫ π
2

0
dθ cos2N−2 θ

= i|m3−2N |
4(2N − 3)π

(2N − 3)!!

(2N − 2)!!
,

where we have used the formula

IN =
∫ π

2

0
dθ cos2N−2 θ = 2N − 3

2N − 2
· 2N − 5

2N − 4
· · · 3

4
· 1

2
· π

2
= π

2

(2N − 3)!!

(2N − 2)!!
.

Now we are ready to analyze the expansion term by term in Eq. (A1).
(A) Zeroth order:

δS(0)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂)

1

∂2 + m2

]

= −Tr

(
mδn̂γ μ∂μ

1

∂2 + m2

)
− iTr

(
m2δn̂n̂

1

∂2 + m2

)

= −iTr

(
m2δn̂n̂

1

∂2 + m2

)

= −2im2δnanaTr

(
1

∂2 + m2

)
= 0,

where we have used Trσ = 0, Tr(σ aσ b) = 2δab and nana = |n|2 = 1.
(B) First order:

δS(1)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂)

1

∂2 + m2

(
− imγ μ∂μn̂

1

∂2 + m2

)]

= iTr

[
m2δn̂γ μ∂μ

1

∂2 + m2
γ μ∂μn̂

1

∂2 + m2

]
− Tr

[
m3δn̂n̂

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)]

= iTr

[
m2δn̂γ μ∂μ

1

∂2 + m2
γ ν∂ν n̂

1

∂2 + m2

]

= 2im2Tr(δn̂∂μ∂μn̂)Tr

(
1

∂2 + m2

1

∂2 + m2

)

= −2im2Tr(∂μδn̂∂μn̂)Tr

(
1

∂2 + m2

1

∂2 + m2

)

= |m|
4π

∫
dx3Tr(∂μδn̂∂μn̂),
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where we have used Trγ μ = 0, Tr(γ μγ ν ) = 2gμν .
(C) Second order:

δS(2)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂)

1

∂2 + m2

(
− imγ μ∂μn̂

1

∂2 + m2

)2]

= Tr

[
m3δn̂γ μ∂μ

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)2]
+ iTr

[
m4δn̂n̂

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)2]

= iTr

[
m4δn̂n̂

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)2]

= − |m|
16π

∫
dx3trδn̂n̂∂μn̂∂μn̂.

(D) Third order:

δS(3)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂)

1

∂2 + m2

(
− imγ μ∂μn̂

1

∂2 + m2

)3]

= −iTr

[
m4δn̂γ μ∂μ

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)3]
+ Tr

[
m5δn̂n̂

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)3]

= Tr

[
m5δn̂n̂

1

∂2 + m2

(
γ μ∂μn̂

1

∂2 + m2

)3]

= − sgn(m)

32π

∫
dx3εμνρTr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂).

In summary,

δSdyn = |m|
4π

∫
dx3Tr(∂μδn̂∂μn̂) + · · · ,

δStopo = − sgn(m)

32π

∫
dx3εμνρTr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂),

let n̂ = 2zz† − 1, zt = (z1, z2)-complex vector with unit mod-
ulus z†z = 1. Substituting n̂ = 2zz† − 1 into the above for-
mula we obtain

δStopo = − sgn(m)

2π

∫
dx3εμνρδaμ∂νaλ,

where aμ = z†(−i∂μ)z. Thus, we obtain

Stopo = π sgn(m)H (n),

where H (n) is the well-known Hopf invariant

H (n) = − 1

4π2

∫
dx3εμνρaμ∂νaλ.

APPENDIX B: DERIVATION OF THE LOW-ENERGY
EFFECTIVE ACTION OF THE FOUR-BAND MODEL

In the four-band model, the coupling between the fermions
and the decorated spins reads in momentum space,

H1 =
∑
k,p

m(C†
kA+σCpA+ − C†

kA−σCpA−

+C†
kB+σCpB+ − C†

kB−σCpB−) · nk−p.

Adopting the zero-energy eigenstates at the cone K ′,
namely ψ

†
K ′ (x) = [ψ†

K ′A+(x), ψ
†
K ′B−(x)] as the bases of the

low-energy subspace at the K ′ valley, and expanding the

Hamiltonian of the maintext and the above H1 around the
valley K ′, one has

HK ′+k = v(kxγ
x + kyγ

y) + mγzn · σ,

where k is small and v =
√

3
4 (Vπ − Vσ ) = −

√
3

4 |(Vπ − Vσ )|.
So we have the effective Lagrangian

L = ψ
†
K ′

[(
i∂t − v(−iγ x∂x − iγ y∂y)

) − mγ zn · σ
]
ψK ′

= ψ
†
K ′

[(
i∂t − |v|(iγ x∂x + iγ y∂y)

) − mγ zn · σ
]
ψK ′ .

Now we redefine ψ̄ = ψ†γ 0, γ 0 = −γ z, γ 1 =
−γ 0γ x, γ 2 = −γ 0γ y, such that the γ μ(μ = 0, 1, 2) matrices
satisfy the relation

Tr(γ μγ ν ) = 2gμν, Tr(γ μγ νγ ρ ) = 2iεμνρ,

where g = diag(1,−1,−1) is the three-dimensional (3D)
Minkowski metric.

By tuning the scale of space-time one can further set |v| =
1, then the Lagrangian can be transformed into

LK ′ = ψ̄
[(

iγ 0∂t + iγ 1∂x + iγ 2∂y
) + mn · σ

]
ψ. (B1)

Similarly, around the K valley, we adopt the bases ψ
†
K (x) =

[ψ†
KA−(x), ψ

†
KB+(x)], we have HK+k = v(−kxγ

x + kyγ
y) +

mn̂. After rescaling space-time we have

LK = ψ̄K
[(

iγ 0∂t − iγ 1∂x + iγ 2∂y
) − mn · σ

]
ψK .

Now we change the bases as ψ̃
†
K (x) = [ψ†

KB+(x), −ψ
†
KA−(x)],

then the Lagrangian takes the form

LK = ¯̃ψK [(iγ 0∂t + iγ 1∂x + iγ 2∂y) + mn · σ ]ψ̃K . (B2)

Now the Lagrangian densities at K (B2) and K ′ (B1)
are completely the same. Namely, we obtained two copies
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of Dirac fermions coupling to the same spin field with the
same m.

If we combine the bases together and introduce


†
k = (ψ†

K+k,B+↑, ψ
†
K+k,B+↓,−ψ

†
K+k,A−↑,−ψ

†
K+k,A−↓,

ψ
†
K ′+k,A+↑, ψ

†
K ′+k,A+↓, ψ

†
K ′+k,B−↑, ψ

†
K ′+k,B−↓),

then we can write the action as

Seff =
∫

dx3̄(iγ μ∂μ + mn̂),

where γ 0,1,2 are defined previously and we have rewriting n̂ =
n · σ.

APPENDIX C: NO HOPF TERM FROM THE COUPLING
BETWEEN TWO DIRAC CONES

When ignoring the intercone coupling, the Lagrangian den-
sity reads L0 = ψ̄ (D0)ψ, where

D0 = iγ μ∂μ + mVzn · σ.

Defining D̄0 = −iγ μ∂μ + mVzn · σ, then

D̄0D0 = ∂2 + m2 − imγ μ∂μn̂.

The intercone coupling terms reads

Lint = nK (x) · ψ̄K ′ (x)σψK + n∗
K (x)ψ̄KσψK ′ (x)

= ψ̄ (λ1Vx + λ2Vy) · σψ,

where nK ′ = n∗
K , and λ1 and λ2 are the real and imaginary

part of nK . We further define D = D0 + (λ1Vx + λ2Vy) · σ

and treat the intercone coupling as perturbation and only keep
the linear term with respect to nK , then we have

ln D = ln(D0 + λ1Vxσ + λ2Vyσ)

= ln D0(1 + λ1D−1
0 Vxσ + λ2D−1

0 Vyσ )

= ln D0 + ln(1 + λ1D−1
0 Vxσ + λ2D−1

0 Vyσ )

= ln D0 + λ1D−1
0 Vxσ + λ2D−1

0 Vyσ + O(λ2)

and

iSeff = Tr(ln D) ∼ Tr(ln D0) + Tr
(
λ1D−1

0 Vxσ

+λ2D−1
0 Vyσ

) + O(λ2).

Since

Tr
(
λ1D−1

0 Vxσ + λ2D−1
0 Vyσ

)
= Tr(λ1(D̄0D0)−1D+

0 Vx · σ + λ2(D̄0D0)−1D̄0Vy · σ ),

both (D̄0D0)−1 and D̄0 only contain V0 and Vz terms, therefore
the trace in the linear expansion vanishes.

The higher-order expansions do not vanish, but the terms
which may contribute to the topological term of n have nega-
tive power of m (not shown), so are of no importance.

APPENDIX D: HOPF TERM FROM ONE MASSIVE DIRAC
CONE

In this Appendix we provide details calculations for deco-
rated spins coupling to fermions with a single massive Dirac
cone. We consider the following action:

S0 =
∫

dx3ψ̄ (iγ μ∂μ + mn̂ + m0)ψ.

Defining D = iγ μ∂μ + mn̂ + m0, D̄ = −iγ μ∂μ + mn̂ +
m0 and M2 = m2 + m2

0, then we have

DD̄ = ∂2 + M2 + 2m0mn̂ + imγ μ∂μn̂

and

1

DD̄
= 1

∂2 + M2 + 2m0mn̂ + imγ μ∂μn̂

= 1

∂2 + M2

[
1 +

∞∑
k=1

(−2m0mn̂ − imγ μ∂μn̂)k

(
1

∂2 + M2

)k
]
.

The effective action is given by Seff = −iTr ln D, and the variance of Seff reads

δSeff (n) = −iTr(δDD−1)

= −iTr[δDD̄(DD̄)−1]

= −iTr
[
mδn̂(−iγ μ∂μ + mn̂ + m0)

1

∂2 + M2 + 2m0mn̂ + imγ μ∂μn̂

]

= −iTr

{
mδn̂(−iγ μ∂μ + mn̂ + m0)

1

∂2 + M2

[
1 +

∞∑
k=1

(−2m0mn̂ − imγ μ∂μn̂)k

(
1

∂2 + M2

)k
]}

.

Now we ignore the dynamical terms and only consider the terms which may generate the topological term. The lowest order
which contribute to the Hopf term appear at k = 3,

δS(3)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + m0)

1

∂2 + M2
(−2m0mn̂ − imγ μ∂μn̂)3

(
1

∂2 + M2

)3]

= − m5

32π (
√

M2)5

∫
dx3εμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂).
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When m0 = 0, the above formula reproduces the previous result.
When m0 �= 0, there will be many terms in the expansion which may have contribution to the Hopf term. We only consider

the terms in which the power of m and m0 are both zero. For k � 3, we have

δS(k)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + m0)

1

∂2 + M2
(−2m0mn̂ − imγ μ∂μn̂)k

(
1

∂2 + M2

)k]
.

Since ∂μn̂2 = 0, n̂ anticommutes with ∂μn̂. Therefore, the calculation of (−2m0mn̂ − imγ μ∂μn̂)k in the term cannot be treated
as a general binomial expansion. To get the topological terms, we have to pick three (−imγ μ∂μn̂) terms in the expansion of the
polynomial. Due to the anticommuting relation, many intermediate terms cancel with each other. When k is even, there are no
such terms; when k is odd, the number of such terms is k−1

2 .
Defining x = m0

m , then we have

δS(k)
topo = − mk−3

0 mk+2

(
√

M2)2k−1

(
2k−4(k − 1)

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

) ∫
dx3εμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂)

= −sgn(m)

(
2x

1 + x2

)k−3

· 1

(
√

1 + x2)5

(
(k − 1)

8kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

) ∫
dx3εμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂).

Introducing a family of functions of x

fk (x) = −sgn(m)
xk−3(√

1 + x2
)2k−1

(
2k−4(k − 1)

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
,

then

δStopo =
∞∑

N=1

f2N+1

∫
dx3εμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂),

and consequently

Stopo = − θ

4π2

∫
dxεμνρaμ∂νaρ, (D1)

θ (x) = −32π2
∞∑

N=1

f2N+1. (D2)

The convergence of the series requires that

lim
N→∞

f2N+1

f2N−1
= 4m2

0m2

(
√

M2)2
= 4x2

(1 + x2)2
< 1.

When x2 = ( m0
m )2 = 1, the series diverges. Away from x =

±1, the series converges. Especially,

θ (0) = π sgn(m),

θ (∞) = 0.

APPENDIX E: HOPF TERM FROM SOC

Considering the Hamiltonian from the case of spin-orbit
coupling, the original spin-independent Hamiltonian matrix
becomes spin-dependent. The original 4 × 4 matrix is ex-
panded to an 8 × 8 matrix, which is also an 8 × 8 matrix, with
spin simplification. Consider the Hamiltonian matrix for the
case of adding the SOC as [28]

Hσσ
eff =

(
Hσσ

↑↑ 0

0 Hσσ
↓↓

)
,

where the 4 × 4 matrix on the diagonal is as follows:

Hσσ
↑↑ =

⎛
⎜⎜⎜⎜⎝

0 −iλso hAB
xx hAB

xy

iλso 0 hAB
yx hAB

yy

h†AB
xx h†AB

yx 0 −iλso

h†AB
xy h†AB

yy iλso 0

⎞
⎟⎟⎟⎟⎠,

Hσσ
↓↓ =

⎛
⎜⎜⎜⎜⎝

0 iλso hAB
xx hAB

xy

−iλso 0 hAB
yx hAB

yy

h†AB
xx h†AB

yx 0 iλso

h†AB
xy h†AB

yy −iλso 0

⎞
⎟⎟⎟⎟⎠.

The matrix elements here are as follows:

hAB
xx = Vn + 1

2
(3Vπ + Vσ )ei

√
3

2 ky cos
kx

2
,

hAB
xy = hAB

yx = i

√
3

2
(Vπ − Vσ )ei

√
3

2 ky sin
kx

2
,

hAB
yy = Vπ + 1

2
(Vπ + 3Vσ )ei

√
3

2 ky cos
kx

2
.

The λso term arises from the intrinsic SOC L · S. Since the
value of λso is small (the values of λso for some specific mate-
rials are shown in Table I), we can consider it as perturbation.
This allows us to project it to the Hamiltonian matrix Hσσ

0 at
no mass on the four eigenstates with zero eigenvalues. After

TABLE I. Values of λso in various models [28].

Materials λso(eV )

Bi/SiC 0.435
Sb/SiC 0.2
As/SiC 0.006
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calculation, the matrix form of the projection operator at K ′
can be written as

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i 0 0 0

1 0 0 0

0 i 0 0

0 1 0 0

0 0 −i 0

0 0 1 0

0 0 0 i

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Projecting onto the middle four energy bands, yielding

⎛
⎜⎜⎜⎜⎝

2 0 0 0

0 −2 0 0

0 0 −2 0

0 0 0 2

⎞
⎟⎟⎟⎟⎠λso.

Note that the base of the matrix at this moment is |1↑〉, |2 ↑
〉, |1 ↓〉, |2 ↓〉, where 1,2 are the energy band indices (which
involve the Dirac cones) mixing the sublattice indices (A, B)
and the orbit indices (px, py ). ↑,↓ are the spin indicators. We
can write the above matrix in a more explicit form,

σ zγ zλso,

where σ z, γ z are both Pauli matrices acting on the spin and
energy bands, respectively. However, it is calculated that the

projection operator at K has the following matrix form:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i 0 0 0

1 0 0 0

0 −i 0 0

0 1 0 0

0 0 i 0

0 0 1 0

0 0 0 −i

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, projecting to the middle four energy bands yields⎛
⎜⎜⎝

−2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −2

⎞
⎟⎟⎠λso.

We write the above matrix as

−σ zγ zλso.

Since the coupling between the two cones can be ignored,
the topological term contributed by the cones can be calcu-
lated separately. We consider the valley K ′ with Lagrangian

LK ′ = ψ̄[(iγ 0∂t + iγ 1∂x + iγ 2∂y) + mn · σ + σ zλso.

Defining γ and D

ψ̄ = ψ†γ 0, γ 0 = −γ z, γ 1 = −γ 0γ x, γ 2 = −γ 0γ y,

D = iγ μ∂μ + mn̂ + σ zλso, D̄ = −iγ μ∂μ + mn̂ + σ zλso,

and M2 = m2 + λ2
so, one has

DD̄ = ∂2 + M2 + λsom{σ z, n̂} + imγ μ∂μn̂.

Because the path integration process requires the trace of the operator, the inverse of the operator 1
DD̄ is used, which can be

expanded by order as

1

DD̄
= 1

∂2 + M2 + λsomσ z, n̂ + imγ μ∂μn̂

= 1

∂2 + M2

[
1 +

∞∑
k=1

(−λsom{σ z, n̂} − imγ μ∂μn̂)k

(
1

∂2 + M2

)k
]
.

According to the previous calculation, the effective action amount is Seff = −iTr ln D. Doing the variation on the field n̂,
δn̂ = δn · σ, the variation of Seff is written as

δSeff (n) = −iTr(δDD−1)

= −iTr[δDD̄(DD̄)−1]

= −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2 + λsom{σ z, n̂} + imγ μ∂μn̂

]

= −iTr

{
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2

[
1 +

∞∑
k=1

(−λsom{σ z, n̂} − imγ μ∂μn̂)k

(
1

∂2 + M2

)k
]}

.

Now we leave the dynamical terms aside for the moment and consider only the expansion terms that may generate topological
terms. Similarly, the lowest order expansion term contributing to the Hopf term appears at k = 3, which is consistent with the
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FIG. 4. The positive and negative signs represent (−λsomσ zn̂) and (−λsomn̂σ z), and the circles represent (−imγ μ∂μn̂).

order of the Hopf term appearing in the previous Hopf model as well as the four-energy band model.

δS(3)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2
(−λsom{σ z, n̂} − imγ μ∂μn̂)3

(
1

∂2 + M2

)3
]

= − m5

32π (
√

M2)5

∫
d3xεμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂).

It is worth noting that when λso = 0, the above equation is exactly the result when the Dirac fermions are massless. This is
physically self-consistent, since it corresponds to the absence of spin-orbit coupling, which should then return to the massless
case.

When λso �= 0, there are an infinite number of possible contributions to generate Hopf terms in the expansion. We only
consider terms with zero total powers of m and λso. This is because these terms do not change and do not converge to zero as m
flows to large values. Next, computing the k � 3 case, each k-order expansion term can be written as

δS(k)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2
(−λsom{σ z, n̂} − imγ μ∂μn̂)k

(
1

∂2 + M2

)k]
. (E1)

Unlike the previous case where a constant mass m0 was added, this time the expansion terms of (−λsom{σ z, n̂} − imγ μ∂μn̂)k

have the noncommutability of σ z and n̂ in addition to the anticommutation of n̂ and ∂μn̂. We write σ zn̂ = n̂∗σ z, where n̂∗ =
−nxσ

x − nyσ
y + nzσ

z. Continuing to examine Eq. (E1), to get the topological term we need to pick three (−imγ μ∂μn̂) and the
remaining (k − 3) product factors are (−λsomσ zn̂) or (−λsomn̂σ z). We can think of (−λsomσ zn̂) and (−λsomn̂σ z) as positive and
negative signs on a line, and it is the adjacent positive and negative signs that can cancel (as shown in Fig. 4). We can cancel this
whole line only if the number of (−λsomσ zn̂) and (−λsomn̂σ z) are equal.

There is another limitation we have to consider, the insertion of the three (−imγ μ∂μn̂) divides the line into four segments
(the case of zero signs also counts as a segment). Due to the noncommutability of n̂∗ and ∂μn̂, we have to make the number of
positive and negative signs in each segment equal to get the topological term.

It can be shown that for each k, mn̂ and σ zλso in the first parenthesis cannot appear in the expansion at the same time. When
k is odd, mn̂ appears in the final result, and when k is even, σ zλso appears. When k > 3, the n̂ matrix can be contracted in pairs
since n̂2 = I (where I is a 2 × 2 unit matrix). We will discuss these cases separately, and here we define x = λso

m .
(1) When k is odd, we have

δS(k)
topo = − λk−3

so mk+2

(
√

M2)2k−1
· η(k) ·

(
1

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
·
∫

d3xεμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂)

= −sgn(m)
xk−3

(
√

1 + x2)2k−1
· η(k) ·

(
1

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
·
∫

d3xεμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂),

where η(k) is the number of expansion terms that meet the requirements.
(2) When k is even, we have

δS(k)
topo = λk−2

so mk+1

(
√

M2)2k−1
· η(k) ·

(
1

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
·
∫

d3xεμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂)

= sgn(m)
xk−2

(
√

1 + x2)2k−1
· η(k) ·

(
1

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
·
∫

d3xεμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂).

Define the two families of functions

fk (x) = −sgn(m)
xk−3

(
√

1 + x2)2k−1
· η(k) ·

(
1

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
,

gk (x) = +sgn(m)
xk−2

(
√

1 + x2)2k−1
· η(k) ·

(
1

4kπ
· 2k − 3

2k − 2
· 2k − 5

2k − 4
· · · 3

4
· 1

2

)
.
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FIG. 5. The value of θ (x) as a function of x = λso
m with θ (−x) = θ (x). Here we have summed over the first M = 500 terms in the series

(E3). The function θ (x) diverges at |x| = 1 with increasing M. Between the two dashed red lines, θ flows to 2π under RG.

Then the summation of these infinite terms is the variation of the topological term in the effective action

δStopo =
∞∑

N=1

[ f2N+1 + g2N+2]
∫

d3xεμνρ tr(δn̂n̂∂μn̂∂ν n̂∂ρ n̂).

So the topological term can be calculated with

Stopo = − θ

4π2

∫
d3xεμνρaμ∂νaρ, (E2)

θ (x) = −32π2
∞∑

N=1

[ f2N+1 + g2N+2], (E3)

see Fig. 5 for illustration.
We can see that for the case of adding SOC, although the added terms are different, after the path integral, the expressions in

the result of the topological term variance appear to be the same as the case of adding m0 analyzed in the previous subsection,
and then the topological terms computed are the same. Next, we analyze the effect of λso on the dynamical terms and compute
(E1) term by term.

(A) Zeroth-order term:

δS(0)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2

]

= −Tr

(
mδn̂γ μ∂μ

1

∂2 + M2

)
− iTr

(
m2δn̂n̂

1

∂2 + M2

)
− iTr

(
mλsoσ

zδn̂
1

∂2 + M2

)

= −iTr

(
m2δn̂n̂

1

∂2 + M2

)

= −2im2δnanaTr

(
1

∂2 + M2

)
= 0.

The derivation here we use the relation

Trσ = 0, Tr(σ aσ b) = 2δab, nana = |n|2 = 1.

(B) First-order term:

δS(1)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2
(−λsom{σ z, n̂} − imγ μ∂μn̂)

(
1

∂2 + M2

)]

= iTr

[
m2δn̂γ μ∂μ

1

∂2 + M2
γ μ∂μn̂

1

∂2 + M2

]
− Tr

[
m3δn̂n̂

1

∂2 + M2

(
γ μ∂μn̂

1

∂2 + M2

)]

−Tr

[
m2δn̂λsoσ

z 1

∂2 + M2

(
γ μ∂μn̂

1

∂2 + M2

)]
+ iTr

[
λsom3δn̂nz

1

∂2 + M2

1

∂2 + M2

]

+iTr

[
λ2

som2δn̂σzn̂σz
1

∂2 + M2

1

∂2 + M2

]
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= −2im2Tr(∂μδn̂∂μn̂)Tr

(
1

∂2 + M2

1

∂2 + M2

)
+ iTr

[
λsom3δn̂nz

1

∂2 + M2

1

∂2 + M2

]

+iTr

[
λ2

som2δn̂σzn̂σz
1

∂2 + M2

1

∂2 + M2

]

= m2

4πM

∫
d3xtr(∂μδn̂∂μn̂) − λsom3

8πM

∫
d3xtr(δn̂n̂z ) − λ2

som2

8πM

∫
d3xtr(δn̂σzn̂σz ).

The derivation here we use the relation

Trγ μ = 0, Tr(γ μγ ν ) = 2gμν.

(C) Second-order term:

δS(2)
eff = −iTr

[
mδn̂(−iγ μ∂μ + mn̂ + σ zλso)

1

∂2 + M2
(−λsom{σ z, n̂} − imγ μ∂μn̂)2

(
1

∂2 + M2

)2]

= i2m4Tr

[
δn̂n̂∂μn̂∂μn̂

(
1

∂2 + M2

)3]
− 4iλsom3Tr

[
δn̂∂μnz∂

μn̂

(
1

∂2 + M2

)3]
− 4iλsom3Tr

[
δn̂nz∂μ∂μn̂

(
1

∂2 + M2

)3]

−im4λ2
soTr

[
δn̂n̂n2

z

(
1

∂2 + M2

)3]
− im3λ3

soTr

[
δn̂σ zn̂σ z

(
1

∂2 + M2

)3]
+ i2m3λsoTr

[
δn̂σ z∂μn̂∂μn̂

(
1

∂2 + M2

)3]

= − m4

16πM3

∫
dx3δn̂n̂∂μn̂∂μn̂ + λsom3

8πM3

∫
dx3δn̂∂μnz∂

μn̂ + λsom3

8πM3

∫
dx3δn̂nz∂μ∂μn̂

+ λ2
som4

32πM3

∫
dx3δn̂n̂n2

z + λ3
som3

32πM3

∫
dx3δn̂σ zn̂σ z − λsom3

16πM3

∫
dx3δn̂σ z∂μn̂∂μn̂.

It can be clearly seen that the symmetry of the effective action is indeed reduced relative to the case of massless Dirac fermions
due to the presence of z-directional kinetic terms containing σ z. In general, the SOC produces a slightly different effect than
simply adding a small mass m0, they have the same effect on the topological term, but in the dynamical term, the SOC reduces
the symmetry, while adding a small mass m0 does not.

APPENDIX F: SO(3) NLSM IN FORMS OF GROUP VARIABLES

The expression of the Hopf model is

S = 1

2λ

∫
d2xTr(∂μn̂∂μn̂) − 2π

24π2

∫
d2xTr(g−1dg)3, (F1)

where g is the SU (2) group element, n̂ = n · σ, and n is the unit vector in the 3D Euclidean space. Then the matrix form of g is

g =
(

z1 −z̄2

z2 z̄1

)
,

where det g = |z1|2 + |z2|2 = 1. To deal with two different field measure forms, we consider the concomitant representation of
the SU (2) group. n̂ can be regarded as an element in the Lie algebra of the SU (2) group. We can give the Lie algebra space
the Killing-Cartan gauge Tr(n̂n̂) = 2

∑3
i=1 n2

i , then the Lie algebra space becomes a three-dimensional Euclidean space. We can
represent n̂ by the accompanying representation of the group,

n̂ = n · σ = gσ zg−1. (F2)

We can see that g has three degrees of freedom (two complex numbers plus one restriction), while n has only two (three real
numbers plus one restriction). The map from g to n (or from z to n) is actually the Hopf mapping S3 → S2. Substitute Eq. (F2)
into the dynamical term in Eq. (F1), one obtains

Sdyn = 1

2λ

∫
d2xTr(∂μn̂∂μn̂)

= 1

2λ

∫
d2xTr∂μ(gσ zg−1)∂μ(gσ zg−1)

= 1

λ

∫
d2xTr(∂μgσ zg−1 + gσ z∂μg−1)(∂μgσ zg−1 + gσ z∂μg−1)

= 1

λ

∫
d2xTr(∂μg∂μg−1 + gσ z∂μg−1gσ z∂μg−1). (F3)

045130-16



REALIZATION OF THE TOPOLOGICAL HOPF TERM IN … PHYSICAL REVIEW B 107, 045130 (2023)

[1] S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett.
62, 82 (1989).

[2] A. Lopez and E. Fradkin, Phys. Rev. B 44, 5246 (1991).
[3] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095

(1987).
[4] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413

(1989).
[5] X. G. Wen, Phys. Rev. B 40, 7387 (1989).
[6] F. Haldane, Phys. Lett. A 93, 464 (1983).
[7] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[8] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[9] I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).

[10] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
[11] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[12] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,

155114 (2013).
[13] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,

1604 (2012).
[14] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107

(2011).
[15] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 84, 235128

(2011).
[16] T.-K. Ng, Phys. Rev. B 50, 555 (1994).
[17] Z. Bi, A. Rasmussen, K. Slagle, and C. Xu, Phys. Rev. B 91,

134404 (2015).
[18] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[19] Y.-S. Wu and A. Zee, Phys. Lett. B 147, 325 (1984).
[20] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[21] X. G. Wen, Int. J. Mod. Phys. B 04, 239 (1990).
[22] Z.-X. Liu and X.-G. Wen, Phys. Rev. Lett. 110, 067205 (2013).
[23] A. G. Abanov, Phys. Lett. B 492, 321 (2000).
[24] A. G. Abanov and P. B. Wiegmann, Phys. Rev. Lett. 86, 1319

(2001).

[25] H. Huan, arXiv:0809.1655 (2008).
[26] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[27] G.-F. Zhang, Y. Li, and C. Wu, Phys. Rev. B 90, 075114

(2014).
[28] G. Li, W. Hanke, E. M. Hankiewicz, F. Reis, J. Schäfer, R.

Claessen, C. Wu, and R. Thomale, Phys. Rev. B 98, 165146
(2018).

[29] A. Kovner, Int. J. Mod. Phys. A 05, 3999 (1990).
[30] C. Xu and A. W. W. Ludwig, Phys. Rev. Lett. 110, 200405

(2013).
[31] Y.-Z. You, Z. Bi, A. Rasmussen, M. Cheng, and C. Xu, New J.

Phys. 17, 075010 (2015).
[32] Y.-Z. You, Y.-C. He, A. Vishwanath, and C. Xu, Phys. Rev. B

97, 125112 (2018).
[33] C. Xu and T. Senthil, Phys. Rev. B 87, 174412 (2013).
[34] E. Witten, Commun. Math. Phys. 92, 455 (1984).
[35] R. Thorngren and D. V. Else, Phys. Rev. X 8, 011040 (2018).
[36] J.-H. Zhang and S.-Q. Ning, arXiv:2112.14567 (2021).
[37] B. Han, H. Wang, and P. Ye, Phys. Rev. B 99, 205120 (2019).
[38] Here we have considered the flux quanta as 2π

S instead of 2π .
This is equivalent to regard the fundamental spin S = 1/2 as the
unit spin. In this sense, the twofold rotation C2 still generates a
Z2 group. Otherwise, if we treat S = 1/2 as half of the unit spin,
then (C2)2 = −1 so the group structure becomes Z4.

[39] J. Wang, B. Normand, and Z.-X. Liu, Phys. Rev. Lett. 123,
197201 (2019).

[40] X.-G. Wen, Quantum Field Theory of Many-body Systems: From
the Origin of Sound to an Origin of Light and Electrons (Oxford
University Press, Oxford, UK, 2004).

[41] X. Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84, 235141
(2011).

[42] M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).
[43] X. Chen and X.-G. Wen, Phys. Rev. B 86, 235135 (2012).

045130-17

https://doi.org/10.1103/PhysRevLett.62.82
https://doi.org/10.1103/PhysRevB.44.5246
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.40.7387
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.50.555
https://doi.org/10.1103/PhysRevB.91.134404
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1016/0370-2693(84)90126-6
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevLett.110.067205
https://doi.org/10.1016/S0370-2693(00)01118-7
https://doi.org/10.1103/PhysRevLett.86.1319
http://arxiv.org/abs/arXiv:0809.1655
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevB.90.075114
https://doi.org/10.1103/PhysRevB.98.165146
https://doi.org/10.1142/S0217751X90001719
https://doi.org/10.1103/PhysRevLett.110.200405
https://doi.org/10.1088/1367-2630/17/7/075010
https://doi.org/10.1103/PhysRevB.97.125112
https://doi.org/10.1103/PhysRevB.87.174412
https://doi.org/10.1007/BF01215276
https://doi.org/10.1103/PhysRevX.8.011040
http://arxiv.org/abs/arXiv:2112.14567
https://doi.org/10.1103/PhysRevB.99.205120
https://doi.org/10.1103/PhysRevLett.123.197201
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.86.235135

