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Metrology of band topology via resonant inelastic x-ray scattering
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Topology is a central notion in the classification of band insulators and the characterization of entangled many-
body quantum states. In some cases, it manifests as quantized observables such as quantum Hall conductance.
However, being inherently a global property depending on the entirety of the system, its direct measurement has
remained elusive to local experimental probes in many cases. Here, we demonstrate that various topological band
indices can be directly probed by resonant inelastic x-ray scattering. Specifically, we show that the crystalline
symmetry eigenvalues at the high-symmetry momentum points, which determine the band topology, lead to
distinct scattering intensity for particular momentum and energy. Our approach can be explicitly demonstrated
in several examples such as 1D Su-Schrieffer-Heeger chain, 2D quadrupole insulator, 3D topological band
insulator, and chiral hinge insulator. Our result establishes an incisive bulk probe for the measurement of band
topology.
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I. INTRODUCTION

In condensed matter system, scattering techniques gener-
ally measure two-point correlators of physical quantities that
determine the transport and dissipation of energy and momen-
tum through collective excitations of constituent nuclei and
electrons. In resonant inelastic x-ray scattering (RIXS) [1,2],
sensitivity to valence electrons is greatly amplified by reso-
nant processes when the incident x-ray is tuned to the binding
energy of a core electron. Besides detection of otherwise van-
ishingly small signal associated with subtle electronic orders
[3,4], RIXS sometimes provides additional valuable informa-
tion on the electronic wave functions; prominent examples
include the detection of pseudospin structure in spin-orbit
Mott insulators and the bonding/antibonding nature of quasi-
molecular [5] orbitals in quantum dimers [6–12]. The method
relies on the coherent interference [8] among different inter-
mediate states, whose phase differences encode information
beyond that contained in the correlation functions.

In this work, we investigate the possibility of exploiting
RIXS for probing the topology of an electronic band struc-
ture, which is classified by a topological band index [13–15].
We note that the band topology is difficult to directly access
through bulk energy spectrum as two topologically distinct
phases can share the same spectrum, but its change can be
detected at their interface. Hence, much of the previous exper-
imental efforts focused on detecting the topological boundary
modes via, e.g., photoemission spectroscopy [16–20] and
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tunneling probes [21–26]. However, the topological boundary
states are not always easily accessible in experiment, for ex-
ample, when the topological boundary states are buried deep
inside the bulk states. Thus it is desirable to establish a bulk
probe that can directly diagnose the nontrivial band topology.

To this end, we will show that the band topology mani-
fests in RIXS spectral intensity at high-symmetry momentum.
More precisely, we will prove that from the momentum de-
pendence of the RIXS intensity, one can directly infer their
crystalline symmetry eigenvalues of the reflection, inversion,
and rotational symmetries, which constitute several important
topological band indices [27–31]. We will explicitly demon-
strate our protocol on a few, most important examples of
topological insulators: 1D Su-Schrieffer-Heeger (SSH) chain
[32] relevant for A2W6X6 (A = Rb, Cs; X = S, Se) [33–36],
3D topological band insulators (TBI) for Bi1−xSbx [30,37,38],
and also 2,3D higher order topological insulators (HOTI)
[27,28,31] with material candidates XY (X = Ge; Y = S, Se)
[39].

The organization of this paper is as follow. In Sec. VIII, we
briefly review the formalism of (non-spin-flip) RIXS, which
will be mainly considered in our paper. In following sections,
we present the application of this formalism to the topological
band insulators. In Sec. III, we will consider the 1D Su-
Schrieffer-Heeger (SSH) model and show that RIXS intensity
can indeed be used to diagnose the band topology. In Sec. IV,
we generalize this to the prototypical time-reversal symmetric
topological band insulators and show that the Z2 invariant can
be read off unambiguously. Finally, we apply our theory to the
higher order topological insulators in Secs. V and VII, which
are on the RIXS intensity of the 2D quadrupole insulator
model, C4-symmetric higher order topological insulator and
a 3D chiral hinge insulator.
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II. BRIEF INTRODUCTION TO RIXS

We first review the formalism for RIXS in the fast col-
lision approximation [1,40–42]. The RIXS spectral intensity
is I (q, ω) = ∑

f |A f (q, ω)|2δ(E f − EGS − ω) with the quan-
tum amplitude

A f (q, ω) = 〈 f |T̂ (q, ω)|GS〉. (1)

Here |GS〉 and | f 〉 are the many-electron states (the ground
state and an excited, final state) and T̂ (q, ω) is the scattering
matrix describing the RIXS process.

In the fast collision limit, T̂ (q, ω) describes the creation
of a local electron-hole pair at each atomic sites [1,40–
42]. In this work, we focus on the non-spin-flip RIXS [43]
(see Appendix A for a brief review),

T̂ (q, ω) = C(ω)
∑
r,σ

cr,σ c†
r,σ eiq·r, (2)

which can be achieved by appropriately selecting edges
(e.g., Bi 2s → 6p transition) or polarizations of photons.
Here, C(ω) is a constant containing the information of atomic
details, e.g., dipole matrix elements, polarization of (incident
and outgoing) photons, and lifetime of the intermediate virtual
states. c†

r,σ (cr,σ ) is a creation (annihilation) operator of low-
energy spin-σ electrons of an atom at r. More discussion on
T̂ (q, ω) is in Appendix A.

Inserting Eq. (2) to Eq. (1), we can recast Eq. (1) in terms
of Bloch functions ψc/v (k) (which depend on spin for strongly
spin-orbit coupled systems):

A f (q, ω) = C(ω) ψ†
c (k + q) · M̂k+q,k · ψv (k), (3)

where Ec(k + q) − Ev (k) = ω. Here “c” and “v” represent the
conduction and valence bands. M̂q+k,k contains the informa-
tion of the sublattice structure. The final expression (3) can be
summarized as [Fig. 1(a)], where an electron is pulled from
the valence band to the conduction band. The momentum and
energy of this excited state is fixed by those of the photons
involved in RIXS.

In following sections, we present our central results by
applying Eq. (3) to various topological insulators: 1D SSH
chain, 3D TBI, and 2,3D HOTI [28,30–32].

III. SSH CHAIN

A. Main result

The SSH model [32] is the simplest reflection-symmetric
1D band insulator, which exhibits a quantized electric polar-
ization. Within each unit cell labeled by x ∈ Z, there are two
sublattices α = 1, 2, at the position x + dα with dα = (−1)αd
[Fig. 1(b)]. We assume d < 1/4 without losing generality,
because the dimerization of the SSH model accompanies
structural deformation in real materials [33–36], which pushes
d away from 1/4. The Hamiltonian is

H (k) = −(t1 + t2 cos k)σ x ⊗ s0 − t2 sin kσ y ⊗ s0. (4)

Here, σ a is the Pauli matrix acting on the sublattice index and
sb is that on the spin index. We set t1 > 0, t2 > 0. The model is
spin-rotational symmetric and hence only the identity operator
s0 = Id2×2 appears in Eq. (4). The topological invariant, i.e.,

1 − 2d2d
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Fitting
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FIG. 1. (a) RIXS process Eq. (3). RIXS induces a transition from
the ground state to an excited state with an electron-hole pair. Here,
an empty circles represents the hole in the valence band and the filled
circle represents the created electron in the conduction band. (b) SSH
model. The black box represents a unit cell, which consists of the
two sublattices {1, 2} (black circles). They are physically separated
each other by “2d” within the unit cell and “1 − 2d” between the
unit cell. (c) RIXS intensity of SSH model. Here, the error bars for
the data (filled circles) are due to the noise that we included in our
simulation.

polarization P , can be written as [44,45]

exp(2π iP ) = Rv (�)Rv (X ), (5)

where Rv (k) is the reflection eigenvalue of the valence band at
k. � (X ) represents k = 0 (k = π ). The reflection symmetry is
R̂ = σ x with k → −k. Many aspects of the model have been
well known in literature [28]. Here we only need to know that
there are two phases: the nontrivial phase P = 1/2 mod 1 for
t1 < t2 and the trivial one P = 0 mod 1 for t1 > t2.

To grasp P via RIXS, one would naturally consider the
scattering between X and � because of Eq. (5), which involves
the symmetry data at those momentum points. Indeed, P
directly manifests in the intensity

I[qn,	ε] = 2|C(	ε)|2 sin2(qnd + Pπ ), (6)

where qn = (2n + 1)π, n ∈ Z is precisely the momentum
connecting X and �. 	ε is the energy difference between the
valence band at � and the conduction band at X . This fixes
the scattering process as [Fig. 1(a)]. Remarkably, the intensity
Eq. (6) is largely independent of the hopping parameters of the
SSH model [except the overall coefficient C(	ε)]. Even more,
its oscillation in momentum is entirely fixed by the topology
P . This allows us to apply Eq. (6) irrespective of the detailed
parameters of the Hamiltonian.

B. Proof of Eq. (6)

To prove Eq. (6), our starting point is the non-spin-flip
RIXS quantum amplitude,

A f (q) = C(ω)
∑

x∈Z,α,s={↑,↓}
〈 f |cx,α,sc

†
x,α,se

iqxα |GS〉,
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where α is the sublattice index, and s is the spin. On this, we
plug cx,α,s=↑,↓ = ∑

k,η U †
αηγη,s(k)eikx where

U † = [ψc(k)|ψv (k)] (7)

and ψc,v (k) are the Bloch functions (see Appendix B for the
details of notations), to find

A f (q) = C(ω)
∑
k,s

〈 f |(k)M̂k+q,kU
†(k + q))νμ

× γμ,s(k + q)γ †
ν,s(k)|g〉. (8)

We have introduced a diagonal matrix M̂k+q,k whose αth
component is e−iqdα=1,2 [Fig. 1(b)], i.e.,

M̂k+q,k =
(

eiqd 0
0 e−iqd

)
. (9)

Up to the U(1) phase factor, this matrix depends solely on the
real space distance between the two sublattices, but not on
the Hamiltonians. Note that there is a gauge dependence of
M̂k+q,k . M̂k+q,k depends on our gauge choice of the Bloch
functions. For example, the matrix itself is not invariant under
the U(1) phase rotation of the Bloch functions. This is because
it is not the quantum amplitude A f but the spectral intensity
I ∼ |A f |2, which is actually measured in experiment.

From this, the RIXS intensity is

I (q, ω) = 2|C(ω)|2
′∑
f

|ψ†
c (k + q)M̂k+q,qψv (k)|2.

Here
∑′ represents a sum over the final states that satisfy

the energy-momentum conservation and the factor of 2 comes
from the spin degeneracy.

If we further specify the energy and momentum transfer
of the RIXS as 	ε=εc(X )−εv (�) and qn=(2n+1)π (n ∈ Z),
(see [Fig. 1(a)]), the RIXS amplitude is

I (qn,	ε) = 2|C(	ε)|2|ψ†
c (X )M̂qn,0ψv (�)|2,

where M̂qn,0 is obtained from Eq. (9).

M̂k+qn,π =
(

eiqnd 0
0 e−iqnd

)
= cos qnd + i sin qnd · �̂, (10)

where �̂ · M̂qn · �̂ = M̂qn , where �̂ = σ 3 is the chiral sym-
metry operator. Note that although the chiral symmetry
operator appears in the discussion, we do not assume that the
Hamiltonians respect the chiral symmetry.

The corresponding RIXS amplitude (per spin) is then

A f (qn,	ε)

C(	ε)
= ψ†

c (X )ψv (�) cos qnd

+ iψ†
c (X )�̂ψv (�) sin qnd.

The corresponding RIXS intensity is

I f (qn,	ε)

|C(	ε)|2 = |ψ†
c (X )ψv (�) cos qnd

+ iψ†
c (X )�̂ψv (�) sin qnd|2.

The full RIXS intensity is simply the twice of the above,
because of the spin states, i.e., s =↑,↓.

Our goal is to show the following two. First,

if P = 0, |ψ†
c (X )�̂ψv (�)|2 = 1, |ψ†

c (X )ψv (�)|2 = 0, (11)

which trivially implies I f (qn,	ε) = 2|C(	ε)|2 sin2 qnd .
Second,

if P = 1
2 , |ψ†

c (X )�̂ψv (�)|2 = 0, |ψ†
c (X )ψv (�)|2 = 1, (12)

which implies I f (qn,	ε) = 2|C(	ε)|2 cos2 qnd These two
are equivalent to Eq. (6).

To present the proof, we need a few preliminaries. First,
we prove ψ

†
η=c/v (k∗)�̂ψη(k∗) = 0 for k∗ = X, �. This can be

shown as

ψ†
η (k∗)�̂ψη(k∗) = ψ†

η (k∗)�̂R̂†R̂ψη(k∗),

= Rη(k∗)ψ†
η (k∗)�̂R̂ψη(k∗),

= −Rη(k∗)ψ†
η (k∗)R̂�̂ψη(k∗),

= −R2
η(k∗)ψ†

η (k∗)�̂ψη(k∗),

= −ψ†
η (k∗)�̂ψη(k∗).

In the third line, we used {�̂, R̂} = 0. This implies ψc/v (k∗) ⊥
�̂ψc/v (k∗). Note that the above does not require the Hamil-
tonian to be chiral symmetric. Combining this with the fact
that {ψc(k∗), ψv (k∗)} forms an orthonormal basis for the two-
dimensional complex plane, we conclude

ψc/v (k∗) ⊥ �̂ψc/v (k∗) ⇒ ψv/c(k∗) ‖ �̂ψc/v (k∗). (13)

That is, �̂ψc/v (k∗) is identical to ψv/c(k∗) up to a phase. This
immediately implies Rc(k∗) = −Rv (k∗). This follows from
ψc(k∗) = c�̂ψv (k∗) (with a complex phase factor |c| = 1)
and {�̂, R̂} = 0. Another useful fact is that if |�†ψv (k∗)|2 =
1 for a normalized vector �, then |�†�̂ψv (k∗)|2 = 0.
This is because {ψv (k∗), �̂ψv (k∗)} is an orthonormal ba-
sis for the two-dimensional complex vector space. Simi-
larly, if |�†ψv (k∗)|2 = 0 for a normalized vector �, then
|�†�̂ψv (k∗)|2 = 1.

We now prove the first claim that |ψ†
c (X )ψv (�)| = 0 and

|ψ†
c (X )�̂ψv (�)| = 1 for P = 0. This is because

ψ†
c (X )ψv (�) = ψ†

c (X )R̂†R̂ψv (�),

= Rv (�)Rc(X )ψ†
c (X )ψv (�),

= −e2π iPψ†
c (X )ψv (�).

where we have used Rc(k∗) = −Rv (k∗) since {R̂, �̂} = 0
and Rv (�)Rv (X ) = exp(2π iP ). Plugging P = 0, we find
ψ†

c (X )ψv (�) = 0. Since {ψv (�),�ψv (�)} forms an orthonor-
mal basis, we see |ψ†

c (X )�̂ψv (�)| = 1. This completes the
proof Eq. (11).

For the second claim, we show that ψ†
c (X )�̂ψv (�) = 0 for

P = 1/2,

ψ†
c (X )�̂ψv (�) = ψ†

c (X )�̂R̂†R̂ψv (�)

= −ψ†
c (X )R̂†�̂R̂ψv (�)

= −Rv (�)Rc(X )ψ†
c (X )�̂ψv (�)

= Rv (�)Rv (X )ψ†
c (X )�̂ψv (�)

= e2π iPψ†
c (X )�̂ψv (�),
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where we have used sequentially {R̂, �̂} = 0, Rc(k∗) =
−Rv (k∗), and Rv (�)Rv (X ) = exp(2π iP ). Plugging P =
1/2, we see ψ†

c (X )�̂ψv (�) = 0. Because {ψv (�),�ψv (�)}
forms an orthonormal basis, we also find |ψ†

c (X )ψv (�)|2 = 1.
This completes our proof for the second one.

Note that in deriving the above, we used only the sym-
metries. One obvious consequence of this is that the precise
positions of the states in energy is not important in obtaining
the above formula (6).

C. Numerical simulations

Here, we numerically demonstrate that Eq. (6) indeed al-
lows us to decipher P from the RIXS intensity. For this,
we first numerically generated the RIXS intensity data for
both the topological and trivial states of the SSH model (with
d = 0.24), and we attempted to fit the data with Eq. (6). The
data, which are represented as the filled circles in Fig. 1(c),
consist of the simulated signals from the clean SSH chain and
white noises (added to mimic the experimental situations),

I (qn, ω) = I0(qn, ω) + δIrandom,

where I0(qn, ω) is the RIXS intensity from the clean system,
and δIrandom is the random noise. δIrandom is drawn from the
uniform distribution [−0.2, 0.2] × |C(	ε)|2 (which is rather
large). Hence, I0(qn, ω) agrees well with the idealistic, perfect
RIXS signal Eq. (6). For the topological case P = 1/2 (red
circles), the parameters of the SSH Hamiltonian were t1 = 0.1
and t2 = 1. For the trivial case P = 0, the parameters were
t1 = 1 and t2 = 0.1 (so that 	ε is the same for the both cases).
We set d = 0.24 for both the cases.

We attempted to fit these data with I (qn)/|C(	ε)|2 =
A sin2(qnB + P) + C, where (A, B,C, P) are the fitting pa-
rameters (we have restricted B ∈ [0, 1/4] without losing the
generality). See the solid lines in Fig. 1(c), which are obtained
from the fitting. The results excellently agree with the dotted
lines, which are the ideal ones Eq. (6). For the ideal, noiseless
signal of trivial case (without the noise δIrandom), we expect to
find

A = 2, B = 0.24,C = 0, P = 0, (14)

which is the dotted green line in Fig. 1(c). As the result of the
fitting (the solid green line), we found

A = 1.98, B = 0.24, C = 0.02, and P = 0.00, (15)

which are pretty close to the ideal values (14). More im-
portantly, we succesfully diagnose the band topology P =
P/π = 0. For the ideal, noiseless signal of trivial case (with-
out the noise δIrandom), we expect to find

A = 2, B = 0.24, C = 0, and P = 1.58, (16)

which is the dotted red line in Fig. 1(c). As the result of the
fitting (the red solid line), we found

A = 1.99, B = 0.23, C = −0.04, and P = 1.58, (17)

which are pretty close to the ideal values (16). More im-
portantly, we succesfully diagnose the band topology P =
P/π = 1/2.

Our theory can be tested in 3D bulk materials A2W6X6

(A = Rb, Cs; X = S, Se), which realize the quasi-1D SSH

chains [33–36]. We append their DFT band structures and
some information on these materials in Appendix B 4, show-
ing that they indeed have P = 1/2. In these materials, one
can use W 2p → 5d transition to perform RIXS experiments
to test our theory.

Finally, we remark that the above can be easily general-
ized to the multiband models, which explicitly lack the chiral
symmetry. For example, in Appendix B 3, we consider the
four-band model which explicitly breaks the chiral symmetry
and demonstrate that we can read off the polarization per each
filled band.

IV. 3D TOPOLOGICAL BAND INSULATORS

Our theory is not restricted to 1D and applies equally well
to the 3D TBI [30,46]. Some detail of the model can be
found in Appendix. E. Here, we focus on showing that the Z2

topological band index ν0 [46] can be completely determined
from RIXS intensity.

A. Main result

We consider the realistic, four-band model HTBI(k) =∑5
i=0 di(k)�i [30] describing Bi1−x Sbx [30,37,38]. The spe-

cific form of HTBI(k) is not important for now and can be
found in Appendix E. The Z2 index ν0 is determined by a
product of the inversion eigenvalues Iv (k∗) of the valence
bands at the time-reversal invariant momentum (TRIM) points
k∗ [30]

(−1)ν0 =
∏

k∗∈TRIM

Iv (k∗).

If ν0 = 1 mod 2, then the insulator is topological with a single
surface Dirac cone [46]. Otherwise, it is trivial.

Our key observation here is that the RIXS intensity con-
necting arbitrary two TRIM points, say k∗ and �, allows
us to determine the product Iv (k∗)Iv (�). This is because
Iv (k∗)Iv (�) manifests in the intensity:

I (qn,	εk∗ ) = 2|C(	εk∗ )|2 sin2
(

qn · d + 1
2νk∗π

)
, (18)

with d = 1
8 (1, 1, 1) and νk∗ = 1

2 (Iv (k∗)Iv (�) − 1). Here,
we have tuned the momentum transfer as qn = k∗ +∑

i=1,2,3 niGi, ni ∈ Z where Gi is a primitive reciprocal vec-
tor. The energy transfer 	εk∗ is tuned to the energy difference
between the valence band at � and the conduction band at k∗.
See Fig. 2(a) for the RIXS process, when k∗ = X .

B. Proof of Eq. (18)

To prove Eq. (18), we will use the fact that each of conduc-
tion and valence bands in the model are twofold degenerate at
TRIM points because of the time reversal symmetry, and they
have the same inversion eigenvalues. Our starting point is the
non-spin-flip RIXS quantum amplitude,

A f (q) = C(ω)
∑

r,α,s={↑,↓}
〈 f |cr,α,sc

†
r,α,se

iq·rα |g〉, (19)

where α is the sublattice index, and s is the spin. On this, we
plug cr,α,s = ∑

k,η U †
αηγη,s(k)eik·x (see Appendix E for nota-
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FIG. 2. (a) Band structure of the 3D TBI along a momentum cut
[Fig. 2(b)] connecting the high-symmetry points in the diamond lat-
tice. The example in the main text considers the momentum transfer
qn = X − �. This excites a valence electron at � to the conduction
band at X . (b) Momentum space of the diamond lattice. Here, the
arrows represent the momentum cut along which the band structure
is obtained in Fig. 2(a). (c) RIXS intensity of 3D TBI for the mo-
mentum transfer qn = X − �. As in the SSH case, the error bars for
the data (filled circles) are due to the noise that we included in our
simulation.

tions) with

U † = [
ψc,μ(k)|ψc,ν (k)|ψv,μ(k)|ψv,ν (k)

]
gives

A f (q) = C(ω)
∑
k,s

〈 f |(U (k)M̂k+q,kU †

× (k + q))νμγμ,s(k + q)γ †
ν,s(k)|g〉, (20)

where ψc/v,μ(k) is an eigenstate of hTBI(k) with a degeneracy
index μ = ±1 (due to the time-reversal symmetry), and M̂q

is

M̂q =

⎛
⎜⎜⎜⎜⎝

eiq·d 0 0 0

0 eiq·d 0 0

0 0 e−iq·d 0

0 0 0 e−iq·d

⎞
⎟⎟⎟⎟⎠

= cos (q · d )14×4 + i sin(q · d )�̂,

with d = 1
8 (1, 1, 1). Here �̂ can be written as �12 =

[�1, �2]/2i. The RIXS quantum amplitude is given by

Aμ,ν

f (qn,	ε) = C(	ε)(cos(qn · d )ψ†
c,μ(k + qn)ψv,ν (k)

+ i sin(qn · d )ψ†
c,μ(k + qn)�̂ψv,ν (k)).

(21)

Below, we would like to prove Eq. (18) from Eq. (21) by
applying appropriate symmetries. The first step of our proof

is to show ψ
†
η=c/v,μ(k)�̂ψη,ν (k) = 0 where k ∈ TRIM,

ψ†
η,μ(k)�̂ψη,ν (k) = ψ†

η,μ(k)�̂Î†Îψη,ν (k),

= Iv (k)ψ†
η,μ(k)�̂Îψη,ν (k),

= − Iv (k)ψ†
η,μ(k)Î�̂ψη,ν (k),

= − ψ†
η,μ(k)�̂ψη,ν (k),

where we used {Î, �̂} = 0. See Appendix E for the de-
tailed algebra. This implies that �̂ψc/v,μ(k) is orthogonal to
ψc/v,ν (k). Therefore �̂ψc/v,μ(k) belongs to the space spanned
by ψv/c,ν (k). Similarly, if Îψv,μ(k) = Iv (k)ψv,μ(k), then

�̂Îψv,μ(k) = Iv (k)�̂ψv,μ(k) ⇒ Î (�̂ψv,μ(k))

= − Iv (k)(�̂ψv,μ(k)),

which means that Ic(k) = −Iv (k).
To proceed, we choose the convenient orthnormal basis at

k, k + qn ∈ TRIM as follows:

{ψv,1(k), ψv,2(k), ψc,1(k), ψc,2(k)},

where ψc,μ(k) = �̂ψv,μ(k). Similary, for the reciprocal mo-
mentum qn, we define

{ψv,1(k + qn), ψv,2(k + qn), ψc,1(k + qn), ψc,2(k + qn)},

such that ψ†
c,μ(k + qn)ψv,ν �=μ(k)=0 and ψ†

c,μ(k+qn)ψc,ν �=μ

(k) = 0. This choice allows us to forget about the degeneracy
index (μ, ν) because the amplitude is diagonal in this index.
With this, Eq. (21) becomes

Aμν

f (qn,	ε) = δμνC(	ε)(cos(qn · d )ψ†
c,μ(k + qn)ψv,μ(k)

+ i sin(qn · d )ψ†
c,μ(k + qn)�̂ψv,μ(k)). (22)

We now look for the symmetry constraints on the terms in
(21). For example, we can apply the inversion symmetry

ψ†
c,μ(k + qn)ψv,μ(k) = ψ†

c,μ(k + qn)Î†Îψv,μ(k)

= −Iv (k + qn)Iv (k)ψ†
c,μ(k + qn)

×ψv,μ(k). (23)

Therefore we find that if Iv (k + qn)Iv (k) = 1, then
ψ†

c,μ(k + qn)ψv,μ(k) = 0. At the same time, we automatically
find |ψ†

c,μ(k + qn)�̂ψv,μ(k)| = 1 since ψ†
v,μ(k)�̂ψv,μ(k) = 0

and ψ†
v,μ(k + qn)ψc/v,ν �=μ(k) = 0. Hence, Eq. (22) becomes

Aμν

f (qn,	ε) = δμνC(	ε)i sin(qn · d ), which leads to I =
2|C(	ε)|2 sin2(qn · d ).
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Similarly, because of

ψ†
c,μ(k + qn)�̂ψv,μ(k) = ψ†

c,μ(k + qn)Î†Î�̂ψv,μ(k)

= Iv (k + qn)Iv (k)ψ†
c,μ(k + qn)

× �̂ψv,μ(k), (24)

we find that if Iv (k + qn)Iv (k) = −1, then ψ†
c,μ(k +

qn)�̂ψv,μ(k) = 0. This enforces |ψ†
c,μ(k + qn)ψv,μ(k)| = 1.

Hence, Eq. (22) becomes Aμν

f (qn,	ε)=δμνC(	ε) cos(qn· d ),

which leads to I = 2|C(	ε)|2 cos2(qn · d ). This completes
our proof.

We note that the intensity (18) is largely independent of
the hopping parameters of the model [except the overall co-
efficient C(	ε)]. Moreover, its oscillation in momentum is
fixed solely by Iv (k∗)Iv (�). We will see later that this allows
us to deduce Iv (k∗)Iv (�) from the intensity. Hence, if we
repeat the RIXS experiment on all the TRIM k∗, we can derive
Iv (k∗)Iv (�) for all the k∗. This allows us to determine ν0

because

(−1)ν0 =
∏

k∗ �=�

[Iv (k∗)Iv (�)]. (25)

C. Numerical simulations

Next, we explicitly demonstrate the utility of Eq. (18) in
determining the topology. For this, we remind that to correctly
infer the band topology of HTBI(k), the inversion eigenvalue at
k∗ = X , i.e., Iv (X ), needs to be carefully determined. (There
are three symmetrically-equivalent X ’s [Fig. 2(b)], but we
will take one below.) This is because the band inversion oc-
curs at k∗ = X , which controls the phase transition between
ν0 = 0 and 1 [30,46]. Hence, below we will focus on k∗ = X
[Fig. 2(a)] and demonstrate that we can deduce Iv (X )Iv (�)
via Eq. (18) from the RIXS intensity.

We first numerically generate the RIXS intensity data,

I (qn,	ε) = I0(qn,	ε) + δIrandom, (26)

where I0(qn,	ε) the ideal RIXS intensity [Eq. (18)] and
δIrandom is the random noise. δIrandom is drawn from the uni-
form distribution [−0.3, 0.3] × |C(	ε)|2. The parameters in
HTBI(k) allow us to access both the cases Iv (X )Iv (�) = ±1.
The RIXS intensity data of these two cases are represented as
the filled circles in Fig. 2(c). Green (red) circles represent the
data of the system with Iv (X )Iv (�) = 1 (Iv (X )Iv (�) = −1).
As in the SSH chain, we have included white noises to the
data to mimic the experimental situations.

Next, we attempted to fit these simulated data with
I (qn,	ε)/|C(	εk∗ )|2=A sin2(qn · d+B)+C, where (A, B,C)
are the fitting parameters. The solid lines in Fig. 2(c) are the
results of the fitting. They agree well with the dotted lines,
which are the ideal ones Eq. (18). These dotted lines exactly
agree with the simulated data when the noise is removed,
and the small discrepancy between the ideal ones (dotted
lines) and the fitting (solid lines) is due to the white noise.
In particular, we found that the fitted parameter B correctly
determines Iv (X )Iv (�).

The RIXS intensity data [the filled circles in Fig. 2(c)]
with momentum transfer qn = (2π, 0, 0) + n(2π, 2π, 2π )
[which connects � → X (2π, 0, 0)] are generated by adding

the two contributions (26). Red circles correspond to the
Iv (�)Iv (X ) = −1 case and green circles correspond to
the Iv (�)Iv (X ) = 1 case. Note that in the fitting form,
I (qn,	ε)/|C(	ε)|2 = A sin2 (qn · d + B) + C, B is the di-
agnostics of the band topology, because we expect B =
1
4 (Iv (qn)Iv (k) − 1)π if the fitting works well enough.

For the ideal, clean signal of Iv (�)Iv (X ) = 1 case (without
the noise δIrandom), we expect to find

A = 2.00, B = 0.00, and C = 0.00, (27)

which is the dotted green line in Fig. 2(c). As the result of the
fitting [the solid green line in Fig. 2(c)], we found

A = 1.96, B = 0.01, and C = 0.00, (28)

which agrees excellently with the exact values Eq. (27). In par-
ticular, from B, we can correctly infer Iv (qn)Iv (k) = 4B/π +
1 ≈ 1.

For the perfect, ideal signal of Iv (�)Iv (X ) = −1 case
(without the noise δIrandom), we expect to find

A = 2.00, B = 1.58, and C = 0.00, (29)

which is the dotted red line in Fig. 2(c). As the result of the
fitting (the solid red line in Fig. 2(c)], we found

A = 1.96, B = 1.58, and C = 0.00, (30)

which are pretty close to the exact result (29). In partic-
ular, from B ≈ π/2, we can correctly infer Iv (qn)Iv (k) ≈
−1. Hence, we conclude that we can successfully diagnose
Iv (X )Iv (�) via RIXS. Here, although we have focused only
on X points, the procedure can be repeated for all the TRIM
points. This will determine all the Iv (k∗)Iv (�) for any TRIM
k∗ and thus ν0 via Eq. (25). In real experiments, we note that
our theory can be tested in RIXS experiments on the standard
topological insulator Bi1−xSbx, where Bi 2s → 6p transition
can be used.

This is not restricted to the prototypical four-band model.
For example, in Appendix E 3, we have considered eight-band
model and shown that we can easily read off the band topology
in this case, too.

V. 2D QUADRUPOLAR INSULATORS

We will apply our theory to the higher order topological
insulators, i.e., quadrupole insulator (QI) [27,28], which is
defined on the square lattice. Some details on the model can
be found in Appendix C.

A. Main result

The QI is a C4-symmetric, four-band insulator, which
can support the quantized quadrupolar moment Qxy mod 1
[27,28]. When C4 symmetry is imposed, Qxy can take only
the discrete values, either Qxy = 1/2 (topological) or Qxy = 0
(trivial). This quadrupole moment can be related with the C4-
symmetry eigenvalues of valence bands at � and M = (π, π )
[27,28]

exp(2π iQxy) = r4(M )r∗
4 (�), (31)

where r4(k∗) represents the eigenvalue of the C4 symmetry at
the C4-symmetric k∗ such that (r4(k))2 = i.
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(a) (b)d 1 − 2d

1
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3

t1

t2

−t1

−t2

(0, 0) (π, 0)

(π, π)
(c,±)

(v,±)

E

FIG. 3. (a) Hopping pattern of QI model. t2(t1) is the inter-
site(intrasite) hopping parameter and dotted lines represents different
sign of hopping parameter (so that there are π flux for all the pla-
quettes). We present intersite(intrasite) hopping as a red (blue) line.
When t2 > t1, HQI hosts a topologically nontrivial phase. Otherwise,
it is trivial. (b) Along the high-symmetry points, we plot the band
structure of HQI. Each bands are twofold degenerate (degeneracy
index ±). At the half filling, HQI is an insulator. We consider the
RIXS transition from � → M. An empty circle represents the hole
in the valence band and the filled circles presents the created electron.

From Eq. (31), we are naturally led to consider the RIXS
intensity between � and M to grasp Qxy. Indeed, we find that
the intensity depends on Qxy

I[qn,	ε] = 4|C(	ε)|2 sin2[(2n + 1)πd + Qxyπ ], (32)

with qn = (2n + 1)(π, π ), n ∈ Z. Here, “d” is the half of the
real-space distance (in unit of the lattice constant) between the
sublattices within a unit cell [Fig. 3(a)]. Thus the topological
index Qxy can be deduced from the RIXS intensity.

B. Proof of Eq. (32)

As in the previous cases, our starting point is the Bloch
state cr,α,s=↑,↓ = ∑

k,η U †
αηγη,s(k)eik·rα (see Appendix C for

notations), which we insert into the formula for the non-spin-
flip RIXS quantum amplitude,

A f i(q, ω) = C(ω)
∑
k,s

〈 f |(U (k)M̂k+q,kU †

× (k + q))νμγμ,s(k + q)γ †
ν,s(k)|g〉,

TABLE I. C4 eigenvalues at symmetric points. We denote a C4

eigenvalue of a band(η = c, v). Here, (ξ = ±) represents the index
for the degenerate states at k∗ = �, M as rξ=±

4,η=c,v (k∗). When |t2| >

|t1|, Qxy = 1/2 mod 1 and otherwise 0 mod 1.

Bands �(q = (0, 0)) M(q = (π, π ))

(v, −) sign(t1 + t2)e−i 3
4 π sign(t1 + t2)e2π iQxy e−i 3

4 π

(v, +) sign(t1 + t2)e+i 3
4 π sign(t1 + t2)e2π iQxy e+i 3

4 π

(c, −) −sign(t1 + t2)e−i 3
4 π −sign(t1 + t2)e2π iQxy e−i 3

4 π

(c, +) −sign(t1 + t2)e+i 3
4 π −sign(t1 + t2)e2π iQxy e+i 3

4 π

where

M̂k+q,k =

⎛
⎜⎜⎜⎜⎝

ei(qx+qy )d 0 0 0

0 e−i(qx+qy )d 0 0

0 0 ei(−qx+qy )d 0

0 0 0 ei(qx−qy )d

⎞
⎟⎟⎟⎟⎠.

The corresponding RIXS intensity of the QI model is

I (q,	ε) = 2|C(	ε)|2
′∑
f

|ψ†
c (k + q)M̂k+q,qψv (k)|2,

where factor 2 came from the double degeneracy of the spin.
Here, we consider qn = (2n + 1)(π, π ), n ∈ Z, and 	ε =
εc(M ) − εv (�). This fixes the RIXS channel as � → M

I (qn,	ε) = 2|C(	ε)|2
∑

η,η′=±
|ψ†

c,η(M )M̂0+qn,0ψv,η′ (�)|2.

To proceed, we note that ψξ=c/v,η(k∗ = �, M ) is an eigenstate
of C4 rotation with the eigenvalue rξ

4,η(k∗). This in fact fixes
the wave function up to a complex phase factor:

ψT
ξ,η(k∗) = 1

2

(
1,−rξ

4,η(k∗)2, rξ
4,η(k∗),−rξ

4,η(k∗)3
)
, (33)

where rξ
4,η(k∗) is a C4 eigenvalue of the wavefunction at k∗ =

�, M. See Table I, for example. We insert this into I (qn,	ε)
to finally find

I (qn,	ε) = |C(	ε)|2 × {|(cos 2(2n + 1)πd − e2π iQxy )|2 + sin2(2(2n + 1)πd )},

= 4|C(	ε)|2 sin2(((2n + 1)d + Qxy)π ) =
{

4|C(	ε)|2 sin2(2n + 1)πd for |t1| > |t2| (Qxy = 0),

4|C(	ε)|2 cos2(2n + 1)πd for |t1| < |t2|
(
Qxy = 1

2

)
.

(34)

C. Numerical simulations

As in previous examples, we simulated RIXS intensity
data. The RIXS intensity data with momentum transfer qn =
(2n + 1)(π, π ) are generated by adding the two contributions
(Fig. 4):

I (qn,	ε) = I0(qn,	ε) + δIrandom, (35)

where I0(qn,	ε) is the RIXS intensity obtained by applying
Eq. (34), and δIrandom is the random noise. δIrandom is drawn
from the uniform distribution [−0.5, 0.5] × |C(	ε)|2. Hence,
I0(qn,	ε) is the analytic, perfect RIXS signal on the clean QI
model. For the topological case Qxy = 1/2 (red circles), the
parameters of the QI model were t1 = 0.1 and t2 = 1. For the
trivial case Qxy = 0, the parameters were t1 = 1 and t2 = 0.1
(so that 	ε is the same for the both cases). We set d = 0.24
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Trivial+noise

Topological
   + noise

Fitting

Analytic

Fitting

Analytic

I/|C(Δ )|2

FIG. 4. RIXS intensity of QI model for the momentum transfer
qn = (2n + 1)(π, π ) and fitting. As in the previous examples, the
error bars for the data (filled circles) are due to the noise that we
included in our simulation.

for both the cases [47]. The error bars are due to the noises
δIrandom that we included.

We have attempted to fit the data with I (qn,	ε)/
|C(	ε)|2 = A sin2 ((2n + 1)πB + Q) + C, [cf. Eq. (34)].
Note that the topological index Qxy is given as Q/π . See the
result of the fitting in Fig. 4.

For the ideal, noiseless signal of the trivial case (without
the noise δIrandom), we expect to find

A = 4, B = 0.24, C = 0, and Q = 0, (36)

which is the darker green line in Fig. 4. As the result of the
fitting (the light green line in Fig. 4), we found

A = 3.89, B = 0.23, C = 0.04, and Q = 0.00, (37)

which are pretty close to the ideal values (36). In particular,
the fitting gives us the correct quadrupole moment Qxy =
Q/π = 0.

For the ideal, noiseless signal of the topological case (with-
out the noise δIrandom), we expect to find

A = 4, B = 0.24, C = 0, and Q = 1.58, (38)

which is the darker red line in Fig. 4. As the result of the fitting
(the light red line in Fig. 4), we found

A = 3.99, B = 0.24, C = 0.03, and Q = 1.56, (39)

which are pretty close to the ideal values (38). In particular,
the fitting results in the almost correct quadrupole moment
Qxy = Q/π ≈ 0.49. If one remembers that the quadrupole
moment should be quantized, one can confidently infer Qxy =
1/2 from the fitting.

This can be tested in candidate materials for QI such as
XY (X = Ge; Y = S, Se) [39] where Ge 1s → 4p transition
is available for the RIXS experiment. In Appendix C, we gen-
eralize the above to another class of nondegnerate multiband
C4-symmetric insulator H (4)

1b of Refs. [28,48].

VI. 2D C4 SYMMETRIC HOTI

A. Main result

We also apply our RIXS intensity to another C4-symmetric
higher order insulator H (4)

1b [48]. Its topological invariant C

mod 1 is equal to either 1/2 (topological) or 0 (trivial) which
can be determined by the relative C4 rotation eigenvalues at �

and M,

exp(2π iC) = r4(M )r∗
4 (�)

with r4(k∈{�,M})4 = 1. Details of H (4)
1b can be found in

Appendix D such as its symmetry and topology.
As in the QI case, we find RIXS intensity connecting � and

M encodes the information of topological invariant,

I[qn,	ε] = 2|C(	ε)|2 sin4[((2n + 1)d + C)π ], (40)

with qn = (2n + 1)(π, π ) = M − � (n ∈ Z), and 2d is the
distance between sublattices in the unit cell [Fig. 5(a)]. The
overall factor 2 came from the spin degeneracy. We are going
to prove that from RIXS intensity C can be read off by proving
Eq. (40).

B. Proof of Eq. (40)

We prove the RIXS intensity of 2D C4 symmetric higher
order topological insulator Eq. (40) for diagnosing the band
topology. Essential process of the proof is parallel to QI
model. The RIXS quantum amplitude is written as

A f i(qn,	ε) = C(	ε)
∑

s={↑,↓}
ψ∗

c,1,s(M )M̂0+qn,0ψv,1,s(�),

with

M̂k+q,k =

⎛
⎜⎜⎜⎜⎝

ei(qx+qy )d 0 0 0

0 e−i(qx+qy )d 0 0

0 0 ei(−qx+qy )d 0

0 0 0 ei(qx−qy )d

⎞
⎟⎟⎟⎟⎠.

Therefore the RIXS intensity of the C4 symmetric higher
order topological insulator is

I (qn,	ε) = 2|C(	ε)|2|ψ†
c,1(M )M̂0+qn,0ψv,1(�)|2, (41)

where the overall factor 2 comes from spin degrees of free-
dom. Following the same calculation of QI model, the wave
functions at the high symmetric points k∗ = �, M are fixed by
the C4 symmetry (up to a complex phase), which gives

ψc/v,1(k∗ = �, M ) ∝ 1
2

(
1, r2

4,c/v (k∗), r4,c/v (k∗), r3
4,c/v (k∗)

)
,

TABLE II. C4 eigenvalue tables at high symmetric points. We
summarize rotation eigenvalues of (c/v, 1) bands which is relevant
band in the quarter filling. See the band dispersion [Fig. 5(b)]. When
|t1| > |t2|, C = 0 which is the trivial phase. When |t1| < |t2|, C = 1

2

and H (4)
1b is in the topological phase.

C4 �(q = (0, 0)) M(q = (π, π ))

v sign(t1 + t2) sign(t1 + t2) e2π iC

c −sign(t1 + t2) −sign(t1 + t2) e2π iC
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(v, 1)

(v, 2)

(c, 2)

(c, 1)

E

(0, 0) (π, 0)

(π, π)

(a) (b)

1

2 4

3

d 1 − 2d

t1

t2
E

(c)

(v, 1)

(c, 1)

FIG. 5. (a) Hopping pattern of H (4)
1b model. t2(t1) is the intersite(intrasite) hopping parameter. We present intersite(intrasite) hopping as a

red(blue) line. When t2 > t1, H (4)
1b hosts a topological phase. Otherwise, it is trivial. (b) Along the high-symmetry points, we plot the band

structure of H (4)
1b . At the quarter filling, H (4)

1b is an insulator. (c) RIXS process. We consider the RIXS transition from � → M. An empty circle
represents the hole in the valence band and the filled circles presents the created electron.

where r4
4,c/v (k∗) = 1. Inserting them into the RIXS quantum amplitude with the C4 eigenvalues in Table II, we obtain

I (qn,	ε) = 1
2 |C(	ε)|2| cos 2(2n + 1)πd − e2π iC |2,

= 2|C(	ε)|2 sin4(((2n + 1)d + C)π )

=
{

2|C(	ε)|2 sin4(2n + 1)πd for |t2| > |t1| (C = 0),

2|C(	ε)|2 cos4(2n + 1)πd for |t2| < |t1|
(
C = 1

2

)
.

(42)

C. Numerical simulation

The RIXS intensity data (Fig. 6) with momentum transfer
qn = (2n + 1)(π, π ) are generated by adding the two contri-
butions:

I (qn, ω) = I0(qn, ω) + δIrandom, (43)

where I0(qn, ω) is the RIXS intensity from the insulator, and
δIrandom is the random noise. Essentially, I0(qn, ω) is the
analytic, perfect RIXS signal on the clean H (1)

4b model. On
the other hand, δIrandom is the white noise drawn from the
uniform distribution [−0.3, 0.3] × |C(	ε)|2. For the topolog-
ical case C = 1/2 (red circles in Fig. 6), the parameters of
the H (1)

4b model were t1 = 0.1 and t2 = 1. For the trivial case
C = 0 (green circles in Fig. 6), the parameters were t1 = 1
and t2 = 0.1 (so that 	ε is the same for the both cases). We
set d = 0.24 for both the cases.

Trivial+noise

Topological
   + noise

Fitting

Analytic

Fitting

Analytic

I/|C(Δ )|2

FIG. 6. RIXS intensity of H (4)
1b model with momentum trans-

fer qn = (2n + 1)(π, π ) and energy transfer ω = 	ε = εc,1(M ) −
εv,1(�). See the band dispersion [Fig. 5(b)].

As before, we have attempted to fit the data with I (qn)/
|C(	ε)|2 = A sin4 ((2n + 1)πB + Q) + C [cf. Eq. (40)].
Here Q will be the diagnostics of the band topology, i.e.,
C = Q/π is the band index.

For the idealistic, perfect signal of the trivial case (without
the noise δIrandom), we expect to find

A = 2, B = 0.24, C = 0, and Q = 0, (44)

which is the darker green line in Fig. 6. As the result of the
fitting (the light green line in Fig. 6), we found

A = 1.90, B = 0.23, C = 0.04, and Q = 0.00, (45)

which are pretty close to the exact values (44). In particular,
this correctly determines C = Q/π = 0.00.

For the idealistic, perfect signal of topological case (with-
out the noise δIrandom), we expect to find

A = 2, B = 0.24, C = 0, and Q = 1.58, (46)

which is the darker red line in Fig. 6.
As the result of the fitting (the lighter red line in Fig. 6), we

found

A = 1.90, B = 0.23, C = 0.00, and Q = 1.57, (47)

which are pretty close to the exact values (46). In particular,
this correctly determines C = Q/π = 0.5.

VII. 3D CHIRAL HINGE INSULATORS

A. Main result

The above discussions can be generalized to 3D CHI [31]
(see Appendix F for a review), which hosts a chiral 1D mode
at the hinges. The insulator is classified by another Z2 topo-
logical band index ν ′ ∈ {0, 1}, which can be determined by
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the inversion eigenvalues I (k∗) at C4zI-symmetric points k∗,
or rotoinversion symmetric points (RISP)

(−1)ν
′ =

∏
C4zI·k∗=k∗

I (k∗).

Similar to the 3D TBI, this Z2 index for the CHI can be
reformulated in terms of the product of I (k∗) between the two
high-symmetric points, e.g., I (k∗)I (�) Hence, the topology
of the CHI can be diagnosed in the exactly same fashion as
we did for the 3D TBI.

As in the 3D TBI case, we consider the RIXS intensity
from a reference point, say �, to other RISP k∗. That is, we
select the momentum transfer: qn = k∗ + ∑3

i=1 niGi with Gi

being a primitive reciprocal vector. The RIXS intensity can be
expanded as

I (qn,	ε)

|C(	ε)|2 = 2 sin2

(
qn · d + 1

4
(Iv (k∗)Iv (�) − 1)π

)
, (48)

where qn = k∗ + ∑
i=1,2,3 niGi, (ni ∈ Z) with Gi is a recip-

rocal lattice vector and d = (0, 0, d ) is a sublattice vector.
Obtained RIXS intensity manifests the RIXS intensity en-
codes a product of inversion eigenvalues of k∗ and �, which
implies topological band index can be constructed.

B. Proof of Eq. (48)

To prove Eq. (48), we start with the RIXS intensity which
can be expanded in terms of eigenstates of hCHI(k) as in the
3D topological band insulator case

I (qn,	ε)

|C(	ε)|2 =
∑
μ,ν

|ψ†
c,μ(k∗)M̂qn

ψv,ν (�)|2, (49)

where ψc/v,μ(k) is an eigenstate of hCHI(k) with a degeneracy
index μ. See Appendix F for notations. Here, M̂qn

contains
sublattice information,

M̂qn
= cos(qn · d ) + i sin(qn · d )�̂, (50)

with �̂ = τ3σ0. By plugging �̂ into the RIXS intensity, we
obtain

I (qn,	ε)

|C(	ε)|2 =
∑
μ,ν

| cos(qn · d )ψ†
c,μ(k∗)ψv,ν (�)

+ i sin(qn · d )ψ†
c,μ(k∗)�̂ψv,ν (�)|2.

We first note that the Ĉz
4 Î eigenvalues of {ψv,μ(k∗),

ψv,μ̄ �=μ(�)} can be ordered to be {Iv (k∗)e±i π
4 , Iv (�)e∓i π

4 }
from symmetry algebra (details of algebras can be found
in Appendix F). This implies ψ†

c,μ(k∗)ψv,μ̄ �=μ(�) = 0 where
ψc,μ(k∗) = �̂ψv,μ(k∗), because

ψ†
c,μ(k∗)ψv,μ̄(�) = ψ†

c,μ(k∗)(Ĉz
4 Î )†(Ĉz

4 Î )ψv,μ̄(�)

= −Iv (k∗)e±iπ/4Iv (�)e±iπ/4ψ†
c,μ(k∗)

× ψv,μ̄(�),

= ∓iIv (k∗)Iv (�)ψ†
c,μ(k∗)ψv,μ̄(�).

In the second line, we have used Iv (k∗) = −Ic(k∗) from
{Ĉz

4 Î, �̂} = 0 for k∗ ∈ RISP. Similarly,

ψ†
c,μ(k∗)�̂ψv,μ̄(�) = ψ†

c,μ(k∗)(Ĉz
4 Î )†(Ĉz

4 Î )�̂ψv,μ̄(�),
= Iv (k∗)e±iπ/4Iv (�)e±iπ/4ψ†

c,μ(k∗)

× �̂ψv,μ̄(�),

= ±iIv (k∗)Iv (�)ψ†
c,μ(k∗)�̂ψv,μ̄(�).

so, ψ†
c,μ(k∗)�̂ψv,μ̄(�) = 0. Therefore the RIXS intensity for

this case is diagonal in the degeneracy index, and is reduced
to

I (qn,	ε)

|C(	ε)|2 =
∑

μ

| cos(qn · d )ψ†
c,μ(k∗)ψv,μ(�)

+ i sin(qn · d )ψ†
c,μ(k∗)�̂ψv,μ(�)|2.

For this case, we want to prove that

{
if Iv (k∗)Iv (�) = −1, then |ψ†

c,μ(k∗)ψv,μ(�)|2 = 1, |ψ†
c,μ(k∗)�̂ψv,μ(�)|2 = 0,

if Iv (k∗)Iv (�) = 1, then |ψ†
c,μ(k∗)ψv,μ(�)|2 = 0, |ψ†

c,μ(k∗)�̂ψv,μ(�)|2 = 1,
(51)

which gives Eq. (48). To prove Eq. (51), we consider
ψ†

c,μ(k∗)ψv,μ(�), where we insert an identity, (Ĉz
4 Î )†(Ĉz

4 Î ),

ψ†
c,μ(k∗)ψv,μ(�)

= ψ†
c,μ(k∗)(Ĉz

4 Î )†(Ĉz
4 Î )ψv,μ(�),

= −Iv (k∗)e±iπ/4Iv (�)e∓iπ/4ψ†
c,μ(k∗)ψv,μ(�),

= −Iv (k∗)Iv (�)ψ†
c,μ(k∗)ψv,μ(�).

Therefore, if Iv (k∗)Iv (�) = 1, then ψ†
c,μ(k∗)ψv,μ(�) = 0.

At the same time, we have ψ†
c,μ(k∗)ψv,μ̄(�) = 0,

ψ†
c,μ(k∗)�̂ψv,μ̄(�) = 0 for μ̄ �= μ. They together imply

|ψ†
c,μ(k∗)�̂ψv,μ(�)| = 1. For Iv (k∗)Iv (�) = −1 case,

one can similary show that if ψ†
c,μ(k∗)�̂ψv,μ(�) = 0 and

|ψ†
c,μ(k∗)ψv,μ(�)| = 1 since {Ĉz

4 Î, �̂} = 0, which completes
our proof.

C. Numerical simulations

Next, we numerically demonstrate how we can read off
the topological band index from RIXS intensities. The RIXS
intensity data (Fig. 7) with momentum transfer qn = (2n +
1)(0, 0, π ) and energy transfer 	ε = εc(Z ) − εv (�) are gen-
erated by adding the two contributions

I (qn,	ε) = I0(qn,	ε) + δIrandom, (52)

where I0(qn,	ε) is the RIXS intensity from the insulator,
and δIrandom is the random noise. Essentially, I0(qn,	ε) is
the analytic, perfect RIXS signal on the clean HCHI model.
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Fitting

Analytic

Fitting

Analytic

I/|C(Δ )|2

+noise

+noise
[I(Γ)I(Z) = +1]

[I(Γ)I(Z) = −1]

FIG. 7. RIXS intensity of HCHI model with momentum transfer
qn = (2n + 1)(0, 0, π ) and energy transfer ω=	ε=εc(Z ) − εv (�).
As in the previous examples, the error bars for the data (filled circles)
are due to the noise that we included in our simulation.

On the other hand, δIrandom is the white noise drawn from the
uniform distribution [−0.3, 0.3] × |C(	ε)|2.

For the topological case ν = 1 mod 2, i.e., I (�)I (Z ) =
+1, (red circles in Fig. 7), the parameter of the HCHI model
is M/t = −2.9 (see Appendix F for the parameters). For the
trivial case ν = 0 mod 2, i.e., I (�)I (Z ) = −1 (green circles
in Fig. 7), the parameter is M/t = −3.1 (so that 	ε is the
same for the both cases). We set d = 0.24 for both the cases.

We have attempted to fit the data with I (qn,	ε)/
|C(	ε)|2 = A sin2 ((2n + 1)πB + I ) + C, [cf. Eq. (48)]. Here
I ∈ [−π, 0] will be the diagnostics of the band topology, i.e.,
I = π

4 (Iv (Z )Iv (�) − 1). For the idealistic, perfect signal of
the trivial case (without the noise δIrandom), we expect to
find

A = 2, B = 0.24, C = 0, and I = 0, (53)

which is the darker green line in Fig. 7. As the result of the
fitting (the light green line in Fig. 7), we found

A = 1.90, B = 0.23, C = 0.05, and I = 0.00, (54)

which are pretty close to the exact values (53). In particular,
this correctly determines Iv (Z )Iv (�) = 1.00.

For the idealistic, perfect signal of topological case (with-
out the noise δIrandom), we expect to find

A = 2, B = 0.24, C = 0, and I = −1.58, (55)

which is the darker red line in Fig. 7. As the result of the fitting
(the lighter red line in Fig. 7), we found

A = 2.08, B = 0.24, C = −0.03, and I = −1.57, (56)

which are pretty close to the exact values (55). In particular,
this correctly determines Iv (Z )Iv (�) = −0.99. Therefore one
can read off Iv (�)Iv (Z ) from this RIXS intensity, from which
one can infer the topological band index.

VIII. CONCLUSION

In this work, we have shown that the RIXS intensity
directly reflects the band topology of various insulators in
different spatial dimensions. Essentially, the RIXS intensity is
strongly constrained by the crystalline symmetry eigenvalues

and this allows one to reconstruct the topological band indices.
We have explicitly demonstrated this strategy in 1D SSH
chain, 2D quadrupolar insulator, 2D C4-symmetric higher
order topological insulator, 3D topological band insulator,
and also higher order chiral hinge insulators. From these
examples, it is not difficult to anticipate that a broader class
of topology [48–53] of band insulators and superconductors
(beyond the examples discussed in this work) may as well be
manifested in RIXS. We leave the generalization to the future
research.
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APPENDICES

Since the Appendix is rather long, here we summarize the
organization of the Appendix. In Appendix A, we provide
more information on RIXS formalism. This is basically the
expansion of the section . In Appendix B, we review the basic
physics of the SSH model focusing on its symmetry and band
topology. We also provide a four-band generalization of the
SSH model, on which our proposal is not restricted to the
two-band systems. Even more, we show that we can read off
the band-wise polarization. Note that in Appendix B 4, we
provide our DFT data and its details on the candidate SSH
materials A2M2X 6. In Appendix C, we review the physics of
the 2D quadrupole insulator models, on which we focus on
their symmetry and topology. In Appendix D, we present the
physics of the 2D C4-symmetric higher order topological in-
sulator. As similar in the previous models, we mainly consider
the symmetry and band topology of the model. In Appendix E,
we review the physics of 3D inversion symmetric topological
insulator model on the diamond lattice. We particularly focus
on the inversion and time-reversal symmetries as well as the
Z2 band index. In Appendix F, we finally review the basics of
the 3D chiral hinge insulator model.
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FIG. 8. RIXS process. An incident photon transfers the core
electron to an empty state, which leaves a core hole and an electron
excitation. This configuration decays rather quickly and the core hole
is filled back by another electron. This leaves an electron-hole pair
excitation.

APPENDIX A: RIXS INTENSITY

Here we present a brief review of the theoretical formula-
tion of the RIXS spectral intensity [1]. Our starting point is
the RIXS sepctral intensity formula with momentum transfer
q and energy transfer 	ω.

I (	q,	ω) =
∑

f

|A f i(k f − ki = 	q, ω f − ωi

= 	ω, εi, ε f )|2δ(E f − Ei − 	ω), (A1)

which sums over allowed states f . Here A f i is a RIXS quan-
tum amplitude which is a function of incident (outgoing)
photon momentum ki( f ) with energy ωi( f ) and polarization
εi( f ). Next, Ei and E f are the energy of many-electron states
before and after the scattering process.

1. RIXS quantum amplitude

Formally, the quantum amplitude A f i is determined by
internal processes (see Fig. 8).

A f i = 〈 f |D̂(k f , ε f ) Ĝcore-hole(ω) D̂†(ki, εi )|g〉, (A2)

where D̂ is a transition operator that transits a core electron
to an empty state, i.e., a state in the conduction band. Here
Ĝcore-hole(ω) is the green’s function of the whole system with
a core hole and the excited electron. It is instructive to perform
the spectral decomposition of Ĝcore-hole(ω):

Ĝcore-hole(ω) =
∑

n

|n〉〈n|
ω − En + i�n

, (A3)

where En is the energy of an intermediate state with a core
hole and an excited electron, and �n is an inverse of the life-
time of the intermediate state. We assume that the core-hole
lifetime is very short, e.g., it is roughly O(1) fs in 4d/5d
materials [54,55] which makes the excitation remain at the
same site during the scattering. Near the resonant condition,
we can effectively take all the �n as a single number �,
i.e., �n ≈ � � |ω − En| which is known as the fast collision

approximation [1,40–42]

Ĝcore-hole(ω) �
∑

n

|n〉〈n|
ω − En + i�

. (A4)

Here, Ĝcore-hole(ω) as written above can incorporate nontrivial
dynamics of the intermediate states, for example, the excitonic
effect (interaction between the core hole and excited electron)
[41,43,56,57].

Next we identify the dipole transition operator D̂. In gen-
eral, we have

D̂(k, ε̂) =
∑

R,�,�′,σ,σ ′
eik·R〈c; �, σ |ε̂ · �r|d; �′, σ ′〉cR,�,σ d†

R,�′,σ ′

+ H.c., (A5)

which transits a core electron cR,�,σ to another valence state
(dR,�′,σ ′), where � represents the orbital of the relevant elec-
tronic states and σ represents the electronic spins. Here,
dR,�,σ are the fermions which forms the basis for the tight-
binding models whose topology we wish to investigate in the
main text. Note that the information encoded in this operator
D̂(k, ε̂) is atomic, which is in principle independent to the
detailed values of the hopping integrals of the low-energy
tight-binding models.

Plugging Eqs. (A4) and (A5) into Eq. (A2), we obtain

A f i =
∑

R

∑
n

∑
(�,σ ),(�′,σ ′ )

gn(ω)Mε̂i,ε̂ f ,n;(�′σ ′ ),(�,σ )

×〈 f |dR,�′,σ ′d†
R,�,σ eiq·R|g〉, (A6)

where g−1
n (ω) = ω − En + i� and q = k f − ki. Depending on

the matrix elements of Mε̂i,ε̂ f ,n,σ,σ ′ , one can access either the
non-spin-flip RIXS (which allows only the transition between
the electronic states of σ = σ ′) or the spin-flip RIXS (which
allows the transitions between the states σ �= σ ′).

When the polarizations of the photons are carefully chosen,
or when the RIXS transition itself does not allow the spin flip
(e.g., Bi 2s → 6p transition), we can access the non-spin-flip
RIXS [43], i.e., Mε̂i,ε̂ f ,n;(�′,σ ′ ),(�,σ ) = Mε̂i,ε̂ f ,n;�δσ,σ ′ . Thus we
find

A f i =
∑

R

∑
n

∑
σ

gn(ω)Mε̂i,ε̂ f ,n · 〈 f |dR,σ d†
R,σ eiq·R|g〉

= C(ω)
∑

σ

∑
R

〈 f |dR,σ d†
R,σ eiq·R|g〉 (A7)

In the above, we have suppressed notating � because we have
assumed that there is one particular �, e.g., 5dxz, which is
relevant both in a particular RIXS edge (that we would like
to utilize) and selected polarizations of the photons. Here,
let us emphasize that dR,�,σ has nothing to do with the Wan-
nier states of certain bands. This is obvious because dR,�,σ ,
which is atomic and localized in real space, is clearly not an
eigenstate of generic Hamiltonian. Thus it is not the real-space
representation of certain band. Nevertheless, to have a desired
transition, it is certainly needed to require dR,�,σ to have a
finite overlap with the target states included in the transition.
Here, C(ω) = ∑

n gn(ω)Mε̂i,ε̂ f ,n which depends on the details
such as gn(ω) and also the polarizations of photons (ε̂i, ε̂ f ).
The RHS of Eq. (A7) is Eq. (2) in our main text. In the
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following section, we will work out Mε̂i,ε̂ f ,n;(�′σ ′ ),(�,σ ) for the
transition 2p → 5d , which are relevant for the W-based SSH
materials A2W6S6 (see Appendix B 4). There, we will also
show that in principle, the spin-flip and non-spin-flip RIXS
can be selected by appropriately choosing the polarizations of
incident and scattered photons.

2. Example: 2p → 5dxz transition

As a concrete example, we will work out the details of
the RIXS transition 2p → 5dxz, which may be relevant for
A2W6S6 (Appendix B 4) with 5d element W. We will also
discuss the effect of the polarizations of the photons.

Let us start with the core-hole state. In the 5d elements, the
core-hole spin-orbit coupling can be strong. Because of this
spin-orbit coupling, the core-hole states are splitted into the
two different angular-momentum sectors J = 3/2 and 1/2,
which are energetically separated. We will focus on the J =
3/2 states below, although the discussion can be easily gener-
alized to the case with J = 1/2.

Within the dipole approximation, we will need the follow-
ing matrix element to calculate the RIXS amplitude:

〈5dxz|ε̂ · �r|2pi=x,y,z, σ =↑,↓〉, (A8)

where ε̂ is the polarization of the photon involved in the
transition. We introduce the following polarization basis for
the convenience:

|m = 0〉 = |2pz〉, |m = ±1〉 = 1√
2

(|2px〉 ± i|2py〉
)
,

r̂±1 = 1√
2

(x̂ ± iŷ), r̂0 = ẑ.

During the RIXS process, the total angular momentum is con-
served even in the strong spin-orbit coupled systems. Hence,
we use the total angular momentum basis∣∣∣∣J = 3

2
, mJ = 3

2

〉
= |m = 1,↑〉,

∣∣∣∣J = 3

2
, mJ = 1

2

〉
=

√
1

3
|m = 1,↓〉 +

√
2

3
|m = 0,↑〉,

∣∣∣∣J = 3

2
, mJ = −1

2

〉
=

√
2

3
|m = 0,↓〉 +

√
1

3
|m = −1,↑〉,

∣∣∣∣J = 3

2
, mJ = −3

2

〉
= |m = −1,↓〉,

∣∣∣∣J = 1

2
, mJ = 1

2

〉
= −

√
1

3
|m = 0,↑〉 +

√
2

3
|m = 1,↓〉,

∣∣∣∣J = 1

2
, mJ = −1

2

〉
=

√
1

3
|m = 0,↓〉 −

√
2

3
|m = −1,↑〉.

Using this basis, we will compute relevant matrix elements
associated with 2p → 5dxz, which are

〈5dxz|ε̂ · �r|m = �〉 = M�ε̂ · r̂�, (A9)

where

M±1 = Mxz = 1√
2
〈5dxz|rx|2pz〉,

M0 = Mzx = 〈5dxz|rz|2px〉. (A10)

Plugging these, we find the dipole transition operator

D̂(q) =
∑
R,�,σ

e−iq·RM�ε̂ · r̂�d†
R,σ pR,�,σ ,

= Mxz

∑
R

e−iq·Rε̂ ·
(

r̂1

(
d†

R,↑ pR,mJ = 3
2
+

√
1

3
d†

R,↓ pi,mJ = 1
2

)
+ r̂−1

(
d†

R,↓ pR,mJ=− 3
2
+

√
1

3
d†

R,↑ pR,mJ=− 1
2

))

+
√

2

3
Mzx

∑
i

e−iq·Rε̂ · r̂0
(
d†

R,↑ pR,mJ= 1
2
+ d†

R,↓ pR,mJ =− 1
2

)
. (A11)

Inserting this to the RIXS amplitude (whose energy transfer ω is tuned to induce the transition between 2p and 5dxy), we find

A f i(q, ω) =
∑

R

∑
α,β={↑,↓}

g(ω)χαβ〈 f |dR,αd†
R,βe−iq·R|g〉 (A12)

where χαβ for 2p → 5dxz is given by

χ↑↑ = χ∗
↓↓ = |Mxz|2

(
(ε̂ f · r̂1)∗(ε̂i · r̂1) + 1

3
(ε̂ f · r̂−1)∗(ε̂i · r̂−1)

)
+ 2

3
|Mzx|2(ε̂ f · r̂0)∗(ε̂i · r̂0),

χ↑↓ = χ∗
↓↑ =

√
2

3
(MxzM

∗
zx(ε̂ f · r̂0)∗(ε̂i · r̂1) + M∗

xzMzx(ε̂ f · r̂1)∗(ε̂i · r̂0)). (A13)

This χα,β can be actually further recast into

χαβ = mNSFδαβ ε̂∗
f · ε̂i + mSF �σαβ · (ε̂∗

f × ε̂i ). (A14)

where mNSF and mSF are the corresponding coefficients (which
can be written out explicitly in terms of Mxz and Mzx) [9].
Hence, when ε̂∗

f × ε̂i = 0, only the non-spin-flip process will
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be allowed. With this, we finally find

A f i(q, ω) =
∑

R

∑
α,β={↑,↓}

g(ω)χαβ〈 f |dR,αd†
R,βe−iq·R|g〉

= C(ω)
∑

R

∑
σ

〈 f |dR,σ d†
R,σ e−iq·R|g〉, (A15)

where we have identified g(ω)χαβ = g(ω)mNSFδαβ as C(ω).

APPENDIX B: 1D SU-SCHRIEFFER-HEEGER (SSH)
MODEL

1. Review of SSH model

Here, we present a brief review of the SSH model [32]. We
will temporarily suppress the spin index because the model
has the spin-rotational symmetry. The SSH Hamiltonian is
given as

HSSH = −
∑
x∈Z

(t1c†
x,1cx,2 + t2c†

x,2cx+1,1 + H.c.), (B1)

where t1(t2) is an intra(inter) site hopping parameter. c†
x,α cre-

ates electrons at xα = x + dα with dα=1,2 = (−1)αd . Hence,
the unitcell size is normalized to be “1.” Within a unitcell,
there are two sublattices labeled by α, whose positions are
Z ± d . The real-space position of the sublattices is not often
discussed in detail because it does not affect the symmetry and
topology of the model. However, the RIXS intensity depends
on the distance between the sublattices and so we will need to
keep track of this below.

Much of the important physics of the model can be well
illustrated in momentum space. Hence, we proceed to the
momentum space by performing the Fourier transformation

cx,α =
∑

k

ck,αeikx. (B2)

With this in hand, the Hamiltonian can be written as

HSSH =
∑

k

c†
khSSH(k)ck, (B3)

where

hSSH(k) = −
(

0 t1 + t2e−ik

t1 + t2eik 0

)
(B4)

and cT
k = (ck,1, ck,2). Next, we diagonalize the Hamiltonian,

γη,s(k) = Uηαck,α,s such that

U † = [ψc(k)|ψv (k)], (B5)

where ψc,v (k) are the Bloch functions. With this, we obtain
the standard results

HSSH =
∑

k,η=c,v

εη(k)γ †
η (k)γη(k),

εη=c,v (k) = ±
√

t2
1 + t2

2 + 2t1t2 cos k. (B6)

2. Symmetry

There can be two symmetries in the model: the reflection
symmetry and the chiral symmety. Among the two, we will
use only the reflection symmetry to derive the RIXS intensity
later. That is, although we discuss the chiral symmetry for
completeness, our results apply to the systems without the
chiral symmetry.

Let us start with the reflection symmetry, which is repre-
sented as R̂ .= σ 1.

R : ck → R̂ · c−k = σ 1 · c−k . (B7)

We will enforce the reflection symmetry, e.g., R̂ · HSSH ·
R̂−1 = HSSH.

Secondly, the chiral symmetry is given by �̂
.= σ 3, which

is the unitary matrix part of the symmetry operation on the
fermion fields

� : ck → �̂ · ck = σ 3 · ck. (B8)

This is in fact one of the symmetries of the simplest SSH
chain model as written above, i.e., �̂ · HSSH · �̂−1 = −HSSH.
However, we will always assume that the chiral symmetry is
explicitly broken by some perturbations.

3. Four-band model: polarization per each filled band

In this section, we consider a four-band, nonchiral symmet-
ric model and explicitly demonstrate the applicability of our
protocol, which allows us to read off the band topology per
each filled band. For the clarity and brevity of our discussion,
we will temporarily omit the spin indices.

The model is basing on the two-leg ladder generalization
of the SSH chain.

Hladder = H1,SSH + H2,SSH + H1,2,

H1,SSH = −
∑
x∈Z

(t1,1c†
x,1cx,2 + t1,2c†

x,2cx+1,1 + H.c.),

H2,SSH = −
∑
x∈Z

(t2,1c†
x,3cx,4 + t2,2c†

x,4cx+1,3 + H.c.),

H1,2 = −
∑

x∈Z,i=1,2

(λc†
x,icx,i+2 + t3,1c†

x,icx,5−i

+ t3,2c†
x,icx+1,5−i + H.c.), (B9)

where ta,1(ta,2) is an intra(inter)-unitcell hopping parameter of
the ath SSH chain. On the other hand, (t3,1, t3,2, λ) are the
interchain hopping parameters, see Fig. 9(a) for the pictorial
representation of the model. Here, c†

x,α creates an electron,
whose real-space position in x is given by xα = x + dα with
dα=1,2,3,4 = (−1)αd . By performing Fourier transformation,

cx,α =
∑

k

ck,αeikx,

the ladder Hamiltonian is written as

Hladder-SSH =
∑

k

c†
khladder(k)ck,

045129-14



METROLOGY OF BAND TOPOLOGY VIA RESONANT … PHYSICAL REVIEW B 107, 045129 (2023)

where

ha=1,2,SSH(k) = − 1
2 (τ0 − (−1)aτ3)((ta,1 + ta,2 cos k)σ1 + ta,2 sin kσ2), (B10)

h1,2(k) = λτ1σ0 + (t3,1 + t3,2 cos k)τ1σ1 + t3,2 sin kτ1σ2, (B11)

hladder-SSH(k) = h1,SSH(k) + h2,SSH(k) + h1,2(k)

= −

⎛
⎜⎜⎝

0 t1,1 + t1,2e−ik λ t3,1 + t3,2e−ik

t1,1 + t1,2eik 0 t3,1 + t3,2e−ik λ

λ t3,1 + t3,2eik 0 t2,1 + t2,2e−ik

t3,1 + t3,2eik λ t2,1 + t2,2eik 0

⎞
⎟⎟⎠, (B12)

with cT
k = (ck,1, ck,2, ck,3, ck,4). Here, τa is the Pauli matrix

acting on the chain index and σi acts on the sublattice index
of each SSH chains. The hladder(k) can be diagonalized via
γη(k) = Uηαck,α , where

U † = [
ψc,1(k)|ψc,2(k)|ψv,1(k)|ψv,2(k)

]
.

Then, ψη=c,v,α=1,2(k) corresponds to the Bloch state of hladder.
With this, we find the diagnonalized Hamiltonian

Hladder =
∑

k,η=1,2,3,4

εη(k)γ †
η (k)γη(k).

The band structure with generic parameters can be found in
Fig. 9(b). As obvious from the spectrum, the chiral symmetry
is explicitly broken and there is no particle-hole symme-
try. More explicitly, we can show that the chiral symmetry
�̂chiral

.= τ3σ3 is explicitly broken, because {�̂chiral, Hladder} �=
0 when t3,1 and t3,2 are finite. We will assume that the two
lowest bands are filled.

Here, we will show how the band topology for each filled
band can be read off from the momentum oscillations of the
RIXS intensity. The quantum amplitude with the momentum
transfer q in this model can be obtained by

A f (q, ω) = C(ω)
∑

x∈Z,α

〈 f |cx,αc†
x,αeiqxα |g〉.

By substituting cx,α = ∑
k U †

αηγη(k)eikx, we obtain the ampli-
tude in terms of the Bloch states,

A f (q, ω) = C(ω)
∑

k

〈 f |(U (k)M̂k+q,kU
†(k + q))νμγμ

× (k + q)γ †
ν (k)|g〉, (B13)

where M̂k+q,k = cos(qd )14×4+i sin(qd )�̂sub is generated
from the spatial separation of the sublattices along x direction
of the model. Here, �̂sub

.= τ0σ3. Note that �̂sub anticom-
mutes with the reflection symmetry operator R̂ .= τ0σ1 and
also �̂sub is distinct from the chiral symmetry �̂chiral

.= τ3σ3.
Implementing the Bloch functions explicitly, we find

A f (q, ω f i ) = C(ω f i )(ψ
†
final(k + q)ψinitial(k) · cos(qd )

+ iψ†
final(k + q)�̂sub

×ψinitial(k) · sin(qd )), (B14)

1 2

3 4

t1,1t1,2

t2,1t2,2

t1,1 t1,2

t2,1 t2,2

t3,1 t3,2

(b)

λ

(a)
E

FIG. 9. (a) The hopping pattern of four-band ladder model (B9).
Red (pink) dotted line represents the intra-unitcell hopping of the
upper (lower) chain, t1,1(t2,1). Red (pink) solid line, on the other
hand, represents the interunitcell hopping of the upper (lower) chain,
t1,2(t2,2). Hopping between the two chains (t3,1, t3,2, λ) are repre-
sented by the gray dotted, solid and dashed lines. (b) Generic
band structure of the four-band ladder model (B9). In the plot,
we used the arbitrarily-chosen values of the parameters, e.g.,
(t1,1, t1,2, t2,1, t2,2, t3,1, t3,2, λ) = (1, 0.5, 0.4, 0.2, 0.1, 0.2, 0.2). Note
that the particle-hole symmetry in the spectrum is absent.

in which ψfinal/initial(p) is the Bloch function of the final and
initial bands at the momentum p after/before the scattering,
and ω f ,i is the energy transfer required to connect the two
states. For example, we can consider the scattering processes
like in Fig. 10. Below, we will be interested in the cases, where

FIG. 10. Our protocol to read off the topological index of the
b band from the RIXS intensities. There are two transitions for
us to determine the band topology of the b band. (a) the RIXS
transition with the energy transfer ω1 = 	ε1 = εa(�) − εb(�) and
momentum transfer qn = 2nπ (n ∈ Z) (a), which connects � point
of the b band and � point of the a band. (b) Another transition with
energy transfer ω2 = 	ε2 = εa(�) − εb(X ), and momentum transfer
q′

n = (2n + 1)π (b), which connects X point of the b band and �

point of the a band.
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k and k+q are both the reflection symmetric. That is, k will be
either � or X , and q = 2πn+π or 2πn. These are exactly the
processes in Fig. 10.

Given this expression, it is straightforward to show that if
the RIXS intensity shows cos2(qd )-like oscillation, the prod-
uct of reflection eigenvalues of the initial and final states that
participate in the RIXS intensity is 1. That is,

I (q) ∝ cos2(qd ) → R(k)R(k + q) = 1. (B15)

Similarly,

I (q) ∝ sin2(qd ) → R(k)R(k + q) = −1, (B16)

because {R̂, �̂sub} = 0. (Remind that k and k+q are both the
reflection symmetric.)

The proof for these is the following. For
example, for the RIXS intensity with the cos2(qd )-
like oscillations, we see that from Eq. (B14),
(|ψ†

final(k+q)ψinitial(k)|, |ψ†
final(k+q)�̂subψinitial(k)|) = (1, 0).

Then,

ψ
†
final(k + q)ψinitial(k) = ψ

†
final(k + q)R̂†R̂ψinitial(k)

= Rfinal(k + q)Rinitial(k)ψ†
final

× (k + q)ψinitial(k) �= 0.

In the above, we have used the fact that k and k+q are
both the reflection symmetric, i.e., X or �. Hence, ψ (k+q)
and ψ (k) are the eigenvectors of R̂ with the eigenvalues
Rfinal(k + q) and Rinitial(k). From the above expression, we
note that Rfinal(k + q)Rinitial(k) is either +1 or −1. If it were
−1, then ψ

†
final(k + q)ψinitial(k) would have been zero. Hence,

Rfinal(k + q)Rinitial(k) should be +1. Similarly, one can prove
the case of I (q) ∝ sin2(qd ).

Polarization per each filled band

With the above, we can read off the polarization of any
filled band from the RIXS intensity via the two types of the
momentum transfers, qn = 2nπ and q′

n = (2n + 1)π (n ∈ Z)
(Fig. 10). For example, we will consider the b band in Fig. 10,
while keeping the � point at the a band as the reference.
Essentially, these two transitions will allow us to determine

Ra(�)Rb(�) (B17)

from the energy-momentum transfer in Fig. 10(a), and

Ra(�)Rb(X ) (B18)

from the energy-momentum transfer in Fig. 10(b), from their
momentum oscillations. With these, we can determine the
polarization of the b band via

exp(2π iPb) =Rb(�)Rb(X )=Ra(�)Rb(�) · Ra(�)Rb(X ),

(B19)

because Ra(�)2 = 1.
As a concrete illustration, we simulate a set of the RIXS

intensities with the white noises taken from the uniform
distribution, [−0.1, 0.1] × |C(	ε)|2 (Fig. 11). As in the pre-
vious section, we can obtain RIXS intensity oscillations as a
function of momentum transfer. For these, we try to fit the
simulated RIXS intensity data into A sin2(Bqn) + C, which

FIG. 11. RIXS intensity oscillation with respect to momentum
transfer. Simulated RIXS intensity with noises as a function of qn =
2nπ (a) and q′

n = (2n + 1)π (b) (n ∈ Z). The simulated random
noises taken from uniform distribution [−0.1, 0.1] × |C(	ε1,2)|2.
Dots with error bars show simulated RIXS data with momentum
transfer and we try to fit with simulated data (solid lines) where ideal
behaviors of RIXS intensity are dashed lines. Since functional forms
contain information of Ra(�)Rb(�) and Ra(�)Rb(X ), collecting
a product of reflection eigenvalues determines polarization of the
b band.

gives

I (qn = 2nπ,ω1 = 	ε1)/|C(	ε1)|2
= 1.00 sin2(0.20qn) + 0.00, (B20)

for qn = 2nπ case with 	ε1 = εa(�) − εb(�). This deter-
mines

Ra(�)Rb(�) = −1. (B21)

On the other hand, for q′
n = (2n + 1)π case, we try to fit

simulated RIXS intensity data into A cos2(Bq′
n) + C, which

gives

I (q′
n = (2n + 1)π,ω2 = 	ε2)/|C(	ε2)|2

= 1.01 cos2(0.20q′
n) + 0.00, (B22)

where 	ε2 = εa(�) − εb(X ) [Fig. 11(b)]. This determines

Ra(�)Rb(X ) = +1. (B23)

Hence, we find

exp(2π iPb) = Rb(�)Rb(X ) = Ra(�)Rb(�)

·Ra(�)Rb(X ) = −1, (B24)

which is consistent with the fact that the b-band carries the
polarization of 1/2 mod 1.

Note that the above process can be repeated for the other
filled band, and hence we can determine the band topology
per each filled band. Next, here we used � point of the a-
band as the reference, as an illustration. However, one can
obviously choose other high-symmetric points in other bands
as the reference. Finally, it is straightforward to generalize the
above to other band topology and read off the bandwise topol-
ogy, e.g., 3D topological band insulators, which we explicitly
demonstrate in Appendix E.

4. Material candidates of SSH model and DFT calculation

We conduct DFT calculation for searching realistic materi-
als that host SSH model. Specifically, a family of materials
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FIG. 12. DFT calculated band structure of (a) Rb2Mo6S6, (b) Cs2Mo6S6, (c) Rb2W6S6, and (d) Cs2W6S6. The size of the black circle
represents the contribution of M dxz, dyz orbitals. The valence and conduction SSH bands are highlighted by blue and yellow colors, respectively.

with the formula A2M6X6, where A = Na, K, Rb, Cs, In,
Tl; M = Mo, W; and X = S, Se, Te can be a suitable
material candidate. These compounds were experimentally
synthesized via the reaction of the corresponding alkali metal
tetrathiomolybdates with stoichiometric amounts of M and
X . They share the same crystalline structure with the space
group P63/m (No. 176). The structure features close-packed
one-dimensional M6X6 wires, consisting of face-sharing M6

octahedra surrounded by X atoms. The M6X6 wires are ori-
ented along the z direction with screw rotation symmetry,
arranged in a trigonal lattice in the x-y plane. The A atoms
are intercalated in the large holes between the M6X6 wires.
The A2M6X6 structure contains the twofold screw rotation
symmetry S2z and the time reversal symmetry T .

Figure 12 shows the calculated band structure of selected
molybdenum and tungsten monochalcogenide compounds
with dimerization whose unit cell size is 4.3–4.5 Å [33].
Without dimerization, one observes a nodal surface located
at the kz = π plane, protected by the antiunitary symmetry
T S2z. The nodal surface is very flat due to the weak interwire
hopping, and it sits almost exactly at the Fermi level. The
spin-orbit coupling (for the valence electrons) is also rela-

tively small, which we estimate to be O(1–10) meV. Such
a band structure would be ideal for realizing the SSH model
and employing the RIXS experiment.

All the bands near the Fermi level are contributed from the
d orbitals of the transition-metal (Mo or W) atoms. Especially,
the flat nodal surface states mainly originate from dxz and
dyz orbitals of Mo or W. When we allow the dimerization,
there are two different M-M bonding distances along the chain
axis. Due to the Peierls instability, the dimer formation of
lower symmetry is found to be more energetically stable. This
dimerization results in a structural deformation d/a0 ≈ 0.24.
The dimerization also induces a gap at the nodal surface with
the gap size of 0.16–0.2 eV. Depending on the unit cell con-
struction, there are two different topologically distinct phases.
One can consider the L edges of transition metal Mo (W),
i.e., 2p → 4d (5d ), the transition metal monochalcogenide
compounds A2M6X6 can be used to test our theory.

5. Few minor comments

Here we leave a few minor comments on our RIXS inten-
sity formula, which are interesting to note.
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FIG. 13. Nontopological RIXS intensity of the SSH model with different energy and momentum transfer. [(a) and (b)] RIXS intensity
with the fixed energy transfer 	ε = εc(X ) − εv (�). Here we have changed the momentum transfers from q = 0 to q = π (a), from q = 2π

to q = 3π (b). [(c) and (d)] RIXS intensity with the fixed momentum transfer q = π (c) and 3π (d), while we tune the energy transfer from
	ε = E0 = εc(X ) − εv (�) to 	ε = E0 + 	E . The increment in each step is 1

4 	E = 1
4 [Max(εc(k + π ) − εv (k)) − Min(εc(k + π ) − εv (k))].

a. Quantization of “normalized” RIXS intensity

Let us define the normalized RIXS intensity

J (q, ω) = I (q, ω)

2|C(ω)|2 , (B25)

which essentially factors out the energy dependence from the
usual RIXS intensity.

Using this, we can summarize the result of our RIXS inten-
sity formula for the transition:

J (qn,	ε) = sin2(qnd + Pπ ), (B26)

which is entirely fixed by the topology P , but not by the
details of the Hamiltonian. For instance, even if one changes
the detailed values of the tight-binding parameters, J (qn,	ε)
remains the same and forms the plateau.

See the orange lines in Figs. 13(a) and 13(b) for the nor-
malized RIXS intensity at qn = π (a) and 3π (b). Here we
took d = 0. We made this plot by numerically calculating the
normalized RIXS intensity as we tune the ratio between the
hopping parameters t2/t1. For t2/t1 < 1, the ground state is
trivial, i.e., P = 0. For t2/t1 > 1, the ground state is topologi-
cal, i.e., P = 1/2. Hence, this explains the steps at t2/t1 = 1.

Such “quantization” of this normalized RIXS intensity is
unique to the particular energy and momentum transfers as
depicted in Fig. 13. One can easily guess this from the main
text, where the reflection symmetry and its relation to the po-
larization P have been essential in deriving our RIXS intensity
formula (6) of the main text.

To check this, we numerically calculated the normalized
RIXS intensity of different energy and momentum transfers
while varying the ratio t2/t1. We set d = 0 for conve-
nience (here the atomic unitcell size is a0 = 1). We have

performed the two following numerical experiments. First,
we fix the energy transfer of the RIXS intensity at 	ε =
εc(X ) − εv (�) and vary the momentum transfer from q = 0
to π [Fig. 13(a)], q = 2π to 3π [Fig. 13(b)]. One can clearly
note that except the orange lines (which are precisely the
channels that we studied in our manuscript), all the oth-
ers smoothly evolve and thus depend on the details of the
band structures. Secondly, we change the energy transfer
from 	ε = E0 = εc(X ) − εv (�) to 	ε = Max(εc(k + π ) −
εv (k)) by 1

4	E = 1
4 [Max(εc(k + π ) − εv (k)) − Min(εc(k +

π ) − εv (k))], while we fixed the momentum transfer q =
π [Fig. 13(c)] and q = 3π [Fig. 13(d)]. Again, except the
green lines (which are the channels that we studied in our
manuscript), every others smoothly evolve and depend on the
detailed band structures. These clearly demonstrate that the
RIXS intensity at all the other energy and momentum (except
the channel in Fig. 13) are nontopological and depend on the
details of the band structure.

b. Effect of redefining the unitcell

It is well known that in the SSH chain, the two distinct band
topology P = 0 and P = 1/2 can be exchanged by simply
redefining the unitcell. That is, if we redefine unit cell by
shifting d → d − 1/2, then polarizaiton P (mod 1) should
also be shifted P → P − 1/2. Motivated from this, one can
ask if our RIXS intensity formula is consistent with this. In
fact, it is so because we can rewrite it as

I (qn,	ε) = 2|C(	ε)|2 sin2(qnd + Pπ ) = 2|C(	ε)|2

× sin2
(
qn

(
d − 1

2

) + (
P − 1

2

)
π

)
. (B27)
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d

P P + 1/2

1/2 − d

FIG. 14. Unitcell dependence of polarization. If we redefine the
unitcell from the left panel to the right one by shifting the center
of the unitcell by the half lattice constant a0 = 1, P should also be
shifted by the half. Such covariant transformation gives the exactly-
same RIXS intensity.

Hence, the intensity remains the same under the redefinition
of unit cells as it should be (because the RIXS intensity is
physical, gauge-invariant). See Fig. 14 for an illustration.

c. Effect of spin-flip RIXS on the SSH materials

Here we will show that our conclusion remains the same
even when the spin-flip RIXS is included. For example, when
one cannot control the polarization of photons, then the spin-
flip RIXS may occur simultaneously with the non-spin-flip
RIXS. We will use Eq. (A14) [9] to calculate the intensity
for the spin-flip RIXS. For example, one possible form of the
spin-flip RIXS is

Ispin-flip(q, ω) = |Cspin-flip(ω)|2
′∑
f

|ψ†
c,s(k + q)(M̂k+q,q ⊗ σ0)

× (Id2×2 ⊗ σ±
ss′ )ψv,s′ (k)|2. (B28)

Here, we note that M̂k+q,q is independent of the spin and
that σ±

s,s′ signifies the spin-flip process. Because of the spin-
flip process, ψc,s(k + q) and ψv,s′ (k) with s �= s′ appear in
the expression. However, the form of the Bloch function is
independent of the spin state, this spin-flip RIXS intensity

is the same as the non-spin-flip RIXS up to a multiplicative
constant. That is,

Ispin-flip(q, ω) = const. × Inon-spin-flip(q, ω). (B29)

Hence, even with the spin-flip process, we can still use the
same formula, i.e., Eq. (6) in our main text, to diagnose the
band topology of the SSH materials.

APPENDIX C: 2D QUADRUPOLE INSULATOR

1. Review of quadrupole insulator model

In this Appendix, we will review some basics of the C4-
symmetric quadrupole insulator (QI). In this section, we will
temporarily suppress the spin index, which we will recover
later when we discuss the RIXS intensity.

Our starting point is the QI Hamiltonian [28],

HQI = −
∑
r∈Z2

t1(c†
r,1cr,3 + c†

r,2cr,4 + c†
r,1cr,4 − c†

r,2cr,3) + H.c.

−
∑
r∈Z2

t2(c†
r,1cr+x̂,3 + c†

r+x̂,2cr,4 + c†
r,1cr+ŷ,4

− c†
r+ŷ,2cr,3) + H.c., (C1)

where c†
r,α creates an electron at rα = r + dα with

r1 = r + (d, d ), r2 = r + (−d,−d ), r3 = r + (−d, d ),

r4 = r + (d,−d ). (C2)

and t1(t2) is an intra(inter)site hopping parameter. We move to
the momentum space by performing Fourier transformation,
cr,α = ∑

k,α ck,αeik·r

HQI =
∑

k

c†
khQI (k)ck, (C3)

with

hQI (k) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 (t1 + t2eikx ) (t1 + t2eiky )

0 0 −(t1 + t2e−iky ) (t1 + t2e−ikx )

(t1 + t2e−ikx ) −(t1 + t2eiky ) 0 0

(t1 + t2e−iky ) (t1 + t2eikx ) 0 0

⎞
⎟⎟⎟⎟⎟⎠ (C4)

and cT
k = (ck,1, ck,2, ck,3, ck,4).

By diagonalizing the Hamiltonian, we finally find

HQI =
∑

k,η=c,v,ξ=1,2

εξ,η(k)γ †
ξ,η(k)γξ,η(k),

εξ=1,2,η=c,v (k) = ±
√

2t2
1 + 2t2

2 + 2t1t2(cos kx + cos ky).

(C5)

2. Symmetry

There are two symmetries of the insulator, which we will
often use: C4 rotation symmetry and chiral symmetry. (In the

QI, we assume that there are perturbations to the Hamiltonian,
which break the chiral symmetry explicitly. Hence, although
we discuss the chiral symmetry operator here, we do not
impose it to the Hamiltonian.)

First, the C4 rotation symmetry is given by the matrix Ĉ4

Ĉ4
.=

(
0 σ0

−iσ2 0

)
. (C6)

When the symmetry is applied to the fermion field, we find

C4 : ck → Ĉ4 · cr4[k] =
(

0 σ0

−iσ2 0

)
· cr4[k], (C7)

where r4 : (kx, ky) → (−ky, kx ).
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Secondly, the chiral symmetry is given by the matrix

�̂
.= σ3 ⊗ σ0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠. (C8)

When the chiral symmetry is applied to the fermion field, we
find

� : ck → �̂ · ck = (σ3 ⊗ σ0) · ck. (C9)

3. Topology

We present the C4 rotation eigenvalues which are useful to
calculate the RIXS intensity formula. See Table I of the main
text. The quadrupole moment, Qxy of the insulator, satisfies
the relation Eq. (C10) [28]:

exp
(
2π iQxy

) = rξ
4,η(�)∗rξ

4,η(M ) = rξ
4,η(�)∗rξ

4,η(M ). (C10)

Here (ξ = ±) is the index for the degenerate states at the high-
symmetry points � and M, which can be resolved by the C4

eigenvalues.

APPENDIX D: 2D C4 SYMMETRIC HIGHER ORDER
TOPOLOGICAL INSULATOR

1. Review of 2D C4 symmetric higher order topological insulator

In this Appendix, we investigate another C4 symmetric
insulator H (4)

1b [48]. As in the quadrupolar insulator, we will
suppress the spin index for the clarity. We will restore it
back when we calculate the RIXS intensity. The real-space
Hamiltonian is

H (4)
1b = −

∑
r∈Z2

t1(c†
r,1cr,3+c†

r,2cr,4+ c†
r,1cr,4+ c†

r,2cr,3) + H.c.

−
∑
r∈Z2

t2(c†
r,1cr+ex,3 + c†

r+ex,2
cr,4 + c†

r,1cr+ey,4

+ c†
r+ey,2

cr,3) + H.c., (D1)

where c†
r,α creates an electron at rα with

r1 = r + (d, d ), r2 = r + (−d,−d ),

r3 = r + (−d, d ), r4 = r + (d,−d ), (D2)

where r ∈ Z2. See Fig. 5(a) for the real-space hopping pat-
terns of H (4)

1b .
By performing Fourier transformation, cr,α =∑
k,α ck,αeik·r, the Hamiltonian is

H (4)
4b =

∑
k

c†
kh(4)

1b (k)ck, (D3)

where

h(4)
1b (k) = −

⎛
⎜⎜⎝

0 0 t1 + t2eikx t1 + t2eiky

0 0 t1 + t2e−iky t1 + t2e−ikx

t1 + t2e−ikx t1 + t2eiky 0 0
t1 + t2e−iky t1 + t2eikx 0 0

⎞
⎟⎟⎠. (D4)

We diagonalize the Hamiltonian via

H (1)
4b =

∑
k,i=c/v, η=1,2

εi,η(k)γ †
i,η(k)γi=c/v,η(k), (D5)

εi=c/v,1(k) = ±
√

t2
1 + t2

2 + t1t2(cos kx + cos ky) +
√(

t2
1 + t2

2 + 2t1t2 cos kx
)(

t2
1 + t2

2 + 2t1t2 cos ky
)
, (D6)

εi=c/v,2(k) = ±
√

t2
1 + t2

2 + t1t2(cos kx + cos ky) −
√(

t2
1 + t2

2 + 2t1t2 cos kx
)(

t2
1 + t2

2 + 2t1t2 cos ky
)
, (D7)

with the corresponding four eigenstates, ψi=c/v,η=1(k) and
ψi=c/v,η=2(k), respectively. See Fig. 5(b) for the band disper-
sions of H (4)

1b .

2. Symmetry

There are three symmetries in H (4)
1b : C4 rotation symmetry,

and two mirror symmetries, and chiral symmetry. Although
we discuss the mirror and chiral symmetries here, we do not
impose them to be respected by the Hamiltonian, when we
come to calculate the RIXS intensity. That is, we will assume
that there are always small perturbations which break the
symmetries explicitly.

First, let us discuss the C4 rotation symmetry, which in-
volves the matrix Ĉ4. When it acts on the fermion,

C4 : ck → Ĉ4 · cr4[k] =
(

0 σ0

σ1 0

)
· cr4[k], (D8)

where r4 : (kx, ky) → (−ky, kx ).
Similarly, the Mx,y mirror symmetries are given by the

corresponding matrices M̂x,y where x, y represents the mirror
planes.

Mx : ck → M̂x · cmx[k] =
(

0 σ0

σ0 0

)
· cmx[k], (D9)

My : ck → M̂y · cmy[k] =
(

0 σ1

σ1 0

)
· cmy[k], (D10)
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TABLE III. C4 eigenvalue tables at high-symmetry points. We
summarize rotation eigenvalues of (c/v, 1) bands which is relevant
band in the quarter filling. See the band dispersion [Fig. 5(b)]. When
|t1| > |t2|, C = 0 which is the trivial phase. When |t1| < |t2|, C =
1/2, and H (4)

1b , Eq. (D4) is in the topological phase.

C4 �(q = (0, 0)) M(q = (π, π ))

v sign(t1 + t2) sign(t1 + t2) e2π iC

c −sign(t1 + t2) −sign(t1 + t2) e2π iC

where mx : (kx, ky) → (−kx, ky), my : (kx, ky) → (kx,−ky).
Lastly, the chiral symmetry is represented by �̂

.= σ 3 ⊗ σ 0.

3. Topology

For Hamiltonian (D4), we summarize the C4 rotation
eigenvalues in Table III, which are useful in the next section.
These eigenvalues determine C, which is either 0 (trivial) or
1/2 (topological).

APPENDIX E: 3D TOPOLOGICAL BAND INSULATOR

1. Review of 3D TBI

Here we will review the basics of the 3D topological band
insulator (TBI) in a diamond lattice (see Ref. [30] for the de-

tails), which is consisted of two interpenetrating face-centered
cubic lattices (FCC) with a displacement �d = 1

8 (1, 1, 1). The
tight-binding Hamiltonian is

HTBI = t
∑
〈i, j〉

c†
i c j + 8iλSO

∑
〈〈i, j〉〉

c†
i s · (

d1
i j × d2

i j

)
c j + H.c.,

(E1)

where t is a hopping parameter and d1,2
i j are the two nearest-

neighbor bond vectors traverse between i and j. Here, λSO is
the spin-orbit coupling strength. Under strain [111] direction,
the hopping parameter along [111] direction t is changed
by t → t + δt [30]. Incorporating this and performing the
Fourier transformation, cr = ∑

k ckeik·r, we find

HTBI =
∑

k

c†
khTBI(k)ck, (E2)

where ck = (ck,1,↑, ck,1,↓, ck,2,↑, ck,2,↓),

hTBI(k) =
5∑

a=1

da(k)�a, (E3)

and

x1 = 1
2 (ky + kz ), x2 = 1

2 (kx + kz ), x3 = 1
2 (ky + kx ),

d1(k) = t + δt + t (cos x1 + cos x2 + cos x3),

d2(k) = t (sin x1 + sin x2 + sin x3),

d3(k) = λSO(sin x2 − sin x3 − sin(x2 − x1) + sin(x3 − x1)),

d4(k) = λSO(sin x3 − sin x1 − sin(x3 − x2) + sin(x1 − x2)),

d5(k) = λSO(sin x1 − sin x2 − sin(x1 − x3) + sin(x2 − x3)),

�a=1,2,3,4,5 = (τ 1σ 0, τ 2σ 0, τ 3σ 1, τ 3σ 2, τ 3σ 3),

and δt is the change of the hopping parameter along the [111]
direction.

2. Symmetry and topology

The Hamiltonian hTBI(k) has the two crucial symmetries.
The first is the inversion symmetry

I : ck → Î · c−k = τ1σ0 · c−k. (E4)

The second symmetry is the (antiunitary) time-reversal sym-
metry

T : ck → T̂ · c−k = (iτ0σ2)K · c−k, (E5)

where K is a complex conjugate operator.
The phase diagram of HTBI is simple:

δt > 0 : topological δt < 0 : trivial, (E6)

where the Z2 topological band index can be calculated as
[30,46]

(−1)ν = �k∗∈TRIMIv (k∗) = �k∗∈TRIM−{�}Iv (�)Iv (k∗),
(E7)

where the time-reversal invariant momentum (TRIM) points
are given as

�(0, 0, 0), X1(2π, 0, 0), X2(0, 2π, 0), X3(0, 0, 2π ),

× L1(π, π, π ), L2(π,−π,−π ), L3(−π, π,−π ),

× L4(−π,−π, π ), (E8)
and Iv (k∗ ∈ TRIM) = ±1 is an inversion eigenvalue of the
valence bands at the TRIM points. In the second equality of
Eq. (E7), we have used Iv (�)8 = 1.

Let us present the inversion eigenvalues for a given value
of the δt . When δt > 0 (topological), the eigenvalues are

k∗ � X1 X2 X3 L1 L2 L3 L4

Iv (k∗) −1 −1 −1 −1 1 −1 −1 −1

(E9)
which gives (−1)7 = (−1)ν , i.e., ν = 1 mod 2. On the other
hand, when δt < 0 (trivial),

k∗ � X1 X2 X3 L1 L2 L3 L4

Iv (k∗) −1 1 1 1 1 −1 −1 −1
(E10)

which gives (−1)4 = (−1)ν , i.e., ν = 0 mod 2.
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3. Another demonstration

In this section, we demonstrate how the RIXS data can be used to read off topological band index. Suppose a series of RIXS
intensity that connects � and other TRIM points (X, L1, L2) by qi=1,2,3 is obtained. For example,

I�→X (2π,0,0)(q1,	ε1) = |C(	ε1)|2
∑

μ

|ψ†
c,μ(X )M̂q1

ψv,μ(�)|2 ∝ sin2(q1 · d ), (E11)

I�→L1(π,π,π )(q2,	ε2) = |C(	ε2)|2
∑

μ

|ψ†
c,μ(L1)M̂q2

ψv,μ(�)|2 ∝ cos2(q2 · d ), (E12)

I�→L2(π,−π,π )(q3,	ε3) = |C(	ε3)|2
∑

μ

|ψ†
c,μ(L2)M̂q3

ψv,μ(�)|2 ∝ sin2(q3 · d ). (E13)

From these results, we can reconstruct the inversion eigenvalues at k ∈ TRIM, see Table (E14).

k � X1 X2 X3 L1 L2 L3 L4

Iv (k) Iv (�) Iv (�) Iv (�) Iv (�) −Iv (�) Iv (�) Iv (�) Iv (�) (E14)

From the eigenvalues, we can also infer the Z2 topological index, i.e.,

(−1)ν = −(Iv (�))8 = −1 ⇒ ν ≡ 1 mod 2. (E15)

This actually corresponds to δt > 0 case of hTBI(k).
Note that the above protocol can be generalized to nonminimal models. For example, as a concrete illustration, we will

consider the double copies of Eq. (E3) with different Hamiltonian parameters.

hTBI,8(k) =
(

hTBI(t1, δt1, λSO,1; k) + e1I4×4 e3I4×4

e3I4×4 hTBI(t2, δt2, λSO,2; k) + e2I4×4

)
, (E16)

Here, hTBI(ti, δti, λSO,i; k) (i = 1, 2) is one of two copies of bloch Hamiltonian (E3) with a parameter set (ti, δti, λSO,i ) and
ea=1,2I4×4 is for the constant energy shifts for each bands. Here, e3 is the hybridizations between the two copies. The band
dispersion of hTBI,8(k) is plotted in Fig. 15.

We note that this model shares the same structure factor M̂q as before. That is, M̂q,8 = M̂q ⊕ M̂q. We can explicitly write
the RIXS intensity and quantum amplitudes out in terms of the Bloch functions:

Aμ,ν

i→ f (qn,	ε) = C(	ε)ψ†
f ,μ(k + qn)M̂qn,8ψi,ν (k),

= C(	ε)(cos(qn · d )ψ†
f ,μ(k + qn)ψi,ν (k) + i sin(qn · d )ψ†

f ,μ(k + qn)�̂8ψi,ν (k)), (E17)

where μ and ν are degeneracy indices for each bands. Finally, the inversion symmetry is Î8 = �1 ⊕ �1, which implies that
{Î8, �̂8} = 0 still holds. Since all the algebra straightforwardly follows even in this case, we can easily show that

I (qn,	ε) =
⎧⎨
⎩

2|C(	ε)|2 sin2 qn · d for I f (k + qn)Ii(k) = 1,

2|C(	ε)|2 cos2 qn · d for I f (k + qn)Ii(k) = −1,
(E18)

for qn that connects TRIM points k and k + qn. For example, qn = 2π (n + 1, n, n) as the momentum connecting � to X .
Below, we will work with the parameters,

(t1, t2, δt1, δt2, λSO,1, λSO,2, e1, e2, e3) = (0.5, 0.6,−0.2, 0.25, 0.3, 0.3, 0.12,−0.15, 0.12),

which are arbitrarily chosen. We will label each twofold degenerate bands as in Fig. 15 and summarize their inversion eigenvalues
at TRIM points in Table (E19).

k � X1 X2 X3 L1 L2 L3 L4

I1(k) 1 −1 −1 −1 −1 1 1 1
I2(k) 1 1 1 1 −1 1 1 1
I3(k) −1 1 1 1 1 −1 −1 −1
I4(k) −1 −1 −1 −1 1 −1 −1 −1

(E19)

Next, we demonstrate our protocol to read off the product
of the inversion eigenvalues from the momentum oscilla-
tion of the RIXS intensity. From this, we will determine
the topological Z2 band index at the end. As a concrete
illustration, we will take the state at X of the 2-band as
the reference and will attempt to read off the band topol-

ogy of the 3-band. For this, we consider the two example
transitions: (a) ψ3,μ(�) → ψ2,μ(X ), which we can choose
degeneracy index μ as before, by momentum transfer qn =
2π (n + 1, n, n) (n ∈ Z) and (b) ψ3,μ(X ) → ψ2,μ(X ) by mo-
mentum transfer q′

n = 2π (n, n, n) [with n ∈ Z, see Figs. 16(a)
and 16(b)].
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Γ X W K L Γ

1

2

3

4

E

FIG. 15. The band dispersion of hTBI,8(k) with (t1, t2, δt1, δt2,

λSO,1, λSO,2, e1, e2, e3)=(0.5, 0.6, −0.2, 0.25, 0.3, 0.3, 0.12, −0.15,

0.12) along the high-symmetry cuts in the Brillouin zone.

We have numerically simulated those two RIXS transi-
tions with noises taken from a random uniform distribution,
[−0.2, 0.2] × |C(	ε)|2 to mimic experimental situation. With
the data, we try to fit I (qn)/|C(	ε)|2 = A sin2 (qn · d + B) +
C [cf. Eq. (18)] for (a). As before, B is the diagnostics of the
band topology, B = 1

4 (I3(�)I2(X ) + 1)π, where Ia(k) is an
inversion eigenvalue of the a band at k.

For the ideal limit of (a), clean signal of I3(�)I2(X ) = −1
case (without the noise), we expect to find

A = 2.00, B = 0.00, and C = 0.00, (E20)

which is the dotted red line in Fig. 17(a). As the result of the
fitting (the solid red line in Fig. 17(a)], we found

A = 1.99, B = 0.01, and C = 0.00, (E21)

which agrees well with ideal result. In particular, from B, we
can correctly infer I3(�)I2(X ) = 4B/π − 1 ≈ −1.

For the ideal limit of (b), ideal signal of I3(X )I2(X ) = 1
case (without the noise), we expect to find

A = 2.00, B = 1.58, and C = 0.00, (E22)

which is the dotted green line in Fig. 16(b). As the result of
the fitting [the solid green line in Fig. 16(b)], we found

A = 2.00, B = 1.58, and C = 0.00, (E23)

which also agrees with ideal case. In particular, from B ≈
π/2, we can correctly infer I3(X )I2(X ) ≈ 1.

This can be repeated for all the TRIM points of the 3-
band, which allows us to determine I3(X )I2(k∗) with k∗ ∈
TRIM. Then, we can determine the band-wise Z2 invariant
ν0(3-band) of the 3-band via

(−1)ν0(3-band) =
∏

k∗∈TRIM

I3(k∗) =
∏

k∗∈TRIM

[I3(k∗)I2(X )],

(E24)

since I2(X )8 = 1. There are two remarks. The same can be
repeated for the other filled band, i.e., 4-band, to completely
determine the Z2 invariant. Next, in the above, we have se-
lected the X point of the 2-band as the reference, but (if there
is any preference) one can choose other high-symmetry point
with other band as the reference.

APPENDIX F: 3D CHIRAL HINGE INSULATOR

1. Review of 3D chiral hinge insulator

Here, we will review the basics of 3D chiral hinge insulator
(CHI) by following Ref. [31]. Its momentum-space Hamilto-
nian is

HCHI =
∑

k

ψ†(k)hCHI(k)ψ (k),

hCHI(k) =
(

M + t
∑

i

cos ki

)
τ1σ0 + 	1

∑
i=x,y,z

sin kiτ3σi

+	2(cos kx − cos ky)τ2σ0, (F1)

where ψT (k) = (cα=0,↑(k), cα=0,↓(k), cα=1,↑(k), cα=1,↓(k)).
Here, 	2 term is a Cz

4-symmetry-breaking term by external
effect such as [11̄0] strain. α = 0, 1 is a sublattice index
and s =↑,↓ is the spin index. Also rα = r + (−1)αd = r −
(−1)α (0, 0, d/2) with r ∈ Z3 and 0 < d < 1

2 without loss of
generality. Each eigenstates are twofold degenerate protected

Γ X W K L Γ

 (a)  (b)

Γ X W K L Γ

(ω = Δ 1, q = qn)
(ω = Δ 2, q = qn)

E E

FIG. 16. The two RIXS transitions with appropriate energy-momentum transfers that we consider. (a) With energy-momentum transfer
(	ε1 = ε2(X ) − ε3(�), qn = 2π (n + 1, n, n)) (n ∈ Z), this RIXS intensity is determined by the inversion eigenvalues I2(X ) and I3(�). See
Eq. (E18). (b) With energy-momentum transfer (	ε2 = ε2(X ) − ε3(X ), q′

n = 2π (n, n, n)) (n ∈ Z), the RIXS intensity of this transition is
determined by the I2(X ) and I3(X ). See Eq. (E18).
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 (a)  (b)
I/|C(Δ 1)|2 I/|C(Δ 2)|2

I(qn, Δ 1)/|C(Δ 1)|2 I(qn, Δ 2)/|C(Δ 2)|2

FIG. 17. The two RIXS intensities of hTBI,8(k) with appropriate energy and momentum transfers. Red (a) and green (b) dotted lines
represent ideal results without noises and red (a) and green (b) solid lines are the result of the fitting from simulated data. For detailed
procedure, see from Eqs. (E20) to (E23).

by the symmetries of the system, which we will explain in the
next section.

2. Symmetry and topology

The remaining symmetries of the CHI Hamiltonian are Î T̂
and Ĉz

4 Î . Each are represented as

Ĉz
4 = τ0e−i π

4 σz , Î = τ1σ0, T̂ = τ0σyK, (F2)

when acting on the fermion fields. Here, Î is an inversion
operator and T̂ is time-reversal operator with the complex
conjugation operator K . They satisfy(

Ĉz
4T̂

)4 = −1,
(
Ĉz

4 Î
)4 = −1,

[
Ĉz

4 Î, Î T̂
] = 0,{

Ĉz
4 Î, �̂

} = 0, (F3)

where �̂ = τ3σ0 is a chiral-symmetry operator. As in the other
models, we will in general assume that the chiral symmetry is
explicitly broken by perturbations to the CHI Hamiltonian.

The topology of the CHI Hamiltoinan can be expressed as
the inversion eigenvalues of some high-symmetry points in
momentum space, namely, the rotoinversion symmetric points
(RISP) such that (Cz

4I )k = k:

RISP = {(0, 0, 0), (0, 0, π ), (π, π, 0), (π, π, π )}. (F4)

Note that because of Eq. (F3), Ĉz
4 Î eigenvalues of the twofold

degenerate eigenstates at RISP has to be complex conjugate
pairs, {Iv (k)eiπ/4, Iv (k)e−iπ/4} with Iv (k) = ±1 is an inver-
sion eigenvalue of the band at k.

The topological band index is given by the modified Fu-
Kane formula [31]

(−1)ν = �k∈RISPIv (k) = �k∈RISP-{�}Iv (k)Iv (�). (F5)

Here Iv (k) is an inversion eigenvalue of one of the two filled
band at k. In the second equality, we used I4

v (�) = 1. When
	2 is finite, HCHI becomes topological and hosts a chiral hinge
state for 1 < |M/t | < 3. Otherwise, it is trivial.
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