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Developing semiclassical Wentzel-Kramers-Brillouin theory for α-T3 model
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We developed a complete semiclassical Wentzel-Kramers-Brillouin (WKB) theory for α-T3 model which
describes a wide class of existing pseudospin-1 Dirac cone materials. By expanding the sought wave functions in
a series of powers of Planck’s constant h, we obtained the leading-order expansion term which is the key quantity
required for calculating the electronic and tunneling properties of a semiclassical electron in α-T3 materials.
Based on this, we further derived the WKB transport equations relating two consecutive orders of the wave-
function expansion and solved them analytically to obtain the first-order WKB wave function. Meanwhile, we
discussed the applicability of the employed approximation as well as how these results could be applied to study
various tunneling and transport properties of α-T3 materials with nontrivial potential profiles. Finally, our results
could also be useful for designing next-generation electronic transistors and devices with help from innovative
flat-band Dirac materials.
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I. INTRODUCTION

The quantum mechanical description of relativistic elec-
tronic behavior in various existing materials is predictably
a lot more complicated than any classical analysis of such
phenomena. Therefore, it is important to build up a semiclassi-
cal approximation for high-energy and fast-moving electrons
with a simplified formulation, however, could still effectively
present a physically correct picture. For this reason, creating
a semiclassical Wentzel-Kramers-Brillouin (WKB) theory be-
comes one of the most important ingredients in studying new
types of Hamiltonians, and we firmly believe that by doing so
for newly discovered α-T3 and dice lattices would be deemed
as another major advancement in addition to current focused
investigations in the field of low-dimensional condensed mat-
ter physics [1–7].

Generally speaking, the idea about a WKB approxima-
tion aims at finding an approximated solution for a complex
differential equation with spatially dependent coefficients,
where one of them (e.g., external potential) varies consider-
ably slower than the other ones so that the potential change
per de Broglie wavelength of an electron becomes much
smaller than its kinetic energy. Consequently, the obtained
solution will behave like a rapidly oscillating quantum state
modulated by a smooth and nonessential change in an exter-
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nal potential. Practically, the WKB solution can be acquired
by expanding the target wave function over the powers of
Planck’s constant h̄, and therefore, is viewed as a semiclassical
approach. This technique was used previously for all Dirac
materials, especially for pristine and gapped graphene. WKB
theory has numerous applications, including computations of
electron tunneling for nontrivial potential barriers [8,9], res-
onant tunneling and resonant scattering, as well as trapped
and localized electronic states [10–12]. The Gutzwiller trace
formula has become an important tool in building the semi-
classical approximation aiming directly at the density of states
[1,13–15]. This approach was applied to the relativistic Dirac
Hamiltonian relevant to that in graphene [16] and, specifi-
cally, in studying the Berry phases in such materials [17,18].
The WKB approximation in atomic physics with discreet
electronic states is explained in Ref. [19] and the Maslov
index for Bohr-Sommerfeld quantization was investigated in
Refs. [20–22].

As an important case for quantization of electronic states
and their semiclassical description, we choose WKB theory
under a spatially uniform magnetic field [23]. For zigzag
and armchair graphene nanoribbons, the low-energy band
structure could be described by an effective Schrödinger
Hamiltonian with a double-well potential. Additionally, the
WKB solution in graphene with a Coulomb impurity under
a strong magnetic field could be expanded by a power series
over the effective fine-structure constant [3]. It was previously
demonstrated that the method of Gaussian beam summation is
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efficient for building a WKB approximation in the magnetic
field for any scalar potential [6]. Semiclassical methods were
also applied to address the effect of an electromagnetic wave
on magnetoplasmons, an example of which is given by the
authors of Ref. [24]. Generally, a WKB method can always
be utilized to describe any semiclassical particles with a large
kinetic energy. A good description for the application of WKB
method was reported even in an very early work, given by
Ref. [25].

Specifically, the present work is focused on developing a
complete semiclassical WKB theory for the so-called α-T3

model [26–30]. This model is a general one related to a large
group of recently discovered and innovative low-dimensional
materials known by the presence of a flat band in their energy
dispersions besides a regular Dirac cone. This flat band is
stable and sustained under a number of external perturbations,
including magnetic and electric fields point defects and even
off-resonant dressing fields [31–41].

The atomic structure of α-T3 materials is represented by a
regular hexagon lattice, similar to graphene, with an additional
atom at the center of each hexagon. This unique structure
leads to the appearance of an extra electron hopping coeffi-
cient towards the hub atom from the rim which results in a
dispersionless (flat) band in the low-energy band structure of
these materials. The significance of this electron hopping from
and to the hub atom in a tight-binding model can be quantified
by a geometrical phase φ ranging continuously from “0” (for
graphene) to “π/4” (for a dice lattice), which is physically
associated with single-electron transitions from or to a flat
band. Such highly unusual energy dispersions result in novel
and truly fascinating electronic [42–49], transport [50–53],
optical [54–57], and magnetic [58–64] properties of these
innovative materials. Their characteristics are quite different
from those in graphene [65]. Together with tilted Dirac cone
materials [66–68] and topological Dirac semimetals [69,70],
α-T3 materials are considered to be the most promising and
impactful low-dimensional materials at the present time.

So far, a large number of α-T3 materials and dice lattices
were fabricated successfully in laboratory conditions. They
included a trilayer SrTiO3/SrIrO3/SrTiO3 [71,72], Hg1−xCdx

quantum well [43,73], Josephson-junction arrays [54,74],
Leib and Kagome optical lattices and optical waveguides
[75–83], In0.53Ga0.47As/InP semiconducting layers [84], and
many other existing materials. A comprehensive review of
all these Dirac materials with a flat band can be found in
Ref. [85]. For a complete and timely review of all existing
flat-band structures, we refer the readers to a recent study
[85] reported in 2019, in which the pseudospin-1 Dirac-Weyl
Hamiltonian was employed for investigating the electronic
behavior in α-T3 lattices. Meanwhile, the same paper also
revealed that the properties of all these materials would dis-
play some similarities [86,87]. In fact, both theoretical and
experimental investigations on electronic behaviors appear
as a hot subject in condensed-matter physics, and nearly all
issues related to electrical and optical properties of α-T3 have
already been addressed. Therefore, from a practical perspec-
tive, we feel strongly that the building-up of a transparent
semiclassical WKB theory for such a new type of material
will be beneficial for related experimental and theoretical
researches.

The rest of this paper is organized as follows. In Sec. II,
we review a low-energy Hamiltonian, its band structure, and
electronic states for various types of α-T3 lattices, includ-
ing graphene and a dice lattice. Section III, which is a key
technical part of the current work, deals with calculating
the semiclassical action and longitudinal electron momentum
of a WKB model. Consequently, we found wave functions
of electrons in successive orders of an h̄-expansion, derived
the most general form of transport equations with these ex-
panded electron wave functions, and computed explicitly the
first-order wave function so as to verify the applicability of
the employed WKB approximation from our Hamiltonian. In
Sec. IV, we present a brief discussion on the utilization of our
computed semiclassical wave functions for studying electron
tunnelings and estimating transmission coefficients as well, by
using various nontrivial potential profiles. Finally, we provide
some concluding remarks and a outlook in Sec. V.

II. ELECTRONIC STATES IN PSEUDOSPIN-1 DIRAC
CONE MATERIALS

In this section, we will establish and apply a semiclas-
sical WKB approximation for an α-T3 model based on the
low-energy electronic states determined from a pseudospin-1
low-energy Dirac-Weyl Hamiltonian

Ĥ(k|τ, φ) = h̄vF

⎡
⎣ 0 kτ

− cos φ 0
kτ
+ cos φ 0 kτ

− sin φ

0 kτ
+ sin φ 0

⎤
⎦, (1)

where vF ≈ c/100 represents the Fermi velocity and the geo-
metrical phase φ can be obtained from the hopping parameter
α through the relation α = tan φ, while the complex wave
numbers kτ

± = τkx ± iky depend on the valley index τ = ±1
representing, respectively, the K and K ′ valleys. When φ = 0,
the Hamiltonian in Eq. (1) reduces to that of graphene. On the
other hand, the opposite limit φ = π/4 defines a dice lattice,
which exhibits the strongest effect from a hub atom and is
always treated separately for its importance. Consequently, we
will present explicitly results in this paper for the dice lattice.

If free electrons described by Eq. (1) are further sub-
jected to a finite nonuniform potential V (x), such as a square
barrier V (x) = V0�(x)�(WB − x) or an energy barrier with
a non-piecewise-uniform potential profile, the longitudinal
momentum px(x) will also depend on position x, and the
Hamiltonian in Eq. (1) changes to

Ĥ(k|τ, φ) = vF �̂
(3)

(φ) · {−ih̄∇τ } + V (x)�̂(3)
0 , (2)

where φ-dependent 3 × 3 Pauli matrices �̂
(3)

(φ) =
{�̂(3)

x (φ), �̂(3)
y (φ)}, and

�̂(3)
x (φ) =

⎡
⎣ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎤
⎦, (3a)

�̂(3)
y (φ) = i

⎡
⎣ 0 − cos φ 0

cos φ 0 − sin φ

0 sin φ 0

⎤
⎦. (3b)
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Moreover, ∇τ = {τ∂/∂x, ∂/∂y}, and a 3 × 3 unit matrix �̂
(3)
0

introduced in Eq. (2) is given by

�̂
(3)
0 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, (4)

which is independent of phase φ. Specifically, for a dice lattice
with φ = π/4, the matrices in Eqs. (3) and (3b) are simplified
to well-known 3 × 3 Pauli matrices, i.e.,

�̂(3)
x = 1√

2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, (5a)

�̂(3)
y = i√

2

⎡
⎣0 −1 0

1 0 −1
0 1 0

⎤
⎦. (5b)

Additionally, in the presence of a finite band gap, the third
Pauli matrix

�̂(3)
z =

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, (6)

should be utilized in a Hamiltonian [88,89]. Here, the energy
eigenvalues for the Hamiltonian in Eq. (1) are found to be

ε
γ=±1
τ,φ (k) = γ h̄vF k, (7)

where γ = −1 (γ = +1) corresponds to the valance (con-
duction) band, while γ = 0 leads to a dispersionless solution,
given by

ε
γ=0
τ,φ (k) = 0, (8)

which is also known as a “flat band.” Clearly, all three bands in
Eqs. (7) and (8) are independent of phase φ (or parameter α).
Furthermore, the wave functions corresponding to the valence
and conduction bands in Eq. (7) are calculated as

�
γ=±1
τ,φ (k) = 1√

2

⎡
⎣τ cos φ e−iτθk

γ

τ sin φ e+iτθk

⎤
⎦, (9)

where θk = arctan(ky/kx ) is the angle of wave vector k =
{kx, ky} made with the x-axis. The remaining wave function

attributed to the flat band takes the form

�
γ=0
τ,φ (k) =

⎡
⎣ sin φ e−iτθk

0
− cos φ e+iτθk

⎤
⎦. (10)

Here, we would like to emphasize that the energy bands in
Eqs. (7) and (8), as well as the wave functions in Eqs. (9)
and (10), are obtained only for a spatially uniform potential
independent of position coordinates x and y.

Specifically, for a dice lattice, we can set φ = π/4 and the
wave functions in Eqs. (9) and (10) become

�
γ=±1
τ,φ=π/4(k) = 1

2

⎡
⎣e−iτθk√

2τγ

e+iτθk

⎤
⎦, (11a)

�
γ=0
τ,φ=π/4(k) = 1√

2

⎡
⎣ e−iτθk

0
−e+iτθk

⎤
⎦, (11b)

in which the top and bottom rows acquire the same magnitude.

III. SEMICLASSICAL WKB MODEL AND SOLUTION

In this section, our goal is to derive the so-called transport
equations connecting different orders of the series expansion
of the WKB wave function in powers of h̄. This is a set of
the most important differential equations which allow for the
calculation of wave functions with unlimited precision. The
most crucial one is the principal zero-order wave function ψ0

which requires knowledge of the semiclassical action obtained
from spatial derivative of the position-dependent longitudi-
nal momentum of targeted electrons. In addition, we provide
general solutions to the transport equations, calculate the next
(first-order) term ψ1 in the expansion of electron wave func-
tions, and verify the convergence requirement ψ1 � ψ0 to
ensure the accuracy of the WKB approximation. This is the
major part of this paper including our most crucial findings.

A. WKB transport equation and action

We begin by applying our model to an electron moving in
an x-dependent potential V (x) such that its longitudinal mo-
mentum px(x) also varies as a function of x. For this case, the
wave function can be formally written as �(x, y) � ψ (x) eikyy

due to the fact that the translational symmetry of the electron
is maintained along the y direction. Therefore, the Hamilto-
nian in Eq. (2) becomes explicitly

Ĥ(x, ky|τ ) =

⎡
⎢⎣ V (x) vF cos φ�−

τ (x) 0
vF cos φ�+

τ (x) V (x) vF sin φ�−
τ (x)

0 vF sin φ�+
τ (x) V (x)

⎤
⎥⎦, (12a)

�±
τ (x) = −ih̄τ

∂

∂x
± ipy, (12b)

which incorporate the translational symmetry of the system
in the y direction, and we adopted the notation py = h̄ky in
Eq. (12b). The graphic description of this system is illus-
trated in Fig. 1. For a fixed incident energy Eγ of electrons,

as the potential energy V (x) increases, electron longitudinal
momentum px(x) will eventually reduce to zero at some points
called “turning points.” Physically, these points specify a set
of classically forbidding regions in which electrons acquire an
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FIG. 1. Schematics for a Dirac electron moving with kinetic
energy Eγ under a nonuniform potential V (x), where the longitu-
dinal momentum px (x) of this electron will depend on its position
x whereas the transverse momentum py = h̄ky remains unchanged
during its tunneling process. Meanwhile, we define a classically
forbidden or classically inaccessible region by p2

x (x) < 0 with its
two boundaries known as turning points. Here, these crossing points
are determined by the locations at which the condition V (x) = Eγ is
satisfied so that the transition between electron and hole states can
occur.

imaginary longitudinal momentum due to p2
x(x) < 0. More-

over, points satisfying Eγ = V (x) appear as crossing ones
between electron and hole states. In contrast to graphene,
electron momentum at these points in α-T3 cannot be deter-
mined uniquely due to its infinite degeneracy of kinetic energy
resulting from Eγ − V (x) = 0.

Emphasizing that we introduce an expansion approxi-
mation and estimate each of the terms in a series, it is
important that we rewrite our initial eigenvalue equation in

dimensionless form. A similar approach was used previously
in Refs. [4,5]. For this purpose, we will scale the energy
in Eqs. (12) and (12b) by V0, or simply E −→ E/V0 and
V (x) −→ V (x)/V0. Here, the positive number V0 could be
taken as the maximum value of the potential V (x). On the
other hand, the length can be scaled by the barrier width
WB, or x −→ x/WB. Correspondingly, the momentum should
be scaled as px,y −→ vy px,y/V0, and most importantly, our
(small) expansion parameter (i.e., Planck’s constant) is modi-
fied according to

h̄ −→
(

vF

WBV0

)
h̄, (13)

and the spatial derivative would become ∂/∂x → WB ∂/∂x.
Here, we avoid expressing the energy unit by the inverse
length because this would introduce an additional term de-
pending on a small parameter h̄. Additionally, the incoming
particles are assumed to be quasiclassical, i.e., they have a
much larger kinetic energy than the Fermi energy of the sys-
tem.

After performing all these scaling processes, the main
eigenvalue equation can be rewritten as

Ĥ(x, py|φ, τ )�γ (x, py|φ, τ ) = Eγ �γ (x, py|φ, τ ), (14)

where the wave function �γ (x, py | φ, τ ) takes the form

�γ (x, py|φ, τ ) = ψγ (x|φ, τ )exp

(
i

h̄
pyy

)

=
⎡
⎣φA(x|φ, τ )

φH (x)
φB(x|φ, τ )

⎤
⎦exp( i

h̄
pyy

)
. (15)

Correspondingly, the Hamiltonian presented in Eq. (14) be-
comes

Ĥ(x, py|φ, τ ) = �̂
(3)
0 V (x) + �̂(3)

x (φ)

[
−ih̄τ

∂

∂x

]
+ �̂(3)

y (φ)py

=
⎡
⎣ V (x) vF �−

τ (x) cos φ 0
vF �+

τ (x) cos φ V (x) vF �−
τ (x) sin φ

0 vF �+
τ (x) sin φ V (x)

⎤
⎦. (16)

A standard Wentzel-Kramers-Brillouin semiclassical approach is accomplished by expanding the unknown wave function in
Eq. (15) as a series in powers of h̄, yielding

�(x, py|φ, τ ) = exp

{
i

h̄
S(x, py|φ, τ )

} ∞∑
λ=0

(−ih̄)λ�λ(x, py|φ, τ )

= exp

{
i

h̄
S(x, py|φ, τ )

}
[�0(x, py|φ, τ ) − ih̄�1(x, py|φ, τ ) − h̄2�2(x, py|φ, τ ) + · · · ], (17)

where S(x, py | φ, τ ) represents a semiclassical action to be calculated. The issue for constructing a semiclassical approximation
under an x-dependent potential can be resolved once we compute the WKB wave functions, or equivalently, all expansion terms
in Eq. (17). Mathematically, we will derive a set of differential equations which connect all consecutive expansion terms in
Eq. (17). These equations, referred to as the WKB transport equations, are key players in any semiclassical theory.

After a lengthy calculation, the transport equation for α-T3 is finally found to be

�̂(3)
x (φ)

{
∂

∂x
�λ(x, py|φ, τ )

}
− 1√

2
ÔT (x, py|φ, τ )�λ+1(x, py|φ, τ ) = 0, (18)

045128-4



DEVELOPING SEMICLASSICAL WENTZEL-KRAMERS- … PHYSICAL REVIEW B 107, 045128 (2023)

where λ = 0, 1, 2, 3, . . ., and

�λ<0(x, py|φ, τ ) ≡ 0. (19)

In Eq. (18), the transport operator Ô T (x, py | φ, τ ) which connects subsequent expansion terms in Eq. (17) is calculated as

ÔT (x, py|φ, τ ) =

⎡
⎢⎣ ν(x) �

(−)
S,τ

(x, py) cos φ 0
�

(+)
S,τ

(x, py) cos φ ν(x) �
(−)
S,τ

(x, py) sin φ

0 �
(+)
S,τ

(x, py) sin φ ν(x)

⎤
⎥⎦, (20)

where we introduce the notations, given by

�
(±)
S,τ

(x, py) = τ
∂S(x)

∂x
± ipy, (21a)

ν(x) = V (x) − Eγ . (21b)

As an example, setting λ = −1 in Eq. (18), we obtain a
simplified equation for the zeroth-order wave function

ÔT (x, py|φ, τ )�0(x, py|φ, τ ) = 0, (22)

which constitutes a linear and homogeneous algebraic system.
A nontrivial solution for such a system becomes possible only
when its determinant equals zero, leading to the following
equation:

−[Eγ − V (x)]

{(
∂S(x)

∂x

)2

+ p2
y − [Eγ − V (x)]2

}
= 0,

(23)
which is independent of φ. We know that for a nonuniform
potential V (x), the condition Eγ = V (x) will not always be
fulfilled except at a finite number of turning points. Therefore,
the classical action S(x) is calculated as

S(x) = S(x0) +
∫ x

x0

dηpx(η), (24a)

px(x|py) = ±
√

[Eγ − V (x)]2 − p2
y, (24b)

which is expressed through a position-dependent longitudi-
nal momentum px(x). However, the transverse momentum
py remains the same due to the presence of a translational
symmetry of the system and then can be treated as a given
parameter.

B. Leading-order wave function

The key step in constructing a semiclassical approximation
is calculating the leading-order (zero-order) electron wave
function �0(x | φ, τ ) which has the following form:

�0(x|φ, τ ) =

⎡
⎢⎣

ϕ
(0)
A (x|φ, τ )

ϕ
(0)
H (x|φ, τ )

ϕ
(0)
B (x|φ, τ )

⎤
⎥⎦. (25)

Equations (20), (21a), (21b), (24a), and (24b) lead to the
following wave function:

�0(x|φ, τ ) =
⎡
⎣cos φ�(x|τ )

−1
sin φ��(x|τ )

⎤
⎦ϕ

(0)
H (x|φ, τ ), (26a)

where the phase of wave function (26a) is given as

�(x|τ ) = 1

ν(x)
[τ px(x) − ipy] = −τexp[−iτθp(x)]. (27)

Also, ��(x | τ )
i→−i	⇒ �(x | τ ), p2

x(x) + p2
y ≡ ν2(x), while

θp(x) = tan−1[py/px(x)] is associated with the wave vector
p = {px(x), py} depending on the position x, i.e., varies with
the potential profile V (x). Here, the x-dependent function
ϕ

(0)
H (x | φ, τ ) in Eq. (26a) still remains unidentified at this mo-

ment, and we will determine it later from the general transport
equation in Eq. (18).

We connect the known zeroth-order wave function
�0(x, py | φ, τ ) with the unknown first-order one
�1(x, py | φ, τ ) by setting λ = 0 in Eq. (18), giving rise
to

ÔT (x, py|φ, τ )�1(x, py|φ, τ )

=
√

2�̂(3)
x (φ)

∂

∂x
�0(x, py|φ, τ ). (28)

The detailed derivation of zero-order wave function
ϕ

(0)
H (x | φ) is given in Appendix A. Finally, it is calculated as

ϕ
(0)
H (x|φ) = −

√
px(x) + ipy

px(x)
+ i

2
sin2 φ tan−1

[
− ipx(x)

py

]
,

(29)
which becomes independent of τ . We also point out that
ϕ

(0)
H (x | φ) in Eq. (29) is valid up to a normalization constant as

well as a phase factor. Consequently, our result in Eq. (29) for
gapless graphene with φ = 0 can differ by a complex phase
px(x) ± ipy compared to that in Ref. [5].

Taking a dice lattice with φ = π/4 as an example, we find

ϕ
(0)
H (x) =

[
p2

x(x) + p2
y

p2
x(x)

]1/4

=
{

1 +
[

py

px(x)

]2
}1/4

. (30)

Up to this point, the leading-order wave function �0(x | φ, τ )
in Eq. (26a) has been fully determined, including both the
phase difference and spatial dependence of all three spinor
components. Apart from that, all successive orders of the wave
functions in the expansion in Eq. (17) could be determined
by using the transport equation in Eq. (18), as we will do
below for the first-order one �1(x | φ, τ ). One also notices
that ϕ

(0)
H (x) in Eq. (30) becomes divergent at the point where

px(x) = 0, implying that the WKB approximation becomes
invalid around a turning point, as seen from Fig. 1. The same
situation was also predicted earlier for the case of graphene
[5] and even a regular Schrödinger electron as well.
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C. General solution for wave function

The general solution for the WKB wave-function transport
is obviously obtained using the transport equation (18) for an
arbitrary order λ written as

1√
2
ÔT (x, py|φ, τ )�λ(x, py|φ, τ )

− �̂(3)
x (φ)

∂

∂x
�λ−1(x, py|φ, τ ) = 0. (31)

The detailed derivation of the WKB wave function is provided
in Appendix B. General transport equation (31) could be also
obtained based in general results provided in Ref. [1]. In this
paper, we mostly focus on the study of a dice lattice with φ =
π/4 which represents an independent practical interest.

From Eqs. (B3) to (B5), we obtain the following thee
equations for the components of the wave function ϕ

[λ,(±,3)]
H :

− (� + ��)

[
dϕ

(λ−1,+)
H

dx
+ dϕ

(λ−1,−)
H

dx

]

−
[

d��

dx
+ d�

dx

]
ϕ

(λ−1,+)
H

− (� − ��)
dϕ

(λ−1,3)
H

dx
+

[
d��

dx
− d�

dx

]
ϕ

(λ−1,3)
H = 0,

(32)

as well as

(� + ��)

[
dϕ

(λ−1,+)
H

dx
− dϕ

(λ−1,−)
H

dx

]

+
[

d��

dx
+ d�

dx

]
ϕ

(λ−1,+)
H

+ (� − ��)
dϕ

(λ−1,3)
H

dx
−

[
d��

dx
− d�

dx

]
ϕ

(λ−1,3)
H

= 4
√

2ν(x)ϕ(λ,2)
H , (33)

and, finally,

(� − ��)
dϕ

(λ−1,−)
H

dx
=

√
2ν(x)ϕ(λ,3)

H . (34)

Here, � = �(x | τ ) was given by Eq. (27). In φ
λ,(1,2,3)
H and

φ
λ−1,(±,3)
H , the index λ = 0, 1, 2, . . . , stands for the order in

a series expansion of wave function �λ(x, py | τ ) in Eq. (18)
so that the transport equation in Eq. (31) always connects
two wave functions with successive orders of λ and λ + 1.
The upper indices (1,2,3) label three expansion coefficients
with respect to three orthogonal base vectors |v1(x| φ, τ )〉,
|v2(x| φ, τ )〉 and |v3(x| φ, τ )〉. The lower index φH refers to
the middle component of a wave-function column vector, cor-
responding to a hub hopping in α-T3 lattice. Finally, indices
± in wave functions φλ,±

H refer to two specific expressions
φλ,1

H (x) ± φλ,2
H (x). As a whole, φ

λ,(1,2,3)
H and φ

λ−1,(±,3)
H corre-

spond, respectively, to all these three configurations of wave
functions.

Equations (32) to (34) can be employed to obtain three
spinor components of each subsequent order wave function

ϕ
(λ,(1,2,3))
H from the previous-order ones ϕ

(λ−1,(1,2,3))
H in a gen-

eral expansion in Eq. (17). Therefore, the issue for obtaining
all orders of a WKB semiclassical wave function can be ful-
filled. This constitutes one of the main efforts of this work.

D. First-order wave function and applicability of WKB
approximation

Using the first-order transport equation

ÔT (x, py|φ, τ )�1(x, py|φ, τ )

=
√

2�̂(3)
x (φ)

∂

∂x
�0(x, py|φ, τ ), (35)

where �0(x, py | φ, τ ) = ϕ
(0)
H (x | φ, τ ) v1(x | φ, τ ), we find a

differential equation for determine ϕ
(0)
H (x), given by

ϕ
(0)
H (x)

[
d��(x)

dx
+ d�(x)

dx

]
+ 2[��(x) + �(x)]

dϕ
(0)
H (x)

dx

= 0, (36)

which is equivalent to Eq. (A11) and allow us to solve for
the zeroth-order wave function ϕ

(0)
H (x). The other two terms

in Eq. (B2b) for the first-order wave function �1(x, py | φ, τ )
can be found directly from

ν(x)ϕ(1,2)
H (x) = ϕ

(0)
H (x)

√
2

8

[
d��(x)

dx
+ d�(x)

dx

]
, (37a)

ν(x)ϕ(1,3)
H (x) =

√
2

2
[��(x) − �(x)]

dϕ
(0)
H (x)

dx
. (37b)

Finally, the most important differential equation to find the
remaining term ϕ

(1,1)
H (x) from ϕ

(1,2)
H (x) and ϕ

(1,3)
H (x) calcu-

lated from Eqs. (37a) and (37b) takes the form

2�+ dϕ
(1,1)
H

dx
+ d�+

dx
ϕ

(1,1)
H = −d�+

dx
ϕ

(1,2)
H + d�−

dx
ϕ

(1,3)
H

+ �− dϕ
(1,3)
H

dx
, (38)

where �±(x) = ��(x) ± �(x).
By employing the Lagrange multiplier μ(x) =

exp[
∫

dx f (x)], we can immediately solve Eq. (38) and
get

ϕ
(1,1)
H (x) = exp

[
−

∫ x

dξ f (ξ )

]

×
{

const −
∫ x

dξg(ξ )exp

[∫ ξ

dη f (η)

]}
,

f (x) = 1

2�+
d�+(x)

dx
,

g(x) = 1

2�+

[
ϕ

(1,2)
H

d�+

dx
− ϕ

(1,3)
H

d�−

dx
− �− dϕ

(1,3)
H

dx

]
.

(39)

Equations (37a), (37b), and (39) together allow us to fully
determining the first-order wave function �1(x, py | φ, τ ) for
α-T3 model based on the WKB approximation.
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Since all the wave function terms up to the first order are
found, we now turn to verifying the applicability of the WKB
approximation, i.e., the magnitude of each subsequent-order
term of the expansion in Eq. (17) is much smaller compared
to the previous-order term, or |�1(x)| � |�0(x)|, and so on.
For this purpose, let us first analyze Eq. (37a), which relates
ϕ

(1,2)
H (x) to ϕ

(0)
H (x), as an example. We consider the case for

particles with a large longitudinal momentum px(x) � py and
then turn to px(x) ≈ ν(x). For Dirac cone particles, this corre-
sponds to either a high potential energy V (x) or a large initial
kinetic energy Eγ of incoming electrons. In this situation, we
are able to make use of the following approximations:

|��(x) + �(x)| = 2px(x)

ν(x)
∼ 1, (40a)

d

dx
|��(x) + �(x)| ≈ py

p2
x(x)

d px(x)

dx
. (40b)

Finally, the first-order term ϕ
(1,2)
H (x) is estimated as

ϕ
(1,2)
H (x) =

√
2

8

1

ν(x)

[
d��(x)

dx
+ d�(x)

dx

]
ϕ

(0)
H (x)

≈ py

p2
x(x)ν(x)

d px(x)

dx
ϕ

(0)
H (x)

≈
[

py

p3
x(x)

]
ϕ

(0)
H (x)

d px(x)

dx

=
[

py

px(x)

]∣∣∣∣dλ(x)

dx

∣∣∣∣ϕ(0)
H (x), (41)

and its derivative

∣∣∣∣dλ(x)

dx

∣∣∣∣ ≡
∣∣∣∣ d

dx

[
h̄

px(x)

]∣∣∣∣ =
[

h̄

p2
x(x)

]∣∣∣∣d px(x)

dx

∣∣∣∣.
Thus, we obtain a standard criteria for the applicability of a
semiclassical WKB approximation in quantum mechanics for
a spatially slowly varying wavelength λ(x) of incoming parti-
cles assisted by the condition px(x) � py discussed above.

IV. APPLICATIONS OF WKB APPROXIMATION

The calculated successive-order wave functions can be ap-
plied to studying many physics problems, such as electron
bound states and quantum tunneling, including α-decay and
electron scattering. In this section, we present a brief discus-
sion on how one can make use of the computed approximate
semiclassical wave function for analyzing various tunneling
properties of electrons in α-T3 material. From the physics per-
spective, the major application of a semiclassical theory aims
at finding electron transmission for a nontrivial potential pro-
file where a direct calculation of the transmission amplitude
based on the Schrödinger equation becomes either impossi-
ble or too tedious, as well as studying resonant tunneling or
scattering of an incident particle subjected to an electron-hole
transition within a barrier region.

If we only know the action S(x), which directly re-
lates to the x-dependent longitudinal momentum by px(x) =
∂S(x)/∂x, then it is sufficient to estimate the electron trans-
mission T (py | {ν(x)}, φ) through any potential barrier V (x)
as an integral of px(x), given by

T (py|{ν(x)}, φ,�0)

= exp

(
−2

h̄

∫
CFR

dx|px(x|py, φ,�0)|
)

, (42)

where the integration will be performed only over the so-
called classically forbidden regions (CFR) corresponding to
p2

x(x) < 0, i.e., px(x) becomes purely imaginary [8,9]. Such
nonclassical states of a particle lead to a significant decrease
of the transmission coefficient in Eq. (42). According to
Eq. (42), the area under the curve Im[px(x | ky, φ,�0)] char-
acterizes the exponential suppression of electron tunneling by
the presence of CFR’s, where both the magnitude and spatial
span of CFR’s will play a crucial role.

To quantify the characteristics of CFR’s, let us consider an
α-T3 material with a finite energy band gap �. Technically,
the condition � > 0 could be satisfied either by using a di-
electric substrate or irradiating our sample with an external
off-resonance dressing optical field [31,88]. By including this
finite band gap �, the gap-correction term Ĥ�(φ) to the
previous Hamiltonian in Eq. (2) for a gapless α-T3 lattice can
be constructed by directly adding a φ-dependent �̂z(φ) term,
leading to

Ĥ�(φ) = �0

2
�̂z(φ) = �0

⎡
⎣cos2 φ 0 0

0 − cos 2φ 0
0 0 − sin2 φ

⎤
⎦, �̂z(φ) = −i[�̂x(φ), �̂y(φ)]−, (43)

as it was derived in Ref. [63]. After having included Ĥ�(φ) in Eq. (43), the previous transport operator ÔT (x, py|φ, τ ) in Eq. (20)
should be modified as

ÔT (x, py,�0|φ, τ ) =

⎡
⎢⎣ν(x) + �0 cos2 φ cos φ�(x)−S,τ

0
cos φ�(x)+S,τ

ν(x) − �0 cos2 φ sin φ�(x)−S,τ

0 sin φ�(x)+S,τ
ν(x) − �0 sin2 φ

⎤
⎥⎦, �(x)±S,τ

= −ih̄τ
∂S�(x)

∂x
± ipy, (44)

where �0 = �/V0 with V0 being the height of a constant potential. The longitudinal momentum px(x | �0, φ) in Eq. (24b) now
takes the new form

[px(x|�0, φ)]2 = ν2(x) − p2
y + �2

0

8ν(x)
sin(2φ) sin(4φ) − �2

0

8
[5 + 3 cos(4φ)]. (45)
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FIG. 2. Calculated two-dimensional (2D) density plots for clas-
sically forbidden regions (CFR’s) |Im[px (x | ky, φ,�0 )]| as functions
of both position x and transverse wave number ky of an electron
in gapped α-T3 materials with various values of band gap �0 and
geometry phase φ. Here, the electron moves under a linearly increas-
ing potential V (x) = V0 + ax, where a = 1 is set for all plots and
V0 = Eγ is determined from the condition ν(x) = V (x) − Eγ = 0 at
x = 0. As labeled, three specific values of φ are selected for φ = 0
(graphene), φ = π/6, and φ = π/4 (a dice lattice).

The CFR’s calculated from Eq. (45) for gapped α-T3

are presented in Figs. 2–5 for a linear V (x) = V0 + a x and
nonlinear V (x) = V0 + a sign(x) x2 potential profiles, where a
represents a field parameter for generating the x dependence
of the potential V (x). From Figs. 2–5, we find a substan-
tial difference between these two different types of potential,
and such a difference will strongly affect the electron tun-
neling. Meanwhile, we also observe that the span of these
CFR’s generally decreases with increasing φ. It is important
to point out that, for 0 < φ < π/4, there exists a pole de-
termined by ν(x) = V (x) − Eγ = 0 and the sign of the term
�2

0 sin(2φ) sin(4φ)/[8 ν(x)] would switch at this pole. This
implies that x = 0 must always be one boundary of a CFR, as
seen in all plots of Figs. 2–5 when �0 �= 0 except for graphene
(φ = 0) and a dice lattice (φ = π/4).

Additionally, Eγ represents the total energy of an incom-
ing particle (an independent variable and a parameter in our
computations) and is chosen as Eγ = 1.0 in units of electron
Fermi energy E (0)

F = 50 meV. Here, γ = 1 means the particle
energies above the band gap (or in a conduction band), while
γ = 0 or −1 correspond to particles in a flat or a valence band,
separately. Physically, the change of Eγ leads to a shift of the
crossing point (where the particle energy is chosen to be zero
and sits at x = 0 for all out plots).

As shown in Eq. (42), within the WKB-approximation
frame, the electron transmission T (py | {ν(x)},�0, φ) relies
only on the spatial distribution of a longitudinal momentum
px(x) within the CFR’s. On the other hand, px(x) can be

uniquely determined through px(x) =
√

ν2(x) − p2
y for any
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FIG. 3. Calculated 2D density plots for |Im[px (x | ky, φ,�0)]| as
functions of both x and φ of an electron in gapped α-T3 materials
with various values of �0 and ky. Here, the electron moves under a
potential V (x) = V0 + ax with a = 1 and V0 = Eγ for all plots. As
indicated, the values of ky are assumed to be ky = 0.1 in panels (a)–
(c) and ky = 0 in plot (d).

assumed potential profile ν(x) and a given electron trans-
verse momentum py. Therefore, T (py | {ν(x)},�0, φ) can be
quantitatively controlled by the spatial dependence of CFR’s
in addition to other model parameters, such as the band gap
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FIG. 4. Calculated 2D density plots for |Im[px (x | ky, φ,�0)]| as
functions of both x and ky of an electron in gapped α-T3 materials
with various values of �0 and φ. Here, the electron moves under
a potential V (x) = V0 + a sign(x) x2 with a = 1 and V0 = Eγ for all
plots. The values of φ are taken as φ = 0 (graphene), φ = π/6, and
φ = π/4 (a dice lattice), as labeled.
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FIG. 5. Calculated 2D density plots for CFR’s
|Im[px (x | ky, φ, �0)]| as functions of both x and φ of an electron
in gapped α-T3 materials with various values of �0 and ky. Here,
the electron moves under a potential V (x) = V0 + a sign(x) x2 with
a = 1 and V0 = Eγ for all plots. The values of ky are selected as
ky = 0.1 for panels (a)–(c) and ky = 0 for plot (d).

�0 and the geometrical phase φ of α-T3 lattices. Moreover,
T (py | {ν(x)},�0, φ) will also depend on a given electron
incident energy Eγ and transverse momentum py for assigned
incident direction. Consequently, a thorough numerical study
on the x dependence of CFR’s and its relations to the param-
eters �0, φ, and ky become a main ingredient of the present
paper, as discussed in detail below.

First, for a linear potential profile V (x) = V0 + a x em-
ployed in Fig. 2, we find that the span and magnitude of
|Im[px(x | ky, φ,�0)]| or the CFR in the x > 0 region is
increased rapidly with ky for φ = 0 and π/4 in a symmet-
rical fan shape with respect to x = 0. But this increase of
|Im[px(x | ky, φ,�0)]| becomes asymmetrical in shape and
splits around x = 0 for φ = π/6, which is further accompa-
nied by a significant enhancement both in its magnitude and
extent simultaneously as �0 is increased from 1.0 to 1.5.

Additionally, for the chosen ky = 0.1, we deduce from
Fig. 3 that a narrow strip-shape distribution of CFR is inde-
pendent of φ as �0 = 0 for the gapless case. However, both
the span and splitting of |Im[px(x | ky, φ,�0)]| are clearly
widened as �0 is increased from 0.5 to 1.0. In addition, the
splitting of the CFR around x = 0 only occurs for finite φ

but the splitting is always closed again at φ = π/4. As �0 is
further increased from 0.5 to 1.0, both the span and splitting
of the CFR are expanded dramatically. Even if ky = 0, the
same broadening and splitting features of the CFR remain
for �0 = 1.5, and the magnitude of the CFR is increased
greatly at the same time in comparison with other situations
discussed.

Next, for a nonlinear potential profile V (x) = V0 +
a sign(x) x2 used in Fig. 4, we observe that both the span and
magnitude of the CFR at �0 = 1 are increased rapidly with ky

symmetrically as φ is changed from 0 to π/4. However, such
a symmetrical increase of CFR turns into an asymmetrical one
with respect to x = 0 as φ = π/6. In addition, for φ = π/6,
the same CFR becomes split around x = 0, and meanwhile, it
demonstrates significant enhancements both in its magnitude
and span simultaneously as �0 is changed from 1.0 to 1.5.

Additionally, for the chosen ky = 0.1, we see from Fig. 5
that a strip-like CFR spatial distribution is found independent
of φ for a gapless situation with �0 = 0. However, the span
and splitting of |Im[px(x | ky, φ,�0)]| are both enlarged as �0

is changed from 0.5 to 1.0. Differently, the splitting of CFR
around x = 0 occurs for all values of φ except for two points
at φ = 0 and π/4. As �0 is further raised from 0.5 to 1.0,
the span and splitting of CFR increase significantly. However,
when ky = 0 for normal incidence of a particle, both the span
and splitting of the CFR are weakened sharply for �0 = 1.5,
but the magnitude of the CFR is still increased noticeably
compared with other addressed cases with ky = 0.1. Similarly,
for the case of a nonlinear potential profile, the splitting of the
CFR exists for all values of φ, except for graphene with φ = 0
and a dice lattice with π/4.

By comparing Fig. 2 with Fig. 4, we conclude that the span
of |Im[px(x | ky, φ,�0)]| for a nonlinear potential profile at
large values of ky has been significantly reduced in addition
to the appearance of a widened gap which implies that the
corresponding tunneling will be greatly enhanced for non-
normal incidence of an electron. On the other hand, from a
direct comparison between Figs. 3 and 5, we further find that,
due to an expanding span of |Im[px(x | ky, φ,�0)]| at �0 = 0,
the introduced nonlinearity to a potential profile will sharply
suppress the electron tunneling for nonnormal incidence for
the same geometrical phase φ of gapless α-T3 materials.

V. CONCLUDING REMARKS AND SUMMARY

In summary, this paper embodies our effort to construct a
complete semiclassical description for the α-T3 model which
characterizes a wide class of Dirac cone materials with an
additional flat band in their energy dispersion, also referred
to as pseudospin-1 Dirac materials. So far, there has been im-
mense and strong experimental evidence for the existence of
a flat energy band in a large number of laboratory-synthesized
materials. Anyone of these materials can be described by the
theoretical α-T3 model with a certain degree of precision so
that our results are expected to be relevant to many existing
two-dimensional lattices.

Our development of the WKB approximation includes
finding a semiclassical action specifically for the α-T3 model,
as well as for the position-dependent longitudinal momentum;
calculating the leading (zeroth) order wave function, all of its
spinnor components, their phase differences and spatial dis-
tributions. Most importantly, we explicitly derived a complete
set of transport equations which relate any two subsequent or-
ders of semiclassical wave function, i.e., �λ(x, py | φ, τ ) and
�λ+1(x, py | φ, τ ). Therefore, the sought WKB wave function
could now be obtained up to any desired order and precision.
As an example, we solved these transport equations for the
first-order wave function and demonstrated conditions for the
applicability of the WKB approximation to our model Hamil-
tonian, e.g., requested �1(x, py | φ, τ ) � �0(x, py | φ, τ ). In
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particular, our derivations and obtained results for α-T3 appear
drastically different from the standard WKB approximation
for a Schrödinger particle, as frequently discussed in quan-
tum mechanics textbooks and previously known results for
graphene [5].

Our derived equations and calculated semiclassical elec-
tronic states could be further applied to investigate most of
crucial electronic properties of α-T3 materials. Also, we dis-
cussed possible applications of our computed wave function
to studying tunneling and transport properties of pseudospin-1
Dirac electrons under nontrivial potential profiles. Specifi-
cally, we considered the case for gapped α-T3, for which the
direct computation of the wave function becomes complicated
and impossible if a spatially nonuniform potential is assumed.
In this work, the calculation of electron transmission in these
cases is fulfilled simply by integrating a longitudinal electron
momentum |px(x)| over the so-called classically forbidden
regions satisfying p2

x(x) < 0. Using this scheme, we com-
puted the transmission for various kinds of α-T3 lattices and
demonstrated that the transmission is significantly reduced
for a large geometrical phase φ. Technically, our developed
semiclassical theory for a pseudospin-1 Dirac electron could
be employed to numerically explore resonant tunneling and
scattering of electrons by a potential barrier, as well as to
characterize possible trapped or localized electronic states in
α-T3.

We are confident that our work will play an important role
for investigating fundamental electronic properties of a wide
range of innovative low-dimensional structures. Building up a
WKB approximation has been regarded as a key step for nu-
merically studying each newly discovered material or a model
Hamiltonian. Our obtained results will undoubtedly find their
applications in the follow-up research on electron tunneling
and transport properties, electrical control of α-T3 materials,
designing and fabricating electronic devices and transistors
based on resonant tunneling or scattering of Dirac electrons
through an assigned potential barrier profile. Our results are
also expected to be important in valleytronic applications due
to the fact that low-energy electronic states of gapped α-T3

materials directly rely on a valley index, as well as many other
applications of these unique and innovative materials.
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APPENDIX A: LEADING-ORDER WAVE FUNCTION

The leading-order or zeroth-order wave function
�0(x | φ, τ ) has the following form:

�0(x|φ, τ ) =

⎡
⎢⎢⎣

ϕ
(0)
A (x|φ, τ )

ϕ
(0)
H (x|φ, τ )

ϕ
(0)
B (x|φ, τ )

⎤
⎥⎥⎦. (A1)

Then, by using Eqs. (20), (21a), (21b), (24a), and (24b), we
find

ν(x)ϕ(0)
A (x) + cos φ[τ px(x) − ipy]ϕ(0)

H (x) = 0, (A2a)

sin φ[τ px(x) + ipy]ϕ(0)
H (x) + ν(x)ϕ(0)

B (x) = 0, (A2b)

which leads to the solution

�0(x|φ, τ ) =
⎡
⎣cos φ�(x|τ )

−1
sin φ��(x|τ )

⎤
⎦ϕ

(0)
H (x|φ, τ ), (A3a)

�(x|τ ) = 1

ν(x)
[τ px(x) − ipy]

= −τexp
[−iτθp(x)

]
, (A3b)

��(x|τ )
i→−i	⇒ �(x|τ ), (A3c)

where p2
x(x) + p2

y ≡ ν2(x), while θp(x) = tan−1[py/px(x)] is
associated with the wave vector p = {px(x), py} depending
on the position x, i.e., varies with the potential profile V (x).
Here, the x-dependent function ϕ

(0)
H (x | φ, τ ) in Eq. (26a) still

remains unidentified at this moment and we will determine it
later from the general transport equation in Eq. (18).

Next, we would connect the known zeroth-order wave
function �0(x, py | φ, τ ) with the unknown first-order one
�1(x, py | φ, τ ) by setting λ = 0 in Eq. (18), giving rise to

ÔT (x, py|φ, τ )�1(x, py|φ, τ )

=
√

2�̂(3)
x (φ)

∂

∂x
�0(x, py|φ, τ ). (A4)

Here, the undetermined wave function �1(x, py | φ, τ ), corre-
sponding to a state vector in three-dimensional Hilbert space,
could be decomposed into a linear combination of three or-
thonormal basis vectors denoted as |v1〉, |v2〉, and |v3〉.

The first basis vector |v1〉 is equivalent to the spinor part of
�0(x, py | φ, τ ) in Eq. (26a), i.e.,

|v1(x|φ, τ )〉 =
⎡
⎣cos φ�(x|τ )

−1
sin φ��(x|τ )

⎤
⎦, (A5)

which implies that Ô T (x, py | φ, τ )|v1〉 = 0 as a result of
Eq. (22). Meanwhile, we simply choose two remaining or-
thonormal vectors |v2(ξ | φ, τ )〉 and |v3(ξ | φ, τ )〉 as follows:

|v2(x|φ, τ )〉 =
⎡
⎣cos φ�(x|τ )

+1
sin φ��(x|τ )

⎤
⎦, (A6)

|v3(x|φ, τ )〉 =
⎡
⎣ sin φ�(x|τ )

0
− cos φ��(x|τ )

⎤
⎦. (A7)

Consequently, the state vector �1(x, py | φ, τ ) can be ex-
panded by |v1〉, |v2〉, and |v3〉, and written as

�1(x, py|φ, τ ) = ϕ
(0)
H (x)|v1〉 + ϕ

(1,2)
H (x)|v2〉

+ ϕ
(1,3)
H (x)|v3〉 , (A8)

where we made use of the fact that ϕ
(0)
H (x) in Eq. (26a) repre-

sents the spinor-amplitude function of �0(x, py | φ, τ ).
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Next, making use of the result in Eq. (A8), we obtain

〈v1|ÔT (x, py|φ, τ )|�1(x, py|φ, τ )〉
= 〈v1|ÔT (x, py|φ, τ )|{|ϕ(0)

H (x)|v1〉
+ ϕ

(1,2)
H (x)|v2〉 + ϕ

(1,3)
H (x)|v3〉}〉 = 0 (A9)

since the transport operator Ô T (x, py | φ, τ ) is Hermitian and
Ô T (x, py | φ, τ ) | v1〉 = 0. Therefore, the first-order transport
equation in Eq. (28) now reads

〈v1|�̂(3)
x (φ)

∂

∂x
�0(x, py|φ, τ )〉

= 〈v1|�̂(3)
x (φ)

∂

∂x

{|v1〉ϕ(0)
H (x|φ, τ )

}〉 = 0, (A10)

or equivalently, it can be rewritten as

[�(x|τ ) + ��(x|τ )]
∂ϕ

(0)
H (x|φ, τ )

∂x
+ �α (x|τ )ϕ(0)

H (x|φ, τ )

= 0, (A11)

where

�α (x|τ ) = ∂�(x|τ )

∂x
+ sin2 φ

∂

∂x
[��(x|τ ) − �(x|τ )].

(A12)
Here, the φ-dependence in Eq. (A12) could be rewritten by us-
ing the relative hopping parameter α as sin2 φ = α2/(1 + α2).
Also, it worth mentioning that for a dice lattice with φ = π/4,
the function �α=1(x|τ ) = ∂/∂x[�(x|τ ) + ��(x | τ )] becomes
fully symmetric with respect to the interchange �(x | τ ) ↔
��(x | τ ). For φ = 0 in particular, we obtain the same equa-
tion as that for graphene in Ref. [5].

Mathematically, Eq. (A11) acquires a general solution,
given by

ϕ
(0)
H (x|φ, τ )

= c0exp

{
−

∫ x

[�(ξ |τ ) + ��(ξ |τ )]−1
�α (ξ |τ )dξ

}
.

(A13)

Explicitly, we evaluated the employed functions in Eqs. (A11)
to (A13) as

�(x|τ ) = pτ,−(x)

ν(x)
= −τ px(x) − ipy

p(x)
,

��(x|τ ) = pτ,+(x)

ν(x)
= −τ px(x) + ipy

p
,

1

�(x|τ ) + ��(x|τ )
= − τ p(x)

2px(x)
,

∂�(x|τ )

∂x
= − iτ py

p3/2
τ,+(x)p1/2

τ,−(x)

∂ px(x)

∂x
,

∂�(x|τ )�

∂x
= iτ py

p1/2
τ,+(x)p3/2

τ,−(x)

∂ px(x)

∂x
, (A14)

where p(x) =
√

p2
x(x) + p2

y. Using derived identities in

Eq. (A14), Eq. (A13) is calculated as

ϕ
(0)
H (x|φ) = −

√
px(x) + ipy

px(x)
+ i

2
sin2 φ tan−1

[
− ipx(x)

py

]
,

(A15)

which becomes independent of τ . We also point out that
ϕ

(0)
H (x|φ) in Eq. (29) is valid up to a normalization constant as

well as a phase factor. Consequently, our result in Eq. (29) for
gapless graphene with φ = 0 can differ by a complex phase
px(x) ± ipy compared to that in Ref. [5].

Taking a dice lattice with φ = π/4 as an example, we find

ϕ
(0)
H (x) =

[
p2

x(x) + p2
y

p2
x(x)

]1/4

=
{

1 +
[

py

px(x)

]2
}1/4

. (A16)

Thus, we derived Eqs. (29) and (30).

APPENDIX B: GENERAL SOLUTION FOR WAVE
FUNCTION

Let us start with the general transport equation in Eq. (18),
written as

1√
2
ÔT (x, py|φ, τ )�λ(x, py|φ, τ )

− �̂(3)
x (φ)

∂

∂x
�λ−1(x, py|φ, τ ) = 0, (B1)

Here, both wave functions �λ−1(x, py| φ, τ ) and
�λ(x, py | φ, τ ) are assumed to be expended over an
orthonormal basis state-vector set |v1〉, |v2〉, and |v3〉,
given by

�λ−1(x, py|φ, τ ) = ϕ
(λ−1,1)
H (x|φ, τ )|v1〉 + ϕ

(λ−1,2)
H (x|φ, τ )|v2〉 + ϕ

(λ−1,3)
H (x|φ, τ )|v3〉, (B2a)

�λ(x, py|φ, τ ) = ϕ
(λ,1)
H (x|φ, τ )|v1〉 + ϕ

(λ,2)
H (x|φ, τ )|v2〉 + ϕ

(λ,3)
H (x|φ, τ )|v3〉 . (B2b)

By multiplying each side of Eq. (31) with 〈v1|, 〈v2|, and 〈|v3|, respectively, it leads us to the following three coupled
differential equations:

[
(� + ��)

dϕ
(λ−1,1)
H

dx
+ (

ϕ
(λ−1,1)
H + ϕ

(λ−1,2)
H

)d�

dx
+ (� − ��)

dϕ
(λ−1,2)
H

dx

]
cos2 φ

−
[
ϕ

(λ−1,3)
H

(
d��

dx
− d�

dx

)
ϕ

(λ−1,3)
H + (�� − �)

dϕ
(λ−1,3)
H

dx

]
1

2
sin(2φ)
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+
[

d��

dx

(
ϕ

(λ−1,1)
H + ϕ

(λ−1,2)
H

) + �

(
dϕ

(λ−1,1)
H

dx
− dϕ

(λ−1,2)
H

dx

)
+ ��

(
dϕ

(λ−1,1)
H

dx
+ dϕ

(λ−1,1)
H

dx

)]
cos2 φ = 0, (B3)[

(� − ��)
dϕ

(λ−1,1)
H

dx
+ (

ϕ
(λ−1,1)
H + ϕ

(λ−1,2)
H

)d�

dx
+ (� + ��)

dϕ
(λ−1,2)
H

dx

]
cos2 φ

−
[
ϕ

(λ−1,3)
H

(
d��

dx
− d�

dx

)
+ (�� − �)

dϕ
(λ−1,3)
H

dx

]
1

2
sin(2φ)

+
[

d��

dx

(
ϕ

(λ−1,1)
H + ϕ

(λ−1,2)
H

) + �

(
dϕ

(λ−1,2)
H

dx
− dϕ

(λ−1,1)
H

dx

)
+ ��

(
dϕ

(λ−1,1)
H

dx
+ dϕ

(λ−1,1)
H

dx

)]
sin2 φ

= 4
√

2ν(x)ϕ(λ,2)
H , (B4)

1

2
(� − ��) sin(2φ)

[
dϕ

(λ−1,1)
H

dx
− dϕ

(λ−1,2)
H

dx

]
=

√
2ν(x)ϕ(λ,3)

H . (B5)

Here, we also take into account the fact that 〈v1| itself is an eigenfunction of ÔT (x, py|φ, τ ), and then

〈v1|ÔT (x, py|φ, τ )|v2,3〉 = 〈v2,3|ÔT (x, py|φ, τ )|v1〉 = 0, (B6)

which is simple because the transport operator ÔT (x, py | φ, τ ) is Hermitian, i.e., Ô T (x, py | φ, τ ) = Ô†
T (x, py | φ, τ ).

In this paper, we will focus on the study of a dice lattice with φ = π/4. From Eqs. (B3) to (B5), we obtain

−(� + ��)

[
dϕ

(λ−1,+)
H

dx
+ dϕ

(λ−1,−)
H

dx

]
−

[
d��

dx
+ d�

dx

]
ϕ

(λ−1,+)
H − (� − ��)

dϕ
(λ−1,3)
H

dx
+

[
d��

dx
− d�

dx

]
ϕ

(λ−1,3)
H = 0,

(B7)

(� + ��)

[
dϕ

(λ−1,+)
H

dx
− dϕ

(λ−1,−)
H

dx

]
+

[
d��

dx
+ d�

dx

]
ϕ

(λ−1,+)
H

+ (� − ��)
dϕ

(λ−1,3)
H

dx
−

[
d��

dx
− d�

dx

]
ϕ

(λ−1,3)
H = 4

√
2ν(x)ϕ(λ,2)

H , (B8)

(� − ��)
dϕ

(λ−1,−)
H

dx
=

√
2ν(x)ϕ(λ,3)

H . (B9)
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