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Pair density wave and loop current promoted by Van Hove singularities in moiré systems
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We theoretically show that in the presence of conventional or higher order Van Hove singularities (VHS), the
bare finite momentum pairing, also known as the pair density wave (PDW), susceptibility can be promoted to the
same order of the most divergent bare BCS susceptibility through a valley-contrasting flux 3φ in each triangular
plaquette at φ = π/3 and π/6 in moiré systems. This makes the PDW order a possible leading instability for
an electronic system with repulsive interactions. We confirm that it indeed wins over all other instabilities and
becomes the ground state under certain conditions through the renormalization group calculation and a flux
insertion argument. Moreover, we also find that a topological nontrivial loop current order becomes the leading
instability if the Fermi surface with conventional VHS is perfectly nested at φ = π/3. Similar to the Haldane
model, this loop current state has the quantum anomalous Hall effect. If we dope this loop current state or
introduce a finite next-nearest-neighbor hopping t ′, the chiral d-wave PDW becomes the dominant instability.
Experimentally, the flux can be effectively tuned by an out-of-plane electric field in moiré systems based on
graphene and transition metal dichalcogenides.
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I. INTRODUCTION

Although superconductivity from the condensation of zero
center-of-mass momentum Cooper pairs is commonly ob-
served in many superconducting materials, that with finite
momentum Cooper pairs, also known as pair density wave
(PDW), stays rare in nature [1]. The PDW can be thought
as a superconducting state with periodic spatial modula-
tions in the order parameter, which vanishes on average. Its
rareness can be ascribed to the fact that, for a conventional
Fermi liquid with time-reversal and inversion symmetry, the
pairing susceptibility χsc(q, T ) diverges only at q = 0 in low-
energy limit. The first proposal for the finite q pairing is the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [2,3], which
is predicted to exist in a clean superconductor in the pres-
ence of a high magnetic field if the orbital pairing breaking
effect is negligible, i.e., without the creation of Abrikosov
vortcies, and the superconducting state persists up to the Pauli
limit. So stringent are these conditions that very few materials
can realize this FFLO state. Nonetheless, some experimental
evidence for its existence have been reported in organic super-
conductors [4], heavy fermion compounds [5], and iron-based
superconductors [6,7].

In underdoped cuprates, the PDW has been proposed as
a competitor to d-wave uniform superconductivity [8–11].
Unlike the FFLO state, this PDW has zero coupling to the
external magnetic field, and arises from strong electronic
correlation. As a result, it coexists or neighbors with other
charge or spin orders in the phase diagram [12–14]. The com-
plicated interplay among PDW and other electronic orders
makes it hard to identify which order is primary. Because of

this complicated interplay, another scenario is also proposed,
where the PDW is argued to be the mother order, while other
orders are descendants from it [15,16]. Indeed, through partial
melting of a PDW, there may be other vestigial orders such
as charge density wave or nematicity, appearing through a
cascade of finite T transitions [17–19]. Probably the most
nontrivial result from this scenario is the development of the
highly exotic charge-4e or even charge-6e superconductors
[20,21], of which the experimental signatures have not been
reported until very recently [22]. With these many unsettled
yet interesting puzzles, it is highly valuable to find a platform
which can realize the PDW order as a unique ground state, and
the interplay between different orders at finite temperature can
be investigated in depth.

Here in this paper, we argue that a certain class of two-
dimensional moiré band structures with either conventional
[23–25] or higher order [26–29] Van Hove singularities (VHS)
can serve as the promising platform for hosting the PDW in
the ground state. A Van Hove singularity occurs in a two-
dimensional system when the Fermi level is tuned to the
energy dispersion saddle point where ∇kε(k) = 0. Formally,
we can distinguish two different VHS’s using the 2 × 2 Hes-
sian matrix defined by Di j = 1/2∂ki∂k j ε(k). The conventional
Van Hove singularity (CVHS) is the one with det D < 0, e.g.,
ε(k) = k2

x − k2
y ; while for the higher order Van Hove singu-

larity (HOVHS) we have det D = 0. Examples of HOVHS
include ε(k) = k2

y − k4
x and ε(k) = kx(k2

x − √
3k2

y ), and we
will focus on the second type in this paper. The interesting fea-
ture about VHS is that the fermion density of states diverges
at this particular filling, and more often than not, the VHS
is associated with Fermi surface nesting. These facts indicate
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that there has to be a competition among different electronic
orders, in both particle-hole channel and particle-particle
channel. There have been plenty of discussions of competing
orders near the CVHS in the literature [30–37]. However, even
with nested Fermi surface, it is various particle-hole density
wave orders, such as charge density wave and spin density
wave orders, that generally win over uniform superconducting
orders in the previous studies, and in the perfectly nested
case, particle hole condensate wins over superconductivity
[30,32,33] as the nesting enhances the bare particle-hole sus-
ceptibility �ph(Q, T ) at finite momentum as the same order
as the bare particle-particle susceptibility �pp(0, T ), which
scales as ln2(W/T ) with W being the bandwidth. Neverthe-
less, it is very rare that the bare �pp(Q, T ) can be enhanced to
the same order of �pp(0, T ), which is a necessary condition
for the PDW order to be the leading instability in the weak
coupling regime. For the HOVHS case, all the bare suscepti-
bilities diverge in a power-law manner, because the power-law
divergence of the density of states. This naturally promotes
the bare PDW susceptibility, but PDW still needs to compete
with other orders. In this work, we show that by tuning the
effective valley-dependent flux in the moiré system, which
can be controlled, for example, by an applied out-of-plane
displacement field, the system at either CVHS and HOVHS
can favor the stable PDW order as the ground state with
repulsive interactions.

The model we use is inspired by the moiré band structure
of the twisted bilayer transition metal dichalcogenides (TMD)
[38–49], the ABC stacked trilayer graphene on h-BN [50–52],
twisted double bilayer graphene [27,53–58], and also twisted
bilayer graphene [32,59–62]. In all these systems, the small
twist angle or the small lattice constant mismatch results in
a large scale triangular moiré pattern. The moiré superlattices
profoundly change the low-energy band structure, and in some
cases lead to nearly flat band, where the interaction plays an
important role. Therefore these systems have been suggested
to simulate the Hubbard physics [38]. Apart from the twist
angle, a valley-contrasting flux is another important tuning
parameter in these systems. This flux changes the noninteract-
ing band structure dramatically. For example, it changes the
location of the Van Hove singularities and the Fermi surface
nesting in both the particle-particle and particle-hole channels,
and thus controls the bare susceptibilities of various orders.
This flux can be modeled by endowing the nearest-neighbor
hopping t with a complex phase factor φ and modifying t
into teiφ . Experimentally, the valley-contrasting flux can be
effectively tuned by an out-of-plane electric field [63–66].

In Fig. 1, we show how the Fermi surfaces with only
nearest-neighbor hopping for different valleys evolve with
different φ. For the realistic system, the next-nearest-neighbor
hopping t ′ should also be considered, as it reduces the Fermi
surface nesting and suppresses the particle-hole channel den-
sity waves. We will discuss this point below. In the perfect
nesting model with φ = 0, electronic bands from different
valleys can hardly be distinguished. In the ideal case, the val-
ley components, together with the spin components, form four
fermion flavors, giving rise to an (emergent) SU(4) symmetry
in the noninteracting Hamiltonian. A nonzero φ breaks this
symmetry and also spoils some degeneracy which is protected
by the SU(4) symmetry. We show that there is a symmetry

FIG. 1. Perfectly nested low-energy Fermi surfaces of moiré
systems for different valleys (red and blue lines) in the presence
of a valley-contrasting flux. In the absence of the flux, Van Hove
singularity appears when the system is doped to the M point. As
φ increases, there can be two higher order Van Hove singularities
located at the Brillouin zone corners, or six conventional Van Hove
singularities at the middle point between � (Brillouin zone center)
and ±K.

transformation regarding φ, which turns the valley-polarized
pairing at φ = 0 to a PDW order at φ = π/3, for which there
are six CVHS in the moiré Brillouin zone at Van Hove doping.
The case with φ = π/6 is of special interest because there
are two HOVHS points located at the moiré Brillouin zone
corners ±K.

To investigate the competing orders and obtain the phase
diagram in an unbiased way, we thereby employ the par-
quet renormalization group (pRG) analysis. This was first
introduced in the discussion of messon scattering [67] and
was later successfully applied to discuss competing orders
in interacting one-dimensional electron gas [68], cuprates
[30,69], iron-based superconductors [70], graphene [31], and
more recently, moiré band structures with Van Hove fermiol-
ogy [33–35]. It involves in identifying the leading divergent
free susceptibilities, and inserting them as building blocks
to renormalize different interactions, which helps to identify
the leading instability in the low-energy limit. Based on the
noninteracting band structure, we further introduce different
initial interactions as the input of our RG analysis.

Our results are obtained for the CVHS and HOVHS sep-
arately. In the conventional case with φ = π/3 and SU(4)
preserving interactions, we find that PDW loses to a topo-
logical loop current order in the perfect nesting limit, i.e.,
with a vanishing t ′ and the filling fraction approaching the
Van Hove filling. This loop current order results from an
imaginary d-wave particle-hole condensate, and is similar to
the Haldane model for quantum anomalous Hall effect [71].
This loop current has been previously discussed in the context
of a φ → 0 model with the fermion flavor equal to 4. We show
that indeed in our model, the loop current order at φ = π/3 is
related to that at φ = 0 via a symmetry transformation. When
the system is tuned away from the perfect nesting, we find that
the ground state favors a chiral d-wave PDW instead. If we
include SU(4) breaking interactions, such as Hund coupling,
the chiral-d wave or s-wave PDW exists in a wide parameter
space as a stable phase even in the perfect nesting limit. Again,
via symmetry transformation, this PDW is related to the chiral
d-wave valley-polarized uniform superconductivity at φ = 0.
As a result, PDW phase can also exist for a generic filling
ν = n (ν is the number of electrons per site) at φ = π/3
(although not necessarily the chiral d-wave PDW), as long
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as the same interactions favor the valley polarized uniform
superconductivity at φ = 0 and filling ν = 4 − n. For the
higher order VHS, our results suggest that PDW can be the
leading instability once a valley splitting field is introduced.
The resulting PDW phase has a relatively high transition
temperature and is thus more promising to be observed
experimentally.

The paper is organized as following. In Sec. II, we intro-
duce the lattice model inspired by the moiré band structure of
twisted bilayer TMD, which is also relevant to the twisited
double bilayer graphene system and ABC stacked trilayer
graphene system. In Sec. III, we discuss the symmetries of
our model and symmetry classification of the superconducting
orders. In Sec. IV, we first introduce a flux insertion oper-
ation to connect the orders between φ = 0 and π/3, which
generates the ground state at φ = π/3 from a correspond-
ing result at φ = 0. After that, we perform the concrete RG
analysis for the conventional VHS, and the results are con-
sistent with those obtained via the flux insertion operation
from previous analysis. In Sec. V, we conduct the parquet
RG analysis for the higher order Van Hove singularities of
two patch model and one patch model, and find prevailing
PDW order in the latter. Concluding remarks are presented in
Sec. VI.

II. THE LATTICE MODEL

We consider the following triangular lattice model Ĥ =
Ĥ0 + ĤI , where the single particle Hamiltonian Ĥ0 is given
by

Ĥ0 = − t
∑
i,â j

∑
v=±, f

eivφ ĉ†
v, f (i)ĉv, f (i + â j )

− t ′ ∑
〈〈i j〉〉

∑
v=±, f

ĉ†
v, f (i)ĉv, f ( j) + H.c., (1)

where t and t ′ are the nearest-neighbour and next-nearest-
neighbor hopping amplitudes. â j = â1, â2, â3 are the three
nearest-neighbour unit vectors on the triangular lattice (with
lattice constant a = 1): â1 = (1, 0), â2 = (−1/2,

√
3

2 ), â3 =
(−1/2,−

√
3

2 ). f = 1, 2, . . . , Nf is the fermion flavor. This
model describes spinless or spinful fermions (for each fixed
v), where Nf is equal to one or two. A larger Nf can effectively
describe multi-orbital physics. The most interesting part is the
phase factor φ, which induces a flux ±3φ in each elementary
triangle plaquette, and the flux is opposite for different val-
leys: v = ± represents the valley degree of freedom (DOF).
This nontrivial flux pattern can be experimentally realized
in the twisted homobilayer TMD (corresponding to Nf = 1)
[66], twisted ABC trilayer graphene/h-BN, and twisted dou-
ble bilayer graphene(corresponding to Nf = 2) [51]. The role
of φ is to move the location of Van Hove singularities in the
Brillouin zone. When φ = π/6 and t ′ = 0, three Van Hove
singularities within the same valley will merge into a higher-
order Van Hove singularity.

The interacting Hamiltonian ĤI can be any symmetry-
allowed four fermion interactions, including the Hubbard
interaction, Heisenberg interaction, Hund interaction, etc. Ex-

plicitly ĤI with Nf = 2 can be written as

ĤI = U

2

∑
i

n2
i + J

∑
〈i j〉,n

c†
i T ncic

†
j T

nc j

+ Vh

∑
i

(c†
i
�Sci )

2 + K
∑

i

(c†
i
�Lci )

2, (2)

where T n are the fifteen generators of the SU(4) group, and
J is the coupling constant of the Heisenberg interaction. The
Vh and K are the coupling constants of spin and orbital Hund
couplings, and �S = �σ , �L = �τ are the spin-1/2 Pauli matrices
acting on the spin and valley degrees of freedom, respectively.

III. CLASSIFICATION OF ORDERS

In this section, we classify all the possible particle-hole and
particle-particle orders which spontaneously break the global
symmetries of Eq. (1). We will focus on Nf = 2, φ = π/3, or
φ = π/6. Besides the U(1)c symmetry corresponding to the
charge conservation and the lattice translation symmetry, the
global symmetries of the lattice model is SU(2)s × U(1)v ×
C3v , where SU(2)s is the spin rotation symmetry; U(1)v is
the U(1) valley (v) rotation symmetry, and C3v is the point
symmetry group of the lattice model.

We note that if φ = 0 and Nf = 2, the lattice model Eq. (1)
enjoys the SU(4) symmetry. Therefore we start with the spon-
taneous symmetry breaking of SU(4) symmetry, and then
break this symmetry down to SU(2)s × U(1)v with a nonzero
φ. The fermions c f serve as the fundamental representation
of the SU(4) internal symmetry. We physically view the four
flavors which form the fundamental representation as spin
1/2 and valley pseudospin 1

2 DOF. The tensor product of
two fundamental representations of SU(4) group satisfies:
4 ⊗ 4 = 6 ⊕ 10, 4̄ ⊗ 4 = 1 ⊕ 15, where 4 is the fundamental
representation and 4̄ is the complex conjugation of 4; 6 is the
vector representation of SO(6) and 10 is the antisymmetric
tensor representation of SO(6) [72]. The decomposition of
4 ⊗ 4 = 6 ⊕ 10 means that the superconducting orders which
spontaneously break the internal SU(4) symmetry can only
be degenerate between spin-singlet-valley-triplet (ST) and
spin-triplet-valley-singlet (TS), corresponding to the vector
representation 6 [52,73]; or between spin-singlet-valley-
singlet (SS) and spin-triplet-valley-triplet (TT), corresponding
to the tensor representation 10 [52]. The vector representation
6 is parity even while the tensor representation 10 is parity
odd. These superconducting orders include uniform supercon-
ductors and PDW orders, which may further break the C3v

and translational symmetry. Meanwhile, the decomposition
4̄ ⊗ 4 = 1 ⊕ 15 constraints the particle-hole orders. If the
translation symmetry is broken, the identity representation 1
means the charge density wave order (CDW), and the rep-
resentation 15 represents the degenerate spin/valley density
wave. If the translation symmetry is intact, the identity repre-
sentation 1 is the chemical potential, and the representation 15
represents the degenerate spin/valley magnetism.

Furthermore, a nonzero φ explicitly breaks the SU(4) f
symmetry down to SU(2)s × U(1)v symmetry, as mentioned
above. The degeneracy between the superconducting orders
and particle-hole orders is all broken. We can use the val-
ley quantum number Lz = −1, 0, 1 and total spin quantum
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TABLE I. The correspondence between the orders in both particle-particle and particle-hole channels at φ = 0 and φ = π/3 under the flux
insertion G. The loop current order we discuss in this work is the intravalley CDW order.

Flux Intervalley pairing Intravelley pairing Intervalley density wave Intravalley density wave

φ = 0 Q = 0 SC Q = 0 SC Q = M SDW/CDW Q = M SDW/CDW
φ = π/3 Q = 0 SC Q = ±K PDW Q = M ± K SDW/CDW Q = M SDW/CDW

number of the Cooper pair to label the superconducting or-
ders. In other words, we will have spin singlet or triplet pair
with Lz = −1, 0, 1. The particle-hole orders are divided into
spin orders and charge orders.

IV. CONVENTIONAL VAN HOVE SINGULARITIES:
SIX PATCH MODEL

In this section, we focus on the Nf = 2 and φ = π/3 case
of Eq. (1). The Fermi surface at Van Hove doping is shown
in Fig. 1. There are six conventional Van Hove singularities
with log-divergent density of states. Interestingly, the physics
for φ = 0 and φ = π/3 are closely connected with each other.
Concretely, there is an invertible local transformation between
the systems in Eq. (1) with φ = 0 and π/3 at Van Hove dop-
ing, which is proposed in Ref. [74] for the single flavor case,
i.e., Nf = 1 of Eq. (1). This local transformation guarantees
that there is a one-to-one correspondence between the orders
at φ = 0 and φ = π/3. Below we first discuss this transforma-
tion, and then use pRG analysis to identify the leading orders
at φ = π/3. We find consistency with earlier results on φ = 0
case, by virtue of the local transformation.

A. Flux insertion

Before we dive into the detailed calculations, it’s worth
noticing that the physics at φ = π/3 is closely connected
with that at φ = 0. Actually, there exists a local transfor-
mation between φ = 0 and φ = π/3 by inserting π flux in
each triangular plaquette and preserving the gauge choice
of the kinetic energy in Eq. (1) of the lattice model. We
label the transformation as G. The transformation G not only
maps the Hamiltonian, which includes both the tight binding
and the interaction terms, from φ = 0 to π/3, but also the
ground state orders. This implies that if we know the leading
order at φ = 0, we can immediately arrive at the leading order
with φ = π/3, which is just the order at φ = 0 acted by G.

Concretely, the transformation G composes two parts.
Starting from φ = 0, we first do the particle hole transforma-
tion: cv,σ (i) → c†

v,σ (i), which inserts π flux in each plaquette
and the filling is changed from n to 4 − n, where n is the
number of fermions per site. Then we perform the local gauge
transformation

cv,σ ( j) → eivη j cv,σ ( j) (3)

with η j = K · r j and K = ( 4π
3 , 0), which preserves the gauge

choice of the tight binding term in Eq. (1), such that the
nearest-neighbor hopping terms along the â1, â2, and â3 di-
rections have the same phase φ. In Fig. 2, we illustrate this
gauge transformation on the lattice. This flux insertion G does
not change the long-range hoppings and interactions we con-

sidered here, such as electron density interactions, Heisenberg
exchange couplings, Hund couplings etc.

Since G is invertible, the orders at φ = 0 and φ =
π/3 also have a one-to-one correspondence. The results is
summarized in the Table I. We first apply G to the su-
perconducting orders. If we start from one valley polarized
component of the valley-triplet uniform pairing at φ = 0:

(ri − rj)c+,σ (i)(iσy)σ,σ ′c+,σ ′ ( j). This is uniform pairing as
the pairing amplitude only depends on the relative coordinate
ri − rj, which is invariant under the lattice translation sym-
metry. This pairing amplitude can have any form factors with
respect to the relative coordinates, such as the s-wave, d-wave,
etc. This order is mapped to the PDW order at φ = π/3 under
the transformation G:


(ri − rj)e
−iK· ri+rj

2 c†
+,σ (i)(iσy)σ,σ ′c†

+,σ ′ ( j), (4)

of which the pairing amplitude gains a phase factor ei 2π
3 under

the elementary lattice translation. Similarly, the valley polar-
ized component polarized with the other valley is mapped to
the finite momentum pairing with K in Eq. (4) replaced with
−K. However, the intervalley pairing component 
+−(ri −
rj)c+,σ (i)(iσy)σ,σ ′c−,σ ′ ( j) is mapped to intervalley uniform
pairing at φ = π/3.

This flux insertion operation G enables us to know the
orders at φ = π/3 from the results at φ = 0. Previous parquet
RG calculations [33], functional RG (fRG) calculations [75]
and mean field calculations [73] on the SU(4) Hubbard model
on the triangular lattice with φ = 0 have revealed that the
superconducting order near the Van Hove doping has the chi-
ral d-wave valley polarized component. The superconducting
instability is the leading instability if the system is away from
the perfect nesting limit, which is realized by introducing a
finite next-nearest-neighbor hopping t ′ or a finite doping from
the perfect nesting. Using the flux insertion G above, we can
immediately arrive at the conclusion that chiral d-wave PDW
order becomes the leading instability at φ = π/3 away from
the perfect nesting limit. The previous RG calculations with

FIG. 2. Real space illustration of the local gauge transformation
defined in Eq. (3).
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φ = 0 are reliable in the weak and moderate coupling regime,
which means the chiral d-wave PDW also exists at least in this
regime for φ = π/3.

We briefly discuss whether the PDW order is present at
other fillings with φ = π/3. The flux insertion operation G is
applicable to any fillings. As a result, if the valley polarized
uniform pairing is favored at φ = 0 and filling n, then the
PDW order will also be the leading order at φ = π/3 and fill-
ing 4-n, regardless of whether the Van Hove singularities are
present or not. If the fermion interaction at φ = 0 preserves
the SU(4) symmetry, such as the Hubbard or Heisenberg
interaction, then the Kohn-Luttinger instability will always
become the leading instability with repulsive interactions
at generic fillings. Further, recalling the representation de-
composition of SU(4): 4 ⊗ 4 = 6 ⊕ 10, the valley polarized
pairing is always degenerate with other pairings in both the
representation 6 and 10. This means that the PDW order is
always present at φ = π/3 with repulsive SU(4) preserving
interactions, due to the Kohn-Luttinger instability at φ = 0.
Moreover, from the fRG calculations in Ref. [75], the valley
triplet pairing can be favored as the unique leading instability
in a certain regime of additional SU(4) breaking Hund cou-
plings, so the PDW order at φ = π/3 will also exist in the
same coupling parameter regime with additional SU(4) break-
ing Hund couplings. To sum up, the PDW order at φ = π/3
is not fine tuned to the Van Hove doping, but is a stable phase
at generic fillings with repulsive interactions.

There is another interesting state, i.e., loop current phase,
near Van Hove doping reported in previous RG calculations at
φ = 0 [33,75]. If the Fermi surface is nearly perfectly nested,
the loop current phase will be favored as the leading insta-
bility by the repulsive Hubbard interaction and Heisenberg
interaction. The order parameter of the loop current phase is
the imaginary CDW order, which spontaneously breaks the
time reversal symmetry, and induces a π/2 or −π/2 flux in
each triangle plaquette. We can also use the flux insertion
argument to construct the corresponding order at φ = π/3
with repulsive Hubbard and Heisenberg interaction at Van
Hove doping and a nearly perfect nested Fermi surface. The
order parameter of the loop current order at φ = 0 is [33,75]


loop current =
∑
k,a

fa(k)ĉ†(k + Ma)c(k), (5)

where the sum over spin and valley is implicitly assumed
henceforth. Ma with a = 1, 2, 3 are the three momenta of
the Van Hove singularities of the tight binding model Ĥ0 of
Eq. (1). The three form factors fa preserve the C3 rotation
symmetry and ensure that the expectation value of the order
parameter in Eq. (5) is purely imaginary. For example, it
is fitted as: f1 = 2 sin(kx/2) sin(

√
3ky/2), f2,3 = ∓ cos(kx ) ±

cos((kx ± √
3ky)/2) from the vertex obationed in fRG calcu-

lations [75]. Now we apply the flux insertion operator G, and
the order parameter 
loop current becomes


φ=π/3 = −
∑
k,a,v

fa(k)ĉ†
v (k + Ma + vK )cv (k + vK )

= −
∑
k,a,v

fa(k + vK )ĉ†
v (k + Ma)cv (k), (6)

FIG. 3. Kagome flux pattern of the loop current order at φ =
π/3. The flux of each triangle plaquette is 3ϕ, and the flux of
each hexagon plaquette is −6ϕ. For the pure imaginary CDW order
ϕ = π/2.

where v = ± is the index of the valley. The order parameter

φ=π/3 is still the pure imaginary CDW order. The real space
flux pattern at φ = π/3 is shown in Fig. 3.

As a result, the leading instability at φ = π/3 is still the
loop current phase with repulsive Hubbard and Heisenberg
interaction near Van Hove doping. However, this is true with
a nearly perfect nested Fermi surface. If we dope this loop
current phase or induce a t ′ beyond a critical value to destroy
the nesting, the loop current phase will become the degenerate
chiral d-wave PDW order and uniform SC order. This phase
transition corresponds to the transition from the loop current
phase to chiral d-wave uniform SC order at φ = 0 [33,75].

B. Bare susceptibilities

The flux insertion argument above is specific to the lattice
model like (1). In cases when there lacks the information
of the low-energy lattice model, one can still apply the RG
analysis to study the competing orders.

The first step is to identify the building blocks for parquet
RG, which are various particle-hole and particle-particle sus-
ceptibilities:

�ph(P, T ) = −T
∑

n

∫
d2k

(2π )2
G0(ωn, k)G0(ωn, P + k),

�pp(P, T ) = T
∑

n

∫
d2k

(2π )2
G0(ωn, k)G0(−ωn, P − k),

(7)

where G0(ωn, q) = 1
iωn−ε(q) and ωn = (2n + 1)πT is the

fermion frequency. The leading divergent susceptibility is
used as the flowing energy scale, with infrared limit T → 0,
in the parquet RG formalism.

We take the six patch model near the six Van Hove sin-
gularities with the patch size �. There are three kinds of
ln2 divergent susceptibilities: �pp(0, T ), �pp(±K, T ), and
�ph(Q±, T ).

�pp(0, T ) = 1

4
√

3π2t
ln

�

max{T, μ} ln
�

T
,

�pp(±K, T ) = 1

4
√

3π2t
ln

�

max{T, μ} ln
�

T
,
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FIG. 4. (a) The left panel is the Fermi surface at Van Hove doping
with t ′ = 0; the right panel is the Fermi surface at Van Hove doping
with t ′ = 0.1. The location of the Van Hove singularities are not
changed with nonzero t ′. The momentum vectors Q+ and Q− are the
particle-hole nesting vectors, at which the bare p-h susceptibilities
diverge in ln2 manner. The red and blue colors represent the two
valleys with opposite flux. (b)All the twelve symmetry allowed inde-
pendent four fermion interactions. The red and blue colors represent
the opposite valleys and the solid and dashed lines represent different
patches within the same valley. (c) Diagrammatic representation of
the renormalization of the interaction g13 by the particle-particle and
particle-hole bubbles defined in Eq. (8).

�ph(Q±, T ) = 1

8
√

3π2t
ln

�

max{T, μ} ln
�

max{T, μ, t ′} .
(8)

Here the momentum Q± are depicted in Fig. 4(a). We see that
Q+ connects patches within the same valley, while Q− con-
nects patches from opposite valleys. The detailed calculations
of Eq. (8) are presented in Appendix A. This is also expected
from the flux insertion argument. The only two ln2 divergent
bare susceptibilities for φ = 0 are �pp(0, T ),�ph(M, T );
after the flux insertion transformation G: φ = 0 → φ =
π/3, the susceptibilities of the same valley and opposite
valleys are mapped into those corresponding to different or-
ders. Concretely, the particle-particle susceptibilities of the
same and opposite valleys are mapped into �pp(0, T ) and
�pp(±K, T ) respectively; the particle-hole susceptibilities of
the same and opposite valleys are mapped into �ph(Q+, T )
and �ph(Q−, T ) respectively.

Note that even with a finite t ′ and/or finite doping (chem-
ical potential), we still have �pp(±K, T ) = �pp(0, T ) and
�ph(Q+, T ) = �ph(Q−, T ). The comparison between cases
with and without t ′ is also shown in Fig. 4(a), which shows
that the particle-particle FS nesting is immune to the presence
of a finite t ′, consistent with Eq. (8). This enables us to use
a single parameter d = �ph (Q+,T )

�pp(0,T ) to characterize the degree of
nesting in our following RG analysis. Note that for hexagonal
lattices as we considered in the current work, the maximum
value of d is 1/2, which is different from the square lattice
case, where the maximum of d is 1.

C. RG for interactions

There are twelve inequivalent symmetry-allowed four
fermion interactions in the six patch case with Nf = 2, which
we show in Fig. 4(b). We label all the interactions as gi j , where
i = 1, 2, 4 and j = 1, 2, 3, 4. Note j = 1, 2 represent
forward scattering of the valley and patch degrees of freedom,
while j = 3 and 4 represent umklapp and backward scattering
respectively. The valley umklapp interactions are forbidden
by momentum conservation. However, other than this, all the
left twelve interactions are allowed. The three interactions
g13, g24, g44 are umklapp scatterings, which show up only in
the special case when φ = π/3, and are absent for a general
φ in the previous studies of similar systems [33,34]. As a
result, the stable PDW phases are absent in these studies.
The valley preserving interactions g1i and g2i can arise from
the SU(4) symmetric lattice interactions such as Hubbard
and Heisenberg interactions. The valley flipping interactions
g4i can result from the SU(4) broken Hund couplings on
the lattice. Meanwhile, the Heisenberg interaction also gives
anisotropic initial values of g1i and g2i. Here, given that these
different interactions are generally present in the system, we
discuss the phase diagram from general initial values of the
gi j , instead of the original form of the interactions defined
in Eq. (2). The projections of different lattice interactions
U, J, Vh, and K in Eq. (2) to gi j are recorded in Appendix B.

The one loop parquet RG equations for all the twelve inter-
actions can be obtained using the diagrammatic technique. As
an example, we show the renormalization of g13 in Fig. 4(c);
the renormalization for other interactions can be obtained
similarly. Defining ġi j = dgi j/dy, where y = �pp(0, T ) and

using d = d�ph(Q±,T )
y ≈ d (yc), where yc is the critical value at

which at least one of gi j diverges, we arrive at

ġ11 = − g2
11 − 2g2

13, ġ12 = d
(
g2

12 + g2
13 + g2

43 + g2
44

)
,

ġ13 = − 2g13g11 − g2
13 + 4d (g12g13 − g23g24)

+ 2d (g23g44 + g24g43 + g43g44 − g13g14),

ġ14 = 2d
(
g12g14 + g24g44 + g23g43 − g2

24 − g2
14 − g2

23

)
,

ġ21 = − g2
21 − 2g2

23 − g2
41 − 2g2

43, ġ22 = d
(
g2

22 + g2
23

)
,

ġ23 = − 2g23g21 − g2
23

+ 2d (g23g22 + g12g23 − 2g23g14 − g13g24)

− (
2g41g43 + g2

43

) + 2d (g13g44 + g14g43),
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ġ24 = 2d (g12g24 + g14g44 + g13g43 − g13g23 − 2g24g14),

ġ41 = − 2(g21g41 + 2g23g43),

ġ42 = 2d
(
g22g42 + g23g43 − g2

43 − g2
42

)
,

ġ43 = − 2(g21g43 + g23g41 + g23g43)

+ 2d (g12g43 + g13g44 + g22g43 + g23g42 − 2g42g43),

ġ44 = 2d (g12g44 + g13g43). (9)

We are interested in the stable strong coupling fixed points
starting from different interactions, which correspond to the
symmetry breaking ground states. Physically, the stable fixed
points, or fixed trajectories mean that the corresponding or-
dered phases need no fine tuning of the interactions and exist
in a wide parameter space. The asymptotic behavior of the
fixed trajectories in the one-loop RG equations is

gi j ≈ Gi j

yc − y
. (10)

Therefore, if Gi j is nonzero, gi j diverges when y approaches
yc from below, i.e., it either flows to strong repulsion or strong
attraction. We also notice that, for different gi j , the critical
value yc might not be the same. In cases we have different
yc, apparently the smallest one corresponds to the onset of
instabilities. In that case, for those gi j which diverge at a
larger yc, their effective contributions vanish at the smallest
yc where they are still small and can be neglected. To examine
the spontaneous symmetry breaking orders corresponding to
the stable fixed trajectories, one needs to look into the order
parameter vertices and susceptibilities under RG flow, which
we discuss below.

D. RG for order parameters

Having established the RG flow for the four fermion in-
teractions gi j , the competition among different orders can be
readily identified. To this end, we need to write down the order
parameters, and inspect how they flow when gi j changes with
the energy scale. They can be well seen from calculating the
triple vertex functions associated with each order parameter.
The order parameter whose vertex and susceptibility diverge
most quickly is the leading instability under the given inter-
actions which are set as the initial values of the four fermion
interactions gi j . Below we analyze each order separately.

1. Pair density wave

We start from the par density wave pairing orders. The
renormalization of the corresponding vertices are shown
in Fig. 5. Note that the vertices of the PDW order have
three components. The three components correspond to three
classes of paired patches, which are related with each other by
C3 rotation. Corresponding to different superconducting form
factors (such as s-wave, d-wave, etc.), the vertices can take
different values on these different patches, and the leading
instability is a combination from different patches [31].

In Fig. 5, the spin configuration is iσy which corresponds to
spin singlet pairing. This is because the PDW order can only
be spin-singlet with total valley quantum number |Lz| = 1 in
our six patch model. This is due to that the vertex of spin-

FIG. 5. Diagrammatic representations of the one loop correc-
tions to all the possible superconducting vertices and charge density
wave order with nesting momentum Q+ of the six patch model. The
superconducting orders include the PDW and uniform SC. The red
and blue colors represent the two valleys with opposite flux. The
vertex of the uniform SC can be either spin singlet or triplet, and
their diagrams are the same. As a result, the spin singlet and triplet
pairings with Lz = 0 are always degenerate. The imaginary part of
the CDW vertex is the loop current vertex.

triplet pair with momentum K is actually zero:


PDW-triplet

∑
k,a=1,2,3

c†
a(k)iσy �σ [c†

a(−k)]T + H.c.

= −
PDW-triplet

∑
k,a=1,2,3

c†
a(−k)iσyσ[c†

a(k)]T + H.c.

= −
PDW-triplet

∑
k,a=1,2,3

c†
a(k)iσyσ[c†

a(−k)]T + H.c.,

(11)

where a is the patch label, and k is the momentum lies in a
patch near each Van Hove singularity. Meanwhile, the patch
is inversion symmetric with respect to the inversion center
at the Van Hove singularity. The two-component spinor op-
erator c†

a(k) is: c†
a(k) = (c†

a,↑(k), c†
a,↓(k)). Similarly, we can

also prove that the spin triplet PDW vertex with nesting mo-
mentum −K is also zero. As a result, the spin triplet PDW
order is expected to be energetically unfavored even if the
whole Fermi surface is taken into consideration, as this order
parameter cannot gap out the Van Hove singularity.

We next identify the pairing symmetry of the leading insta-
bility. Explicitly, the PDW vertex RG equations corresponding
to the diagrammatics in Fig. 5 are⎛

⎜⎝

̇1

PDW


̇2
PDW


̇3
PDW

⎞
⎟⎠ = −

⎛
⎜⎝

g11 g13 g13

g13 g11 g13

g13 g13 g11

⎞
⎟⎠

⎛
⎜⎝


1
PDW


2
PDW


3
PDW

⎞
⎟⎠. (12)

If we diagonalize the three by three coefficient matrix in
Eq. (12), we will arrive at three eigenfunctions corresponding

045122-7



ZHENGZHI WU, YI-MING WU, AND FENGCHENG WU PHYSICAL REVIEW B 107, 045122 (2023)

to s-wave and two degenerate d-wave superconducting orders.
Their eigen RG equations are


s
PDW = (1, 1, 1) : 
̇s

PDW = −(g11 + 2g13)
s
PDW,



d1
PDW =

√
2

3
(1,−1/2,−1/2) : 
̇

d1
PDW = −(g11 − g13)
d2

PDW,



d2
PDW = 1√

2
(0, 1,−1) : 
̇

d2
PDW = −(g11 − g13)
d1

PDW. (13)

Note that the two d-wave orders are degenerate, which is
manifest in the coefficients −(g11 − g13) in the RG equa-
tions of 


d1,2

PDW in Eq. (13). The degeneracy is guaranteed
by the underlying lattice symmetry C3v , as the two d-wave
orders belong to the same two-dimensional representation E.
The ground state favors the chiral combination of these two
components :
d1

PDW ± i
d2
PDW, which can be verified through

the Ginzburg-Landau free energy analysis similar to the three
patch model in hexagonal systems [31].

2. Uniform superconductivity

The vertices equations of uniform superconducting orders
are more involved because there are six components of the
uniform superconducting vertex. The spin singlet and triplet
uniform pairings are degenerate, and the SS (TT) pairing
can mix with TS (ST) pairing in principle due to the broken
SU(2)v valley symmetry. The vertex RG equations for the
uniform SC order is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


̇1
SC


̇2
SC


̇3
SC


̇1̄
SC


̇2̄
SC


̇3̄
SC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g21 g23 g23 g41 g43 g43

g23 g21 g23 g43 g41 g43

g23 g23 g21 g43 g43 g41

g41 g43 g43 g21 g23 g23

g43 g41 g43 g23 g21 g23

g43 g43 g41 g23 g23 g21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


1
SC


2
SC


3
SC


1̄
SC


2̄
SC


3̄
SC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

We arrive at different eigen pairing functions with different
form factors and flavor quantum number by diagonalizing the
six by six coefficient matrix in Eq. (14):


s
sc = (1, 1, 1, 1, 1, 1) :


̇s
sc = −(g21 + 2g23 + g41 + 2g43)
s

sc,


 f
sc = (1, 1, 1,−1,−1,−1) :


̇ f
sc = −(g21 + 2g23 − g41 − 2g43)
 f

sc,


d1,d2
sc = 1/2(0, 1,−1, 0, 1,−1),

1√
3

(1,−1/2,−1/2, 1,−1/2,−1/2) :


̇d1,d2
sc = −(g21 − g23 + g41 − g43)
d1,d2

sc ,


p1,p2
sc = (1, 0,−1,−1, 0, 1), (1,−1, 0,−1, 1, 0) :


̇p1,p2
sc = −(g21 − g23 − g41 + g43)
p1,p2

sc , (15)

where 

f
sc is the vertex of f-wave uniform pairing. And 


p1,p2
sc

are the vertices of p-wave uniform pairing, which belong to
the two-dimensional E representation of C3v . These two super-
conducting orders are TT or SS pairings with odd parity form
factors. The remaining two vertices are TS or ST pairings with
even parity form factors. 
s

sc is the vertex of s-wave uniform
pairing. 
d1,d2

sc are the vertices of d-wave uniform pairing,
which also belong to the E representation.

3. Charge density wave

Now we move to the charge density wave vertices with
nesting momentum Q±. We will use CDW± to denote
charge-density waves with momentum Q±. The CDW+ vertex
contains both real and imaginary parts, each of which has
two components, corresponding to two valleys with opposite
fluxes. The one loop RG equations of the density wave orders
can be obtained using similar diagrammatics shown in Fig. 5.
The resulting equations are(


̇1
ReCDW+


̇2
ReCDW+

)
= d

(
a b

b a

)(

1

ReCDW+


2
ReCDW+

)
,

(

̇1

ImCDW+


̇2
ImCDW+

)
= d

(
e f

f e

)(

1

ImCDW+


2
ImCDW+

)
, (16)

(

̇1

CDW−


̇2
CDW−

)
= d

(
g22 − 2g42 g23 − 2g43

g23 − 2g43 g22 − 2g42

)(

1

CDW−


2
CDW−

)
. (17)

In Eq. (16), we have introduced the following quantities for
brevity:

a = g12 − 2g14 − g13, b = −2g24 − 2g23 + g43 + g44,

e = g12 − 2g14 + g13, f = 2g24 − 2g23 + g43 − g44. (18)

Like in the superconducting case, here we also need to diag-
onalize all the two-by-two matrices in the vertex equations of
charge density wave order to find the leading instability con-
figuration. Interestingly, despite of different order parameters,
all these matrices contain only two distinct elements: the di-
agonal entry h11 and the off-diagonal entry h12, since the two
diagonal (off-diagonal) entries have identical values. Matrix
of this type has eigenvalues h11 ± h12, with the correspond-
ing eigenfunctions being 
e,o

CDW = 
1
CDW ± 
2

CDW with e(o)
standing for even (odd).

4. Spin density wave order

The spin density wave momentum Q± is also one of the
competing orders. Similar to the charge density wave order,
the spin density wave with momentum Q+ has real and imag-
inary parts. The vertex RG equations of spin density wave
orders are(


̇1
ReSDW+


̇2
ReSDW+

)
= d

(
g12 + g13 g43 + g44

g43 + g44 g12 + g13

)(

1

ReSDW+


2
ReSDW+

)
,

(

̇1

ImSDW+


̇2
ImSDW+

)
= d

(
g12 − g13 g43 − g44

g43 − g44 g12 − g13

)(

1

ImSDW+


2
ImSDW+

)
,

(19)
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(

̇1

SDW−


̇2
SDW−

)
= d

(
g22 g23

g23 g22

)(

1

SDW−


2
SDW−

)
. (20)

The two by two coefficient matrix of each spin density wave
vertex has similar structure to that of the charge density wave
order. As a result, the eigenfunctions are 
e,o

SDW = 
1
SDW ±


2
SDW with corresponding eigenvalues h11 ± h12.

E. The phase diagram from RG analysis

Finally, we are in the position to determine the leading
order by calculating the renormalized susceptibilities of both
the superconducting and the density wave order, which are
governed by the following equations [33,76]:

χ̇SC = |
SC |2, χ̇DW = d|
DW|2. (21)

Note here 
SC includes both PDW and uniform SC orders.
From the equations of vertices in the particle-particle and
particle-hole channel, we can obtain the asymptotic solutions

SC/DW(y) ≈ (yc − y)βSC/DW , which is valid near yc. Substitut-
ing this form into Eq. (21) we obtain the asymptotic solution
for χ , which behaves like χ (y) ≈ (yc − y)α [33,76–78] and
the exponent can be obtained via

αSC/DW = 2βSC/DW + 1. (22)

If for some channel α < 0, the corresponding susceptibility
diverges and signals an instability. The susceptibility with
the most negative α is therefore the leading instability when
reducing energy scale. It is obvious that α in the density wave
channel depends on the nesting parameter d . If d is small, βDW

is suppressed and hence αDW becomes positive and there is no
onset of density wave order. This is expected since a smaller
d indicates that the FS nesting in the particle-hole channel
is less important. The superconducting orders, however, are
almost immune to this destruction.

In Fig. 6, we present the phase diagram obtained for vari-
ous initial interactions as well as nesting parameters. For each
group of parameters, we show the phase boundary on the left
panel, and the color map of yc on the right panel. We first
focus on the perfect nesting limit d = 1/2, where not only
the superconducting order, but also density wave orders are
found. When the inter-patch interactions g4 j are neglected,
we find, in addition to PDW and SC orders, an imaginary
CDW order with momentum Q+ near the SU(4) symmetric
line: g1i = g2i > 0 [see Figs. 6(a) and 6(b)]. Since there are in
fact 3 different Q+ related by C3 rotation, this imaginary CDW
is in the 3Q+ state which gives rise to loop current order [79],
and, similar to Haldane’s model, can host quantum anomalous
Hall effect. A real space configuration of this loop current is
shown in Fig. 3. The bond currents form a Kagome lattice
pattern. This result is consistent with similar RG results at
φ = 0 [33,75]. The loop current order can be enhanced by the
anisotropic g1i, g2i and attractive valley flipping g4i [Figs. 6(b)
and 6(d)]. The anisotropy of g1i and g2i can arise from the
nearest-neighbour interactions on the lattice. The loop current
order here is unstable against a valley-splitting magnetic field.
This can be seen from the Fig. 5, the internal fermion loops
contributed by the valley-umklapp interactions are prohibited
by a nonzero valley-splitting magnetic field.

FIG. 6. The phase diagram and divergent energy scale of the six
patch model at φ = π/3. Each sub-figure consists of the phase dia-
gram (left) and the corresponding yc (right) obtained from the nesting
parameter d and initial values gi j labeled on the top. The transition
temperature and the magnitude 
 of the order parameter can be
estimated from yc as [31,32] Tc, 
 ∼ �e−1/

√
νyc , where ν = 4

√
3tπ 2

and � is the UV cutoff and is typically taken as t [31,32]. The
color map only shows yc up to yc = 10, for yc > 10, the areas are
denoted by white color. (a)The phase diagram from the initial values:
g1 j = u1, g2 j = u2, g4 j = 0, j = 1, 2, 3, 4 in the perfect nesting
limit d = 1/2. The chiral d-wave PDW, s-wave PDW and degener-
ate s- and f -wave uniform pairing donimates nearly all regimes in
the phase diagram. The loop current (LC) order occurs only near
the SU(4) symmetric line with repulsive interactions: g1i = g2i > 0,
which is accompanied by chiral d-wave SC as well as parity-odd
real CDW with momentum Q+. (b)The phase diagram from the
anisotropic initial values of g1 j and g2 j and zero g4i in the perfect
nesting limit d = 1/2. The loop current order is enhanced by the
anisotropic initial values and occupies a finite area in this regime.

Apart from the loop current order, the phase diagram for
the six patch case is almost dominated by PDW and uniform
SC orders. Among those, the most interesting order is the
d-wave PDW. In hexagonal lattices, the d-wave order param-
eters belong to the two-dimensional irreducible representation
of the lattice group. Therefore there are two degenerate d-
wave state, and the true ground state must be obtained by
comparing their Landau free energy. In most cases, the d-
wave orders spontaneously break the time reversal symmetry
to lower energy, leading to a chiral SC state. In our case,
both the d-wave PDW and d-wave SC are chiral, with the
order parameter being 
1 + i
2 or 
1 − i
2. It is worth to
notice that, although the PDW we discussed here has both
momentum K and −K, the Larkin-Ovchinnikov(LO) state, in
which the magnitude of the gap function oscillates in space
and therefore has nodal lines, is not energetically favored.
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This is because the FS of each valley at φ = π/3 has only
one nesting vector in the particle-particle channel. Thus, our
PDW discussed here is similar to the original Fulde-Ferrell
state.

We have also confirmed that both the PDW and the uniform
SC found here are indeed stable fixed points. To see this, one
can include small perturbations around the fixed point and
test whether the system flows away from this point. Formally
this can be seen by examining the eigenvalues of the stability
matrix discussed in Appendix E. Using this approach, we find
that both the PDW and the uniform SC are stable against
all kinds of symmetry allowed interactions. The fixed point
corresponding to the loop-current order has two directions of
relevant perturbations, which drive the RG flow to fixed points
favoring nearby superconducting phases. However, the loop
current susceptibility is still the leading one until the interac-
tions flow beyond the perturbative regime: max|gi j (y)| � 1,
in which case we have to stop the RG flow far before that
energy scale. This means that the loop current order is still the
stable phase in the regime of our phase diagram except in the
weak coupling limit, where we can push the RG flow to the
energy scale yc at which the interactions really diverge [80].

To summarize, the orders that we find here, such as the
loop current, the PDW and the uniform SC, are all consistent
with the analysis performed in a φ = 0 SU(4) model, in the
sense that they can be connected by the local transformation
discussed in Sec. IV A when a lattice model like Eq. (1) is
available. However, our pRG results are quite general, and are
applicable to the cases when there lacks the information of a
lattice Hamiltonian. The key ingredients here are the presence
of six CVHS, and the inclusion of the umklapp interactions
g13, g24, and g44.

F. Electronic properties of the d-wave PDW

In this section, we investigate the electronic properties of
the d-wave PDW found by our parquet RG analysis through a
mean field analysis. There are two kinds of d-wave intravalley
PDW with chiral combinations of the two d-wave components
d1 and d2 in Eq. (13) at φ = π/3 in our phase diagram. The
first kind of chiral d-wave PDW is connected to the uni-
form chiral d-wave uniform superconductor at φ = 0 through
the flux insertion argument in the Sec. IV A. As a result,
the chiral combinations of the two d-wave components in the
two intravalley pairings are restricted to be the same and this
intravalley PDW order is also degenerate with a intervalley
uniform d-wave pairing. The second kind of chiral d-wave
PDW is favored as the unique order of the ground state, if the
initial values of the intravalley scatterings g1i are larger than
intervalley scatterings g2i, as is shown in Fig. 6. Different from
the first kind of PDW order, the chiral combinations of the
two d-wave components in the two intravalley pairings can be
the same or different but related by a time-reversal symmetry,
which means that one intravalley pairing picks d1 + id2 and
the other intravalley pairing picks d1 − id2. We first take the
same chiral combinations in the two intravalley pairings to
investigate the mean field spectrum and then investigate the
different topological properties of both kinds of chiral combi-
nations. The mean field Hamiltonian of this chiral PDW order
whose center of mass momenta are ±K for the ± valleys,

respectively, is

ĤMF = Ĥ0 + Ĥpairing,

Ĥ0 = −t
∑
i,â j

∑
v=±,σ

eivπ/3ĉ†
v,σ (i)ĉv,σ (i + â j ) + H.c.,

Ĥpairing = 

∑

k,v=±
[d1(k) + id2(k)]ĉ†

σ,v (k + vK )iσyĉ†
σ ′,v (−k)

+ H.c., (23)

where Ĥ0 is the tight-binding term as in Eq. (1) with t ′ = 0
and φ = π/3. The two d-wave form factors are

d1(k) = −
√

2

3

[
cos kx − 1/2 cos

(
1/2kx +

√
3

2
ky

)

−1/2 cos

(
1/2kx −

√
3

2
ky

)]
,

d2(k) = − 2 sin
kx

2
sin

√
3ky

2
. (24)

It can be directly verified that d1(k) and d2(k) give the two
d-wave PDW eigenvectors in Eq. (13) when the momenta of
the operators are taken at the Van Hove singularities.

The spectrum of the Bogoliubov quasipar-
ticles can be exactly obtained as: Ev (�k) =√

(εv (�k) − μ)2 + 
2d2
1 (�k − vK ) + 
2d2

2 (�k − vK ), where
v = ± denotes the two valleys, εv (�k) = −2t

∑
j cos(�k · a j +

vπ/3) is the dispersion of the free fermions, and aj are the
three nearest neighbor unit vectors on the triangular lattice.
The chemical potential μ is set to make the electrons at Van
Hove filling. The Bogoliubov quasiparticles are fully gapped
with an infinitesimal PDW order parameter 
, as is shown in
Fig. 7.

Since the quasiparticle of each valley is fully gapped with
a PDW order parameter, we can investigate the Chern number
of each valley. The Chern number is defined as

Nv = 1

4π

∫
BZ

dk
[
ĥ · (

∂kx ĥ × ∂ky ĥ
)]

, (25)

where ĥ = (�[
(k)],�[
(k)], εv (�k) − μ)/Ev (�k) and
�[
(k)] = 
d1(�k − vK ),�[
(k)] = 
d2(�k − vK ). The
valley Chern number Nv is just the winding numbers defined
by the number of times that the superconducting phase of

(�k) slips 2π when k sweeps around the Fermi surface [81].
Since there are two pockets on the Fermi surface of each
valley, the Chern number Nv of both valleys is equal to 4 if
the two chiral combinations of the two d-wave components in
the two intravalley pairings are the same, and N± equals ±4
if the chiral combinations in the two intravalley pairings are
d1 + id2 and d1 − id2, respectively. In both cases, there are
eight chiral Majorana edge modes or equivalently four chiral
complex fermion edge modes per valley [81–84].

The degeneracy between opposite valleys can be lifted
by a valley splitting field, which is experimentally realizable
through a tiny magnetic field if the valley g factor is larger
than the spin g factor, e.g., in the ABC trilayer graphene with
a hexagonal boron nitride substrate [51]. This valley polarized
PDW always hosts a quantized thermal hall effect with the
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FIG. 7. The energy spectrum of Bogoliubov quasiparticles of the
chiral d-wave pair-density-wave mean field. The order parameter
amplitude 
 can be obtained from the divergent energy scale yc as
is mentioned in the caption of Fig. 6 and we take here 
 = 0.3t
as a representative value. The red line and blue line represent the
spectrum of the quasiparticles in the ± valleys. Each valley is fully
gapped with a PDW order and contributes a Chern number N = 4.

quantized thermal hall conductance kxy = 4π2k2
BT

3h . More inter-
estingly, the resulting valley polarized PDW has additional
novel transport phenomena such as superconducting diode
effect [85–87] and nonreciprocal Josephson effect [88]. In
the superconducting diode effect, the critical superconducting
currents parallel or antiparallel to the center of mass pairing
momentum are different due to the broken inversion and time-
reversal symmetry. This critical current difference can also be
obtained through our mean-field Hamiltonian, similar to the
calculation in the FF state [86], but this detailed calculation is
beyond the scope of this paper and we leave it for future work.

V. HIGHER ORDER VAN HOVE SINGULARITIES:
TWO PATCH MODEL

The band structure from Eq. (1) also hosts two higher
order Van Hove singularities located at ±K = ±( 4π

3 , 0), if
the condition sin(π/6 − φ) = 3t ′/t is satisfied. For t ′ = 0,
this happens when φ = π/6. For a small but nonzero t ′, this
happens when φ is slightly below (above) π/6 for t ′ > 0
(<0). The Fermi surface at this higher-order Van Hove doping
is illustrated in Fig. 8, which shows that a finite t ′ breaks
the perfect nesting. This can also be seen from the energy
dispersion near these two HOVHS:

ε1(k) = κ1
(
k3

x − 3kxk2
y

) − κ2
(
k2

x + k2
y

)2 + μ

= κ1k3 cos 3θ − κ2k4 + μ,

ε2(k) = −κ1
(
k3

x − 3kxk2
y

) − κ2
(
k2

x + k2
y

)2 + μ

= −κ1k3 cos 3θ − κ2k4 + μ, (26)

where κ1 = √
t2 − 9t ′2/4, κ2 = 9t ′/16 and we have intro-

duced k and θ such that kx = k cos θ and ky = k sin θ . Note

(a)

(b)

FIG. 8. (a) Fermi surface at higher-order Van Hove doping with
t ′ = 0 (left) and −0.1t (right). The red and blue colors represent
the two valleys with opposite flux. (b) The symmetry allowed four
fermion interaction in the SU(Nf )(Nf � 2) two patch model. Since
the two patches are centered at ±K, there is no umklapp interaction.

that if t ′ = 0 and μ = 0, only the cubic terms in these disper-
sions are present, and this corresponds to the perfect nesting
case where ε1(k) = −ε2(k). A finite t ′ is associated with the
k4 term and hence spoils the FS nesting. A nonzero μ also has
the effect of nesting breaking. As we shall see below, the effect
of t ′ is to diminish the divergence of the bare susceptibilities
in different channels. t ′ and μ serve as tuning parameters in
our model.

If we take two patches near the two Van Hove singularities
near ±K, the density of states ν(E ) of each patch are the same
and diverge polynomially as ν(E ) ≈ E− 1

3 . The detailed calcu-
lations of ν(E ) are listed in the Appendix. The divergence of
the DOS near ±K legitimizes our two patch approximation,
in which we consider fermions only near these two points,
and apply pRG to investigate the competing electronic orders.
In the following, we first discuss the building blocks (i.e.,
the bare susceptibilities) for our pRG analysis, and then we
analyze the RG equations and identify the leading instability
in various cases.

A. Bare susceptibilities

In the two patch model, Fermi surface nesting occurs with
a nesting vector Q = 2K if t ′ and μ are negligible. The
nesting would result in a ln divergence for the particle-hole
susceptibility which competes with superconductivity. How-
ever, because of the power-law divergence of the DOS in
the presence of HOVHS, the logarithmic divergence is less
important here: the particle-hole instabilities compete with
superconductivity in any case, regardless of the nesting effect.

More interestingly, the HOVHSs located at ±K are not
time-reversal symmetric points and are dubbed as type-II
HOVHS, in contrast to the type-I HOVHS where the disper-
sion has a form such as ak2

y − bk4
x [89,90]. One remarkable

feature of the type-II HOVHS is that, besides the divergent
susceptibilities in particle-particle channel at zero momentum
and particle-hole channel at Q, those in particle-particle chan-
nel at Q and in particle-hole channel at zero momentum also
diverge in similar manner. In other words, the four channels
are comparable in the low-energy limit and one has to treat all
of them on equal footing. This leads to a competition among
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the uniform superconductivity, the finite momentum pairing
with center of mass momentum Q, the charge and spin density
wave with momentum Q, the ferromagnetic instability(FM)
and the charge Pomeranchuk instability(PI). The PI is a Fermi
surface instability which spontaneously breaks the point sym-
metry group of the underlying lattice and thus the ground state
posses nonzero angular momentum [91–93].

Consequently, we need the following four bare susceptibil-
ities as our RG building blocks:

�pp(0) =
∫

d2k
(2π )2

1 − nF [ε1(k)] − nF [ε2(−k)]

ε1(k) + ε2(−k)
,

�pp(Q) =
∫

d2k
(2π )2

1 − nF [ε1(k)] − nF [ε1(−k)]

ε1(k) + ε1(−k)
,

�ph(Q) = −
∫

d2k
(2π )2

nF [ε1(k)] − nF [ε2(k)]

ε1(k) − ε2(k)
,

�ph(0) = −
∫

d2k
(2π )2

∂nF (ε)

∂ε

=
∫

d2k
(2π )2

β

4 cosh2[βε1(k)/2]
, (27)

where ε1(k) and ε2(k) are given in Eq. (26). In the special case
when t ′ = 0 and μ = 0, one can make use of

∫
d2k/(2π )2 =∫

dEν(E ) to obtain the low-energy behavior of Eq. (27),
where the concrete expression of the DOS ν(E ) is listed in the
Appendix. After evaluating the factors numerically we have

�pp(0) = �ph(Q) ≈ 0.527
t−2/3

T 1/3
,

�pp(Q) = �ph(0) ≈ 0.177
t−2/3

T 1/3
. (28)

If μ �= 0, the above scaling behaviors still hold (but with
different numerical factors) when T is much larger than μ.
However, if μ becomes the largest, these bare susceptibilities
no longer have a power-law divergence with T . Instead, it is
easy to see in this case

�pp(0) ∼ 1

|μ|1/3
ln

�

T
,

�pp(Q),�ph(0),�ph(Q) ∼ 1

|μ|1/3
. (29)

Thus, in low-temperature limit with a finite μ, only the uni-
form SC channel has the potential instability. Below we will
disregard this case, by assuming we are in the limit T � |μ|
such that the scaling behaviors in Eq. (28) persist to the lowest
T of our interest.

For t ′ �= 0, it’s rather difficult to obtain a relation as simple
as Eq. (28), but a direct numerical calculation from Eq. (27)
is feasible. In Fig. 9, we plot the numerical results of the
four bare susceptibilities as a function of T with t ′ = 0.01t
and 0.2t in the upper and lower panels, respectively. For
comparison, the result in Eq. (28) at t ′ = 0 is plotted as the
dashed and dotted lines. In both cases, all the four bare sus-
ceptibilities scale as 1/T 1/3 when T becomes small enough.
We clearly see that the finite t ′ has little effect on the small T
behavior of �pp(0), while it reduces the prefactor in �ph(Q)
significantly and enhances �pp(Q) and �ph(0) slightly. As

FIG. 9. Various susceptibilities near the higher-order Van Hove
filling as a function of temperature T , obtained using t ′ = 0.01t (top)
and 0.1t (bottom) (t ′ is the next-nearest neighbor hopping) and in
the limit T � |μ|. The insets show temperature dependence of the
nesting parameters d1 = �ph(Q)/�pp(0), d2 = �ph(0)/�pp(0), and
d3 = �pp(Q)/�pp(0), where �ph(Q), �pp(Q) are the bare suscepti-
bilities with momentum Q in the particle-hole and particle-particle
channel respectively and �ph(0),�pp(0) are the bare susceptibility
with zero momentum in the particle-hole and particle-particle chan-
nel respectively. For comparison we also show �pp(0) and �pp(Q)
at t ′ = μ = 0 as the dashed and dotted lines.

a result, �ph(Q), once identical to �pp(0) when t ′ = 0 [see
Eq. (28)], now becomes smaller. In the insets of Fig. 9, we
show the temperature dependence of the nesting parameteres,
defined as d1 = �ph(Q)/�pp(0), d2 = �ph(0)/�pp(0) and
d3 = �pp(Q)/�pp(0). In the ideal case when t ′ = 0, we have
d1 = 1 and d2 = d3 = 0.336 ≈ 1/3. With a nonzero t ′, all
these parameters becomes T -dependent, but have weak T
dependence in T → 0 limit. Moreover, we now have d1 sig-
nificantly reduced, while d2 ≈ d3 almost intact. These results
legitimize our following RG analysis, in which we take all the
three nesting parameters as constant in low-T limit.

B. The phase diagram from RG analysis

There are four symmetry allowed four fermion interactions
in the two patch model here, as is shown in Fig. 8(b). The
parquet RG analysis here parallels the above RG analysis of
the six patch model with conventional Van Hove singularities.
As a result, we leave the detailed RG equations and vertex
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FIG. 10. Phase diagram in the two patch HOVHS case for different initial values of g1, g2 and g4. Again all the interactions are measured in
units of t . The RG equation is solved with t ′ = 0.2t , μ = 0. The leading orders are marked, while those inside the parenthesis are subleading.
The PI1 and PI2 in the figures stand for the Pomeranchuk instability in the s-wave and p-wave channels, respectively.

equations in the Appendix and only summarize the resulting
phase diagram here. We want to mention that there are two
kinds of FM and PI vertices respectively, which we label
as FM1, PI1 and FM2, PI2. FM1, PI1 are the s-wave ferro-
magnetic order and Pomeranchuk order respectively, which
preserve sign when changing patches,1 while FM2 and PI2 are
in the p-wave channel and change sign on these two patches.

We first look into the case of perfect nesting, where d1 = 1
and d2 = d3 = 1/3. Under this condition, the leading insta-
bility of the ground state are three degenerate orders: charge
density wave, spin density wave and PI2. The PDW order
parameter is the subleading instability.

Further, a finite next-nearest neighbor hopping t ′ gives a
richer phase diagram. In Fig. 10, we present the phase diagram
for the two patch model with t ′ = 0.2t , obtained from various
initial interactions. These phase diagrams are shown in the
plane of g1(0)-g2(0), and we choose three different g4(0) from
the left panel to the right panel of Fig. 10, which correspond
to g4(0) = −0.3, 0, 0.3 respectively. Firstly, if g4(0) = 0, g4

stays zero under the RG flow. In this case, depending on
whether g2(0) is repulsive or attractive, the leading instabil-
ities are 
PI2 and 
PI1, respectively. We also note that for
repulsive g2, the subleading order is PDW, while for attractive
g2, the subleading order is degenerate s- and p-wave uniform
SC. If g1(0) becomes large and g2(0) stays small, both g1 and
g2 flows to zero, for which there is no onset of instability. We
term this case as metal without symmetry breaking. Similar
behavior has been found in a model with a single HOVHS
in the weak coupling regime in Ref. [94], which names the
gapless metallic state as the “supermetal,” and also in the same
two patch model but with Nf = 1 instead [35,74]. Whether the
ground state is interacting or noninteracting can be justified
by the Wilsonian RG which includes the competition between
tree level and one loop contribution.

1The ground state with s-wave (charge)Pomeranchuk order is also
defined as “trivial gapped,” since the ground state breaks no lattice
symmetries and is not degenerate. Here we define it as the s-wave
(charge) Pomeranchuk order just to condense the notation.

Secondly, if we start from a repulsive initial g4(0) > 0,
the charge Pomeranchuk instabilities PI1 and PI2 are stable
with respect to this perturbation. What’s more, the degeneracy
between the subleading s-wave and p-wave SC when g4 = 0
is lifted by the nonzero g4. And the p-wave SC wins over
the s-wave SC with a repulsive g4(0) > 0. In the metal phase
regime when g4(0) = 0, we now have FM1 as the leading
order. Near the boundary between FM1 and PI2 orders, the
critical value yc is progressively larger than in other areas,
which means the boundary between FM1 and PI2 is still a
gapless metal without symmetry breaking. Finally, if we start
from an attractive g4(0) < 0, we have another fixed point
where the s-wave uniform SC becomes the leading order (see
the left panel in Fig. 10).

In all cases, the PDW phase is subleading, which indicates
a strong tendency of the long-range ordering of PDW. We
close this section by noticing that, PDW can be the leading
order once we introduce an valley Zeeman term splitting term
in the system [51]. For example, one can differentiate the
phase factor φ in Eq. (1) for different valleys by setting φ+ �=
φ−. This valley Zeeman breaks the time-reversal symmetry
between K and −K, and as a result the two HOVHS do not
show up at the same energy. Then we effectively obtain a one-
patch model, located either around K or −K. The interpatch
interactions g2 and g4 are therefore absent. The only allowed
interaction is g1, governed by the RG equation

ġ1 = [(3 − Nf )d − 1]g2
1, (30)

where we use �pp(Q) as the running parameter and d =
�ph(0)/�pp(Q). Once g1 flows to strong attraction and d < 1,
the leading order is then a valley polarized PDW.

VI. DISCUSSION AND CONCLUSION

In this work, we analyzed, based on an unbiased weak cou-
pling RG approach, various competing orders of two models
with different types of Van Hove singularities. In the first case,
the system hosts six different conventional Van Hove singular-
ities where the DOS diverges logrithmically. In the other case,
we discuss a system with two type-II higher order Van Hove
singularities where the DOS diverges in a power-law manner.
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In both cases, the bare PDW susceptibilities are enhanced to
the same order of the most divergent bare BCS susceptibility,
and thus becomes one of many competing orders including the
uniform SC and density waves in particle-hole channel. We
find that, with certain initial interactions and nesting parame-
ters, the PDW order wins over all other orders and becomes
the leading instability.

We argue the both cases considered here can be realized
in moiré systems such as twisted bilayer graphene, twisted
double bilayer graphene and twisted bilayer TMD, for which
the CVHS and HOVHS can be achieved by tuning moiré band
structure through an applied out-of-plane displacement field.
Another crucial ingredient for realizing the PDW order is the
necessity of keeping both spin and valley degrees of free-
dom. This can be seen by comparing the Nf = 1 and Nf = 2
models. In the former case, the system becomes effectively
spinless with a nonzero φ. Then the number of symmetry
allowed interactions is reduced. For example, in the two patch
spinless model at higher-order Van Hove filling, only g2 is
allowed. As a result, the PDW ground state cannot be realized
in the Nf = 1 two patch model [35,74]. Keeping both spin
and valley degrees of freedom results in an SU(4) symmetry
at φ = 0. Pairing at this case can be classified based how the
spin and valley form doublet as we discussed in Sec. III. We
also discussed the local transformation that connects the order
parameters at φ = 0 and those at φ = π/3. From the view
of the local transformation, we argued that only the valley
triplet pairing at φ = 0 can be mapped into the PDW order
at φ = π/3. We find that the pairing symmetry must be either
s-wave or d-wave. In the d-wave situation, the ground state is
most likely to be a d + id configuration in order to be fully
gaped. It will be interesting to further investigate this chiral
PDW phase.

The PDW order obtained in the six patch case has finite
momentum ±K. However we note this is different from the
unidirectional PDW, which has both Q and −Q pairing and
the spatial configuration is a stripe SC. Here the momentum
is associated with valley index such that the PDW is like
Fulde-Ferrell state for each valley. Since the FS of each valley
has only one nesting vector in the particle-particle channel, a
natural way to arrive at the LO state is to add a small coupling
between different valleys. However, we find that a small valley
coupling also changes the pairing momentum in the six patch
model, such that the PDW becomes incommensurate.

In the six patch case, the degeneracy between different
valleys can be lifted by including some valley splitting field,
giving rise to valley polarized PDW. In the two patch case,
such valley splitting field is necessary for realizing the PDW
order. In both cases, we obtain a valley polarized PDW. Al-
though this PDW order does not have spatial nodal lines, it
has other interesting properties such as superconducting diode
effect [85–87], in which the critical current is nonreciprocal,
i.e., it is larger in one direction but smaller in the opposite
direction. Other interesting effect such as dc-Josephson effect
has also been discussed when this PDW order develops [88].

Finally, we notice it is possible to realize some exotic
orders through partial melting of the chiral PDW found in
this paper. These include, chiral nematic order (
1(K ) +
i
2(K ))(
∗

1(K ) + i
∗
2(K )) which breaks lattice rotation

and time-reversal symmetry, charge-4e PDW (
1(K ) +

i
2(K ))(
1(K ) − i
2(K )), and even chiral charge-6e uni-
form SC (
1(K ) + i
2(K ))3. Identifying the instabilities
towards these orders and revealing about their physical prop-
erties require additional work which we leave for future
studies.

ACKNOWLEDGMENTS

We thank Hong Yao, Sri Raghu, Mengxing Ye, and in
particular Andrey Chubukov for useful discussions. Y.-M.W.
is grateful to the support of Shuimu Fellow Foundation at
Tsinghua University. F.W. is supported by National Natural
Science Foundation of China (Grant No. 12274333), National
Key Research and Development Program of China (Grant
No. 2021YFA1401300), and start-up funding of Wuhan
University.

APPENDIX A: CALCULATIONS OF THE BARE
SUSCEPTIBILITIES IN THE SIX PATCH CASE

The dispersion near the six conventional Van Hove singu-
larities are

ε1(�k) = ε1̄(�k) = −1/2(t + 9t1)k2
x + 3

2
(t + t1)k2

y ,

ε2,3(�k) = ε2̄,3̄ (�k) = tk2
x − 3t1k2

y ±
√

3(t + t1)kxky. (A1)

We start from the simple case with perfect nested Fermi sur-

face (t ′ = 0). We introduce two parameters: a± =
√

t
2 (kx ±√

3ky), and the dispersion in Eq. (A1) can be rewritten as
ε1(�k) = −a+a−, ε2,3(�k) = a±(a+ + a−). And the bare sus-
ceptibilities are

�ph(Q±, T )

= −hT
∑

n

∫ √
�

−√
�

da+da−
(iωn − a+a−)[iωn + a+(a+ + a−)]

,

�pp(0, T ) = �pp(±K, T )

= −hT
∑

n

∫ √
�

−√
�

da+da−
(iωn + a+a−)(iωn − a+a−)

,

(A2)

where � is the UV energy cutoff. We note the expressions in
Eq. (A2) have been evaluated in Ref. [33], and the results are

�pp(0, T ) = �pp(±K, T ) = 1

4
√

3π2t
ln2 �

T
,

�ph(Q±, T ) = 1

8
√

3π2t
ln2 �

T
. (A3)

When a finite next-nearest-neighbor hopping t ′ or/and chem-
ical potential is introduced, all the log divergence will be
replaced by ln �

max{T,μ,t ′} except the Cooper logarithm in
�pp(0, T ) and �pp(±K, T ) [30,31].

APPENDIX B: PROJECTION
OF THE LATTICE INTERACTION

In this section, we project the lattice interaction in Eq. (2)
to gi j of the six patch model. The lattice interaction consists
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the Hubbard interaction, spin Hund interaction, orbital Hund
interaction and Heisenberg interaction. The Hubbard interac-
tion gives the same initial values for all the g1i and g2i. We
start from the spin Hund interaction:

Vh

∑
i

(c†
i
�Sci )

2 = Vh

∑
i,α,β,a,b

[
2c†

i,α,aci,β,ac†
i,β,bci,α,b − n2

i

]

= −Vh

∑
i,a,b

[
2c†

i,aci,bc†
i,bci,a + n2

i

]
, (B1)

where α, β are the spin indices, a, b are the valley indices
and the spin summation is implied in the last line. We have
also neglected the quadratic term of fermion operators going
from the first line to the second line, which is just the chemical
potential. The spin Hund coupling gives the initial values of
gi j as g1i = −3Vh, g2i = −Vh, g4i = −2Vh.

Similarly, the projection of orbital Hund interaction to the
low-energy gi j interactions is

K
∑

i

(c†
i
�Lci )

2 = K
∑

i,α,β,a,b

[(c†
i,+ci,− + c†

i,−ci,+)2

− (c†
i,+ci,− − c†

i,−ci,+)2

+ (c†
i,+ci,+ − c†

i,−ci,−)2]

= K
∑

i

[2c†
i,+ci,−c†

i,−ci,+

+ 2c†
i,−ci,+c†

i,+ci,−

+ (c†
i,+ci,+ − c†

i,−ci,−)2], (B2)

which give the initial values of gi j as: g1i = K, g2i =
−K, g4i = 2K .

Finally, the Heisenberg interaction consists three parts: the
nearest-neighbour spin Hund coupling, orbital Hund coupling
and spin-orbital Hund coupling:

J
∑
〈i j〉,n

c†
i T ncic

†
j T

nc j

= J
∑
〈i j〉

(c†
i �σci )(c

†
j �σc j ) + J

∑
〈i j〉

(c†
i �τci )(c

†
j �τc j )

+ J
∑
〈i j〉

[c†
i �τ ⊗ �σci][c

†
j �τ ⊗ �σc j]. (B3)

We project each part of the Heisenberg interaction to the
low-energy degrees of freedom separately. We start from the
simplest nearest-neighbor orbital Hund coupling which does
not flip the spin explicitly:

J
∑
〈i j〉

(c†
i �τci )(c

†
j �τc j )

= J
∑
〈i j〉

(2c†
i,+ci,−c†

j,−c j,+ + 2c†
i,−ci,+c†

j,+c j,−

+ c†
i,+ci,+c†

j,+c j,+ + c†
i,−ci,−c†

j,−c j,−

− c†
i,+ci,+c†

j,−c j,− − c†
i,−ci,−c†

j,+c j,+). (B4)

gi j acquire anisotropic initial values from this term as

g11 = g12 = J, g13 = g14 = J
∑

âi

cos(Q+ · âi ) = −J,

g21 = g22 = −J, g23 = g24 = −J
∑

âi

cos(Q+ · âi ) = J,

g41 = g44 = 2J
∑

âi

cos(K · âi ) = −3J,

g42 = g43 = 2J
∑

âi

cos(Q− · âi ) = J. (B5)

Next we consider the spin Hund coupling, to which we ap-
ply the SU(2) Fierz identity to bring it into the spin preserving
form:

J
∑
〈i j〉

(c†
i
�Sci )(c

†
j
�Sc j )

= J
∑

i,α,β,a,b

(2c†
i,α,aci,β,ac†

j,β,bc j,α,b − nin j )

= −J
∑
〈i j〉

(2c†
i,+c j,+c†

j,+ci,+ + 2c†
i,−c j,−c†

j,−ci,−

+ 2c†
i,+c j,−c†

j,−ci,+ + 2c†
i,−c j,+c†

j,+ci,− + nin j ), (B6)

gi j acquire the following initial values from this term as

g11 = −3J, g12 = −2J
∑

âi

cos(Q+ · âi ) − J = J,

g13 = −3J
∑

âi

cos(Q+ · âi ) = 3J,

g14 = −2J − J
∑

âi

cos(Q+ · âi ) = −J,

g21 = g22 = −J, g23 = g24 = −J
∑

âi

cos(Q+ · âi ) = J,

g41 = g42 = −2J, g43 = g44 = −2J
∑

âi

cos(Q+ · âi )=2J.

(B7)

Finally, the projection of the spin-orbital Hund coupling
coupling is

J
∑
〈i j〉

[c†
i �τ ⊗ �σci][c

†
j �τ ⊗ �σc j]

= J[2c†
i,+ �σci,−c†

j,− �σc j,+ + 2c†
i,− �σci,+c†

j,+ �σc j,−

+ (c†
i,+ �σci,+) · (c†

j,+ �σc j,+) + (c†
i,− �σci,−) · (c†

j,− �σc j,−)

− (c†
i,+ �σci,+) · (c†

j,− �σc j,−) − (c†
i,− �σci,−) · (c†

j,+ �σc j,+)]

= J
∑
〈i j〉

(−4c†
i,+c j,+c†

j,−ci,− − 2c†
i,+ci,−c†

j,−c j,+

− 2c†
i,+c j,+c†

j,+ci,+−c†
i,+ci,+c†

j,+c j,+ + 2c†
i,+c j,−c†

j,−ci,+

+ c†
i,+ci,+c†

j,−c j,−) + (+ ↔ −). (B8)
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gi j acquire the following initial values from this
term as

g11 = − 2J−J = −3J, g12 = − 2J
∑

âi

cos(Q+ · âi )−J= J,

g13 = −2J
∑

âi

cos(Q+ · âi ) − J
∑

âi

cos(Q+ · âi ) = 3J,

g14 = −2J − J
∑

âi

cos(Q+ · âi ) = −J,

g21 = −4J
∑

âi

cos(K · âi ) + J = 7J,

g22 = −4J
∑

âi

cos(Q− · âi ) + J = −J,

g23 = −4J
∑

âi

cos(Q− · âi ) + J
∑

âi

cos(Q+ · âi ) = −3J,

g24 = −4J
∑

âi

cos(K · âi ) + J
∑

âi

cos(Q+ · âi ) = 5J,

g41 = 2J − 2J
∑

âi

cos(K · âi ) = 5J,

g42 = 2J − 2J
∑

âi

cos(Q− · âi ) = J,

g43 = 2J
∑

âi

cos(Q+ · âi ) − 2J
∑

âi

cos(Q− · âi ) = −3J,

g44 = 2J
∑

âi

cos(Q+ · âi ) − 2J
∑

âi

cos(K · âi ) = J.

(B9)

The total contribution of the Heisenberg interaction to the
initial values of gi j are

g11 = −5J, g12 = 3J, g13 = 5J, g14 = −3J,

g21 = 5J, g22 = −3J, g23 = −J, g24 = 7J,

g4i = 0. (B10)

APPENDIX C: DENSITY OF STATES
OF THE TWO PATCH MODEL

Given the dispersions of the two patch model in
Eq. (26), the density of states near these two HOVHS
can be obtained via ν1,2(E ) = ∑

k δ(E − ε1,2(k)). Since
ε1(k) = ε2(−k), ν1(E ) and ν2(E ) are in fact identical there-
fore we omit the subscript. The explicit expression of
ν(E ) is

ν(E ) =
∫

kdkdθ

(2π )2
δ(E − κ1k3 cos 3θ + κ2k4 − μ)

= 2

(2π )2

∫ ∞

0

dk

|E ′|Re

⎡
⎢⎣ k√

κ2
1 k6/E ′2 − (1 + κ2k4/E ′)2

⎤
⎥⎦,

(C1)

where E ′ = E − μ. For the case when t ′ = 0 and hence κ2 =
0, the above integral can be evaluated and the result is

ν(E )|t ′=0 = 1

|E − μ|1/3

2κ
−2/3
1

(2π )2

∫ ∞

1
dx

x√
x6 − 1

= ν0

|E − μ|1/3
, (C2)

where ν0 = κ
−2/3
1 �(7/6)/(2�(2/3)π3/2) ≈ 0.155t−2/3,

which is identical to that given in Ref. [35]. With a nonzero
t ′, we have

ν(E ) = κ
−2/3
1

|E ′|1/3

2

(2π )2

×
∫ ∞

0
dxRe

x√
x6 − (

1 − x4|E ′|1/3κ2/κ
4/3
1

)2
. (C3)

Since we are interested in low-energy fermions in the vicinity
near ±K , we can make E ′ small, and the leading divergent
term in the above equation is the same with Eq. (C2). There-
fore we anticipate that even for the nonperfect nesting case,
ν(E ) also have a power-law divergence.

The divergence of the DOS near ±K legitimizes our two
patch approximation, in which we consider fermions only near
these two points, and apply pRG to investigate the competing
electronic orders. In the following, we first discuss the build-
ing blocks (i.e., the bare susceptibilities) for our pRG analysis,
and then we analyze the RG equations and identify the leading
instability in various cases.

APPENDIX D: RENORMALIZATION GROUP ANALYSIS
OF THE TWO PATCH MODEL

As in the six patch model, here we also consider the system
with spin SU(2) symmetry. Unlike the six patch model, the
symmetry allowed interactions are much fewer. Figure 8(b)
shows all the three interactions. Note there is no umklapp
interaction.

The one-loop RG equations for these interactions can be
obtained in a similar way as in the six patch model, but here
the running parameter y = �pp(0) scales as 1/T 1/3 instead of
ln2 T . The results are

ġ1 = [(3 − Nf )d2 − d3]g2
1 − Nf d2g2

2 + d2g2
4 + 2d2g2g4,

ġ2 = (d1 − 1)g2
2 − g2

4 + 2d2g1g4 + (2 − 2Nf )d2g1g2,

ġ4 = 2(d1 − 1)g2g4 + 2d2g1g4 − Nf d1g2
4, (D1)

where Nf is the number of fermion flavors for each valley
component. We take Nf = 2 in our following discussion. The
nesting parameters di at the low-energy limit are approxi-
mated by constant values and defined via d1 = �ph(Q)/y,
d2 = �ph(0)/y and d3 = �pp(Q)/y. This is justified by the
numerical results plotted in Fig. 9. Similar to the six patch
model analysis, the interactions gi can also flow to some
strong coupling fixed point at some critical value yc. We thus
can assume the scaling form gi = Gi/(yc − y) near yc and
then confirm it. Because of the fewer interactions in the two
patch case, competing orders are also fewer. We consider
PDW, uniform SC, CDW, SDW, ferromagnetism (FM), and
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FIG. 11. Diagrammatic representation of the one-loop RG equa-
tions for various order parameters in the two patch case. See the
Fig. 8 for the color convention. PI here stands for the Pomeranchuk
instability, which breaks the point group symmetry of the lattice.

charge Pomeranchuk instability (PI). We list all the possible
order parameters and their RG equations diagrammatically in
Fig. 11. The corresponding RG equations for these orders are
explicitly given by


̇PDW = −d3g1
PDW,


̇s
SC = −(g2 + g4)
s

SC, 
̇
p
SC = −(g2 − g4)
p

SC,


̇CDW = d1(g2 − 2g4)
CDW,


̇SDW = d1g2
SDW,


̇FM1 = d2(g1 + g4)
FM,


̇FM2 = d2(g1 − g4)
FM,


̇PI1 = d2(−g1 − 2g2 + g4)
PI1,


̇PI2 = d2(−g1 + 2g2 − g4)
PI2. (D2)

Here the s-wave SC order parameter has the same sign at
both patches, while the p-wave order parameter changes sign
between patches. Similarly, 
FM1 and 
PI1 are the vertices
of the s-wave ferromagnetic order and Pomeranchuk order re-
spectively, which preserve sign when changing patches, while

FM2 and 
PI2 are in the p-wave channel and change sign on
these two patches.

The possible order is associated with a divergent suscepti-
bility, for which the behavior close to yc can also be expressed
as χ ∼ (yc − y)α with α < 0. Like in the six patch model,
we can determine α from the RG equations for χ , and the
resulting α is given in terms of Gi, i.e., the same as Eq. (22).

We first look into the case of perfect nesting, where d1 = 1
and d2 = d3 = 1/3. Under this condition, the RG equation has
a fixed point at G1 = −G2 < 0 and G4 = 0. This fixed point
indicates a degenerate ground state among 
CDW, 
SDW, and

PI2. This can be directly seen from Eq. (D2): the flow equa-
tion for these three orders are the same if g4 vanishes. The
PDW order parameter is the subleading one, due to the fact
that d3 < d1 and g1 → −∞. However it cannot be ordered
upon deceasing T because the corresponding αPDW > 0. The
phase diagram with a nonzero t ′ has been discussed in the
maintext.

APPENDIX E: THE STABILITY OF THE FIXED POINT

The asymptotic behavior of strong coupling fixed points in the one-loop RG equations are gi j ≈ Gi j

yc−y , i = 1, 2 and j =
1, 2, 3, 4. The stability of fixed trajectories toward strong coupling is analyzed through the stability matrices of the ratios of
coupling constants, or “rays” [33,77,95,96]. Since the interaction g12 and g22 generally flow to +∞, as we can see from the RG
equations of the six patch model. We can use either of them as a new running parameter and define the rays as xi j = gi j/g12 or
xi j = gi j/g22.

We take a typical nesting parameter d = 1/2. The g22 interaction flows to +∞ in the strong coupling fix point which favor
the chiral d-wave PDW, and we use g22 as the new flow parameter to analyze the stability of this ray. The fixed point ratios are

The RG equations can be cast into

dx11

d ln g22
= −x11 − x2

11 + 2x2
13

d
(
1 + x2

23

) ,
dx12

d ln g22
= −x12 + x2

12 + x2
13 + x2

43 + x2
44

1 + x2
23

,

dx13

d ln g22
= −x13 − 2x11x13 + x2

13

d
(
1 + x2

23

) + 2 × 2x12x13 − 2x23x24 + x23x44 + x24x43 + x43x44 − x13x14

1 + x2
23

,

dx14

d ln g22
= −x14 + 2 × x12x14 + x24x44 + x23x43 − x2

24 − x2
14 − x2

23

1 + x2
23

,

dx21

d ln g22
= −x21 − x2

21 + 2x2
23 + x2

41 + 2x2
43

d
(
1 + x2

23

) ,

dx23

d ln g22
= −x23 + −2x21x23 − x2

23 + 2d (x23 + x12x23 − 2x23x14 − x13x24)

d
(
1 + x2

23

) + −2x41x43 − x2
43 + 2d (x13x44 + x14x43)

d
(
1 + x2

23

) ,

dx24

d ln g22
= −x24 + 2

x12x24 + x14x44 + x13x43 − x13x23 − 2x14x24

1 + x2
23

,

dx41

d ln g22
= −x41 − 2

x21x41 + 2x23x43

d
(
1 + x2

23

) ,
dx42

d ln g22
= −x42 + 2

x42 + x23x43 − x2
43 − x2

42

1 + x2
23

,
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dx43

d ln g22
= −x43 − 2

x21x43 + x23x41 + x23x43

d
(
1 + x2

23

) + 2
x12x43 + x13x44 + x43 + x23x42 − 2x42x43

1 + x2
23

,

dx44

d ln g22
= −x44 + 2

x12x44 + x13x43

1 + x2
23

. (E1)

Similar equations can also be obtained if we choose g12 as the new flow parameter. For convenience we use the eleven
component vector �x to compactly label the eleven ratios on the right hand side of Eq. (E1), and use fi(�x), i = 1, 2, 3, . . . , 7 to
label the expressions on the left hand side of Eq. (E1). Then we do small perturbations to the stable ray, which is equivalent to
linearize Eq. (E1) around the stable ray:

dδxi

d ln g22
= ∂ fi(�x)

∂x j

∣∣∣∣∣
�x=�x∗

δx j = Mi jδx j . (E2)

If the stability matrix Mi j = ∂ fi(ρ1, ρ4)/∂ρ j has eigenvalues which are all negative, then the fixed point is stable. Otherwise it
has positive eigenvalue(s), then the fixed point is not stable. We have testified that for the PDW and uniform SC orders, all the
eigenvalues of their corresponding stability matrix are negative.

In the two patch model, similar analysis can be applied. For example, when the interactions flow to a fixed point at which
g1 → −∞, we can introduce ln |g1| as a new running parameter around the fixed point to see if this is stable. Defining x2 =
−g2/g1 and x4 = −g4/g1, the RG equations for g2 and g4 can be cast into

dx2

d ln |g1| = −x2 − (d1 − 1)x2
2 − x2

4 − 2d2x4 − (2 − 2Nf )d2x2

[(3 − Nf )d2 − d3] − Nf d2x2
2 + d2x2

4 + 2d2x2x4
,

dx4

d ln |g1| = −x4 − 2(d1 − 1)x2x4 − 2d2x4 − Nf d1x2
4

[(3 − Nf )d2 − d3] − Nf d2x2
2 + d2x2

4 + 2d2x2x4
. (E3)

Again we can define the corresponding stability matrix, and we find that all the leading orders shown in Fig. 10 are stable.
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