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Obstructed insulators and flat bands in topological phase-change materials
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Phase-change materials are ubiquitous in technology because of their ability to transition between amorphous
and crystalline phases fast and reversibly, upon shining light or passing a current. Here we argue that to
fully understand their electronic properties, it is necessary to define a novel electronic phase: the amorphous
obstructed insulator. It differs from an obstructed insulator crystal in that it presents localized edge or surface
states irrespective of the sample termination. Consequently, we show that obstructed amorphous insulators
in three dimensions host a surface two-dimensional flat band, detectable using angle-resolved photoemission
spectroscopy. Our work establishes basic models for materials where topological and obstructed properties can
be switched on and off externally, including two-dimensional surface flat bands.
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I. INTRODUCTION

Externally controlling the topological state of a material
is an appealing challenge to integrate topological properties
into technology [1]. For example, temperature [2], pressure
[3–6], composition [7–11], or magnetic fields [12] can drive a
topological transition between different crystalline states, but
these are not always fast, practical, or reversible processes.

In this work, we explore a different way to control the
topological phase, based on the controllable atomic struc-
ture of phase-change materials [2,13]. Phase-change materials
transition from a crystal to an amorphous solid state reversibly
by means of an electrical current or light pulse. For example,
a short and intense current melts the crystal, to later freeze
it into an amorphous state, while a longer and weak current
relaxes the latter back to a crystal. The two states, crystalline
and amorphous, strongly differ in their electric resistance.
This property positions phase-change materials at the center
of commonplace optical memories, such as DVDs, and next-
generation nonvolatile random access memories [13].

While the topological character of the crystalline phase of
phase-change materials can be consulted in online databases
(see Ref. [14] for a review), the investigation of topological
properties of their amorphous phases is an ongoing experi-
mental effort [15,16]. The task of theoretically understanding
the fate of topological properties of the amorphous state of
phase-change materials has recently become possible [17].
Many phases familiar from crystals have been proposed in
amorphous matter as well, such as Chern insulators [18–22],
quantum-spin-Hall effects, or three-dimensional (3D) topo-
logical insulators [18]. Moreover, topological properties in
realistic amorphous models can be signaled using symme-
try indicators [22], which generalize those used in crystals
[23–27], as an additional tool to real-space markers [17,28].

A notable absence is the notion of obstructed atomic insu-
lators in the amorphous form. Obstructed phases [29–34] can

be described by localized wave functions, and thus they are
topologically trivial in a strict sense. However, they can be
classified by symmetry, through the quantization of a winding
number, that restricts the average position of charge centers
to be at high-symmetry points of the unit cell, away from
the atomic sites [35]. Symmetry guarantees a gapless state
between two obstructed insulators at specific electronic fill-
ings. The half-filled Su-Schrieffer-Heeger (SSH) model [36]
for a Peierls distorted (or dimerized) polyacetylene chain is
a well-studied example, with higher-dimensional generaliza-
tions [29–34]. However, obstructed insulators have eluded
their generalization to the amorphous state because the unit-
cell symmetries seem necessary to define them.

The absence of a theory for amorphous obstructed insu-
lators challenges our understanding of known phase-change
materials. Two technologically relevant examples are GeTe
and Sb2Te3. When crystalline, the former is a trivial insu-
lator and the latter is a 3D topological insulator protected
by time-reversal symmetry [2,31,37–42]. Structural analysis
shows that several phase-change materials, including GeTe
and Sb2Te3, exhibit an average dimerization in their amor-
phous form: bonds locally aligned with each other tend to
alternate between weak and strong [43,44]. In the amorphous
state, this average dimerization can even increase over time,
causing a resistance drift [43]. Hence, defining the possible
obstructions relevant for dimerized amorphous phases seems
necessary to understand phase-change materials.

In a previous work [22], we showed how amorphous
topological phases could be characterized using local sym-
metries based on methods developed for amorphous silicon
[45]. Here, we use these results to predict obstructed atomic
insulators, a previously overlooked phase that we define in
this work, and we argue that phase-change materials are a
natural platform to realize controllably amorphous obstructed
insulators. Compared to crystalline obstructions, amorphous
realizations have the advantage that localized boundary states
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appear in all terminations. This leads us to propose a mech-
anism to engineer filling-enforced two-dimensional (2D)
flat bands as the surface state in phase-change materials.
Their emergence, therefore, can be controlled externally by
changing from the crystalline to the amorphous form. The
phenomenology we introduce relies on a remarkably feasible
experimental technique as the phase-change process is well
integrated in technology.

II. 2D AMORPHOUS OBSTRUCTED INSULATORS

A. Model

In crystals, different obstructed atomic limits usually occur
when the symmetries of the unit cell constrain the position of
the charge centers to be at different symmetry centers. A 1D
example is the SSH chain with inversion symmetry [36], in
which the charge centers of the occupied states are localized
between two sites. Inversion symmetry obstructs localizing
them at the site, which defines the atomic insulator limit.

Our first goal is to show that amorphous obstructed and
atomic insulators can also be defined in amorphous lattices. In
amorphous systems, lattice disorder breaks long-range trans-
lational invariance but preserves the local arrangement of the
atoms [46]. In other words, there is no single crystal from
which the amorphous lattice is obtained, and hence no well-
defined disorder-free limit. A historically fruitful approach
to establish a tractable limit is to neglect fluctuations in the
hopping or on-site terms of the Hamiltonian and assume that
the disorder is only structural, i.e., induced by the random con-
nectivity of the lattice [45,46]. In particular, Weaire-Thorpe
models [22,45] describe amorphous systems composed by a
disordered arrangement of identical unit blocks. By construc-
tion they have fixed coordination, a realistic local property
of amorphous materials [46], also useful to define amorphous
obstructed atomic limits. To this end, consider a 2D Weaire-
Thorpe Hamiltonian [22]

H =
∑

i

c
†

i HV ci +
∑
〈i, j〉

c
†

i HW (i, j)c j, (1)

where every site, shown at the center of Fig. 1(a), is fourfold-
coordinated. At a given site, HV couples its four orbitals,
encoded in the creation and annihilation operators c

†

i and
ci, respectively. The interorbital hopping strengths V1,2 are
depicted as solid green and dashed blue lines, respectively.
The intersite hopping term HW couples a pair of orbitals of
neighboring sites, depicted as gray lines in Fig. 1(a).

B. Lattice

We define Eq. (1) on a coordination-4 Mikado lattice, con-
structed by tracing lines randomly on the plane and placing
sites at their intersections. The lattice is drawn from a mikado
of N random lines, N being chosen according to a Poisson
distribution with mean 2R

√
πρ. ρ is the average density of

lines in the system, and R is its radius. Each line has a random
slope θ ∈ [0, 2π ] and a random y-intercept. The intersection
of pairs of lines becomes the site of the lattice, and the links
between them are given by the segments of lines. The constant
coordination of the lattice is guaranteed by the fact that having

Charge centers

FIG. 1. Amorphous obstructed and atomic insulators. (a) The
center sketch shows the parameters of the Hamiltonian in Eq. (1).
When W is the smallest energy scale (left), the DOS shows a gap at
half-filling. When W is the largest energy scale, the DOS presents in-
gap states (right). (b) The boundary between the obstructed insulator
and the atomic insulator (or vacuum) shows localized in-gap states in
the local DOS. (c) The charge centers of the filled states of the atomic
insulator n(r) show a strong maximum at the atomic sites (left),
unlike the obstructed insulator, which shows a maximum between the
atomic sites (right). The parameters are (W,V1,V2) = (0.1, 0.2, 0.9)
and (W,V1,V2) = (0.9, 0.01, 0.1) for the atomic and obstructed in-
sulators, respectively.

a coordination 2n requires that n lines cross at the same point,
which is unlikely for n > 2 in a random lattice.

C. Local density of states and charge centers

Figure 1(a) compares the density of states (DOS) of two
inequivalent limits of this model. When W � V2, the system
is close to the limit of weakly coupled dimmers, which we call
the obstructed insulator for reasons that will become clear. It
displays midgap states around zero energy which are localized
at the edges of the system or at the interface with the second
type of insulator, realized when V2 � W ; see Fig. 1(b). This
is the atomic insulator limit because the system is close to a
set of independent atoms with four orbitals each.

The midgap localized states are reminiscent of those of the
SSH model. Indeed, when V1 → 0, the system reduces to a
set of decoupled SSH chains with alternating couplings V2
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FIG. 2. (a) Symmetry-projected DOS, F0,1. The subindex m =
0, 1 indicates the projection to the eigenvalues of the on-site twofold
rotation symmetry, eiπm = ±1. For W > 0.5, a localized midgap
state appears, shown in gray. The vertical dotted lines correspond to
the three plots in (b). (b) Momentum-resolved symmetry-projected
density of states for the atomic and obstructed limits (W = 0.1 and
0.9, respectively) and the transition between the two (W = 0.5).
When W � V1,2, the occupied bands contain states that project on the
symmetric eigenstates of HV . At the transition the two bands cross
and mix for W > 0.5. The occupied states in this case project onto
the symmetric states of HW (Fig. 5).

and W . By construction, these chains always end on a site
that possesses an inner V2 hopping term. Thus, when W � V2,
the orbitals couple along the bonds between sites, leaving an
isolated orbital at each end of a chain, which forms the edge
state. Since amorphous systems are isotropic, this edge state
appears all along the boundary [see Fig. 1(b)].

The two limits are also distinguished by the position of
the charge centers of occupied states n(r), shown in Fig. 1(c),
given by

n(r) =
∑

m

∣∣∣∣∣∣
∑

i

∑
j

�m
i j ai j (r)

∣∣∣∣∣∣
2

/Nocc. (2)

Here m runs over the Nocc eigenstates �m
i j . The function

ai j (r) = exp

(
− (r − ri )2 + 3

2 (r − ri j )2

2(ri j − ri )2

)
, (3)

encodes the spatial dependence of the local orbital j on site i
as a function of ri, the position of site i, and ri j , the center of
the bond involving the orbital j of i. For W � V2 and W �
V2, the eigenstates show nodes on the bond centers and sites,
respectively, which are their symmetry centers with respect to
inversion.

D. Symmetry properties

The analysis of n(r) suggests a symmetry explanation for
the existence of localized edge states. To discuss it, in Fig. 2(a)
we show the symmetry-labeled energy spectrum as a function
of W [22]. The colors show the projection of the eigenstates
on the local eigenstates of HV with C2-symmetry eigenvalues
±1. In Fig. 2(a) we see that when W � V2, the eigenstates in
the occupied band have a strong overlap with the eigenstates
of HV with symmetry eigenvalue 1. This explains why the
charge centers are strongly localized at the atomic sites, as

in the left panel of Fig. 1(c). As W increases, the two bands
mix: the occupied states project on HV eigenstates with dif-
ferent symmetry eigenvalues ±1, while they project on HW

eigenstates with a single symmetry eigenvalue with respect to
bond inversion (see Appendix A). Correspondingly, the right
panel in Fig. 1(c) shows that the charge centers have shifted
to the bond centers.

The crossing of bands is apparent in Fig. 2(b), where we
show the spectrum of the Hamiltonian projected onto plane
waves with well-defined momentum k (see Appendix E).
This projection is useful to visualize band inversions between
bands labeled by different symmetries [22]. The inversion of
the band, occurring at k → ∞, indicates that the two limits
are disconnected classes of insulators, and it explains why
the edge states appear. Hence, although infinitesimal on-site
disorder will push these modes away from zero energy, their
existence is enforced by symmetry, as in crystalline insulators.

The presence of localized edge states is also signaled by
a change in polarization density P [47], which measures the
charge center displacement within a unit cell in a crystal, or
the elemental building block in Fig. 1(a) in our amorphous
case. For the atomic limit P = 0, while for the obstructed limit
P = e/2, consistently with the apparition of edge states in the
obstructed limit, seen in Fig. 2(a).

III. 3D OBSTRUCTED PHASES AND SURFACE FLAT
BANDS IN PHASE-CHANGE MATERIALS

In crystals, one of the mechanisms that creates obstructed
insulators is a Peierls distortion [48], as in the 1D SSH chain
[36]. It occurs when grouping atoms, chains, or layers is en-
ergetically favorable compared to having a single equilibrium
distance between them. However, the Peierls distortion is not
exclusive to crystals. In H2 gas [49], the hydrogen atoms pair
to form molecules, and an average Peierls distortion occurs
in amorphous solids [49], including phase-change materials
[43,44]. Phase-change materials can reversibly switch from
crystalline to amorphous states by applying light or current
[50]. Either or both phases can display a Peierls distortion.
Molecular-dynamics simulations show that several phase-
change materials, including GeTe, tend to develop a stronger
Peierls distortion as they age in the amorphous state [43,50].

An amorphous Peierls distortion is diagnosed by the three-
particle correlation function p(r1, r2) [49]. For a given site,
p(r1, r2) measures the probability to find a pair of opposite
neighbors at distances r1 and r2, respectively; see the inset
of Fig. 3(c). Two neighbors of a central site are opposed if
the angle between their bonds towards the central site is close
to π . If the system is not distorted, p(r1, r2) peaks at a single
nearest-neighbor average distance rm, as shown in Fig. 3(b) for
a perfectly crystalline lattice. However, if an average Peierls
dimerization occurs, p(r1, r2) peaks at two different average
values, rs and rl , corresponding to shorter and longer bonds,
respectively [Fig. 3(c)].

A. 3D model for phase-change materials

We now introduce a tight-binding model suitable to de-
scribe phase-change materials that crystallize in a cubic
rock-salt-like structure and display an average Peierls distor-
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FIG. 3. (a) 3D GeTe model. V represents an on-site spin-orbit
coupling, W ± �W controls the average dimerization, and ε is
a staggered potential. (b),(c) Three-particle correlation function
p(r1, r2), where (r1, r2) are a pair of distances from a site to opposite
neighbors. In the absence of a Peierls distortion, there is a single
equilibrium distance rm (b). In the Peierls dimerized phase there
are alternating long (rl ) and short (rs) equilibrium distances (c).
Strong and weak hoppings are associated with shorter and longer
bond lengths. Parts (d) and (g) show the inverse participation ratio
for the systems in (b) and (c), respectively. Parts (e) and (f) show
the local density of in-gap states for a 3D system projected into the
(z, r) plane. These are absent for the system in (b) and present for the
obstructed limit in (c). The system in (b),(d),(e) has V = 0.5, W = 1,
and ε = 1.4, while (c),(f),(g) has V = 0.5, W ± �W = 1 ± 1/3, and
ε = 0.

tion in the amorphous phase. This is the case of GeTe [51]
or Ge2Sb2Te5 [44]. In this model, described in detail in Ap-
pendix B, each atom has six neighbors, sketched in Fig. 3(a).
The amorphous lattice is constructed by a 3D generalization
of the random-line method: sites are at the intersection of three
planes with random orientations. At each site there are three p
orbitals, coupled by spin-orbit coupling through HV = V L · S,
and aligned with the direction of their neighbors. Nearest
neighbors are coupled through a σ -hopping between the two
orbitals aligned with the bond direction. The hopping strength
is W ± �W for weak and strong hoppings, alternating along
approximately aligned bonds. The on-site staggered poten-
tial is ±ε, such that nearest neighbors have opposite on-site
energy. As usual for Weaire-Thorpe models, we neglect fluc-

tuations in V and W . These narrow the mobility gap, similar
to crystals, as we show in Appendix D.

B. Local density of states and inverse participation ratio

Assuming, as in GeTe, that there is no Peierls distortion
in the crystal (�W = 0), the spectrum has two bands at
ε 
= 0 [see Fig. 3(d)]. This parameter choice breaks inversion
symmetry with respect to bond centers but preserves it with
respect to the sites. By taking ε/W → ∞ we smoothly lo-
calize the charge on atomic sites, realizing the trivial atomic
limit. Accordingly, we find no surface states [see Figs. 3(d)
and 3(e)]

With a finite distortion (�W 
= 0) but no staggered poten-
tial (ε = 0), the charge center of the occupied bands shifts
toward the bond centers. In a finite system, the surface in-
tersects those bonds. Hence the atoms form dimers and, as in
our 2D model, the occupied states have a nonzero polarization
P = e/2. We thus expect localized surface states around half-
filling, which are seen in Figs. 3(f) and 3(g).

The inverse participation ratio (IPR) p(E ) =∑
i

∑
j |�i j (E )|4 is a measure of the localization of the

edge states. The midgap states in the obstructed limit have
a much higher IPR than the bulk band states [see Fig. 3(g)],
indicating that they involve fewer sites. This is confirmed
by the local DOS, which shows that the sites involved in
the in-gap localized states are localized at the surface of the
system [see Fig. 3(f)]. In contrast, the crystal bulk states are
not localized, and no surface states appear [see Figs. 3(d) and
3(e)]. In Appendix B we show how the obstructed and atomic
insulator limits are also symmetry-indicated, as for the 2D
case.

C. Spectral functions for phase-change materials

While the mechanism that induces localized in-gap states
is similar to that of a crystal, the difference lies in which
surface they appear. For a crystal, surface states appear at
facets that respect the crystalline (Peierls) symmetry. In the
3D amorphous obstructed state, this symmetry is satisfied
on average [52], and thus in-gap localized states appear
no matter how the sample is terminated, as we observe in
Fig. 3(f). This observation suggests that a more spectacu-
lar signature can manifest in their surface spectral function,
measurable in angle-resolved photoemission spectroscopy ex-
periments (ARPES) even in amorphous materials [53,54].
Figure 4 shows the spectral function, calculated by project-
ing the real-space spectral function onto a plane-wave basis:
A(k, E ) = − 1

π
Im 〈k| (Ĥ − E )−1 |k〉. The states |k〉 are plane

waves defined with a phase eik·ri on site i, and the momentum
k represents the momentum of the photoemitted electron.

Figures 4(a) and 4(b) compare the spectral function for
crystalline and amorphous GeTe models. The crystal is fully
gapped due to a finite staggered potential. The amorphous
phase is dominated by the Peierls distortion, resulting in
two-dimensional surface flat bands around zero energy. The
surface flat bands merge into a single flat band as V → 0, indi-
cating that the gaps between them originate from the different
ways of terminating the sample. The surface flat bands appear
at the energies where the localized surface states are seen in
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FIG. 4. Spectral function for phase-change materials in the crys-
talline undistorted (a)–(c) and amorphous distorted (b)–(d) phases. a
is the cubic lattice spacing in the crystalline systems and the average
nearest-neighbor distance in the amorphous samples. In the model of
GeTe (a),(b), the distortion closes and reopens the gap, resulting in a
localized surface state. The parameters for the two plots are the same
as in Fig. 3. In the model of Sb2Te3 (c),(d), the distortion gaps out the
topological surface state. The parameters for this system are M = 5
and �t = 0.8 (see Appendix C for details).

Figs. 3(f) and 3(g). Their emergence can thus be controlled by
transitioning from crystal to amorphous.

Not all Peierls distortions generate obstructed limits. In
Figs. 4(c) and 4(d) we compare the spectral function for
crystalline and amorphous Sb2Te3, one of the first predicted
3D topological insulator crystals [55,56], which also is a
phase-change material [16,57]. The crystal displays the char-
acteristic surface Dirac cone. When the Peierls distortion
dominates in the amorphous phase, the spectrum is fully
gapped, as in the atomic limit. Unlike for our GeTe model,
the Peierls phase of Sb2Te3 is not smoothly connected to a set
of decoupled SSH chains. This phenomenology is consistent
with recent experiments suggesting that the topological prop-
erties are lost when Sb2Te3 phase-changes into the amorphous
form [16].

IV. DISCUSSION

The models and tools we described showcase amorphous
obstructed limits, and the controllable emergence of surface
flat bands in phase-change materials. This highlights the
phase-change process as a novel experimental tool to engineer
flat bands in condensed-matter systems. Our models are good
starting points to develop material-specific models, which
may include effects that we neglected, such as fluctuations in
the local coordination of sites [43]. Remarkably, they may be
generalized beyond dimerization (n-merization) [58] to create
fractional charges different from e/2, a possibility that merits
future studies.

The data and codes that support the findings presented in
this work are available from [59].
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APPENDIX A: FOURFOLD-COORDINATED
WEAIRE-THORPE LATTICE

The fourfold-coordinated Weaire-Thorpe system is built
similarly to that discussed in the supplementary information
of Ref. [22]. We first build the lattice using the method
described in Ref. [60]. This algorithm strictly enforces the
constant coordination property. Then we set the Hamiltonian
onto it.

1. Hamiltonian

The Hamiltonian of the fourfold-coordinated lattice is a
Weaire-Thorpe Hamiltonian [45]. It decomposes into an on-
site term HV and a constant hopping term HW :

H =
∑

i

c†
i HV ci +

∑
〈i, j〉

c
†

i HW (i, j)c j . (A1)

Each site has four orbitals that overlap with each other accord-
ing to HV . A single pair of orbitals belonging to neighboring
sites is also coupled through the HW term. ci is the vector
representing the four orbitals of site i. The two terms of the
Hamiltonian read

HV =

⎛
⎜⎜⎝

0 −V1 −V2 −V1

−V1 0 −V1 −V2

−V2 −V1 0 −V1

−V1 −V2 −V1 0

⎞
⎟⎟⎠, HW (i, j) = −W εi j .

(A2)
εi j is a 4 × 4 matrix whose coefficients are all zero except

the two that indicate which orbitals of sites i and j link the
two sites.

This system has two trivial limits. When W = 0, it is a set
of independent sites, with four orbitals each. The eigenstates
of HV are (1, im,−1m,−im)T for m = 0, 1, 2, 3 and their en-
ergy is −V2 + 2V1, V2, −V2 − 2V1, V2. We define F0,1 such
that

F0(|ψ〉) =
∑
sites i

| 〈i, 0|ψ〉 |2 + | 〈i, 2|ψ〉 |2 = 〈ψ |F̂0|ψ〉 ,

(A3)

F1(|ψ〉) =
∑
sites i

| 〈i, 1|ψ〉 |2 + | 〈i, 3|ψ〉 |2 = 〈ψ |F̂1|ψ〉 ,

(A4)

where |i, m〉 is the mth eigenstate of HV localized on the site i.
The density plot in Fig. 2 is then given by F0,1(E ) = Tr(δ(Ĥ −
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FIG. 5. Density of states for the 2D system (Hamiltonian 1)
projected on the symmetric (F+) and antisymmetric (F−) eigenstates
of each bond. Similarly to Fig. 2, when W � V1,2 the spectrum is
organized in two bands whose states project on a single eigenstate
of each bond. The projection of the edge states vanishes since the
edge sites have no neighbors to define symmetric and antisymmetric
eigenstates.

E )F̂0,1)/N . The other trivial limit occurs when V1,2 = 0: the
system decomposes in the set of decoupled dimers with cou-
pling strength W between the two orbitals. One can analyze
the symmetry of the system by projecting the density of states
onto the local eigenstates of HW :

F+(|ψ〉) =
∑

bonds j

| 〈 j,+|ψ〉 |2 = 〈ψ |F̂+|ψ〉 , (A5)

F−(|ψ〉) =
∑

bonds j

| 〈 j,−|ψ〉 |2 = 〈ψ |F̂−|ψ〉 , (A6)

where | j,±〉 is the eigenstate of HW localized on the bond
j with eigenvalues ∓W . | j,+〉 is the eigenstate of HW that
is symmetric with respect to bond inversion while | j,−〉 is
antisymmetric. F+ and F− are shown in Fig. 5.

2. Charge centers

The charge center in Fig. 1(c) of the main text is calculated
as

n(r) =
∑

m

∣∣∣∣∣∣
∑

i

∑
j

�m
i j ai j (r)

∣∣∣∣∣∣
2

/Nocc, (A7)

where m runs over the Nocc eigenstates �m. The function

ai j (r) = exp

(
− (r − ri )2 + 3

2 (r − ri j )2

2(ri j − ri )2

)
(A8)

encodes the spatial dependence of the local orbital j on site i
as a function of ri, the position of site i, and ri j , the center of
the bond involving the orbital j of i.

3. Polarization

The presence of localized edge states can also be under-
stood by focusing on the polarization, which measures the
average position of charges compared to the unit-cell center
[47]. In inversion symmetric systems, charges necessarily lie
at inversion symmetric points. If they are localized on the
unit-cell center, the polarization density P is an integer in units

of the electron charge e. If, on the contrary, they are localized
at the unit-cell boundaries, P is a half-integer.

The value of P is relative to the choice of unit cell, which
can be centered either on the inner hopping within sites (V -
bonds) or on the outer hopping between sites (W -bonds).
To simplify the analysis, it is convenient to set the unit cell
consistently with the termination of the system as discussed in
Refs. [61,62]. In our system, the edge always falls on a bond
between sites, cutting a W -bond. We then choose the building
block centered on sites, as shown in the panel of Fig. 1(a).
Following [61], the number of midgap edge states n is given
by n ≡ 2P mod 2. Thus, from Fig. 1(c) we see that P = 0
for the atomic limit and P = e/2 for the obstructed one. This
analysis is consistent with the apparition of edge states in the
obstructed limit, seen in Fig. 2(a).

APPENDIX B: LOCAL SYMMETRIES OF THE GeTe
WEAIRE-THORPE MODEL

The 3D sixfold-coordinated model is built using the same
method as the 2D fourfold-coordinated one. Rather than using
a random set of lines, we used a random set of planes. Three
independent planes necessarily cross at a single point, through
which three lines pass, defined by the intersections of two of
those planes. Thus, the sites of the system will be the intersec-
tions between three planes, and the links between them will
be the intersections between pairs of planes.

1. Hamiltonian

Each site has three orbitals px, py, pz that can host spin-up
and spin-down electrons. Thus, the on-site term of the Hamil-
tonian is a 6 × 6 matrix, which reads

HV =V

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i 1 0 0 0
i 0 −i 0 0 0
1 i 0 0 0 0
0 0 0 0 i −1
0 0 0 −i 0 −i
0 0 0 −1 i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= V L · S

= iV (c† ∧ c) · S, (B1)

where we ordered the basis states as
|px,↑〉 , |py,↑〉 , |pz,↓〉 , |pz,↑〉 , |py,↓〉 , |px,↓〉. On each
site, the orbitals px,y,z are supposed to be aligned with
the bonds towards neighboring sites. Using the same
approximation as in Weaire-Thorpe systems, we admit
that the hopping terms between orbitals do not depend on
the exact orientation of the bonds and orbitals. Thus, the
hopping strength does not depend on the considered bond,
and disorder is only present in the structure of the lattice.
Bonds between sites are therefore made by two p orbitals
of neighboring sites, overlapping with each other to form a
σ covalent bond. Since the labeling x, y, z of the orbitals is
local, a px orbital of a site i can be bound to the py orbital
of a neighbor j. In this case, the hopping term is of the
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form

HW (i, j) = −(W ± �W )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

where the coupling strength W ± �W depends on whether
this bond is weak or strong and is determined in a second
step. The two nonzero terms in HW (i, j) account for spin up
and down. The same orbital px of i will also be bound to
the opposite neighbor j′ of i, defined so that j, i, and j′ are
approximately aligned in this order. Again, since the labeling
x, y, z of the orbitals is local, it can bound to any of the three
orbitals of j′. If the bond involves, for example, the orbital pz

of j′, the hopping term reads

HW (i, j′) = −(W ∓ �W )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

The sign of �W for this latter bond is necessarily the
opposite of that of the former since weak and strong bonds
alternate along aligned sites. The fact that we can define
an aligned bond in the amorphous structure comes from the
enforced sixfold coordination of the lattice with sites having
an octahedral structure. The algorithm used to determine the
strength ±�W of the bonds can be found in [59].

2. Crystalline version

When set on a cubic lattice, the Hamiltonian
of the system can be written with a two-site unit

cell [51,63]:

H =
∑

i

V (c†
i ∧ ci ) · S+(−1)iεc†

i · ci −
∑
〈i, j〉

[W +(−1)isgn(d̂i j

· (êx + êy + êz )�W )(c†
i · d̂i j )(c j · d̂ ji )], (B4)

where i, j labels the sites so that nearest neighbors, denoted by
〈· · · 〉, have (−1)i+ j = −1, and d̂i j is the unit vector pointing
from i to j.

The corresponding Bloch Hamiltonian is a 12 × 12 matrix
(two sites per unit cell, three orbitals per site, with spin 1

2 ). It
reads

H(k) =
(

HGe Hhopping

H†
hopping HTe

)
. (B5)

The matrices HGe and HTe are the same up to the diagonal
staggered potential ε, which takes opposite values for the two
elements. They read

HGe =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε − iV
2

V
2 0 0 0

iV
2 ε − iV

2 0 0 0
V
2

iV
2 ε 0 0 0

0 0 0 ε iV
2 −V

2

0 0 0 − iV
2 ε − iV

2

0 0 0 −V
2

iV
2 ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

HTe =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε − iV
2

V
2 0 0 0

iV
2 −ε − iV

2 0 0 0
V
2

iV
2 −ε 0 0 0

0 0 0 −ε iV
2 −V

2

0 0 0 − iV
2 −ε − iV

2

0 0 0 −V
2

iV
2 −ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

Hhopping couples germanium and tellurium sites with alter-
natively weak and strong bonds whose strength is W ± �W .
p-orbitals only couple along their symmetry axis, hence the
hopping term reads

Hhopping = 2W

⎛
⎜⎜⎜⎜⎜⎜⎝

cos kx 0 0 0 0 0
0 cos ky 0 0 0 0
0 0 cos kz 0 0 0
0 0 0 cos kz 0 0
0 0 0 0 cos ky 0
0 0 0 0 0 cos kx

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 2i�W

⎛
⎜⎜⎜⎜⎜⎜⎝

sin kx 0 0 0 0 0
0 sin ky 0 0 0 0
0 0 sin kz 0 0 0
0 0 0 sin kz 0 0
0 0 0 0 sin ky 0
0 0 0 0 0 sin kx

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B7)

In the crystalline case, it is possible to define x, y,
and z directions consistently with the orientation of the
p-orbitals in the whole lattice, hence the simple form of
the hopping term. This is not possible in the amorphous

system, where the px orbital of a site can be aligned
with the py orbital of its neighbor, leading to off-diagonal
terms in the hopping part of the Hamiltonian [Eqs. (B2)
and (B3)].
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FIG. 6. (a) Symmetry-projected density of states for the amorphous Hamiltonian (B4). F−V , FV/2 are the projection on the eigenstates of
the isolated atoms with energy −V , V/2. When the hoppings are set to zero, the system has two degenerate bands. When W/V and �W/V
increase, the gap closes, bands mix, and midgap states appear. Here, we set �W = 2W/3. (b) Density of states for the crystal GeTe model set
on a cubic lattice [Hamiltonian (B5)] as a function of ε for V = 0.5W and �W = 2W/3. The green and blue colors show the weight of each
sublattice. The degeneracy of the surface states is lifted when the on-site staggered potential ε is set on. The surface states then merge with the
bulk bands for high ε.

When ε 
= 0, this model is gapped at half-filling, as in
Fig. 6(b). If �W is nonzero, i.e., when the distortion occurs,
localized surface states arise at zero energy. Those states are
pinned at zero energy if ε is zero. Otherwise, they are gapped
out and merge with the bulk bands as ε increases.

3. Atomic and obstructed limits

The on-site term HV has six eigenstates that form two
degenerate bands with energies V

2 and −V . Figure 6(a) shows
the spectrum of the system and the projection of its eigenstates
on that of HV for W ranging from 0 to 3 and �W = W/3. If
|i, m〉 are the eigenstates of HV localized on site i with energy
−V if m = 0, 1 and V/2 if m = 2, . . . , 5, then

F−V (E ) =
∑

i

1∑
m=0

| 〈ψ (E )|i, m〉 |2, (B8)

FV/2(E ) =
∑

i

5∑
m=2

| 〈ψ (E )|i, m〉 |2. (B9)

For small enough W , the system has two bands corresponding
to that of the atomic limit. When W ± �W increases, the
gap closes and then reopens, with localized midgap states
appearing. The projectors on local eigenstates of HV show that
the two atomic bands have mixed to form an obstructed limit.

Figure 6(b) shows how the energy bands evolve once the
staggered potential is turned on. It shows the density of states,
colored with the relative weight of each sublattice, defined by
the sign of the potential. For low ε, the surface state is split
in two before merging into the two bands. When ε increases
further, the bulk states of each band are localized on only one
of the two sublattices. This is a second atomic limit for the
system, on which we focus in the crystalline model of GeTe
(Fig. 3).

APPENDIX C: BERNEVIG-HUGHES-ZHANG MODEL FOR
Sb2Te3

The model for Sb2Te3 is built using the same lattice as
GeTe. It is therefore a sixfold-coordinated amorphous lattice,
now with four orbitals per site. We use the same algorithm

as in the previous case to define weak and strong bonds. The
on-site term of the Hamiltonian reads

Ĥos = Mσ0 ⊗ τz, (C1)

and the hopping amplitude between sites i and j is

H (d̂i j ) = (t ± �t )(σ0 ⊗ τz + id̂i j · −→σ ⊗ τx ). (C2)

This model has two main features that are different from
that of GeTe. First of all, it is not strictly a Weaire-Thorpe-type
Hamiltonian because here the hopping term depends explicitly
on the bond direction d̂i j . Thus positional disorder adds to
structural disorder to make the system amorphous. Second,
this system is not equivalent to a set of independent SSH
chains when the on-site part is driven to zero. The four orbitals
of each site are all involved in the bonds towards the six
neighbors. This is why, when the distortion is on (�t 
= 0), the
topological surface state gaps out, but no localized flat band
appears within the gap, as seen in Fig. 4 of the main text.

If it was set on a crystalline, cubic lattice, the Bloch Hamil-
tonian of the system would be

H(k) =
(

H0 Hhopping

H†
hopping H0

)
, (C3)

with

H0 = Mσ0 ⊗ τz, (C4)

Hhopping = 2t

(∑
i

cos kiσ0 ⊗ τz −
∑

i

sin kiσi ⊗ τx

)

+2i�t

(∑
i

sin kiσ0 ⊗ τz +
∑

i

cos kiσi ⊗ τx

)
.

(C5)

When �t = 0, the original Bernevig-Hughes-Zhang model is
recovered. Depending on the relative strengths of the BHZ
model parameters compared to the Peierls distortion, different
limits are possible in the amorphous and crystalline phases: a
trivial atomic insulator (large staggered potential M), a trivial
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FIG. 7. ARPES spectra for the different models of GeTe and
Sb2Te3. The crystalline models (a),(c) are the same as in Fig. 4.
Models in panels (b) and (d) include fluctuations in the hopping
strengths. The fluctuations narrow the gap without changing the
topological configuration.

insulator (large Peierls distortion �t), and topological phases
for intermediate parameters.

APPENDIX D: EFFECT OF FLUCTUATING HOPPING
STRENGTHS IN GeTe AND Sb2Te3 MODELS

In Weaire-Thorpe systems, the local environment of the
atoms is assumed to be equal for all sites, thus neglecting the
fluctuations of the parameters due to varying bond lengths and
angles. This approximation is used throughout the main text
and leads to the results presented in Fig. 4 of the main text.

To be more realistic, one can take those fluctuations into
account on top of the lattice disorder. In this case, the hopping
term of the Hamiltonians becomes

HW (i, j) = −(W ± �W ) exp(1 − di j/r1) (D1)

for GeTe, and

H (di j ) = (t ± �t ) exp(1 − di j/r1) (D2)

for Sb2Te3, where r1 denotes the average nearest-neighbor
distance between sites.

The ARPES simulation results for these modified models
are given in Fig. 7. The first effect of the fluctuation is to
narrow the gap of the system. The topological configuration of
the two systems thus remains stable as far as those fluctuations
are not strong enough to close the gap, similar to crystalline
systems.

APPENDIX E: EFFECTIVE HAMILTONIAN AND
MOMENTUM-RESOLVED SYMMETRY-PROJECTED

SPECTRAL FUNCTIONS

We can understand our findings in terms of the effective
Hamiltonian, which is an efficient tool to analyze symmetries
and diagnose topology in disordered materials [22,26]. We
define the effective Hamiltonian Heff (k) = Geff (k)−1 + EF

through the projection of the single-particle Green’s function

onto plane-wave states,

Geff (k)l,l ′ = 〈k, l| G |k, l ′〉 , (E1)

where G = limη→0(H − EF + iη)−1 is the Green’s function
of the full Hamiltonian with EF chosen to be in a gap. The
states |k, m〉 are normalized plane-wave states with on-site
angular momentum indexed by m (in the 2D WT model
this index corresponds to representations of fourfold rotation,
while in the 3D case it corresponds to a combination of the
total angular momentum and angular momentum z component
quantum numbers of a spinful p-orbital). In the real-space
basis, these states are given by

|k, m〉 =
∑

i

1√
N

exp(ikri ) |i, m〉 , (E2)

where ri is the position of site i, and N is the number of sites
in the sample. States with different m are orthogonal. The
basis is, however, overcomplete with respect to k, because the
typical overlap between different k states with the same m
only decays as 1/

√
N when approaching the thermodynamic

limit.
A central property of Heff is that its gap closes only when

the gap of the full Hamiltonian closes. This follows from the
fact that Heff − EF can only have a zero if Geff has a pole,
which is only possible if G has a pole, when H − EF has
a zero. Hence, a topological invariant defined in terms of
Heff that can only change when its gap closes is also a good
topological invariant for the original system [22,26]. In the
large |k| ≡ k limit, the expectation value in (E1) reduces to
purely on-site terms, as the relative phases between different
sites average to 0 in the thermodynamic limit, resulting in
Heff (k = ∞) being identical to HW =0

eff (k = 0) in the system
with W set to zero. The limit limk→∞ Heff (kn̂) ≡ Heff (|k| =
∞) is independent of the direction of the unit vector n̂, which
allows compactification of k-space to a sphere. In practice, we
construct the k = ∞ state using independent random phases
on each site.

Assuming that Heff (k) is finite, gapped, and continuous
for all k, this construction provides a mapping between in-
finite amorphous Hamiltonians and continuum Hamiltonians.
In the thermodynamic limit, the effective Hamiltonian (also
the effective Green’s function) is invariant under continuous
rotations,

Heff (k) = UθHeff
(
R−1

θ k
)
U −1

θ , (E3)

where Rθ is a real-space dimensional rotation matrix with an
angle θ , and Uθ is the on-site angular momentum representa-
tion.

We also define a related quantity, the k and m-resolved
spectral function

A(k, m, E ) = 〈k, m| δ(H − E ) |k, m〉 = − 1

π
Im 〈k, m|

× GR(E ) |k, m〉 , (E4)

where |k, m〉 are the states defined in (E2), and GR(E ) =
limη→0(E + iη − H )−1 is the retarded Green’s function of the
full system. In the manuscript we show spectral functions
that are summed over some m values, corresponding to a
coarser resolution of various angular momentum characters.
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For energies close to the Fermi level, the peaks of the spectral
function closely follow the spectrum of the effective Hamilto-

nian eigenvalues, and they show a band inversion across the
phase transition resembling that of crystalline systems.
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