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Stacking-induced Chern insulator
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Graphene can be turned into a semimetal with broken time-reversal symmetry by adding a valley-dependent
pseudoscalar potential that shifts the Dirac point energies in opposite directions, as in the modified Haldane
model. We consider a bilayer obtained by stacking two time-reversed copies of the modified Haldane model,
where conduction and valence bands cross to give rise to a nodal line in each valley. In the AB stacking, the
interlayer hopping lifts the degeneracy of the nodal lines and induces a band repulsion, leading surprisingly
to a chiral insulator with a Chern number C = ±2. As a consequence, a pair of chiral edge states appears at
the boundaries of a ribbon bilayer geometry. In contrast, the AA stacking does not show nontrivial topological
phases. We discuss possible experimental implementations of our results.
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I. INTRODUCTION

A Chern insulator [1–3] is a two-dimensional (2D) topo-
logical insulator with broken time-reversal symmetry (TRS),
where chiral edge states emerge in a ribbon geometry with
counterpropagating directions at the opposite boundaries of
the strip. These edge states are the hallmark of the bulk
topological properties described by a topological invariant, the
Chern number C, indicating the number of chiral edge chan-
nels. A Chern insulator exhibits the quantum anomalous Hall
effect (QAHE) [4–14] introduced by Haldane in his seminal
paper [15].

The Haldane model [15] (HM) describes a honeycomb
lattice with complex hopping integrals between next nearest
neighbors (NNNs), creating staggered magnetic fluxes, which
break TRS. The NNN hopping terms are characterized by a
complex phase � which has the same sign in the two sublat-
tices of the honeycomb lattice.

A modified Haldane model (mHM) has been proposed in
Ref. [16] where TRS is broken by a valley-dependent pseu-
doscalar potential that shifts, oppositely, the energies of the
Dirac points in the two valleys. The potential is generated by
the sign flip of the complex phase � in one of the honey-
comb sublattices. The system turns into a semimetal with a
Fermi surface consisting, at half-filling, of a hole pocket, in
a valley, and an equal-sized electron pocket in the opposite
valley [Fig. 1(a)]. The so-called antichiral edge states [16]
are expected to emerge in zigzag nanoribbons described by
the mHM: they are unidirectional gapless edge modes that
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copropagate at the opposite ribbon boundaries and are coun-
terbalanced by bulk states.

Imagine, now, a bilayer structure of the HM where the
layers, indexed by l = 1, 2, host Haldane phases labeled by
the Chern numbers Cl . A naive intuition tells us that the total
Chern number is C = C1 + C2, as reported in Ref. [17] for the
AA bilayer. In particular, a vanishing Chern number C = 0
is expected if the layers have opposite chiralities resulting
from oppositely broken TRS [17] (see Appendix A). This
expectation is at the heart of the Kane and Mele [18] idea,
where the layer index is replaced by the spin projection, and
the two opposite TRS copies of the spin-polarized HM give
rise to a vanishing (Z) Chern number. The latter leaves room
for another (Z2) TRS protected topological invariant corre-
sponding to a quantized spin Hall insulator.

In this paper, we consider two stacked layers of the mHM,
where the semimetallic layers break TRS in opposite ways
(Fig. 1) and have undefined Chern number Cl = ∅ (l = 1, 2).
The resulting bilayer structure shows counterintuitive behav-
iors. Depending on the precise stacking order (AA, AB, or
BA), we find that the resulting system may be gapless (AA)
with C = ∅ or topologically gapped with a Chern number
C �= C1 + C2 but C = ±2 (AB/BA). In other words, and in
contrast with the HM bilayer, the stacking order in the mHM
bilayer is a key parameter controlling the gap opening and
the emergence of chirality. Understanding the origin of the
topological gapped phases and the corresponding chirality is
the main objective of the present work.

The paper is organized as follows. In Sec. II, we derive
the Bloch Hamiltonian of a generic AB (BA) bilayer structure
where the layers are time-reversed copies of the mHM. We
show that the system turns, under a finite interlayer hopping,
to an insulator belonging to the symmetry class A [19]. In
Sec. III, we derive, based on a perturbative approach in the
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FIG. 1. (a) Fermi surface of the monolayer mHM at half-filling.
A valley-dependent scalar potential shifts, oppositely, the energies of
the Dirac cones. The Fermi surface consists of an electron pocket
(blue line) in one valley and a hole pocket (red line) in the opposite
valley. (b),(c) Nodal lines (red and blue lines) of the mHM on uncou-
pled bilayers where the intralayer pseudoscalar potential has opposite
signs corresponding (b) to �1 = −�2, and (c) to phases of opposite
signs and unequal magnitudes (�1�2 < 0), where �l (l = 1, 2) is
the intralayer complex phase of the NNN hopping integrals.

large interlayer coupling limit, the analytical expression of
the Chern number C of this insulating phase, which is found
to be C = ±2, in agreement with our numerical calculations.
To highlight the presence of the chiral edge states of the C =
±2 phase, we present, in Sec. IV, numerical electronic band
structures calculated in a ribbon geometry of mHM bilayers.
In Sec. V, a heuristic argument is presented to explain the
emergence of chirality in the mHM AB (BA) bilayer, and its
absence in the AA bilayer. In Sec. VI, we discuss possible
experimental realizations of our findings in real and artificial
materials. The concluding Sec. VII summarizes our results.
The paper also contains five appendices providing detailed
numerical and analytical results.

II. BILAYER MODIFIED HALDANE MODEL

We start with the HM on a honeycomb lattice with a unit
cell containing two different types of atoms denoted A and B.
The corresponding spinless fermionic Hamiltonian is [15]

HH = t
∑
〈i, j〉

c†
i c j + t2

∑
〈〈i, j〉〉

e−i�i j c†
i c j +

∑
i

Mic
†
i ci, (1)

where t (t2) is the hopping integral to first (second) nearest
neighbors, ci annihilate a spinless fermion on atom (i), �i j =
νi j� is the complex phase of NNN hopping integrals, and
νi j = ±1 according to the pattern given in Fig. 2(b). The last
term describes the Semenoff masses where Mi = M (−M) for
A (B) atoms.

In the sublattice pseudospin basis, the HM Bloch Hamilto-
nian can be written as

HH(k) = a0
kσ0 + bkσx + ckσy + (ak + M )σz, (2)

where σ and σ0 are, respectively, the sublattice Pauli
and 2 × 2 identity matrices, bk = Re( fk ), ck = −Im( fk ),
fk = t

∑3
i=1 eik·δi , a0

k = 2t2 cos �
∑3

i=1 cos(k · ai ), and
ak = −2t2 sin �

∑3
i=1 sin(k · ai ) is the Haldane mass. The

vectors δi (i = 1, 2, 3) connect an atom to its first neighbors,

and (a1, a2) is the Bravais lattice basis given by [Fig. 2(a)]
a1 = √

3aex, a2 = −
√

3
2 aex + a 3

2 ey, where a is the distance
between nearest neighbors. We also define a3 = −(a1 + a2)
(see Appendix A).

The modified Haldane model can be derived from the HM
[Eq. (2)] by flipping the sign of the phase � on one sublattice,
as shown in Fig. 2(c). The corresponding Hamiltonian [20]
can be deduced from Eq. (2) by changing akσz by akσ0,

HmH(k) = (
ak + a0

k

)
σ0 + bkσx + ckσy + Mσz, (3)

which describes a semimetal (due to band overlap) for |M| �
Mc ≡ 3

√
3t2 sin �, and a trivial insulator otherwise. In the

gapless phase, antichiral edge states emerge at the boundaries
of a ribbon structure [16].

Since ak = −a−k for � �≡ 0 mod [π ], the HM and the
mHM break TRS as T †Hα (k)T �= Hα (−k), where α =
HM, mHM, T = K , and K denotes complex conjugation.
Charge conjugation C = σzK and the sublattice chiral sym-
metries S = σz are also broken as C†Hα (k)C �= −Hα (−k)
and S†Hα (k)S �= −Hα (k). The HM belongs to the A class
of topological insulators [19] characterized by a Z invariant
(Chern number) [21], while the mHM is a semimetal or a
trivial insulator as stated before.

As the AA-stacked mHM bilayer does not show nontriv-
ial topological behavior (see Appendix B), we consider the
AB-stacked bilayer and denote by �l (l = 1, 2) the complex
phase in layer (l) (see Appendix C). The mHM in the Bernal
bilayer is described by the following Bloch Hamiltonian writ-
ten, in the basis of the four orbitals forming the unit cell

FIG. 2. (a) Modified Haldane model on AB stacked bilayer. The
monolayer unit-cell atoms are denoted by Al and Bl , where l = 1, 2
is the layer index. δi (i = 1, 2, 3) are the vectors connecting nearest-
neighboring (NN) atoms, (a1, a2) is the lattice basis, and � is the
phase of the complex NNN hoppings. The solid (dashed) arrows indi-
cate the pattern of the complex NNN hopping terms in the sublattice
A (B). The blue and orange lines correspond, respectively, to layers 1
and 2. (b) NNN hopping in the Haldane model and (c) in the modified
Haldane model.
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(A1, B1, A2, B2) [Fig. 2(a)], as

HB(k) =

⎛
⎜⎜⎝

A1,k + M1 fk 0 2t⊥
f ∗
k A1,k − M1 0 0
0 0 A2,k + M2 fk

2t⊥ 0 f ∗
k A2,k − M2

⎞
⎟⎟⎠, (4)

where we only considered the interlayer coupling 2t⊥ between
dimer sites (A1, B2). Here Ml (l = 1, 2) is the layer Semenoff
mass, and Al,k = al,k + a0

l,k, where

al,k = −2t2 sin �l

3∑
i=1

sin (k · ai ),

a0
l,k = 2t2 cos �l

3∑
i=1

cos (k · ai ). (5)

Introducing the layer pseudospin τ Pauli matrices and the
corresponding identity matrix τ0, HB(k) [Eq. (4)] reduces to

HB(k) = (bkσx + ckσy)τ0 + 2t⊥(σ+τ+ + σ−τ−)

+ 1
2 (A1 + A2)σ0τ0 + 1

2 (A1 − A2)σ0τz

+ 1
2 (M1 + M2)σzτ0 + 1

2 (M1 − M2)σzτz, (6)

where σ± = 1
2 (σx ± iσy) and τ± = 1

2 (τx ± iτy).
This Hamiltonian has some similarity with the Hamiltonian

given by Eq. (1) in Ref. [22], where the authors have studied
a modified Kane and Mele [18] model of a graphene layer
on a substrate. The Hamiltonian of Ref. [22] belongs to the
class AII [19,23] characterized by a Z2 invariant, whereas
the Hamiltonian given by Eq. (6) belongs to class A [19,23]
labeled by a Z invariant. Indeed, since al,−k = −al,k [Eq. (5)],
the system breaks TRS, T = K , the charge conjugation repre-
sented by C = σzτ0K , with C2 = 1 and the chirality S = τ0σz

[24].
To discuss the topological class of the system, one needs

to analyze the presence of gaps in the energy spectrum of the
Hamiltonian HB(k) [Eq. (6)] and, in particular, for vanishing
Semenoff masses (Ml = 0, l = 1, 2) where both layers are
semimetals.

We consider, for simplicity, the case in which �1 =
−�2 = ±π

2 to drop the energy shift term a0
l,k [Eq. (5)], which

does not affect the band topology. In this case, the energy
spectrum of HB(k) [Eq. (6)] shows a particle-hole symmetry
[25] and is given by

Eα1,α2 (k) = α1
√

Ak + α2Bk, (7)

where αi = ±1 and

Ak = a2
k + | fk|2 + 2t2

⊥, Bk = 2
√

| fk|2
(
a2

k + t2
⊥
) + t4

⊥. (8)

The eigenenergies given by Eq. (7) obey the inequalities
E−,+(k) � E−,−(k) � E+,−(k) � E+,+(k), and the gap sep-
arating the energy bands around the zero energy is � =
mink(�k ) = 2

√
Ak − Bk. The gap closing condition is(| fk|2 − a2

k

)2 = −4a2
kt2

⊥, (9)

which can be satisfied in two cases: (i) for ak = 0 (t2 = 0),
which corresponds to an AB graphene bilayer with only

nearest-neighboring (NN) hopping terms and a quadratic con-
tact point between the bands at zero energy [26]; and (ii) for
uncoupled layers (t⊥ = 0) where Eq. (9) reduces to |ak| =
| fk|, which defines two nonintersecting closed loops in the
Brillouin zone (BZ) and results in two valley closed Fermi
lines, originating from two overlapping bands (Fig. 1). The
gap [Eq. (9)] is therefore finite as soon as t⊥ and t2 are nonzero
[27].

At this point, a question arises: what are the possible values
of the Chern number C of the gapped phases resulting from
the instability of the Fermi lines? Numerically, we find that
C = ±2 when the two phases �l ∈ [−π, π ] (l = 1, 2) are
of opposite signs (�1�2 < 0) and that the system is gapless
when they are of the same sign.

To understand these findings, we proceed in two steps. We
first derive an effective 2 × 2 Hamiltonian in the limit of large
interlayer coupling (t2 � t⊥) at which it is simple to get an
analytical expression of the Chern number of the highest filled
energy band, denoted E−,−(k) [Eq. (7)] around half-filling.
Restricting the analytical calculations to this limit is fully
justified in the case of vanishing Semenoff masses since the
topology of the system is unchanged when the ratio t2/t⊥
crosses from t2/t⊥ � 1 to the opposite limit t2/t⊥ � 1. The
reason is that the gap does not close as soon as ak or/and t⊥
are turned on [Eq. (9)], which prevents any topological phase
transition.

In a second step, we calculate the energy-spectrum of the
mHM on AB-stacked nanoribbons to bring out the signature
of the chiral edge states corresponding to the bulk Chern
insulating phase.

III. EFFECTIVE TWO-BAND MODEL

In the limit of large interlayer coupling (t2 � t⊥), the en-
ergy bands corresponding to the dimer (A1, B2), coupled by
t⊥, are pushed away from zero energy. The lowest energy
bands around half-filling can then be described by an effective
2 × 2 model written in the subspace of the uncoupled orbitals
A2 and B1.

To derive the low-energy Hamiltonian, we use the Löwdin
partitioning method [26,28]. The effective 2 × 2 Hamiltonian
reduces to (see Appendix D)

Heff(k) = − 2t⊥
f 2
k

X 2
σ+ − 2t⊥

f ∗2
k

X 2
σ− +

[
1

2
(M1 + M2)

− ak

(
1 − | fk|2

X 2

)]
σz + 1

2
(M2 − M1)σ0, (10)

where the σ Pauli matrices are now written in the (A2, B1)
basis and X 2 = (ak + M1)(ak + M2) + 4t2

⊥.
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For M1 = M2 = 0, the eigenenergies are Eeff,±(k) =
±

√
a2

k(1 − | fk|2
X 2 )2 + 4t2

⊥
| fk|4
X 4 . Eeff,− is equal, to the leading

order in | fk|
t⊥

, to E−−(k) [Eqs. (7) and (8)].
To characterize the topology of the Hamiltonian given by

Eq. (10), we consider the limit Ml , t2 � t⊥ (l = 1, 2) and
expand Heff around the Dirac points ξK, where ξ = ± is the
valley index, so that Eq. (10) becomes (see Appendix D)

Heff(q) = − h̄2v2

t⊥

(
q2

x − q2
y

)
σx + 2τz

h̄2v2

t⊥
qxqyσy +

[
1

2
(M1

+ M2) − sgn (�1)3
√

3t2τz

]
σz + 1

2
(M2 − M1)σ0,

(11)

where q = k − ξK and �1 = −�2 = ±π
2 . The two first

terms in Eq. (11) describe the low-energy Hamiltonian of a
Bernal bilayer graphene [26], while the σz term contains both
a Haldane ak ∼ 3

√
3t2ξ and a Semenoff 1

2 (M1 + M2) mass
term.

The Chern number associated with the lowest band of this
two-band Hamiltonian is [29]

C =
∑

ξ

1

2
χ sgn(mξ ), (12)

where mξ = 1
2 (M1 + M2) − sgn(�1)3

√
3t2ξ is the total mass

and χ = −2ξ is the chirality of the quadratic band contact
point [26].

For vanishing Semenoff masses (Ml = 0) where topolog-
ical phase transitions are prohibited, sgn(mξ ) = − sgn(�1)ξ ,
which gives C = sgn(�1)2. This result is in agreement with
our numerical calculations of the Chern number C of the
four energy bands Eα1,α2 (k) [Eqs. (7) and (8)]: C−,+ = 0,
C−,− = ±2, C+,− = ∓2, and C+,+ = 0, giving rise, for the
occupied bands, to a total Chern number C = 2 (−2) for
�1 = −�2 = π

2 (−π
2 ).

The chiral insulating phases occur in the case in which
the complex phases �1 and �2 have opposite signs and the
Chern number of the lowest energy band is defined as far as
the system is gapped (see Appendix E).

IV. ZIGZAG AND ARMCHAIR RIBBONS

Figure 3 shows the band structure of AB stacked nanorib-
bons with zigzag boundaries described by the mHM with
complex phases �1 = −�2 = π

2 . For a nonvanishing inter-
layer coupling t⊥, a gap opens at half-filling and two pairs of
chiral edge states emerge.

The corresponding probabilities are depicted in Fig. 3(d),
indicating that the two edge modes, appearing at the left side
of the ribbon, have roughly equal weight on the two layers
and have the same velocity. Similarly, the right boundary
also supports two edge modes, but counterpropagating with
the left side channels. This feature confirms that the coupled
semimetal ribbons turn into a topological Chern insulator with
a Chern number C = 2. By flipping the signs of the complex
phases �1 = −�2 = −π

2 , the direction of propagation of the
chiral edge states at each boundary is reversed, which results
in a Chern number C = −2.

FIG. 3. Band structure of an AB bilayer mHM on zigzag
nanoribbons of a width W = 60 atoms. Calculations are done for
t2 = 0.1t , �1 = −�2 = π

2 , and M1 = M2 = 0. The interlayer hop-
ping is (a) t⊥ = 0, (b) t⊥ = 0.5t , and (c) t⊥ = 0.8t . (d) Probability
distributions of the edge states denoted by A, B, C, and D in (c) lo-
cated at the energy indicated by the dashed line. Sites numbered 1–60
(61–120) belong to the first (second) layer.

In Fig. 4, we represent the band structure of the mHM
bilayer ribbons with armchair boundaries in the case of
�1 = −�2 = π

2 and for vanishing Semenoff masses. Under
the interlayer coupling, the system becomes a C = 2 Chern
insulator.

The analytical expression of the Chern number [Eq. (12)]
is derived in the limit Ml , t2 � t⊥. To go beyond this limit,
we perform numerical calculations for different values of Ml ,
�l , t2, and t⊥ (see Appendix E).

For uncoupled layers, the closed Fermi lines survive if
the layers remain semimetallic, which is the case for |Ml | �
Mlc ≡ 3

√
3t2| sin �l |, (l = 1, 2), where the critical mass Mlc

marks the transition between the semimetallic phase (Ml �
Mlc) to the gapped phase (Ml > Mlc) of the monolayer
mHM. By turning on the interlayer coupling, our numerical

FIG. 4. (a) Band structure of an AB bilayer mHM on armchair
nanoribbons of a width W = 70 atoms and for t2 = 0.1t , t⊥ = 0.8t ,
M1 = M2 = 0, and �1 = −�2 = π

2 . (b) Corresponding probability
distributions of the edge states denoted by A, B, C, and D in (a).
Sites numbered 1–70 (71–140) belong to the first (second) layer.
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FIG. 5. Schematic interpretation of the stacking-dependent chi-
rality of the mHM bilayers in the case of opposite complex phases
�1 = −�2. (a) In the AB stacking, the interplane hopping t⊥ couples
the fluxes of A1 and B2 sublattices flowing in the same direction,
giving rise to a dominant clockwise chirality and a pair of chiral edge
states in each layer. (b) In the AA stacked layers, the A1 (B1) and the
A2 (B2) sublattices have opposite fluxes with no dominant chirality.

calculations show that, for realistic hopping integrals (t⊥ ∼ t2)
the system is gapped and becomes a Chern insulator. The cor-
responding Chern number is C = ±2 regarding the presence
of two channels of chiral edge states at each boundary of a
bilayer strip. If the Semenoff mass overcomes the Haldane
mass |Mlc| < |Ml |, the monolayers are trivial insulators and
the interlayer hopping t⊥ brings the mHM bilayer to a trivial
gapped phase with a vanishing Chern number C = 0, regard-
less of the stacking order (AA, AB, or BA) (see Appendix E).

In the case of the AA bilayer mHM, the system turns into
a semimetal (trivial insulator) in the absence (presence) of
Semenoff mass terms, regardless of the nature of the ribbon’s
boundaries (see Appendix B).

V. STACKING-INDUCED CHIRALITY

We now explain how the chirality emerges due to the
stacking order of the layers. This feature can be understood
from the schematic representation of the interlayer hopping
illustrated in Fig. 5, where we consider the case of opposite
complex phases �1 = −�2. Imagine a situation of finite t2
and of slowly turning on t⊥ in order to see the emergence of
a Chern (trivial) insulator in the case of AB (AA) stacking. In
AB-stacked bilayers, the interlayer hopping couples the sub-
lattice A1 and B2 where the fluxes flow in the same direction
[see Fig. 5(a)]. Consequently, the dimer chirality dominates
and gives rise to a pair of chiral edge states at each layer end.
If the interlayer hopping concerns the B1 and A2 atoms (BA
stacking), the flux flows are flipped in comparison with the
case in which the dimer is (A1, B2) and the system gains an
opposite chirality.

However, in the AA stacked bilayer mHM, the A1 and
A2 sublattices have opposite fluxes, which cannot result in a
dominant chirality [see Fig. 5(b)], and the system, if gapped,
cannot support chiral edge states (see Appendixes A and B).

When stacking a layer with its time-reversed copy, the
intuition is that time-reversal symmetry should be restored
and therefore the bilayer should not be chiral. This is indeed
what occurs for AA stacking (see Appendix B). However,
AB/BA stacking favors one chirality by explicitly breaking
the symmetry between the two layers.

One could also imagine a situation in which AA stacking
becomes unstable and spontaneously chooses between AB
and BA stacking. A possible mechanism would be similar to
a Peierls instability, in which a loss in elastic (lattice deforma-
tion) energy is compensated by a gap opening leading to a gain
in electronic energy. The net result would be a spontaneous
time-reversal symmetry breaking and the spontaneous emer-
gence of a Chern insulator (see, e.g., Ref. [30] for a similar
idea). We leave such a study to future work.

VI. POSSIBLE EXPERIMENTAL REALIZATIONS

How do we implement experimentally the stacking-
induced C = ±2 Chern insulator in a bilayer of mHM? The
experimental realization of such a phase depends on the state-
of-the-art of the implementation of the monolayer mHM in
real systems.

As shown in Fig. 6, the realization of this intriguing
Chern insulator requires complex phases with opposite signs
(�1�2 < 0) and not necessarily �1 = −�2 = π/2, which we
have considered in our calculations for the sake of simplicity
(Fig. 12).

A first implementation of such a phase could be achieved
in electric circuits [31,32] and photonic crystals [33,34] where
two layers of artificial mHM, with complex phases of opposite
signs, are coupled by an interlayer tunneling.

It is worth noting that the monolayer mHM has not yet
been realized in real materials. Colomés and Franz [16] pro-
posed the hexagonal transition-metal dichalcogenide (TMD)
monolayers, and in particular WSe2, as excellent candidates
to realize the mHM.

Based on this idea, we propose that a Bernal bilayer of
WSe2 may be a platform to realize the C = ±2 stacking-
induced Chern insulator.

To have opposite signs for the complex phases in both
layers (�1�2 < 0), we propose that one layer should be
hole-doped while the other electron-doped. This requirement
could be understood from Fig. 4(a) of Ref. [16] showing the
band structure of WSe2 nanoribbon where the edge states in
the valence band (VB) and the conduction band (CB) have
opposite group velocities. If the Fermi level crosses the edge
state of the VB (CB), the system may mimic a monolayer
mHM with a positive (negative) complex phase � (Fig. 12)
(see Appendix E).

We then expect to realize the Chern C = ±2 gapped phase
in an AB stacked bilayer of a hole-doped h-WSe2 and an
electron-doped e-WSe2. The electron and hole doping of
WSe2 have already been achieved using substitutional doping
[35] and field-induced electron doping [36].
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FIG. 6. Summary of the stacking-dependent properties of the
Haldane (HM) and the modified Haldane (mHM) models in bilayer
honeycomb lattices. �l (l = 1, 2) is the complex phase of the NNN
hopping term in layer l , Cl is the corresponding Chern number,
while C is the total Chern number of the lowest occupied bands at
half-filling. C = ∅ means an undefined Chern number. The yellow
cells indicate the case showing unexpected topological behavior (i.e.,
C �= C1 + C2), which has been studied in the main text. The other
cases are discussed in Appendixes A, B, and E.

What are the experimental fingerprints of the C = ±2
Chern phase in bilayer stacked mHM?

The Hall resistance is expected to be quantized as Rxy =
±2 h

e2 [11]. Dissipationless transport properties of the chiral
edge states could also be used to probe the emergence of the
chiral modes [37].

Scanning tunneling microscopy (STM) has been widely
used to map the gapless edge states of topological materials
[38]. Within this technique, the differential tunneling con-
ductance dI

dV , which measures the local density of states, is
expected to show a pronounced step edge within the gap of the
h-WSe2/e-WSe2 AB-bilayer, indicating the presence of chiral
edge states crossing the Chern gap [38]. Moreover, STM in
a finite magnetic field [39] can also be used to uncover the
topological nature of the gapped phase of h-WSe2/e-WSe2

AB-bilayer and the corresponding Chern number based on
the Landau fan diagram. Local compressibility measurements
using a scanning single-electron transistor [40] are a power-
ful probe to detect the incompressible chiral edge states and
to encode their Chern number indexation. Atomic force mi-
croscopy [41] and angle-resolved photoemission spectroscopy
[42] are also possible techniques to reveal the presence of the
chiral edge states.

VII. CONCLUSION

We discussed the topological properties of the modified
Haldane model [16] in a bilayer of a honeycomb lattice where
the TRS is broken, oppositely, in the uncoupled semimetallic
layers. We found that, in the AB stacked bilayer, the interlayer
hopping drives the system into a topological insulator, with a
Chern number C = ±2. The smoking gun of this insulating
phase is the systematic emergence of two channels of chi-
ral edge states at the boundaries of the AB bilayer ribbons,
regardless of the boundary nature (zigzag/armchair) of the
ribbons [43,44]. However, the modified Haldane model in the
AA stacked bilayer is found to be a semimetal or a trivial
insulator depending on the value of the Semenoff masses. Our
results are schematically summarized in Fig. 6, where we also
give the behavior of the HM in AA and AB stacked bilayers.
This stacking-induced Chern insulator could be readily real-
ized in bilayers of electrical circuits [31] and photonic crystals
[33] by coupling two time-reversal copies of the mHM, which
was already implemented in a microwave-scale gyromagnetic
photonic crystal [34] and in electrical circuits [32]. An exper-
imental implementation with real material can be achieved in
the hexagonal WSe2, where the Dirac cone shift is due to spin-
orbit coupling [16]. We propose that a Chern insulator with
C = ±2 can be hosted by a Bernal bilayer of WSe2 where
one layer is hole-doped while the other is electron-doped.
The present work could be extended to multilayer structures
of semimetals with broken TRS, opening the way to tunable
Chern insulators, as realized with heterostructures of topo-
logical insulators [45]. We also expect a twist-induced Chern
insulator [46] in a moiré superlattice of twisted honeycomb
bilayers [47], where AA stacked domains form a triangular
lattice alternating with AB and BA regions. A gapless (or a
gapped trivial insulating) state, emerging in the AA domains,
may coexist with Chern insulating phases in the AB and the
BA regions with, respectively, a Chern number C = ±2 and
∓2 [46].
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APPENDIX A: AA AND AB BILAYER HALDANE MODEL

We consider a HM bilayer with AB or AA stackings, where
the layers are assumed to have complex NNN phases �1 =
−�2 = π

2 , to drop the global energy shift a0
k = 0 [Eq. (5)

of the main text], which does not affect the topology of the
system. On the basis of the four orbitals forming the unit
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FIG. 7. Tight-binding calculations of the electronic band struc-
ture of an AB bilayer HM on zigzag nanoribbons of a width W =
60 atoms. The interlayer hopping is (a) t⊥ = 0, (b) t⊥ = 0.5t , and
(c) t⊥ = 0.8t . Calculations are done for �1 = �2 = π

2 , M1 = M2 =
0, and t2 = 0.1t , where t is the NN hopping integral.

cell (A1, B1, A2, B2), the corresponding Hamiltonians can be
written as

HAA-HM(k) =

⎛
⎜⎜⎝

ak + M1 fk 2t⊥ 0
f ∗
k −ak − M1 0 2t⊥

2t⊥ 0 −ak + M2 fk
0 2t⊥ f ∗

k ak−M2

⎞
⎟⎟⎠,

(A1)

HAB-HM(k) =

⎛
⎜⎜⎝

ak + M1 fk 0 2t⊥
f ∗
k −ak − M1 0 0
0 0 −ak + M2 fk

2t⊥ 0 f ∗
k ak−M2

⎞
⎟⎟⎠.

(A2)

These Hamiltonians can be expressed, using the sublattice and
the layer pseudospin matrices σ and τ, as

HAA-HM(k) =(bkσx + ckσy)τ0 + 2t⊥σ0τx + akσzτz

+ 1
2 (M1 + M2)σzτ0 + 1

2 (M1 − M2)σzτz, (A3)

HAB-HM(k) = (bkσx + ckσy)τ0 + t⊥(σxτx − σyτy) + akσzτz

+ 1
2 (M1 + M2)σzτ0 + 1

2 (M1 − M2)σzτz,

(A4)

where ak is given by Eq. (5) in the main text.
HAA-HM (HAB-HM) breaks TRS T = K , the charge conju-

gation, represented by C = σzτzK (C = σzτ0K) with C2 = 1,
and the chirality S = τzσz (S = τ0σz).

In the following, we will show, based on numerical band-
structure calculations on bilayer ribbons, that coupling two
HM with opposite chiralities (C1 = −C2), resulting from op-
positely broken TRS (�1 = −�2), gives rise, as expected, to a
trivial Chern insulator with C = C1 + C2 = 0. We will discuss
the stacking order, the nature of the ribbon edges (zigzag or
armchair), and the effect of the intralayer Semenoff masses
Ml , where l = 1, 2 is the layer index. The case of AA stacking
was discussed in Ref. [17] for a fixed value of the mass term
Ml .

Figure 7 shows the band structure of the AB bilayer HM
on zigzag ribbons for �1 = �2 = π

2 , M1 = M2 = 0, and at
different values of the interlayer hopping t⊥. Starting from
uncoupled (t⊥ = 0) chiral layers, with equal Chern number
C1 = C2 = ±1, the system turns, under the interlayer cou-
pling, into a Chern insulator with a Chern number C = ±2
characterized by a pair of chiral edge states propagating at the
boundaries of each layer as shown in Fig. 6 of the main text.

FIG. 8. Electronic band structure of an AB bilayer HM on
zigzag nanoribbons of a width W = 60 atoms. Calculations are done
for t2 = 0.1t , �1 = �2 = π

2 , t⊥ = 0.5t and for (a) M1 = M2 = 0,

(b) M1 = M2 = √
3t2, (c) M1 = −M2 = √

3t2, (d) M1 = 0, M2 =
3
√

3t2, (e) M1 = 0, M2 = 5
√

3t2, and (f) M1 = 5
√

3t2, M2 = 5
√

3t2.

As shown in Fig. 8, the C = ±2 Chern insulating phase
occurs as far as the Semenoff mass |Ml | < |Mlc|, where

Mlc = 3
√

3t2 sin �l . (A5)

Mlc is the critical mass at which the transition from a topolog-
ical phase (Cl = ±1) to a trivial gapped phase (Cl = 0) takes
place in the monolayer HM [15].

This behavior is independent of the nature (zigzag or arm-
chair) of the ribbon boundaries as shown in Fig. 9.

Regardless of the stacking type (AB or AA), the bilayer
HM is [17] (i) a trivial insulator if the layers have opposite
Chern numbers C1 = −C2; (ii) a topological chiral insulator
with C = ±2 if the layers have the same chirality (C1 = C2);
and (iii) a Chern insulator with C = ±1 if one layer has a
nonvanishing Chern number C1 = ±1 and the other layer is
a trivial insulator C2 = 0, as depicted in Fig. 10 showing the
band structure of an AA bilayer HM on zigzag ribbons.

APPENDIX B: MODIFIED HALDANE MODEL
IN THE AA BILAYER

Figure 11 shows the band structure of the mHM in AA
stacked ribbons with zigzag and armchair boundaries in the
case of opposite complex phases �1 = −�2. In the absence

FIG. 9. Electronic band structure of an AB bilayer HM on
(a) zigzag and (b) armchair nanoribbons of a width W = 60 atoms.
Calculations are done for t2 = 0.1t , t⊥ = 0.5t , �1 = �2 = π

2 , and
M1 = M2 = 0.
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FIG. 10. Electronic band structure of an AA bilayer HM on
zigzag nanoribbons of a width W = 60 atoms for t⊥ = 0.5t :
(a) �1 = �2 = π

2 , M1 = M2 = 0; (b) �1 = �2 = − π

2 , M1 = M2 =
0; (c) �1 = �2 = π

2 , M1 = 0, M2 = 5
√

3t2; and (d) �1 = π

2 , �2 =
0, M1 = √

3t2, M2 = 0. Calculations are done for t2 = 0.1t in (a),
(b), and (d) and t2 = 0.2t in (c).

of the Semenoff masses (M1 = M2 = 0), the system remains
gapless under the interlayer coupling. However, it becomes a
trivial insulator if the layers have Semenoff mass terms.

Therefore, in the absence of the Semenoff masses, the
Fermi surface (Fig. 1) of the mHM in AA stacked bilayer

FIG. 11. Band structure of the mHM on AA nanoribbons of
a width of W = 60 atoms with (a),(c),(d) zigzag and (b) arm-
chair boundaries. Calculations are done for (a) t2 = 0.1t , t⊥ = 0.5t ,
(b) �1 = −�2 = π

2 , M1 = M2 = 0; while in (c) �1 = −�2 = π

2 ,

M1 = −M2 = √
3t2, and (d) �1 = −�2 = π

2 , M1 = 0, M2 = √
3t2.

is, contrary to the AB stacking, stable against the interlayer
hopping, which cannot induce a gap opening.

To understand the Fermi surface stability, we start by
writing the corresponding Hamiltonian on the basis of the
four orbitals forming the unit cell (A1, B1, A2, B2), and we
consider, for simplicity, the case of opposite complex NNN
phases �1 = −�2 = π

2 to have a vanishing global energy
shift [a0

k = 0, Eq. (5) of the main text]

HAA-mHM(k) =

⎛
⎜⎜⎝

ak fk 2t⊥ 0
f ∗
k ak 0 2t⊥

2t⊥ 0 −ak fk
0 2t⊥ f ∗

k −ak

⎞
⎟⎟⎠. (B1)

This Hamiltonian can be written, using the sublattice and the
layer pseudospin matrices σ and τ, as

HAA-mHM(k) = (bkσx + ckσy)τ0 + 2t⊥σ0τx + akσ0τz, (B2)

where ak is given by Eq. (5) in the main text.
The Hamiltonian of Eq. (B2) breaks TRS, T = Kτx, the

charge conjugation, represented by C = σzτzK with C2 = 1,
and the chirality S = τzσz.

The gap separating the two bands, E−,−(k) and E+,−(k),
around the zero energy is � = mink(�k ), where

�k = 2
√

Ak − Bk, Ak = a2
k + | fk|2 + 4t2

⊥,

Bk = 2| fk|
√

a2
k + 4t2

⊥. (B3)

�k = 0 leads to

| fk|2 = a2
k + 4t2

⊥, (B4)

which defines a closed Fermi line.
For ak = 0, Eq. (B4) corresponds to the Fermi line of the

AA graphene bilayer in the absence of NNN hopping terms.
For t⊥ = 0, Eq. (B4) describes the mHM in AA bilayer with a
particle-hole Fermi line obeying to | fk| = |ak|.

By turning on t⊥, this Fermi line is simply shifted but
it cannot be gapped [Eq. (B4)]. The mHM on AA bilayer
remains, then, metallic for vanishing Semenoff masses.

APPENDIX C: PHASE TRANSITION FROM THE AB TO
THE BA BILAYER OF THE MODIFIED HALDANE MODEL

We consider a generic Hamiltonian that, continuously, in-
terpolates between AB (θ = 0) and BA (θ = π/2) stackings
of two single graphene layers described by the mHM. The
interlayer hopping term, for a given value of θ between these
limits, does not represent physical coupling. We take, for
simplicity, vanishing Semenoff masses and in-plane complex
phases �1 = −�2 = π

2 . The Bloch Hamiltonian written in the
basis (A1, B1, A2, B2) is

HB(k, θ ) =

⎛
⎜⎜⎝

ak fk 0 2t⊥cθ

f ∗
k ak 2t⊥sθ 0
0 2t⊥sθ −ak fk

2t⊥cθ 0 f ∗
k −ak

⎞
⎟⎟⎠, (C1)

where fk = t
∑3

i=1 eik·δi and ak = −2t2
∑3

i=1 sin(k · ai ). The
AB (BA) stacking corresponds to cθ ≡ cos θ = 1 and sθ ≡
sin θ = 0 (cθ = 0, sθ = 1).
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FIG. 12. Band structure of the mHM in AB stacked bilayer ribbons of a width W = 60 atoms, for t2 = 0.1t , t⊥ = 0.5t , M1 = M2 = 0;
(a) �1 = −�2 = π

3 , �1 = π

3 , �2 = − π

4 ; and (c) �1 = 0, �2 = − π

2 .

By varying θ , the system can be interpolated between the
two stacking configurations, without going through the AA
stacking. Using the intralayer and interlayer pseudospin ma-
trices σ and τ, the Bloch Hamiltonian of Eq. (C1) becomes

HB(k, θ ) =(bkσx + ckσy)τ0 + 2t⊥[(cθσ+ + sθσ−)τ+
+ 2t⊥(cθσ− + sθσ+)τ−], (C2)

where bk, ck, σ±, and τ± are given in the main text [Eqs. (2)
and (6)].

The Hamiltonian of Eq. (C2) breaks TRS, chirality, but is
invariant under charge-conjugation and inversion since Ml =
0 and �1 = −�2 = π

2 . The corresponding energy spectrum is
expressed, as in Eq. (7) of the main text, with

Ak = a2
k + | fk|2 + 2t2

⊥,

Bk = 2
√

| fk|2
(
a2

k + t2
⊥
) + c2

2θ t4
⊥ + s2θ t2

⊥
(
b2

k − c2
k

)
. (C3)

The gap separating the lowest energy band around zero energy
is � = mink(�k ) = 2

√
Ak − Bk.

�k closes, for uncoupled layers (t⊥ = 0), for Ak = Bk
which defines, as we have seen in the main text, two nonin-
tersecting closed Fermi lines. For a nonvanishing interlayer
hopping t⊥, �k can be expressed as

�k = 2

√
A2

k − B2
k

Ak + Bk
∼ 2t⊥

| fk|
√

(1 − s2θ )b2
k + (

λ2
k − c2

2θ

)
t2
⊥,

(C4)

where we introduced the parameter λk defined as

a2
k = | fk|2 + (2λk − 1)t2

⊥. (C5)

In Eq. (C4), the numerator is given by its exact expression,
whereas the denominator has been approximated to zeroth

order in t⊥. According to Eq. (C4), �k cannot vanish for
θ �= π/4, 3π/4. For θ = π/4, �k = 0 if λk = 0, which gives
rise, according to Eq. (C5), to a closed loop defined by
a2

k + t2
⊥ = | fk|2. For θ = 3π/4, the closing of the gap �k

requires λk = 0 and bk = 0.
The critical values θ = π/4, 3π/4 correspond to the

semimetallic phase marking the transition from the topologi-
cal Chern insulator phase C = 2, occurring for 0 � θ < π/4,
to the Chern insulator phase C = −2, associated with 3π/4 <

θ � π . At this topological phase transition, the gap closes at
the four Dirac points of the bilayer system where, right after
the transition, the signs of the Dirac masses flip [see Eq. (12)],
inducing a variation �C = −4 of the Chern number.

The flipping of the Chern number sign, at the crossing from
the AB to the BA stacking, could be understood from Fig. 5 of
the main text. Such crossing can be regarded as a sign change
of the complex phases: since the in-plane sublattices have
opposite fluxes, the AB stacking corresponds to the dimer
(A1, B2) for which the complex phases are �1 = −�2 = π/2
while the BA stacking is ascribed to the dimer (B1, A2) with
�1 = −�2 = −π/2 (Fig. 5 of the main text).

APPENDIX D: EFFECTIVE TWO-BAND MODEL FOR THE
MODIFIED HALDANE MODEL IN THE AB BILAYER

To derive the low-energy Hamiltonian given by Eq. (10) in
the main text, we use the Löwdin partitioning method [26,28]
in the case of bilayer graphene. For simplicity, we consider
the case �1 = −�2 = ±π

2 to remove the energy-shift terms
a0

l,k [Eq. (5)]. We rewrite the full Hamiltonian [Eq. (4) of the
main text] in the basis (A2, B1, A1, B2) as

HB(k) =
(

Hαα Hαβ

Hβα Hββ

)
, (D1)

FIG. 13. Band structure of the mHM in monolayer graphene nanoribbon with zigzag boundaries and a width W = 60 atoms. Calculations
are done for t2 = 0.1t , � = π

2 ; (a) M = 0; (b) M = 0.1t2; (c) M = Mc ≡ 3
√

3t2; and (d) M2 = 4
√

3t2.
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FIG. 14. Band structure of the mHM in AB stacked bilayer zigzag ribbons of a width W = 60 atoms with t2 = 0.1t , t⊥ = 0.5t , �1 =
−�2 = π

2 , (a) M1 = M2 = 0, (b) M1 = 0, M2 = t2, (c) M1 = 0, M2 = 3
√

3t2 (d) M1 = 0, M2 = 6
√

3t2, (e) M1 = M2 = √
3t2, (f) M1 = −M2 =√

3t2, (g) M1 = M2 = 3
√

3t2, (h) M1 = M2 = 4
√

3t2.

where

Hαα =
(−ak + M2 0

0 ak − M1

)
,

Hαβ = Hβα

(
0 fk
f ∗
k 0

)
, Hββ =

(
ak + M1 t⊥

t⊥ −ak − M2

)
.

(D2)

The corresponding effective Hamiltonian is [26]

Heff(k, E ) = Hαα + Hαβ (E − Hββ )−1Hβα, (D3)

which reduces in the limit Ml ∼ t2 � t⊥ (l = 1, 2), and for
E ∼ 0, to

Heff(k, E = 0) ≡ Heff(k) ∼ Hαα − 1

X 2
HαβHββHβα, (D4)

where X 2 = (ak + M1)(ak + M2) + 4t2
⊥.

Assuming Ml
| fk|2
X 2 � Ml ′ ∼ t2 (l, l ′ = 1, 2), the corre-

sponding effective Hamiltonian gives rise to Eq. (10) of the
main text.

APPENDIX E: EFFECT OF COMPLEX PHASES
AND OF SEMENOFF MASSES ON THE AB BILAYER

OF THE MODIFIED HALDANE MODEL

It is noteworthy that the induced Chern insulator in the AB
bilayer mHM occurs as far as �1 and �2 have opposite signs
and not only in the case in which �1 = −�2 = π

2 , which
we considered to obtain simple analytical expressions. This
feature is shown in Fig. 12.
The effect of the Semenoff masses on the mHM in mono-
layer graphene nanoribbon is represented in Fig. 13 showing
that the mass term lifts the degeneracy of the antichiral edge
modes, which survive as far as M < Mc ≡ 3

√
3t2 sin �.

In Fig. 14, we plot the band structure of the mHM on AB
bilayer honeycomb lattices with different choices of intralayer
Semenoff masses. Figure 14 shows that, in AB bilayer mHM,
the chiral edge states emerge as far as Ml < Mlc [Eq. (A5)],
for which the nodal lines, originating from the overlap of
the two layer bands, can occur, as discussed in the main text
(Fig. 1).
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