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Nature of visons in the perturbed ferromagnetic and antiferromagnetic Kitaev honeycomb models
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The Kitaev honeycomb model hosts a fascinating fractionalized state of matter featuring emergent Majorana
fermions and a vison particle that carries the flux of an emergent gauge field. In the exactly solvable model these
visons are static, but certain perturbations can induce their motion. We show that the nature of the vison motion
induced by a Zeeman field is sharply distinct in the ferromagnetic vs the antiferromagnetic Kitaev models.
Namely, in the ferromagnetic model the vison has a trivial nonprojective translational symmetry, whereas in the
antiferromagnetic Kitaev model it has a projective translational symmetry with π flux per unit cell. The vison
band of the ferromagnetic case has zero Berry curvature and no associated intrinsic contribution to the thermal
Hall effect. In contrast, in the antiferromagnetic case there are two gapped vison bands with opposite Chern
numbers and an associated intrinsic vison contribution to the thermal Hall effect. We discuss these findings in
light of the physics of the spin liquid candidate α-RuCl3.
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I. INTRODUCTION

The Kitaev honeycomb model [1] has become a paradig-
matic playground to investigate spin liquids with emergent
fermions and Z2 gauge fields in two dimensions. Unlike other
exactly solvable models, the model only contains spin bilinear
interactions, and it is believed to be a reasonable description
of certain quantum magnets, such as α-RuCl3 [2–4]. Although
α-RuCl3 forms a zigzag antiferromagnet in the absence of
applied magnetic fields [5–7], there are several experimental
indications that it might harbor a quantum spin liquid once an
in-plane magnetic field is applied within the range of ∼6–11 T
[8–18].

Nevertheless, the connection between the experimentally
observed potential spin liquid in α-RuCl3 and the spin liq-
uids realized in the weakly perturbed ideal Kitaev model is
currently far from clear. This stems in part from the lingering
uncertainty regarding the minimal Heisenberg-type model de-
scribing the material. The largest coupling term in α-RuCl3,
denoted by K , is in fact believed to be the term that appears
in the ideal Kitaev model. While a majority of studies have
advocated that this coupling is ferromagnetic (FM, K < 0),
others have advocated for an antiferromagnetic (AFM, K > 0)
exchange coupling (see Refs. [19,20] for tables summarizing
the estimates of several studies). Some of the prominent ob-
servational evidence favoring K to be ferromagnetic comes
from elastic x-ray scattering experiments [21] that determined
the direction of the ordered moment in the zigzag AFM state,
which is dependent on the sign of K [22]. Inelastic x-ray
scattering experiments [23] have also advocated for a fer-
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romagnetic coupling. However, these experiments relied on
modeling the zigzag AFM state, which is highly susceptible to
perturbations and itself subjected to very strong quantum fluc-
tuations. Therefore we believe that there is still some room to
be reasonably skeptical about the certainty of the sign of this
coupling. Determining this sign is crucial for many reasons.
For example, the spin liquid realized in the AFM coupled
case is more robust to certain perturbations, as compared with
the spin liquid realized for the FM coupled case [24–27].
Additionally, the nature of the phases driven by the applied
Zeeman field can be very different in both cases, displaying
a delicate dependence on the further-neighbor exchange cou-
plings allowed by symmetry, such as the �, �′, J , and J3 terms
[3,19,20,24–30].

In this paper we will further emphasize the importance of
the sign of K by demonstrating that the FM Kitaev model is in
a sharply distinct topological phase compared with the AFM
Kitaev model in the presence of a Zeeman field. More specifi-
cally, we will show that even though the FM and AFM Kitaev
models realize ground states within the same celebrated Ising
topological order, they realize distinct symmetry-enriched
topological orders with regard to the translational symmetry
of the lattice and therefore belong to two distinct universality
classes. This distinction manifests vividly in the properties of
their vison quasiparticles [31–34], the vison being the emer-
gent non-Abelian anyon analogous to a π flux in a p + ip
superconductor that carries a Majorana fermion zero mode in
its core [35].

We will show that for the FM Kitaev model, lattice transla-
tions act on the vison in an ordinary nonprojective way. This
implies that the vison Bravais lattice contains a single state
per unit cell associated with each hexagon of the honeycomb
lattice [see Fig. 1(a)], and as a consequence its Berry curva-
ture vanishes everywhere in its Brillouin zone. One important
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FIG. 1. (a) Honeycomb lattice of the Kitaev model. The x, y,
and z links are labeled. The visons are located at the center of the
hexagons, e.g., a, b, c, and d highlighted in the schematic. A- and B-
sublattice sites are represented by open and solid circles, respectively.
(b) The tilted honeycomb lattice with vertices placed on the links of
a square lattice. Visons are now located at the vertices of the square
lattice, while the ε fermions sit at plaquettes. A-sublattice sites of
the original honeycomb lattice now all align on vertical links of the
square lattice.

aspect that we will emphasize in this paper is that in order
to correctly capture the motion of the vison induced by the
Zeeman field, it is crucial to include the Haldane mass term
that is generated perturbatively by the Zeeman field on the
itinerant Majorana fermions. Such a term is strictly necessary
in order to make the state a fully gapped topologically ordered
phase of matter and to make the vison an exponentially lo-
calized particle. In fact, we will directly show numerically
that in finite-size systems the phase that the vison acquires
is highly sensitive to system size and boundary conditions
when the Haldane mass of the Majorana is set to be exactly
zero. On the other hand, we will also show numerically that as
the thermodynamic limit is approached any small but nonzero
Haldane mass term is sufficient in order to regularize and
obtain a unique and well-defined phase for the visons as they
move around a unit cell of the Bravais lattice.

On the other hand, we will show that for the AFM Kitaev
model the presence of the Haldane mass term leads to a finite
vison hopping. We will show that interestingly, in the AFM
case, the vison has indeed projective translations with π flux
per unit cell allowing it to have a finite Berry curvature and
two Chern bands with Chern numbers C = ±1. We will also
show, in agreement with Ref. [36], that perturbatively in the
applied Zeeman field, the vison in the FM Kitaev model has a
larger bandwidth than in the AFM Kitaev model, so the vison
band minimum reaches zero faster in the former (FM) case as
the Zeeman field increases (see Fig. 5 for a plot of vison bands
in both FM and AFM Kitaev models). This is crucially related
to the stability of the latter against Zeeman perturbations
that would stabilize competing ordered phases, because some
of these instabilities could be viewed as gauge confinement
transitions driven by vison condensation that would appear
as its bandwidth increases and the vison gap closes at certain
momenta.

Our work is also interesting from the point of view of
the mathematical methods that we exploit to compute these
properties. In fact, our results are an application of an exact
lattice operator duality recently developed in Ref. [37], which
extended the mapping of Ref. [38], from the underlying local

spin degrees of freedom onto nonlocal fermion (spinon) and
hard-core boson (vison) degrees of freedom. For related ideas
and developments, see also Refs. [39–41]. Our methods could
also be useful for investigating other experimentally relevant
observables, such as the static and dynamic spin correlation
functions [42–46].

This paper is organized as follows: In Sec. II, we introduce
and review the model of interest, which is the Kitaev model
perturbed by a Zeeman field. We then discuss how the Zeeman
couplings could induce vison hoppings in Sec. III A, and we
set up the general formulas that define the vison hopping am-
plitudes and the phases associated with vison hopping around
small closed loops of the lattice. In Sec. III B, we review the
recently developed exact duality mapping [37] and discuss
how to explicitly compute the vison hopping amplitudes and
phases defined in Sec. III A. Section IV contains the main
results of this study. Section IV A presents the explicit numer-
ical results of the vison hopping amplitudes and phases for
both FM and AFM coupled models. In Sec. IV B we show that
for the AFM case the vison bands are topologically nontrivial
and carry a finite Berry curvature and nonzero Chern numbers.
In Sec. V we provide additional evidence for our conclusions,
by showing that the vison phases around loops agree with
those of certain commuting projector Hamiltonians where
calculations can be performed fully analytically. Finally, in
Sec. VI, we summarize our findings and make some sugges-
tions for guiding experimental efforts to further determine the
sign of K in α-RuCl3. Appendix A discusses the dependence
on boundary conditions for both FM and AFM models, and
Appendix B discusses details of finite-size effects and the
infinite-size extrapolation of our results.

II. KITAEV MODEL PERTURBED BY A ZEEMAN FIELD

The model of interest is the Kitaev honeycomb model with
a Haldane mass term [1]:

H = HK − κ
∑
i, j,k

XiYjZk,

HK = K

⎛
⎝ ∑

x links

XiXj +
∑

y links

YiYj +
∑

z links

ZiZ j

⎞
⎠. (1)

Here, Xi, Yj , and Zk are the Pauli matrices of spins residing in
the sites of the honeycomb lattice [see Fig. 1(a)]. The above
Hamiltonian is exactly solvable and features a dispersive band
of itinerant Majorana fermions and a gapped flat band of
visons with an energy E0 ≈ 0.15|K| for |κ| � |K| [1]. The
term κ induces a Haldane mass on the Majorana fermions that
would otherwise have a gapless dispersion (see Ref. [1] for
the choice of i, j, k in the summation). Therefore this term
is needed in order to have a fully gapped topologically or-
dered state and exponentially localized Majorana zero modes
carried by the vison. Throughout this paper we will keep κ

as an independent parameter of the model, but we will view
it implicitly as a term that is perturbatively generated by a
physical Zeeman field, whose leading form is κ ≈ hxhyhz/K2

[1]; in particular, in all of our subsequent discussions it is
understood that we fix sgn(κ ) = sgn(hxhzhy). It should be
noted that in the presence of other types of perturbations, the
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induced Haldane mass term can scale linearly with h [46];
therefore a finite κ term is physically relevant in those cases
as well.

In addition to the above, we include the following explicit
Zeeman coupling to H in Eq. (1):

�H = −
∑

j

(hxXj + hyYj + hzZ j ). (2)

The above term is produced by an external magnetic field.
Crucially, this term induces not only the aforementioned
Haldane mass term (provided that each component of the
magnetic field is nonzero), but also the motion and pair cre-
ation or annihilation of the vison particles, destroying the
exact solvability of the model. We will therefore treat this
term as a perturbation. Our goal is to compute the perturbative
hoppings and band dispersions that this term induces on the
visons and to compute the real-space phases that result from
such vison motion when it is transported around a unit cell
of its triangular lattice. While the magnitude of these hop-
pings will depend on the detailed form of the perturbation
that induces the vison hopping, we wish to emphasize that
this phase is independent of the specific detailed form of the
operator that induces the vison motion, as long as it respects
translational symmetry, since this phase is a universal property
of the topologically ordered state enriched by translational
symmetry, as recently argued in Ref. [37]. Therefore, as we
will see, this phase is in exact agreement with the phase that
was computed in Ref. [37] with a perturbation different from
the Zeeman field.

III. METHODS

A. Vison hoppings in the honeycomb lattice

The visons can be viewed as being located at the center of
each hexagon. The vison parity operator at a hexagon or pla-
quette p, Wp, equals −1 (1) when a vison is present (absent)
in a plaquette, and it is a product of the Pauli matrices of the
six spins surrounding p [1]. For example, for the hexagon d in
Fig. 1(a), we have

Wd = X4Y6Z7X8Y1Z2. (3)

For H in Eq. (1), the vison parity Wp is a constant of motion.
However, its value (±1) can be flipped by local spin operators.
For example, for an α link (α = X,Y, Z) between vertices
i and j, αi and α j anticommute with vison parities at both
plaquettes sandwiching the link (i, j) and commute with the
vison parities at other hexagons. Therefore αi and α j can
induce vison hoppings across the link (i, j). The Zeeman
coupling �H in Eq. (2) involves a sum of all the local spin
operators; as a result, it can also induce vison hopping across
each link. Below we will illustrate how to extract the vison
hopping amplitudes, induced by �H , from an example.

Let us consider an eigenstate of H from Eq. (1) con-
sisting of two far-distant visons. We are interested in the
“single-particle” properties of the visons; therefore we will
take one of these visons simply as an auxiliary vison that is
held immobile while the other is allowed to move [this can
be accomplished by only acting with the perturbation �H
from Eq. (2) within the region containing the mobile vison of

interest]. We place the immobile vison at a hexagon at R0 and
consider fluctuations of the mobile vison within hexagon a, b,
c, or d in Fig. 1(a). The lowest-energy eigenstate of H for each
two-vison configuration is denoted as |�(R0, Rl )〉, with l =
a, b, c, d . In the limit in which the two visons are much farther
apart than the typical localization length of their Majorana
zero modes, these four states will be degenerate. Moreover,
when κ is finite, there will be a gap to all excitations, and
therefore only those configurations that differ by changing the
position of the vison will be connected by the perturbation
�H . Under these conditions, one can then conceptualize these
processes as coherent hopping of the vison particles. Then the
leading in �H perturbative hopping amplitude of the vison
from d to b (due to �H) is given by

tb,d ≡ 〈�(R0, Rb)|�H |�(R0, Rd )〉. (4)

From the definition of the vison parity operator discussed
above, one can see that only Y2 and Y4 anticommute with
Wd and Wb while commuting with vison parities at all other
hexagons. Therefore

tb,d = −hy〈�(R0, Rb)|Y2 + Y4|�(R0, Rd )〉. (5)

Similarly, it is straightforward to show the following expres-
sions for the other hoppings:

ta,b = −hz〈�(R0, Ra)|Z3 + Z2|�(R0, Rb)〉, (6a)

tb,c = −hx〈�(R0, Rb)|X4 + X5|�(R0, Rc)〉. (6b)

Once the effective vison hopping for each link is obtained,
one can extract the vison Berry phase acquired in a closed
hopping associated with each closed path. For example, the
phase acquired by hopping in the triangle d → b → a → d is
defined as

φabd = Im ln(td,ata,btb,d ), (7)

and the phase acquired by hopping on the unit cell of transla-
tions d → c → b → a → d is

φabcd = Im ln(td,ata,btb,ctc,d ). (8)

If the phase φabcd acquired around a unit cell of the mi-
croscopic translational symmetries is not 0 (mod 2π ), then
the translations have a projective implementation on the vi-
son particle [47,48]. As discussed in Refs. [37,40,49] for
topologically ordered states with deconfined Z2 gauge fields,
this phase is expected to be either 0 or π , and its value is
a robust topological characteristic of the phase as long as
the the microscopic translational symmetry of the model is
enforced. Notice, however, that these considerations do not
apply to the phase φabd acquired around a single triangle,
because this motion cannot be generated by the elements of
the microscopic translation group, and therefore this phase
can be sensitive to perturbations when only the translational
symmetry is enforced.

The above formulas then define the mathematical prob-
lem at hand. The problem of computing these overlaps has
been recently addressed in Ref. [36] employing the parton
representation of spins. In the next section, we will, however,
employ a different method that relies on an exact lattice du-
ality developed in Ref. [37] building on the previous work of
Refs. [38,40].
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FIG. 2. (a) Schematic of a real-space configuration of the e (red
dots) and ε (blue dots) particles. At each vertex v, there is a bo-
son (e) mode with creation and annihilation operators b†

v and bv ,
respectively. Within each plaquette p, there is a complex fermion (ε)
mode with creation and annihilation operators c†

p and cp, respectively,
which is equivalent to two Majorana modes γp and γ ′

p. (b) Spin
operators and paths involved in the duality mapping. The Pauli X
(Z) matrix at a link is represented by a red (blue) bond covering the
link. For a vertical (horizontal) link l1 (l2), SW(l1) [SW(l2)] is the
horizontal (vertical) link to its southwest which connects to it. The
path B(l ) (thick orange line) contains all the vertices to the left of
a horizontal link l , and the dual lattice path A(l ′) (thick green line)
contains all the plaquettes to the right of a vertical link l ′.

B. Vison hoppings from the duality mapping

To use the duality mapping of Ref. [37], it is convenient to
change the usual basis of the Kitaev model by performing a
unitary transformation U . The transformation U only affects
the spins from A-sublattice sites [see Fig. 1(a)]:

Xj ↔ Zj, Yj → −Yj, ∀ j ∈ A. (9)

The spin Hamiltonians in Eqs. (1) and (2) will be trans-
formed accordingly, i.e., HK → UHKU −1 = H̃K , �H →
U�HU −1 = �H̃ :

H̃K = K

⎛
⎜⎜⎝

∑
x link,

i∈A

ZiXj −
∑

y link,
i∈A

YiYj +
∑

z link,
i∈A

XiZ j

⎞
⎟⎟⎠,

�H̃ = −
∑
i∈A

(hzXi − hyYi + hxZi )

−
∑
j∈B

(hxXj + hyYj + hzZ j ), (10)

and similarly for the κ term. In this new basis the vison parity
reads as

Wd → W̃d = Z4Y6X7X8(−Y1)Z2

= X6X7X8X1Z1Z2Z4Z6. (11)

Therefore, by identifying the sites of the honeycomb lattice
with the links of a square lattice as depicted in Fig. 1(b),
this operator can be viewed as a product of the star (Ad ) and
plaquette (Bp(d )) operators of the standard toric code model
[50] [see Fig. 2(b)], as discussed in Refs. [37–40].

We will review here the exact duality mapping introduced
in Ref. [37] for the case of an infinite system and refer the
reader to Ref. [37] for details of the mapping on finite open
and periodic lattices. The lattice duality allows us to map the
tensor product Hilbert space of spins onto a tensor product
Hilbert space of the “visons” and “spinons.” The vison is a
spinless hard-core boson which can viewed as being located

at the vertices of the square lattice [see Fig. 2(a)], analogous
to the “e particles” of the toric code. Therefore we assign
vison hard-core boson creation (annihilation) operators, b†

v

(bv), with every vertex “v.” The vison parity operator is then
mapped as follows:

W̃v ↔ eiπb†
vbv . (12)

On the other hand, the spinon degrees of freedom corre-
spond to those of a single spinless complex fermion mode per
unit cell (which can be viewed as a descending of the “ε par-
ticle” of the toric code [37–40]). Therefore we introduce two
spinon Majorana fermion modes, γp, γ

′
p for every plaquette

“p” of the lattice as depicted in Fig. 2(a). The fermion parity
maps onto the following plaquette operator:

Bp(d ) = Z1Z2Z4Z6 ↔ −iγp(d )γ
′
p(d ). (13)

Here, the operators Z1 · · · Z6 are those appearing in the usual
plaquette term of the toric code, and p(d ) stands for the
plaquette to the northeast of vertex d , as depicted in Fig. 1(b).
We can combine the Majorana modes into complex fermion
operators as follows:

cp = (γp + iγ ′
p)/2, c†

p = (γp − iγ ′
p)/2. (14)

Note that −iγpγ
′
p = eiπc†

pcp .
We will now present the “dictionary” that allows us to map

exactly any local operator acting on the underlying physical
spin degrees of freedom onto operators acting on the dual
vison and spinon degrees of freedom, introduced in Ref. [37].
The mapping of spin operators on a link l is as follows.

(i) For vertical l ,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

)eiπαl , (15a)

Xl ZSW(l ) ↔ iγp1γ
′
p2

. (15b)

(ii) For horizontal l ,

Zl ↔ (bv1 + b†
v1

)(bv2 + b†
v2

), (16a)

XlZSW(l ) ↔ eiπβl iγp1γ
′
p2

. (16b)

Here,

αl =
∑

p∈A(l )

c†
pcp, βl =

∑
v∈B(l )

b†
vbv. (17)

Here, for a vertical (horizontal) link l , v1 and v2 are the
two vertices connected by it, while p1 and p2 are the two
plaquettes at the left and right (top and bottom) sides of it;
SW(l ) is the link to the southwest of l which also connects
to it [see Fig. 2(b)]. Also, A(l ) [B(l )] denotes sets of pla-
quettes (vertices) that reside on a string in the dual (direct)
lattice; A(l ) and B(l ) are depicted in Fig. 2(b). These “string”
operators are the ones encoding the attribute that the vison
and the spinon have nonlocal statistical interactions that make
them behave as mutual semions. Notice that the spin operators
described above form a complete algebraic basis out of which
any other operator can be obtained by taking sums, products,
and multiplication by complex numbers, from this basis.

In particular, we can apply the above dictionary to rewrite
the Hamiltonian from Eq. (10) in terms of vison and spinon
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degrees of freedom, leading to

H̃ = K
∑

p

[eiπβL̃(p,p+ŷ) (iγp+ŷγ
′
p + iγp+ŷγ

′
p+x̂ ) + iγpγ

′
p+x̂]

− κ
∑

p

[eiπβL̃(p,p+ŷ) (iγp+ŷγp−x̂ ) + eiπb†
v(p)bv(p) (iγp−x̂γp) + eiπβL̃(p,p+ŷ) (iγpγp+ŷ)

+ eiπβL̃(p−x̂,p−x̂+ŷ) (iγ ′
p+ŷγ

′
p) + iγ ′

p+x̂γ
′
p + eiπβL̃(p,p−ŷ) (iγ ′

p−ŷγ
′
p+x̂ )]. (18)

Here, v(p) denotes the vertex to the southwest of plaquette p
[see Fig. 2(a)], and L̃(p, p′) stands for the link sandwiched by
plaquettes p and p′. Notice that the above Hamiltonian explic-
itly commutes with the vison occupation of all the vertices in

the lattice and the remaining dynamical degrees freedom are
described by a fermion bilinear model, as expected.

On the other hand, one can show that the �H̃ in Eq. (10)
can be rewritten as

�H̃ = −
∑

v

[hz(bv + b†
v )(bv+x̂ + b†

v+x̂ )(1 + iγp(v)γ
′
p(v)+x̂ ) + hy(bv−x̂ + b†

v−x̂ )(bv+ŷ + b†
v+ŷ)(γp(v)−x̂γ

′
p(v) )e

iπαL(v,v+ŷ)

+ hyeiπβL(v+ŷ,v+ŷ+x̂) (bv + b†
v )(bv+x̂+ŷ + b†

v+x̂+ŷ)(−γp(v)+ŷγ
′
p(v) )e

iπαL(v,v+ŷ)

+ hx(eiπβL(v+ŷ,v+ŷ+x̂) iγp(v)+ŷγ
′
p(v) + 1)(bv + b†

v )(bv+ŷ + b†
v+ŷ)eiπαL(v,v+ŷ) ]. (19)

Here, L(v, v′) stands for the link connecting vertices v and v′.
As we see, the Zeeman term contains vison hopping and pair
creation terms, creating an impediment to solving it exactly.

Therefore our strategy is to treat �H̃ as a perturbation
acting on the exact eigenstates of Eq. (18). Let us discuss how
to uniquely label these states. An eigenstate of Eq. (18) with
N visons placed in the vertices {v1, . . . , vN } can be written as
a tensor product of vison and spinon degrees of freedom as
follows:

b†
v1

· · · b†
vN

|0〉 ⊗ |�ε(R1, . . . , RN )〉, (20)

where Ri denotes the position of vertex vi. The first term
specifies the vison locations, and the second term is the
fermionic spinon wave function resulting from diagonaliz-
ing the effective Bogoliubov–de Gennes (BdG) Hamiltonian
H ε(R1, . . . , RN ) associated with Eq. (18). Notice that this
Hamiltonian has already a unique specified gauge choice for
the vector potential that captures the long-range statistical
interaction after the vison occupations are given and viewed as
constants. We caution that the tensor product structure above
is in a dual Hilbert space and does not have a simple relation
to the tensor structure of the underlying physical spin degrees
of freedom (see Ref. [37] for further discussions).

Let us now specialize to the case of two visons to compute
the matrix elements described in Eqs. (4), (5), (6a), and (6b).
These vison hopping elements can then be systematically
computed. For example, the hopping between vertices a and b
[see Fig. 1(b)] can be obtained as follows:

ta,b = − hz〈0|b0ba ⊗ 〈
�ε

0 (Ra, R0)
∣∣(ba + b†

a)(bb + b†
b)

× (1 + iγp(a)γ
′
p(b) ) b†

bb†
0|0〉 ⊗ ∣∣�ε

0 (Rb, R0)
〉

= − hz
〈
�ε

0 (Ra, R0)
∣∣(1 + iγp(a)γ

′
p(b) )

∣∣�ε
0 (Rb, R0)

〉
. (21)

Here, |�ε
0 (R j, R0)〉 is the lowest-energy eigenstate of

H ε(R j, R0). Similarly, the hopping between vertices a and d
reads

td,a = − hx〈�ε(Rd , R0)|(1 + iγp(a)γ
′
p(d ) )e

iπαL(a,d )

× |�ε(Ra, R0)〉. (22)

Here, eiαL(a,d ) reflects the statistical interaction between visons
and spinons, and we have assumed that the vertex 0 is in the
same row as vertex d .

We would like to briefly comment on the duality mapping
for the case of a periodic system, which is the geometry that
we use for the numerical implementation to be described in
the next section. There are two global constraints on a torus:

∏
v

W̃v = 1,
∏

p

Bp = 1. (23)

Therefore only states with an even number of visons and
spinons are physical in the torus. Moreover, there are addi-
tionally two global Wilson loop degrees of freedom associated
with the noncontractible loops around the torus. For the
exactly solvable model where the visons are static, the topo-
logical degrees of freedom associated with the Wilson loops
can be taken to be two quantum numbers with values z1,2 =
+1 (z1,2 = −1) that specify whether the spinons have periodic
(antiperiodic) boundary conditions along the x or y direc-
tions of the torus (z1 and z2 are for the x and y directions,
respectively). Therefore the fermionic BdG eigenstates are
labeled as |�ε

0 (R j, R0; z1, z2)〉. The vison hoppings can then
be calculated in the same way as shown in Eqs. (21) and (22).
More details regarding the duality mapping on a torus can be
found in Ref. [37].

In the next section, we will discuss the results with
(z1, z2) = (−1,−1), i.e., antiperiodic boundary conditions
(APBCs) for ε particles. The results with periodic bound-
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FIG. 3. The vison hopping amplitude and Berry phases with
FM coupling. (a) Hopping amplitudes with system size Nrow = 20.
(b) The Berry phases associated with two minimal triangles and
the plaquette path. (c) and (d) The same as in (a) and (b), but
for Nrow = 50. The magnitude of the hopping is independent of
sgn(κ ) = sgn(hxhzhy ); therefore we only present results for positive
κ . The amplitudes have been normalized for a Zeeman field along
the [111] direction, hx = hy = hz = h/

√
3, but the hoppings for other

directions of the Zeeman field can be easily estimated from the above
plots by rescaling using Eqs. (5)–(8).

ary conditions (PBCs) [(z1, z2) = (1, 1)] are presented in
Appendix A.

IV. VISON HOPPINGS AND BERRY PHASES

A. Results for FM and AFM couplings

As the expressions in Eqs. (21) and (22) illustrate, the
calculation of the vison hopping amplitudes and Berry phases
has been reduced to a problem of computing matrix elements
of operators between free-fermion BCS ground states. The
mathematical details as to how to compute these matrix el-
ements have been discussed in Refs. [37,51], and we will here
present results following the same approach as in Ref. [37].
All the numerical results that we will show have been cal-
culated for the square torus: Nrow = Ncol. For the plots that
we will present we have taken the Zeeman field along the
[111] direction, so that hx = hy = hz = h/

√
3. Nevertheless,

the vison hoppings for other directions of the Zeeman field
can be easily estimated from Figs. 3 and 4 via a rescaling using
Eqs. (5)–(8) and keeping track of the corresponding change in
κ ≈ hxhyhz/K2.

Figure 3 shows the results for the FM Kitaev model at two
different system sizes: Nrow = 20 in Figs. 3(a) and 3(b) and
Nrow = 50 in Figs. 3(c) and 3(d). The hoppings are labeled
according to the type of bonds crossed by the vison, e.g., ta,b ∈
Z bonds, tb,d ∈ Y bonds, and td,a ∈ X bonds [see Fig. 1(a)].

FIG. 4. The vison hopping amplitude and Berry phases with
AFM coupling. (a) The hopping amplitude with system size Nrow =
20. (b) The Berry phases associated with two minimal triangles and
the plaquette. (c) and (d) The same as in (a) and (b), but for Nrow =
50. The inset of (c) is a log-log plot of the same data, which suggests
|tα| ≈ 0.55|hα| |κ/K|ν with ν ≈ 0.5, when the vison hops across an
α bond, with α ∈ {X,Y, Z} (see Fig. 1). Notice that the vison phases
on the triangles depend on sgn(κ ) = sgn(hxhzhy ). We use the same
the conventions for phases and for normalizing hoppings as in Fig. 3.

Our results are consistent with the expected symmetry of
the honeycomb lattice according to which the magnitudes
of the hopping amplitude on all bonds are the same in the
thermodynamic limit (Nrow → ∞); however, the convergence
degrades and becomes slower as the fermion gap vanishes for
κ → 0, as evidenced by contrasting the behavior of Nrow = 20
with that of Nrow = 50 in Fig. 3 and as further discussed in
Appendix B [52]. Moreover, we have observed that for a strict
value of κ = 0 the vison hoppings are sensitive to the choice
of fermion boundary conditions [Wilson loop sectors (z1, z2)],
further indicating that the vison hopping may not be well
defined in the κ = 0 case (see Appendix A for more details).
The horizontal dashed lines in Figs. 3(a) and 3(c) indicate
the result of Ref. [36] for the magnitude of the hopping; in
Ref. [36] all calculations were performed strictly at κ = 0.
We see that our extrapolation to κ → 0 at Nrow = 50 [dashed
curve in Fig. 3(c)] is in agreement with Ref. [36] and is given
by |tα| ∼ 0.38|hα|, when the vison hops across an α bond,
with α ∈ {X,Y, Z} (see Fig. 1).

The phases for the FM model are shown in Figs. 3(b) and
3(d), for a vison hopping around an upper triangle φUT (d →
b → a → d in Fig. 1), a lower triangle φLT (d → c → b → d
in Fig. 1), and a Bravais unit cell φUC (d → c → b → a → d
in Fig. 1). We see clear evidence that for κ �= 0 these phases
approach the following values in the thermodynamic limit:

φLT = −φUT = πsgn(κ ) = π (FM), (24a)

φUC = 0 (FM), (24b)
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FIG. 5. The vison bands for FM (a) and AFM (b) couplings at
small Zeeman fields. The triangular lattice’s lattice constant is set
to be a = 1. (a) The bands for FM coupling with h = 0.1|K|, and
so κ/|K| = (h/

√
3)3/|K|3 ∼ 10−4 according to perturbation theory

[1]. The single-vison excitation energy is found to be E0 ≈ 0.15|K|.
(b) The bands for AFM coupling with κ/K = (h/

√
3K )3 = 0.01. For

this κ , the single-vison excitation energy is E0 ≈ 0.16K (obtained for
Nrow = 30). Note that for the FM Kitaev model, the vison band has a
larger width and its band minimum is closer to zero.

where in the last equality of Eq. (24a) we have used the
fact that phases are defined modulo 2π . The above is one
of our central findings: The vison in the FM model acquires
zero phase around a unit cell of the Bravais lattice, and thus
translations act in a nonprojective fashion.

The results for the AFM coupling are shown in Fig. 4.
Interestingly, we find that the hopping amplitude approaches
0 as κ → 0 in the thermodynamic limit, in agreement with
Ref. [36]. Even more remarkably, for nonzero κ , our results
are approaching the following values of the phases around
triangles and the unit cell in the thermodynamic limit:

φLT = φUT = −π

2
sgn(κ ) (AFM), (25a)

φUC = π (AFM). (25b)

Therefore we see that the vison acquires phase π when mov-
ing around a unit cell, and therefore translations need to be
implemented projectively. Similarly to the FM case, in the
AFM model at κ = 0 we also observe strong sensitivity to the
spinon boundary conditions and system sizes (see Appendix A
for more details).

B. Vison Chern bands

From the effective vison hoppings computed in the pre-
vious section we can construct the vison band dispersions
for both FM and AFM couplings. For FM coupling, the vi-
son does not experience flux within the unit cell (φUC = 0),
and therefore the vison band is simply that of a single-site
nearest-neighbor tight-binding model in the triangular lat-
tice. As a consequence this band has no Berry curvature.
Figure 5(a) shows the vison band dispersion at h = 0.1|K|,
κ/|K| = (h/

√
3|K|)3 ∼ 10−4, which has a small gap.

On the other hand, for the AFM model, φUT = φLT =
−π/2sgn(κ ) and φUC = π . Therefore the vison unit cell
needs to be doubled, giving rise to two vison bands. Fig-
ure 5(b) shows the vison bands at κ/K = (h/

√
3K )3 = 0.01.

We have also calculated the Berry curvature and Chern num-
ber for each band. Interestingly, we found that both bands have
a nontrivial topology; the higher (lower) band has a Chern

FIG. 6. Berry curvature of the upper (a) and lower (b) vison
bands in Fig. 5(b). The black dashed rectangle indicates the reduced
Brillouin zone. The Chern number of the upper (lower) band is +1
(−1).

number C = +1 (C = −1). The Berry curvatures for the two
bands are shown in Fig. 6.

V. CONSISTENCY CHECK OF VISON PHASES VIA
COMMUTING PROJECTOR HAMILTONIANS

In this section we would like to offer some supporting
evidence that the phases that the vison acquires around a
unit cell are indeed 0 and π for the FM and AFM Kitaev
models, respectively. Currently, we do not know any method
allowing us to compute these phases purely analytically when
the fermionic Majorana spinons are forming a topological
superconducting state with a nonzero BdG Chern number C �=
0. Nevertheless, as argued in Ref. [40], when the Majorana
spinons have zero Chern number (C = 0), the phase that the
vison acquires around each unit cell can indeed be computed
analytically thanks to the fact that the state can be adiabati-
cally deformed into the ground state of a Hamiltonian made
out of sums of commuting projectors (like the toric code),
and such adiabatic deformation can be performed without
breaking the lattice translational symmetry of the model.

To exploit this idea, we will add a term to the Hamiltonian
that drives a phase transition into a state with vanishing spinon
Chern number (C = 0) that can be described with commut-
ing projector Hamiltonians. By following the discussion of
Ref. [40], we will select this commuting projector state such
that the vison still acquires the same phase around a unit cell
as in the original state of interest with nonzero C. By explicitly
verifying that the phase of the vison around a plaquette indeed
does not change across such a phase transition, we will be able
to clearly confirm that the values of the vison phases that we
have computed numerically agree with those of the simpler
commuting projector Hamiltonian state.

However, what are these ideal commuting projector states?
As discussed in Refs. [40,53–55], the gapped paired BCS
states of fermionic spinons with translational symmetry
can be classified by the Chern number C ∈ Z and by
four parity indices ζk = ±1, associated with the four spe-
cial high-symmetry points (HSPs) of the Brillouin zone:
{(0, 0), (0, π ), (π, 0), (π, π )}. The value ζk = −1 (1) is
viewed as nontrivial (trivial), and it indicates that the ground
state has an odd (even) number fermions occupying the special
momentum k state (if such a k state is allowed by the boundary
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FIG. 7. Number-conserving part of ε-particle bands (on a square
lattice) from H̃ with FM (a) and AFM (b) couplings. The lattice
constant is set to be 1.

conditions and the size of the system). The Chern number and
these parity indices are related as follows:

(−1)C = ζ(0,0)ζ(0,π )ζ(π,0)ζ(π,π ). (26)

The states with the commuting projector Hamiltonians in
which we are interested have C = 0 and either all the par-
ity indices taking the trivial value (ζk = 1) or all taking the
nontrivial value (ζk = −1) [56]. Among these states the one
with all four parity indices being trivial (ζk = 1) and C = 0 is
adiabatically connected to a trivial “atomic insulator” vacuum
of fermionic spinons, namely, the state of the spinon is com-
pletely empty, which is essentially a toric code vacuum state,
which we label TC-AI0 [57]. As discussed in Refs. [37,40],
this state is adiabatically equivalent to the ground state of the
usual toric code, and the vison in this case is simply the usual e
particle, which clearly acquires 0 phase when moving around
a unit cell.

On the other hand, the states with ζk = −1 for all four
HSPs are adiabatically connected to another trivial “atomic
insulator” state, with one ε spinon per unit cell, which is the
analog of a fully occupied toric code state, which we label
TC-AI1 [58]. The ideal commuting projector Hamiltonians in
this case are the toric code model but with the opposite sign
for both the vertex and plaquette couplings, so that every pla-
quette contains an ε particle [37,39,40]. It is straightforward
to verify that the vison (e particle) in this state will acquire a
π flux when encircling a unit cell, simply because each unit
cell contains an ε particle, which is a semion relative to the e
particles.

By following the ideas of Ref. [37], we will now show
that the vison in the FM Kitaev model is expected indeed
to have the same phases as in the trivial atomic insulator
of spinons TC-AI0, namely, φUC = 0, whereas the vison of
the AFM Kitaev model has the same phase as in the trivial
atomic insulator TC-AI1, i.e., φUC = π . The ε particle’s band
dispersion (obtained from the number-conserving part of the
ε-particle Hamiltonian) for H with FM and AFM couplings is
shown in Figs. 7(a) and 7(b), respectively. For FM coupling,
ε(0, 0) = −6|K|, ε(π, 0) = ε(0, π ) = ε(π, π ) = 2|K|, and
thus ζ(0,0) = −1 and ζk = +1 for the rest of the HSPs. Its par-
ity indices at the four HSPs are closer to those of the TC-AI0

state, so we expect φUC = 0 [59]. As for AFM coupling, the ε

band dispersion is simply opposite to that of the FM case. The
parity indices ζ(0,0) = 1 and ζk = −1 at the other HSPs, which
values are closer to those of the TC-AI1 state. Therefore we
expect φUC = π from the arguments of Ref. [37].

FIG. 8. Vison hopping as a function of με at κ/|K| = 0.1. (a) and
(b) The hopping amplitude and φ for FM coupling. (c) and (d) The
same as (a) and (b), but for AFM coupling. Calculations are done
with Nrow = 50 and APBCs.

We will now provide direct numerical evidence for the
above expected values of φUC in the FM and AFM Kitaev
models. To do so, we add the following additional term H1 into
H , which reads (after the unitary transformation U introduced
in Sec. III B)

UH1U
−1 =

∑
p

με

2

⎛
⎝ ∏

l∈boundary(p)

Zl − 1

⎞
⎠. (27)

Here, p stands for a plaquette in the square lattice [see
Fig. 1(b)]. Under the duality mapping discussed in Sec. III B
and in Ref. [37], the above term is mapped into

∑
p −μεc†

pcp.
Therefore this term simply introduces a chemical potential to
ε particles, and therefore it naturally drives the ground state
into the commuting projector limit of the TC-AI0 state when
με is sufficiently negative and into the commuting projector
limit of the TC-AI1 state when με is sufficiently positive.
We calculated the phase that the vison acquires around a unit
cell, φUC, at different κ and με. Figure 8 shows the result
for κ/|K| = 0.1 with both FM and AFM Kitaev couplings.
For FM coupling [Figs. 8(a) and 8(b)], as με is tuned to the
band edges, the vison hopping crossing Y bonds decreases
while the hoppings crossing X and Z bonds are approaching
∼0.7. When −6|K| � με � 2|K|, ζ(0,0) = −1 and ζk = 1 for
the other three HSPs, and the parity indices’ configuration is
closer to that of the TC-AI0 state. Indeed, the vison phase
φUC is always 0 in this regime. When με < −6|K|, since
the bare ε band is empty (ζk = 1 at all four HSPs), the ε

ground state is adiabatically connected to the TC-AI0 state
and φUC = 0. Therefore φUC does not change its value across
this FM-Kitaev to TC-AI0 transition. On the other hand, when
με becomes larger than 2|K|, φUC suddenly jumps to π . This
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FIG. 9. Critical μc for the 0 to π jump of φUC at different κ with
FM coupling. Nrow = 50. φUC = 0 in the gray region with the caveat
that φUC at strictly κ = 0 could be ill defined.

can be understood from the fact that in this regime, ζk = −1
for all HSPs and the ε ground state is adiabatically connected
to TC-AI1; so φUC should take the same value as that of the
TC-AI1 state. For AFM coupling [Figs. 8(c) and 8(d)], as με

is tuned to the band edge, the vison hoppings crossing X and Z
bonds are close to ∼0.5|h| while the hopping across Y bonds
decreases. For −2|K| � με � 6|K|, ζ(0,0) = 1 while ζk at all
the other three HSPs is −1, which values are closer to those
of the TC-AI1 state. Indeed, we found that φUC is always π

across the AFM-Kitaev to TC-AI1 (με � 6|K|) transition. On
the other hand, when the ε ground state enters the TC-AI0

regime (με < − 2|K|), φUC jumps to 0. Therefore our results
indicate that the vison phase φUC for FM (AFM) Kitaev cou-
pling is indeed the same as that of the TC-AI0 (TC-AI1) state,
as expected from the considerations of Ref. [37]. Moreover,
we have performed the same type of calculations at smaller κ

values; for each κ , we found a similar 0 to π jump behavior
at some “critical” chemical potential μc. Figure 9 shows the
result for μc at different κ values with a FM coupling. It can
be seen that μc is not sensitive to κ at small κ values; this
can be understood from the perspective of our conjecture as
κ does not affect the number-conserving part (hopping and
chemical potential) of ε particles’ Hamiltonian, and therefore
ζk at all four HSPs are independent of κ . Below the μc-κ curve
(the gray region in Fig. 9), there is always φUC = 0. Note
that although the extrapolation of results with finite κ tends
to suggest φUC = 0 for the κ = 0 FM Kitaev model (με = 0),
due to the reasons described previously, φUC at κ = 0 may not
be a well-defined quantity.

VI. SUMMARY AND DISCUSSION

Using a recently developed exact duality mapping [37] that
allows us to rewrite the microscopic spin operators in terms
of nonlocal vison and fermionic spinon degrees of freedom,
we have investigated the nature of the motion of the emergent
flux carrying vison particles in the Kitaev honeycomb model
perturbed by a Zeeman field. This Zeeman field not only in-
duces the well-known Haldane-type mass gap on the itinerant
Majorana fermions, but also induces vison hopping, breaking
the exact solvability of the model.

We have seen that while the FM (K < 0) and AFM (K > 0)
Kitaev models have the same non-Abelian Ising topologi-
cal order, they are sharply distinct phases of matter when
viewed as topologically ordered states that are enriched by
the discrete translational symmetry of the honeycomb lat-
tice. As a consequence of this, the nature of the motion
of the vison particle is sharply distinct in the FM vs the
AFM Kitaev honeycomb models. For example, in the FM
Kitaev model the vison acquires a trivial phase when it en-
circles a unit cell of the honeycomb Bravais lattice: φUC = 0.
Since there is a single vison site per unit cell (which can
be viewed as being located at the center of the plaquette),
this implies that the vison moves effectively in a single-site
triangular lattice with zero flux. There is therefore a sin-
gle vison band which has zero Berry curvature and thus no
associated intrinsic contribution to the thermal Hall effect.
To further back up this conclusion, we have shown that the
vison phase around the unit cell remains unchanged across
a phase transition into another ground state that is adiabat-
ically connected to the ground state of the standard toric
code model, which is a commuting projector Hamiltonian
where this phase can be computed fully analytically and where
it is clear that translations act nonprojectively on its anyon
excitations.

On the other hand, in the AFM Kitaev model the vison
acquires a nontrivial phase when it hops around a unit cell:
φUC = π . As a consequence, lattice translations are imple-
mented projectively on the vison, and the vison unit cell
needs to be doubled. In this case, the vison has two separate
bands with nonzero Chern numbers C = ±1 and an associated
contribution to the intrinsic thermal Hall effect.

There are also crucial energetic differences between the
vison bands in the FM and AFM models. In the FM model, the
magnitude of the vison hopping and bandwidth grow linearly
with the Zeeman field, |tα| ≈ 0.38|hα|, when the vison hops
across an α bond (α = X,Y, Z; see Fig. 1) at the leading
perturbative order, which agrees with the value reported in
Ref. [36]. For the AFM model our results are consistent
with a vanishing leading perturbative hopping of the vison
that is linear in Zeeman fields, as also reported in Ref. [36].
However, we have seen that in the presence of the Haldane
mass term of the Majorana fermions, κ ≈ hxhyhz/K2 [1], the
magnitude of the vison hopping becomes nonzero and scales
as |tα| ∝ |hα||κ/K|ν when the vison hops across an α bond
(α ∈ {X,Y, Z}; see Fig. 1), with ν ≈ 0.5 at small κ and hα . As
a consequence of this, the visons in the FM model are substan-
tially more mobile at small values of the Zeeman field than
in the AFM model. Therefore the Zeeman field is expected
to destabilize more easily the FM Kitaev spin liquid via vison
gap closing and condensation, relative to the AFM Kitaev spin
liquid. This is naturally consistent with a variety of numerical
studies which have reported that the FM Kitaev spin liquid
is more fragile than the AFM Kitaev spin liquid against a
Zeeman field (see, e.g., Refs. [24–27]). While the single-vison
gap-closing picture found here provides a natural mechanism
for an instability of the Kitaev spin liquid, it should be noted
that such a proliferation mechanism can also be applied to
tightly bounded vison pairs. As discussed in Refs. [60,61], a
bounded vison pair also gains dynamics under perturbations
such as a Zeeman field and Heisenberg and gamma inter-
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FIG. 10. (a)–(f) The vison hopping amplitude and φ with FM coupling at selected system sizes with PBCs for the spinons. The results at
finite κ are consistent with the APBC data presented in the main text, whereas at κ = 0, the hoppings across certain bonds can be dropped to
very small values, which causes an ambiguity in determining the vison Berry phases.

actions. According to the magnitude of induced vison-pair
hopping amplitudes, in Refs. [60,61] it was reported that the
FM (AFM) Kitaev spin liquid is more robust (fragile) against
Heisenberg interaction and fragile (robust) against a Zeeman
field and gamma interaction, in agreement with our findings.

While the precise relation between the ideal spin liquids
realized in the weakly perturbed Kitaev model that we have
studied and the possible spin liquids observed in α-RuCl3 is
currently far from clear, our study highlights the crucial im-
portance of the sign of the Kitaev coupling K in determining
the universal properties of these states. While the larger share
of studies devoted to determining this sign have advocated that
it is ferromagnetic (see, e.g., Refs. [19,20] for summaries),
direct experimental inference of this sign has heavily relied
on understanding the zigzag AFM state. However, in spite
of being an ordered state, the zigzag AFM state is in itself
still a highly quantum fluctuating state that delicately depends
on perturbations beyond the ideal Kitaev model [3,19,20,24–
30]. One alternative state that is comparatively simpler to un-
derstand theoretically, but which remains less experimentally
explored, is the high-field polarized state. This state could
offer a fresh alternative window to perform experiments that
could more confidently cement our knowledge of the sign of
this important coupling in α-RuCl3.

Note added. Recently, an updated version of Ref. [36]
appeared, and our results are in agreement with the various
aspects where we overlap with that reference. The updated
analysis of Ref. [36] was performed independently and largely
in parallel to our work and corrected an earlier version of that
reference.
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APPENDIX A: VISON HOPPINGS WITH PERIODIC
BOUNDARY CONDITIONS

In this Appendix, we present the results of vison hoppings
with (z1, z2) = (1, 1), i.e., PBCs for ε Majorana fermions. The
vison hopping and Berry phases with FM and AFM couplings
are shown in Figs. 10 and 12, respectively. At finite κ , the
results are essentially the same
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FIG. 11. (a)–(d) The vison hopping amplitude and φ with FM
coupling at selected system sizes with APBCs for the spinons.

FIG. 12. (a)–(f) The vison hopping amplitude and φ with AFM coupling at selected system sizes with PBCs for spinons.

as the APBC results discussed in the main text. For com-
parison, we also present the APBC results at system size
Nrow = 10, 20 with FM (Fig. 11) and AFM Kitaev coupling
(Fig. 13).

The Zeeman field is aligned along the [111] direction (the
same as in Sec. IV A); we present the results at κ � 0, and
the Berry phases are obtained with positive h. At finite κ ,
the vison hoppings and Berry phases are independent of the
boundary conditions for both FM and AFM couplings (in the
thermodynamic limit). The main difference is at κ = 0. In the
case with APBCs, the results for the system sizes presented
here seem to indicate φUC = 0 (π ) for FM (AFM) couplings.
On the other hand, with PBCs, the vison hoppings crossing
certain bonds could be very small; for example, see the data
in Figs. 10(a), 12(a), and 12(c). The smallness of the hopping
across certain bonds creates an obstacle to unambiguously
identifying the vison hopping phases. For example, as shown
in Fig. 12(a), because the vison hopping crossing certain
bonds is close to zero, φUC jumps from π to 0 as κ → 0.
In Figs. 12(c) and 12(d), although φUC = π at κ = 0, which
looks consistent with the APBC result, we caution that such a
φUC value is actually extracted from a numerically very small
complex number (both the real and imaginary parts being
∼10−20).
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FIG. 13. (a)–(d) The vison hopping amplitude and φ with AFM
coupling at selected system sizes with APBCs for spinons.

In summary, according to our calculations, while the vison
hopping at a finite κ is robust against spinon boundary condi-
tions (Wilson loop sector), the vison hopping at κ = 0 is very
sensitive to the boundary conditions and system sizes. We be-
lieve this is due to the gapless nature for the κ = 0 (B-phase)
Kitaev model. Our results then clearly indicate that a small but
nonzero κ is needed to properly regularize the vison hopping
phases in the fully gapped topologically ordered state.

APPENDIX B: FINITE-SIZE SCALING OF VISON
HOPPINGS AND ASSOCIATED PHASES

Within our numerical calculations, the vison hoppings at
finite κ converge fast as the system size (Nrow × Nrow) in-
creases. Results at κ = 0.01|K| and κ = 0.02|K| with APBCs
are presented in Fig. 14. Results with FM coupling are shown
in Figs. 14(a) and 14(b), and those with AFM coupling are
shown in Figs. 14(c) and 14(d).

It was found that the convergence of vison hoppings with
respect to Nrow is faster at larger κ values. This also gives
extra evidence of the strong sensitivity of the vison hoppings
to system size in the case of a strictly zero Haldane mass term,
κ = 0.

FIG. 14. The scaling of vison hopping amplitudes and φ vs 1/Nrow. (a) and (b) Results with K = −1. (c) and (d) Results with K = 1.
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