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Spin-dependent plasma frequency from all-electron ab initio calculations
including spin-orbit coupling
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We present a first-principles methodology to calculate spin-dependent plasma frequency. Electronic structure
and plasma frequency of nine metals (Al, Au, Ag, Cu, Pd, Pt, Na, Fe, and Co) are studied using density-functional
theory in an all-electron full-potential framework. The results are compared to pseudopotential approaches
and experiments. We find a significant difference between the spin-up and spin-down contributions to plasma
frequency. Thus, spin-polarization effects are important for understanding optical properties of metals. Spin-orbit
coupling inclusion affects plasma frequency since it contains an interaction term between spin-up and spin-down
electrons.
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I. INTRODUCTION

There is no clear understanding of the effects of mag-
netization on plasma frequency so far. Our recent research
in plasmonics has shown an inconsistency between theoret-
ical predictions and experimental measurements of optical
properties of cobalt nanoparticles [1]. Specifically, a plasmon
resonance was observed at 280 nm for cobalt nanoparticles
that could not be reproduced by permittivity measurements
for large-area films (see Fig. 1).

The Mott model suggests that in magnetic metals there are
two largely independent spin channels of conductivity. The
probability of spin-flip scattering is low, and scattering rates
for spin-up and spin-down channels are sufficiently differ-
ent. The position of the absorption peak in the nanoparticles
(Fig. 1) depends of the plasmon frequency ωp, which is pro-
portional to bulk plasma frequency ωpl [1]:

ω2
p = ω2

pl

εib + 2εh
, (1)

where εh is the dielectric permittivity of the host medium
(hexane in Ref. [1]), and εib is the interband contribution to
the metal permittivity.

Thus, separate consideration of spin channels for bulk
plasma frequencies will allow us to make the first step to-
ward understanding the unexpected plasmon resonances in
magnetic nanoparticles, which the plasmonics currently fails
to predict [1,2]. Spin-orbit coupling is also important since
it contains an interaction term between electrons of opposite
spins. However, to fully reproduce the absorption spectrum,
the consideration of electronic relaxation times and optical
interband transitions will be required.

Ground-state DFT is a powerful tool for calculating atomic
and electronic structure of solids. Several studies have demon-
strated that combining ground-state DFT with random-phase
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approximation is a computationally efficient way to model
dielectric response of metals with an acceptable accuracy.
Nevertheless, there is an inconsistency between computa-
tional results reported in the literature. In particular, several
different values of plasma frequency are reported for gold:
8.59 eV (DFT-LDA [3–5]), 8.65 eV (PBE [6,7]), 9.0 eV
(PBE, [8]), and 8.96 eV (PBE, [9]). The inclusion of spin-orbit
coupling in the study [9] resulted in a decrease of plasma
frequency from 8.96 eV to 8.81 eV. The results underestimate
the experimental value of 9.1 eV [10].

For silver, DFT-LDA calculations yield 9.38 eV [5] and
9.48 eV [11], while for the PBE exchange-correlation func-
tional the plasma frequency is 9.2 eV. Also, for silver
nanoparticles an attempt to calculate the plasmon frequency
has been made [12], and it was shown that the frequency
increases with the nanoparticle radius and approaches bulk
value for big nanoparticles. LDA slightly overestimates
plasma frequency for silver compared to the experiment
which is 9.2 eV [10]. For copper, the DFT-LDA values are
8.97 eV [5] and 9.27 eV [13]. The second value perfectly
agrees with the value of 9.3 eV, experimentally derived by
Johnson and Christy [10]. For aluminum, the PBE data on
plasma frequency reported in the literature [8,14] is 12.6 eV, to
be compared to experimentally derived value of 12.4 eV [15].
It is worth noting that originally the experiment was misin-
terpreted [16] because of a large interband contribution at
low frequencies, demonstrating challenges in experimental
determination of plasma frequency and the need for ab initio
calculations. For sodium the experimental plasma frequency
reported in the work [17] is 6.0 eV, which is in good agreement
with the PBE result of 6.04 eV [8]. Also, studies of size-
dependent optical properties for sodium clusters have been
reported [18]. PBE [8] and experimental [2] plasma frequency
for palladium are 7.4 eV.

Recently the experimental value of the plasma frequency of
platinum [9] was questioned. Like aluminum, platinum has a
large interband contribution at low frequencies, which makes
Drude fitting and plasma frequency extraction challenging.
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FIG. 1. Two-plasmon model for cobalt nanoparticle absorbance.
Red line shows the contribution from spin-majority electrons, while
blue line shows the contribution from spin-minority electrons. Green
line shows the experimentally observed total spectrum. Black line
shows theoretically predicted spectrum that does not consider dif-
ferent contributions from different spins [1] using data for bulk Co
from [2]. Inset: a cartoon of projected density of states of cobalt.

Currently, the computed PBE value is 8.8 eV [8,9]. However,
the inclusion of spin-orbit interaction resulted in a large de-
crease in the calculated plasma frequency to 7.54 eV. [9]

DFT results depend on the approximation to exchange-
correlation functional. Alternatively, GW approximation and
the Bethe-Salpeter equation can be used to obtain accurate
optical properties of solids [11]. In GW approach electronic
self-energy is expressed in terms of the single-particle Green’s
function G and the screened Coulomb interaction W , which
results in very accurate quasiparticle energies. The Bethe-
Salpeter equation includes excitonic effects on top of GW .
However, these methods are much more computationally
expensive than DFT with standard approximations to the
exchange-correlation functional.

In this paper, we use DFT with GGA and meta-GGA
functionals to calculate a spin-dependent plasma frequency.
We show that for magnetic metals plasma frequency varies
significantly for spin-majority and spin-minority electrons.
The PBE approximation is chosen since it is widely used
for plasma frequency calculations [8,9,14], while SCAN has
been shown to significantly improve over PBE [19] for many
properties, as is confirmed by our own results presented below.
We introduce a methodology to calculate plasma frequency in
an all-electron full-potential framework using numeric atomic
orbital basis sets. Using the localized basis will make future
calculations of optical properties of low-dimensional systems
(surfaces, nanowires, and nano-particles) more computation-
ally efficient. The contributions to the plasma frequency from
each spin channel are analyzed. Ab initio simulations allow
us to identify different contributions to the spindependence of
optical properties of metals and metal nanoparticles. To the
best of our knowledge, no theoretical analysis of different
spin-channel contributions to plasma frequency have been
performed previously.

II. IMPLEMENTATION

A. Scalar-relativistic

As detailed in Refs. [8,14], plasma frequency can be calcu-
lated in the following way:

ω̄2
i j = ω̄

↑ 2
i j + ω̄

↓ 2
i j

= −4π

V

∑
σnk

∂ f (εσ
n )

∂εσ
n

(
ei

∂εσ
n (k)

∂k

)(
e j

∂εσ
n (k)

∂k

)
. (2)

Here, f (εσ
n ) is the Fermi function for the spin σ and band

n, V is the unit cell volume, εσ
n (k) is Kohn-Sham eigenvalue

for band n, k-point k, spin-channel σ , ei is unit vector in i
direction, i = x, y, z, ωi j is the total plasma frequency that
includes contributions from spin-majority (σ =↑), and spin-
minority (σ =↓) electrons.

We have implemented the analytic derivatives of the Kohn-
Sham eigenvalues with respect to k point in the all-electron
full-potential electronic-structure package FHI-aims [20]. The
FHI-aims employs numeric atom-centered orbitals (NAO) as
basis functions of the general form

ϕα (r) = uα (r)

r
Ylm(	), (3)

where uα (r) is a numerically tabulated radial part, and Ylm are
spherical harmonics. Due to the localized basis functions, core
electrons are treated explicitly, without the need for additional
approximations. In the case of periodic boundary conditions
the Kohn-Sham equations become k space dependent:∑

β

cσ
βn(k)

∑
R

(hσR
αβ − εσ

n (k)sR
αβ )eikR = 0, (4)

where cσ
βn(k) are k-space dependent Kohn-Sham eigenvec-

tors, and hσR
αβ and sR

αβ are real-space Hamiltonian and overlap
matrix elements:

hσR
αβ = 〈ϕ0

α|ĥσ
KS|ϕR

β 〉, sR
αβ = 〈ϕ0

α | ϕR
β 〉, (5)

where R is a lattice vector, and ϕR
α (r) = ϕα (r + R).

Taking into account Eq. (4) and wave-function normaliza-
tion condition, one can show that the terms with dcσ

αn(k)/dk
vanish, in analogy with the Hellmann-Feynman theorem (see
Fig. S1). The derivative of Kohn-Sham eigenenergy in Eq. (2)
is calculated in the following way:

dεσ
n (k)

dk
=

∑
αβR

iRcσ∗
αn (k)cσ

βn(k)eikR[
hσR

αβ − sR
αβεσ

n (k)
]
, (6)

where εσ
n (k) = 〈ψσ

n (k) | ĥσ
KS | ψσ

n (k)〉 and ψσ
n (k) =∑

α cσ
αn(k)

∑
R eikRϕα (r + R) is a Kohn-Sham eigenfunction.

B. Spin-orbit coupling

The inclusion of spin-orbit coupling (SOC) is particularly
important for heavy elements such as gold, silver, palladium,
and platinum. For lightweight elements such as aluminium
and sodium, SOC effects are expected to be very small.
Ambrosch-Draxl [9] reports ∼0.2 eV correction to plasma
frequency for bulk gold and ∼1.3 eV for bulk platinum with
inclusion of spin-orbit coupling.
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In Kohn-Sham DFT the effects of SOC on electronic levels
can be incorporated into calculations nonself-consistently by
introducing SOC-perturbations to Hamiltonian:

ĥSOC = ĥKS + v̂SOC, (7)

where ĥKS is the Kohn-Sham Hamiltonian operator and v̂SOC

is SOC operator in atomic units,

v̂SOC = i

4c2
σ̂ · p̂v̂ × p̂. (8)

Here, p̂ is the momentum operator, and σ̂ are the Pauli matri-
ces:

σ̂x =
[

0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
. (9)

In the case of the SOC Hamiltonian, the Kohn-Sham eigen-
value derivatives cannot be expressed separately for each spin
because the spin-orbit coupling term includes interaction be-
tween spin-up and spin-down electrons:

dεn(k)

dk
=

∑
R

iReik·R ∑
α,β

{∑
σ

Cσ∗
αn (k)Cσ

βn(k)[hσR
αβ − sR

αβεn] +
∑
σσ ′

Cσ∗
αn (k)Cσ ′

βn(k)vσσ ′R
αβ

}
. (10)

Here vσσ ′R
αβ = 〈ϕ0σ

α |v̂SOC |ϕRσ ′
β 〉, where |ϕR↑

α 〉 = |ϕR
α , 0〉,

|ϕR↓
α 〉 = |0, ϕR

α 〉 are spinors, εn are SOC-perturbed
Kohn-Sham eigenvalues, Cσ

nα are Kohn-Sham eigenfunctions
in a basis of diagonalized perturbation matrix:

Cσ
αn(k) =

∑
csoc

nm (k)cσ
αm(k), (11)

where csoc
nm are the coefficients of SOC-perturbed eigenvectors

in a basis of the unperturbed eigenvectors cσ
mα . In Eq. (10)the

terms with ∂cσ
αn(k)/∂k [coming from Eq. (11)] do not vanish,

since cσ
nα (k) are not eigenvectors of the SOC Hamiltonian in

the NAO basis. In general, the perturbation vsoc should be
small, and the derivative become negligible.

In order to analyze the effect of neglecting ∂cσ
αn(k)/∂k,

we calculate plasma frequency for a chain of lithium atoms
and artificially add large vsoc, such that max{vsoc} ∼ 1. We
calculate the dεn(k)/dk using the Eq. (10) and compare
it to numerically calculated dεn(k)/dk using fast Fourier
transform. In Fig. S1 [21] we show that even for the large
perturbation neglecting the term containing ∂Cσ

nα (k)/∂k still
gives generally correct predictions for the shape and values of
the perturbed Kohn-Sham eigenvalue derivatives.

III. COMPUTATIONAL APPROACH

Plasma frequency of the nine metals (Ag, Al, Au, Cu,
Na, Pt, Pd, Co, and Fe) is obtained. DFT calculations are
performed using FHI-aims [20] and Vienna ab initio simula-
tion package (VASP) [22–25]. FHI-aims employs the numeric
atomic orbital basis sets, and therefore core electrons are
explicitly included in the calculation, without the need for
pseudopotential approximation. “Tight” settings are used to
ensure convergence with respect to numerical settings. We
employ the generalized gradient approximation in the form
of the Perdew, Burke, Ernzerhof (PBE) exchange-correlation
functional [6] and the strongly constrained and appropriately
normed functional SCAN [19]. Convergence tests with re-
spect to k-point mesh and smearing width are performed.
FHI-aims calculations are compared to VASP results. We em-
ploy projector-augmented wave (PAW-PBE) pseudopotentials
for all metals. The plane-wave energy cutoff is 450 eV for all
metals except Na and Al. For Na and Al the cutoff is 500 eV.

Crystal structure of all metals except Na and Fe is face-
centered cubic (fcc). Na and Fe have body-centered cubic

(bcc) structure. We also consider two modifications of Co:
hexagonal close packed (hcp) and fcc, since both hexago-
nal and cubic nanoparticles are observed in the study [1].
Calculations are done using primitive cells containing one
atom, except for hcp Co, which contains two atoms. Lattice
parameters are obtained by atomic relaxation at k-points 41 ×
41 × 41 with the respective functional (PBE or SCAN) using
FHI-aims. The obtained lattice parameters are then used for
plasma frequency calculations in both VASP and FHI-aims.

Electronic structure and density of states are obtained
nonself-consistently at the relaxed geometry with 123 ×
123 × 123 �-centered k-point mesh (see Figs. S2–S8 [21]).
For Fe and fcc Co all properties are calculated on k-point grid
93 × 93 × 93. For hcp Co the k-point grid is 93 × 93 × 63.
The study of Co and Fe also takes colinear spinpolarization
into account (see Figs. S9–S11 [21]). Converging k-grid den-
sity is important for accurate calculations of optical properties
of metals [14] (see Fig. S12 in SI). For VASP calculations
plasma frequencies are calculated on k-grids 64 × 64 × 64
and 65 × 65 × 65 and then averaged. The error for the VASP
calculations is ±0.1 eV, and the error for FHI-aims calcula-
tions is ±0.01 eV because of the denser k-point mesh. Denser
k-grids were achieved with FHI-aims due to a more favourable
scaling of computational cost with k-grid density.

IV. RESULTS AND DISCUSSION

Tables I and II summarize properties calculated with
FHI-aims and VASP in comparison with experiment. The
root-mean-square error (RMSE) for PBE lattice constants is
1.6%, and the RMSE for SCAN lattice constants is 0.6%.
Figure 2 shows the correlation between theoretically predicted
and experimentally measured plasma frequencies.

Calculated and derived from experiment plasma frequen-
cies are compared with and without inclusion of SOC for PBE
and SCAN in Tables I and II. The RMSE for PBE and SCAN
plasma frequencies with included SOC are 4.2% and 1.7%
respectively. Thus, SCAN consistently improves over PBE
and gives rather accurate results for the considered properties
of metals.

Cubic and hexagonal metals are highly symmetric which
leads to zero off-diagonal elements of the plasma frequency
tensor. In cubic crystals ωxx = ωyy = ωzz = ω, however in
hexagonal crystals ωxx = ωyy = ω1, but ωzz = ω2 	= ω1.
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TABLE I. Calculated lattice constants and dielectric properties for metals compared to experimental values. Zero-point vibrational effects
are removed from experimental results for lattice constants for a direct comparison with the calculated values [26].

XC Lattice constant, Å Plasma frequency, eV

Metal functional ab initio Expt. VASP FHI-aims FHI-aims (SOC) Expt.

PBE 4.038 4.019 12.4 12.45 12.45 12.4[16]

Al fcc SCAN 4.014 − 12.53 12.53
Ag fcc PBE 4.140 4.063 9.0 9.00 9.00 9.2 [10]

SCAN 4.041 − 9.48 9.47
Au fcc PBE 4.152 4.061 8.7 8.75 8.63 9.1 [10]

SCAN 4.095 − 9.09 8.98
Cu fcc PBE 3.630 3.595 8.9 8.89 8.88 9.3 [10]

SCAN 3.556 − 9.32 9.31
Na bcc PBE 4.184 4.207 6.0 6.04 6.04 6.0 [17]

SCAN 4.192 − 6.12 6.12
Pd fcc PBE 3.942 3.876 7.1 7.11 6.85 7.4[2]

SCAN 3.891 − 7.52 7.30
Pt fcc PBE 3.966 3.913 8.5 8.53 7.20

SCAN 3.912 − 9.17 7.96

In VASP, calculation of linear optical response is not imple-
mented for META-GGA in the used version 5.4.4, therefore
we can only compare the results for PBE calculations for
VASP and FHI-aims.

As expected, taking into account SOC for such metals as
Al, Cu, and Na has a negligible effect on plasma frequency.
For Au and Pd the effect of SOC is also small, but not neg-
ligible and is around 0.2 eV, which is comparable to the one
reported previously [9]. SOC systematically reduces plasma
frequency. In Pt it experiences the most dramatic change of
1.3 eV upon inclusion of SOC. The analysis of electronic
density of states (DOS) shows that Pt DOS at the Fermi level
changes dramatically upon inclusion of SOC, which does
not happen with the other metals (see Fig. S8 [21]). This
explains the large effect of SOC on plasma frequency in Pt,
since according to Eq. (2), the largest contribution to plasma
frequency comes from electrons around the Fermi level. The
complexity of extracting plasma frequency from experiment
for Pt arises from the significant interband contribution at low
frequencies for this metal [9]. Currently there is no reliable
experimental value.

As can be seen from Table II, for hcp Co the contri-
bution to plasma frequency from spin-majority (ωxx,↑) and
spin-minority (ωxx,↓) electrons differ by ∼1.6 eV, which is
comparable to the whole visible range of 2 eV. The total
ωpl is 1 eV different from the value for a majority electrons.
ωzz,↑ and ωzz,↓ are almost identical and thus resulting in total
plasma frequency ∼√

2ωpl,↑. For fcc Co, ω↑ and ω↓ are also
almost identical. For the bcc Fe, however, the spin-majority
contribution to plasma frequency is around 1.5 times higher
than the spin-minority one.

There is a significant difference of the DOS at the Fermi
level for the two spin channels for spin-polarized metals (see
Figs. S9–S11 [21]). Although DOS at the Fermi level is larger
in the spin-minority channel, the corresponding contribution
to plasma frequency is smaller. This is because the group
velocity is higher in the spin-majority channel due to the
higher electron density.

The inclusion of SOC has a relatively large effect of
0.14 eV for bcc Fe and fcc Co. Interestingly, hexagonal Co
experiences an even more drastic change of 0.5 eV for its
z-component plasma frequency ωzz that decreases from 6.73

TABLE II. Lattice constants and plasma frequencies for hcp and fcc Co and bcc Fe, calculated with FHI-aims and compared to experimental
values. Zero-point vibrational effects are removed from experimental results for lattice constants for a direct comparison with the calculated
values. Plasma frequencies squared are calculated separately for majority and minority electrons and then summed up to give the total value
of plasma frequency squared. The respective values for hcp structure are represented as ωxx/ωzz. SOC-perturbed plasma frequency is denoted
ωsoc

pl .

Lattice constant, A plasma frequency, eV

ab initio Expt. ωpl,↑ ωpl,↓ ωpl ωsoc
pl

Metal a c a c ωxx,↑/ωzz,↑ ωxx,↓/ωzz,↓ ωxx/ωzz ωsoc
xx /ωsoc

zz

Fe-bcc 2.818 − 2.855 − 5.57 3.72 6.70 6.56
Co-fcc 3.513 − 3.543 − 5.44 5.05 7.42 7.28
Co-hcp 2.493 4.033 2.503 4.057 5.03/4.89 3.44/4.63 6.09/6.73 6.01/6.24
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FIG. 2. Correlation between theoretically predicted and experi-
mentally derived plasma frequencies. x-axis value is experimental
plasma frequencies in eV. y axis shows plasma frequency values
calculated from DFT. Open circles are for PBE results, closed circles
are for SCAN. The black line is the line where theoretical and
experimental data would coincide. Each metal is represented with
the respective color (e.g., gold with green, silver with blue, copper
with cyan, etc.).

to 6.24 eV. This demonstrates that effects of SOC on cal-
culated optical properties of metals are determined not only
by the species but also by the crystal structure. ωxx does not

change much (from 6.09 to 6.01 eV) with the inclusion of
SOC.

V. CONCLUSIONS

A methodology to calculate plasma frequency in an all-
electron full-potential framework employing numeric atomic
orbital basis sets, including spin-orbit coupling effects, is in-
troduced. Lattice constants and plasma frequency for seven
nonmagnetic metals and two ferromagnetic metals are cal-
culated using PBE and SCAN DFT approximations. A
good agreement of the obtained results with experiments is
achieved, in particular with SCAN. A very large effect of SOC
on plasma frequency is obtained for Pt (reduction by 1.2 eV).
Also, we find a large effect of crystal structure on the SOC
correction to plasma frequency for Co.

Using the new implementation, contributions to the plasma
frequency from different spin channels are calculated and
analyzed. We find a large difference between calculated con-
tributions from majority and minority electrons to plasma
frequency of Co and Fe. The obtained difference for hexag-
onal close-packed Co reaches 1.6 eV, which is comparable
to the whole visible range. Thus, spin-polarization effects on
electronic structure can have a significant contribution to the
optical spectra of magnetic metal nanoparticles.

ACKNOWLEDGMENTS

The code development was supported by RSCF Grant No.
21-13-00419.

[1] H. L. Bhatta, A. E. Aliev, and V. P. Drachev, New mechanism
of plasmons specific for spin-polarized nanoparticles, Sci. Rep.
9, 1 (2019).

[2] P. Johnson and R. Christy, Optical constants of transition met-
als: Ti, v, cr, mn, fe, co, ni, and pd, Phys. Rev. B 9, 5056
(1974).

[3] D. M. Ceperley and B. J. Alder, Ground State of the Electron
Gas By a Stochastic Method, Phys. Rev. Lett. 45, 566 (1980).

[4] J. P. Perdew, E. R. McMullen, and A. Zunger, Density-
functional theory of the correlation energy in atoms and ions:
a simple analytic model and a challenge, Phys. Rev. A 23, 2785
(1981).

[5] B. S. Mendoza and W. L. Mochán, Ab initio theory of the drude
plasma frequency, J. Opt. Soc. Am. B 38, 1918 (2021).

[6] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[7] S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier,
R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, Size-
dependent permittivity and intrinsic optical anisotropy of
nanometric gold thin films: A density functional theory study,
Opt. Express 21, 11827 (2013).

[8] J. Harl, The linear response function in density functional the-
ory, Ph.D. thesis, Uniwien, 2008.

[9] K. Glantschnig and C. Ambrosch-Draxl, Relativistic effects on
the linear optical properties of au, pt, pb and w, New J. Phys.
12, 103048 (2010).

[10] P. B. Johnson and R. Christy, Optical constants of the noble
metals, Phys. Rev. B 6, 4370 (1972).

[11] A. Marini, R. Del Sole, and G. Onida, First-principles calcula-
tion of the plasmon resonance and of the reflectance spectrum
of silver in the gw approximation, Phys. Rev. B 66, 115101
(2002).

[12] Y. He and T. Zeng, First-principles study and model of dielectric
functions of silver nanoparticles, J. Phys. Chem. C 114, 18023
(2010).

[13] A. Marini, G. Onida, and R. Del Sole, Plane-wave dft-lda cal-
culation of the electronic structure and absorption spectrum of
copper, Phys. Rev. B 64, 195125 (2001).

[14] C. Ambrosch-Draxl and J. O. Sofo, Linear optical prop-
erties of solids within the full-potential linearized aug-
mented planewave method, Comput. Phys. Commun. 175, 1
(2006).

[15] D. Y. Smith and B. Segall, Intraband and interband processes in
the infrared spectrum of metallic aluminum, Phys. Rev. B 34,
5191 (1986).

[16] H. Ehrenreich, H. Philipp, and B. Segall, Optical properties of
aluminum, Phys. Rev. 132, 1918 (1963).

[17] M. Haque and K. Kliewer, Plasmon properties in bcc potassium
and sodium, Phys. Rev. B 7, 2416 (1973).

[18] N. Matsko, Formation of normal surface plasmon modes in
small sodium nanoparticles, Phys. Chem. Chem. Phys. 22,
13285 (2020).

045113-5

https://doi.org/10.1038/s41598-018-37186-2
https://doi.org/10.1103/PhysRevB.9.5056
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevA.23.2785
https://doi.org/10.1364/JOSAB.416741
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1364/OE.21.011827
https://doi.org/10.1088/1367-2630/12/10/103048
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1103/PhysRevB.66.115101
https://doi.org/10.1021/jp101598j
https://doi.org/10.1103/PhysRevB.64.195125
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1103/PhysRevB.34.5191
https://doi.org/10.1103/PhysRev.132.1918
https://doi.org/10.1103/PhysRevB.7.2416
https://doi.org/10.1039/D0CP00323A


POGODAEVA, LEVCHENKO, AND DRACHEV PHYSICAL REVIEW B 107, 045113 (2023)

[19] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Constrained
and Appropriately Normed Semilocal Density Functional,
Phys. Rev. Lett. 115, 036402 (2015).

[20] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K.
Reuter, and M. Scheffler, Ab initio molecular simulations with
numeric atom-centered orbitals, Comput. Phys. Commun. 180,
2175 (2009).

[21] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.045113 for the derivation of Kohn-
Sham eigenenergy derivatives and Figs. S1– S12.

[22] G. Kresse and J. Hafner, Ab initio molecular-dynamics simu-
lation of the liquid-metal–amorphous-semiconductor transition
in germanium, Phys. Rev. B 49, 14251 (1994).

[23] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[24] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[25] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[26] P. Hao, Y. Fang, J. Sun, G. I. Csonka, P. H. T. Philipsen, and J. P.
Perdew, Lattice constants from semilocal density functionals
with zero-point phonon correction, Phys. Rev. B 85, 014111
(2012).

045113-6

https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1016/j.cpc.2009.06.022
http://link.aps.org/supplemental/10.1103/PhysRevB.107.045113
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.85.014111

