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We elaborate that for topological insulators and topological superconductors described by Dirac models
in any dimension and symmetry class, the topological order can be mapped to lattice sites by a universal
topological marker. Deriving from a recently discovered momentum-space universal topological invariant, we
introduce a topological operator that consists of alternating projectors to filled and empty lattice eigenstates and
the position operators, multiplied by the Dirac matrices that are omitted in the Hamiltonian. The topological
operator projected to lattice sites yields the topological marker, whose form is explicitly constructed for every
topologically nontrivial symmetry class from 1D to 3D. The off-diagonal elements of the topological operator
yield a nonlocal topological marker, which decays with a correlation length that diverges at topological phase
transitions, and represents a Wannier state correlation function. Various prototype examples, including the
Su-Schrieffer-Heeger model, Majorana chain, Chern insulators, Bernevig-Hughes-Zhang model, 2D chiral and
helical p-wave superconductors, lattice model of 3He B-phase, and 3D time-reversal-symmetric topological
insulators, are employed to demonstrate the ubiquity of our formalism.
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I. INTRODUCTION

The celebrated topological order in topological insulators
(TIs) and superconductors (TSCs) has been recognized as
the principle behind various seemingly unrelated phenom-
ena in these materials [1,2]. The topological phases of these
materials are characterized by topological invariants that are
derived from the Bloch state of the electrons or quasiparti-
cles in momentum space, which have been well understood
within the context of symmetry classification that classifies
the Dirac Hamiltonians of these materials according to their
symmetries and dimensions [3–6]. On the other hand, it has
been pointed out that several kinds of topological invari-
ants can be expressed as real-space quantities completely
defined from lattice eigenstates, giving rise to the notion of
topological markers. The earliest and most widely investi-
gated example is the Chern marker in 2D time-reversal (TR)
symmetry-breaking systems, where the corresponding topo-
logical invariant is the Chern number calculated from the
momentum integration of Berry curvature [7–10]. Through
rewriting the Berry curvature into projectors to the valence
and conduction bands, which can further be expressed in
terms of projectors to the filled and empty states of the
lattice Hamiltonian after a momentum integration, the diag-
onal element of the resulting Chern operator on lattice site
r yields the correct Chern number [7]. Since the discovery
of the Chern marker, various topological markers have been
proposed to generalize this concept to other dimensions and
symmetry classes [11–23], and even to periodically driven
systems [24,25], which have been proved to be a powerful
tool to investigate how the real-space inhomogeneity, such as
disorder and interfaces, can influence the topological order
locally and globally. In addition, several theoretical proposals
suggest that some topological markers may be measured by
real-space experiments [26,27].

In this paper, we address two important issues that nat-
urally arise along the development of topological marker
theories: (1) First, is it possible to formulate a universal
topological marker that can be ubiquitously applied to lattice
models of TIs and TSCs in any dimension and symmetry
class? This question is raised because recently, a wrapping
number has been proposed as the universal momentum-
space topological invariant in any dimension and symmetry
class [28], which has the physical meaning as the number of
times that the Brillouin zone (BZ) torus T D wraps around
the target sphere SD of the Dirac Hamiltonian. Similar to
the derivation of the Chern marker from rewriting the Chern
number into real space [7], we demonstrate that the wrapping
number can always be expressed in real space as the trace of
an object that we call the topological operator. The diagonal
element of the topological operator at lattice site r then cor-
responds in a universal topological marker. (2) Second, can
topological phase transitions (TPTs) also be detected in real
space by some universal quantity valid for any dimension and
symmetry class? This question arises because the integrand
of the wrapping number, which plays the role of the Jacobian
of the aforementioned T D → SD map, has a universal critical
behavior in Dirac models; namely, it narrows and flips sign at
the gap-closing high-symmetry point k0 as the system crosses
TPTs [29–33]. We show that this critical behavior can be de-
tected ubiquitously by the (r + R, r)th off-diagonal element
of the topological operator that we call the nonlocal topologi-
cal marker, which is equivalently the Fourier transform of the
Jacobian that narrows and flips sign, and thus decays in real
space with a decay length that diverges at TPTs.

The structure of the paper is organized in the following
manner. In Sec. II, we introduce the formalism that rewrites
the wrapping number into projectors to valence and conduc-
tion band states, and how it can further be expressed in terms
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of filled and empty lattice eigenstates, yielding the topological
operator. The local and nonlocal topological markers are fur-
ther introduced as the diagonal and off-diagonal elements of
the topological operator, respectively, and their interpretations
in terms of Wannier states are given. In Secs. III–V, we ex-
plicitly construct the topological operator for the topologically
nontrivial symmetry classes in 3D, 2D, and 1D, and examine
various prototype lattice models to demonstrate the universal
features of the local and nonlocal topological markers. Sec-
tion VI summarizes the results, and lists a numbers of open
questions that remain to be explored.

II. GENERAL FORMALISM IN ANY DIMENSION
AND SYMMETRY CLASS

A. Topological operators

Our aim is to formulate a real-space topological marker
for TIs and TSCs in D dimensions described by Dirac Hamil-
tonian H = d(k) · �, where �i = (�0, �1, . . . , �2n) are the
nth order Dirac matrices of dimension 2n × 2n that satisfy
{�i, � j} = 2δi j , and d(k) = (d0, d1, . . . , dD) characterizes the
momentum dependence of the Hamiltonian [3,4,6]. It is often
more convenient to work on the spectrally flattened Dirac
Hamiltonian Q̃ = n(k) · � at momentum k, where n = d/|d|
is a momentum-dependent unit vector. The precise form of
the � matrices depends on the dimension and symmetry class
of the system at hand. Nevertheless, it has recently been dis-
covered that all the dimensions and symmetry classes can be
described by a universal topological invariant calculated from
momentum integration of the cyclic derivative of the d-vector
or n-vector,

deg[n] = 1

VD

∫
dDk εi0...iD

1

|d|D+1
di0∂1di1 . . . ∂DdiD

= 1

VD

∫
dDk εi0...iD ni0∂1ni1 . . . ∂DniD , (1)

where εi0...iD is the fully antisymmetric Levi-Civita symbol.
The deg[n] in Eq. (1) has been referred to as the wrapping
number or degree of the map that counts the number of times
the T D BZ wraps around the unit sphere SD that the n-vector
forms, and the integrand Jk = εi0...iD ni0∂1ni1 . . . ∂DniD is the
Jacobian of the map [28]. Here VD = 2π (D+1)/2/�( D+1

2 ) is
the volume of the D-sphere of unit radius, and ∂ j ≡ ∂/∂k j .
The true topological invariant is either deg[n] if the system
belongs to the so-called primary or complex series, 2 deg[n]
for the even series, and (−1)deg[n] for the first and second
descendants.

We now elaborate that the deg[n] in Eq. (1) can
be expressed as the momentum integration of the trace
Tr[W Q̃(dQ̃)D], where

Q̃(dQ̃)D ≡ Q̃∂1Q̃∂2Q̃ . . . ∂DQ̃, (2)

and W is the product of Dirac matrices that are omitted in the
Dirac Hamiltonian for the system at hand, or the identity ma-
trix W = I if all the Dirac matrices are used. This connection
is made because the trace of the product of all the nth-order �

matrices is a constant

Tr[�0�1 . . . �2n] = 2nc, (3)
where the prefactor c = {1,−1, i,−i} depends on the rep-
resentation of the � matrices for the system at hand. Now
suppose for a specific TI or TSC, the Dirac Hamiltonian
uses only {�0, �1, . . . , �D}, leaving {�D+1, �D+2, . . . , �2n}
unused. If we define the product of all the unused ones to be
W = �D+1�D+2 . . . �2n, it then follows that (repeating indices
are summed)

Tr[W Q̃(dQ̃)D]

= Tr
[
�D+1�D+2 . . . �2n�i0�i1 . . . �iD

]
ni0∂1ni1 . . . ∂DniD

= 2nc εi0...iD ni0∂1ni1 . . . ∂DniD , (4)

where the antisymmetric factor εi0...iD comes from the fact that
the � matrices anticommute, and the trace is nonzero and
given by Eq. (3) only if every � matrix appears once and only
once. Taking a momentum integration and comparing with
Eq. (1), we obtain

deg[n] = (2π )D

2nc VD

∫
dDk

(2π )D
Tr[W Q̃(dQ̃)D]. (5)

This quantity
∫

dDk Tr[W Q̃(dQ̃)D] is our bridge to a real-
space topological marker, because it allows us to adopt the
projector algebra that originally derives the Chern marker [7].
To see this, we observe that the spectrally flattened Hamilto-
nian Q̃ can be separated into the projector p into the valence
band states |n(k)〉 and the projector q into the conduction band
states |m(k)〉,

Q̃ = q − p, p =
∑

n

|n〉〈n|, q =
∑

m

|m〉〈m|, (6)

and q + p = I . As a result, the derivative of Q̃ over a certain
component of momentum ∂/∂k j ≡ ∂ j is equivalently ∂iQ̃ =
2∂iq = −2∂i p. Consequently, we can write Q̃(dQ̃)D into the
form that consists of alternating derivatives of p and q.

Consider first D = odd, in which case the integrand of
Eq. (5) can be written as

W Q̃(dQ̃)D|D∈odd = 2D(−1)(D+1)/2W {q ∂1 p ∂2q . . . ∂D p + p ∂1q ∂2 p . . . ∂Dq}
= 2D(−1)(D+1)/2

∑
m1∼m(D+1)/2

∑
n1∼n(D+1)/2

W
{|m1〉

〈
m1

∣∣∂i1 n1
〉〈

n1

∣∣∂i2 m2
〉
. . .

. . .
〈
m(D+1)/2

∣∣∂iD n(D+1)/2
〉〈n(D+1)/2| + (m ↔ n)

}
, (7)

where |∂ni〉〈ni| comes from the ith p operator on the second line of this equation, |∂mi〉〈mi| comes from the ith q operator, and
each operator appears (D + 1)/2 times. The motivation to rewrite it into this form of alternating p and q is to use the identity [7]

〈m|∂i|n〉 = −i〈ψm|î|ψn〉, (8)
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provided n 	= m, where the |ψn〉 = |ψn(k)〉 is the full wave function that satisfies 〈r|ψn(k)〉 = ψnk(r) = unk(r)eik·r =
〈r|n(k)〉eik·r with unk(r) the Bloch periodic part of the wave function. Here î is the position operator, which is a diagonal
matrix where all the 2n internal degrees of freedom (spin, orbit, particle-hole, etc.) within a unit cell located at the Bravais lattice
vector r = (x, y, z, . . .) are assigned with the same r. This identity allows us to write∫

dDk
(2π )D

Tr[W Q̃(dQ̃)D]D∈odd

= 2Di
∫

dDk
(2π )D

εi1i2...iD
∑

m1∼m(D+1)/2

∑
n1∼n(D+1)/2

Tr
{
W

∣∣ψm1

〉〈
ψm1

∣∣î1∣∣ψn1

〉〈
ψn1

∣∣ . . . . . . 〈ψm(D+1)/2

∣∣îD∣∣ψn(D+1)/2

〉〈
ψn(D+1)/2

∣∣ + (m ↔ n)
}

= 2DiTr

⎡
⎣W

∫
dDkm1

(2π )D

∑
m1

∣∣ψm1

〉〈
ψm1

∣∣î1
∫

dDkn1

(2π )D

∑
n1

∣∣ψn1

〉〈
ψn1

∣∣î2 . . . . . .

∫
dDkm(D+1)/2

(2π )D

∑
m(D+1)/2

∣∣ψm(D+1)/2

〉〈
ψm(D+1)/2

∣∣îD

×
∫

dDkn(D+1)/2

(2π )D

∑
n(D+1)/2

∣∣ψn(D+1)/2

〉〈
ψn(D+1)/2

∣∣ + (n ↔ m)

⎤
⎦. (9)

In the last step, we identify the projector to the valence bands integrated over momentum as the projector to the filled band states
|En〉 of a lattice Hamiltonian, and likewise the projector to the conduction bands integrated over momentum as the projector to
the empty band states |Em〉∫

dDkmj

(2π )D

∑
mj

∣∣ψmj

〉〈
ψmj

∣∣ =
∑

m

|Em〉〈Em| ≡ Q,

∫
dDkn j

(2π )D

∑
n j

∣∣ψn j

〉〈
ψn j

∣∣ =
∑

n

|En〉〈En| ≡ P, (10)

which are (LD2n) × (LD2n) matrices, where LD is the total number of unit cells in the lattice, and each unit cell contains 2n

degrees of freedom. Equation (9) then becomes∫
dDk

(2π )D
Tr[W Q̃(dQ̃)D]D∈odd = 2DiTr[W Q î1P î2 . . . Q îDP + W P î1Q î2 . . . P îDQ], (11)

where in the second line we have enlarged W → W ⊗ ILD×LD . Note that in Eq. (11), the trace on the left-hand side is over the 2n

internal degrees of freedom at momentum k, whereas the trace on the right-hand side is over the 2n × LD degrees of freedom on
a lattice Hamiltonian of LD unit cells. In this way we have written the momentum-space topological invariant into an object that
is completely defined from the eigenstates of a lattice Hamiltonian.

In D = even dimensions, the construction is similar. We again seek to write the integrand W Q̃(dQ̃)D into alternating
derivatives of p and q, which in even dimensions becomes

W Q̃(dQ̃)D|D∈even = 2D(−1)D/2W
{
q ∂i1 p ∂i2 q . . . ∂iD q − p ∂i1 q ∂i2 p . . . ∂iD p

}
= 2D(−1)D/2

∑
m1∼mD/2+1

∑
n1∼nD/2

W
{|m1〉

〈
m1

∣∣∂i1 n1
〉〈

n1

∣∣∂i2 m2
〉
. . . . . .

〈
nD/2

∣∣∂iD mD/2+1
〉〈mD/2+1| − (m ↔ n)

}
, (12)

where p appears D/2 times and q appears D/2 + 1 times for the first array in the second line of this equation, and vice versa for
the second array. The momentum integration of this quantity becomes∫

dDk
(2π )D

Tr[W Q̃(dQ̃)D]D∈even

= 2D
∫

dDk
(2π )D

∑
m1∼mD/2+1

∑
n1∼nD/2

Tr
{
W

∣∣ψm1

〉〈
ψm1

∣∣î1∣∣ψn1

〉〈
ψn1

∣∣ . . . . . . 〈ψnD/2 |îD
∣∣ψmD/2+1

〉〈
ψmD/2+1

∣∣ − (m ↔ n)
}

= 2DTr

⎡
⎣W

∫
dDkm1

(2π )D

∑
m1

∣∣ψm1

〉〈
ψm1

∣∣î1
∫

dDkn1

(2π )D

∑
n1

∣∣ψn1

〉〈
ψn1

∣∣î2 . . . . . .

∫
dDknD/2

(2π )D

∑
nD/2

∣∣ψnD/2

〉〈
ψnD/2

∣∣îD

×
∫

dDkmD/2+1

(2π )D

∑
mD/2+1

∣∣ψmD/2+1

〉〈
ψmD/2+1

∣∣ − (n ↔ m)

⎤
⎦. (13)

Using the projectors in Eq. (10), we arrive at∫
dDk

(2π )D
Tr[W Q̃(dQ̃)D]D∈even = 2DTr[W Q î1P î2 . . . P îDQ − W P î1Q î2 . . . Q îDP]. (14)
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Once again we have written the topological invariant into a
form that is completely defined from the lattice eigenstates.

Equations (11) and (14) suggest a universal topological
operator of the form

Ĉ = NDW [Q î1P î2 . . . îDO + (−1)D+1P î1Q î2 . . . îDO],

(15)

where the last operators {O,O} = {P, Q} if D = odd, and
{O,O} = {Q, P} if D = even owing to the alternating order-
ing of the projectors Q and P. Using Eqs. (5), (11), and (14),
one sees that the wrapping number in Eq. (1) is equal to the
trace of this operator,

deg[n] = 1

LD
Tr[ Ĉ ], (16)

where LD is the total number of unit cells, and Tr[. . .] rep-
resents the trace over all the lattice sites. The normalization
factor ND in Eq. (15) has the expression

ND = iD22D−nπD

c VD
, (17)

which depends on the dimension D, the volume VD =
{V1,V2,V3, . . .} = {2π, 4π, 2π2, . . .}, the order n, and the
prefactor c = Tr[�0�1 . . . �2n]/2n = {1,−1, i,−i} of the rep-
resentation of � matrices for the system under question.
Equations (15) to (17) are the central results of this work, and
we will demonstrate their validity using concrete models in
the following sections.

B. Local and nonlocal topological markers

Similar to the original construction of Chern marker as the
diagonal elements of Chern operator [7], the correspondence
between the wrapping number and the trace of the topological
operator in Eq. (16) suggests defining the (local) topological
marker on a lattice site r by

C(r) = 〈r|Ĉ|r〉 =
∑

σ

〈rσ |Ĉ|rσ 〉; (18)

i.e., the marker is the diagonal element of topological operator
at r. Here

∑
σ represents the summation over all the 2n inter-

nal degrees of freedom inside the unit cell at r, such as spin,
orbital, and particle-hole.

We further introduce a nonlocal topological marker as the
(r + R, r)th off-diagonal matrix element of the topological
operator [26,27]

C(r + R, r) = 〈r + R|Ĉ|r〉, (19)

where R is a Bravais lattice vector. For a homogeneous lattice
model in the thermodynamic limit, this nonlocal marker is
independent of r, and is equivalently the Fourier transform
of the integrand of the wrapping number in Eq. (1),

C(r + R, r) = F̃ (R)

≡ 1

VD

∫
dDk εi0...iD ni0∂1ni1 . . . ∂DniD eik·R, (20)

that has been previously denoted by F̃ (R) [31–33], and has
the physical meaning as a correlation function that measures
the overlap between Wannier states that are a distance R apart,

FIG. 1. Summary of the correspondence between the topologi-
cal order in momentum space calculated from the Jacobian Jk =
εi0 ...iD ni0∂1ni1 . . . ∂DniD , where ni characterizes the spectrally flattened
Dirac Hamiltonian Q̃ = n · �, and that in real space calculated from
the topological operator C constructed from projectors and position
operators. For homogeneous systems in the thermodynamic limit, the
wrapping number is equal to the topological marker deg[n] = C(r),
and the Wannier state correlation function is equivalently the nonlo-
cal topological marker F̃ (R) = C(r + R, r).

as we shall see in Sec. II C. The identification C(r + R, r) =
F̃ (R) can be seen by considering equivalently the Fourier
transform of Tr[W Q̃(dQ̃)D], which contains the projection
〈r|W |ψm1〉eik·R of the first ket state of Eqs. (9) and (13) that is
equal to 〈r + R|W |ψm1〉,
〈r|W ∣∣ψm1

〉
eik·R = eik(r+R)W um1k(r + R)

= W ψm1k(r + R) = 〈r + R|W ∣∣ψm1

〉
, (21)

owing to the cell periodicity of the Bloch state um1k(r + R) =
um1k(r). The correspondence between the momentum-space
topological invariants and the real-space topological markers
is summarized schematically in Fig. 1.

The spatial profile of the nonlocal marker C(r + R, r) de-
cays with R, with a decay length ξ that diverges at TPTs,
thereby serving as a faithful quantity to identify TPTs. This
can be seen by considering the linear Dirac model d0 = M,
di 	=0 = vki, which is a low-energy effective model near the
gap-closing momentum that describes the majority of TPTs.
The integrand of Eq. (1) has a Lorentzian shape in this model,

εi0...iD
1

|d|D+1
di0∂1di1 . . . ∂DdiD = M

[M2 + v2k2](D+1)/2

≈ sgn(M )|M|−D

1 + ξ 2k2
, (22)

implying that its Fourier transform C(r + R, r) decays with a
correlation length ξ ∼ |M|−ν that diverges at the critical point
Mc = 0, with the critical exponent ν = 1. In addition, owing
to the relation between the integrand and the quantum metric
of the valence band state [34], a relation that has been called
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the metric-curvature correspondence [35], the integrand at
k = 0 that scales like ∼|M|−D has the meaning as the fidelity
susceptibility near TPTs [36], and hence has been assigned
with the exponent γ = D.

Generally, a D-dimensional cubic lattice model contains
multiple critical points Mc, each corresponding to gap closing
at a specific high-symmetry point (HSP) k0 = (k0x, k0y, . . .),
where k0 j = 0 or π . The integrand of Eq. (1) also peaks at
the corresponding HSP; i.e., the k in Eq. (22) is actually the
momentum away from the HSP. As a result, if the HSP is not
at the � point of the BZ, then the nonlocal topological marker
will oscillate in real space besides decaying, since in this case

C(r + R, r)

≈ 1

VD

∫
dDk

sgn(M − Mc)|M − Mc|−D

1 + ξ 2k2
ei(k−k0 )·R

= e−ik0·RF (R), (23)

where F (R) decays with R as argued above. One sees that
the nonlocal marker also oscillates in the jth direction where

k0 j = π owing to the e−ik0·R factor. For instance, if in a 3D
cubic lattice model the gap closes at k0 = (k0x, k0y, k0z ) =
(π, π, 0), then the nonlocal marker will oscillate in both the x̂
and ŷ directions, but not in the ẑ direction. We shall see some
concrete examples in the following sections.

C. Wannier state representations

We proceed to elaborate that in the homogeneous and
thermodynamic limit, both the local and nonlocal topological
markers can be expressed in terms of overlap of Wannier
states. Given the Bloch states |�〉 = |�k〉 of either the valence
� = n or conduction � = m band states, we can introduce the
Wannier state |R�〉 by

|�k〉 =
∑

R

e−ik·(r̂−R)|R�〉, |R�〉 =
∑

k

eik·(r̂−R)|�k〉. (24)

Inserting these definitions into Eqs. (9) and (13) yields an
expression for the local topological marker in D = odd di-
mensions

C(r)|D∈odd ∝
∫

dDk
(2π )D

Tr[W Q̃(dQ̃)D]D∈odd = 2Diεi1...iD
∑

R1∼R2D+1

∑
m1∼m(D+1)/2

∑
n1∼n(D+1)/2

〈R1n(D+1)/2|W |R2m1〉〈R3m1|î1|R4n1〉 . . .

〈R2D+1m(D+1)/2|îD|(R1 − R2 + · · · + R2D+1)n(D+1)/2〉 + (n ↔ m), (25)

and a similar one in D = even dimensions

C(r)|D∈even ∝
∫

dDk
(2π )D

Tr[W Q̃(dQ̃)D]D∈even = 2Dεi1...iD
∑

R1∼R2D+1

∑
m1∼mD/2+1

∑
n1∼nD/2

〈R1mD/2+1|W |R2m1〉〈R3m1|î1|R4n1〉 . . .

〈R2D+1nD/2|îD|(R1 − R2 + R3 . . . + R2D+1)mD/2+1〉 − (n ↔ m). (26)

Likewise, the nonlocal topological markers C(r + R, r) in
the homogeneous limit in either even or odd dimensions can
also be expressed in terms of Wannier states, which is sim-
ply given by the results in Eq. (26) with the last position
argument replaced by (R1 − R2 + R3 . . . + R2D+1) → (R1 −
R2 + R3 . . . + R2D+1 − R). As a result, the nonlocal marker
C(r + R, r) has the physical meaning as the measure of the
overlap of Wannier states weighted by the position operators,
which decays with R according to the argument after Eq. (22).
Moreover, the decay length ξ diverges at TPTs, and hence
C(r + R, r) serves as a faithful correlator that characterizes
the quantum criticality near TPTs. Finally, we also mention
that although this Wannier state formalism nicely interprets
the nonlocal marker as a correlator, one need not calculate
the correlator directly from the Wannier states, which may
be quite tedious. Instead, one can easily extract it from the
off-diagonal elements of the topological operator as described
by Eq. (19), as we shall see in the following sections.

D. Applications to lattice models from 1D to 3D

The TIs and TSCs can be classified according to the TR,
particle-hole (PH), and chiral symmetries of the system, with
the corresponding symmetry operators denoted by T , C, and
S, respectively. These symmetries are said to be satisfied if the

single-particle Hamiltonian satisfies [3–6]

T H (k)T −1 = H (−k), CH (k)C−1 = −H (−k),

SH (k)S−1 = −H (k), (27)

yielding a total of 10 symmetry classes. The result of the clas-
sification gives 5 topologically nontrivial symmetry classes in
each spatial dimension D. For practical reasons, in the follow-
ing sections, we explicitly construct the topological operators
in Eq. (15) for all the 15 nontrivial symmetry classes from
1D to 3D. Moreover, for those classes described by 2 × 2
and 4 × 4 Dirac matrices, which cover 13 out of the 15 non-
trivial classes, we will use cubic lattice models to explicitly
demonstrate the validity of the local and nonlocal topological
markers. The two cases left unexamined are classes CI and
CII in 3D described by 8 × 8 Dirac matrices, which are less
explored in the literature and will be left for future investiga-
tions.

To elaborate the ubiquity of the topological operators and
markers, in each lattice model, we choose the periodic bound-
ary condition in all spatial directions, focus on one specific
critical point of the mass term Mc, and examine four parame-
ters of M denoted by

M1 : nontrivial phase far from Mc (red),

M2 : nontrivial phase close to Mc (green),
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FIG. 2. Local (left column) and nonlocal (right column) topolog-
ical markers for lattice models in three out of the five topologically
nontrivial symmetry classes in 3D, including (a) a regularized lattice
model for class AIII, (b) a lattice model of 3He B-phase in class DIII,
and (c) the prototype 3D TR-symmetric TIs in class AII.

M3 : trivial phase close to Mc (blue),

M4 : trivial phase far from Mc (orange). (28)

The purpose of examining these 4 parameters is to elaborate
that the behavior of local and nonlocal topological markers is
the same in any dimension and symmetry class [see the figures
in the following sections, with the same color code indicated
in Eq. (28)]: Deep inside the bulk, M1 and M2 have the same
integer-valued topological marker C(r) since they are in the
same topological phase, but the nonlocal topological marker
C(r + R, r) of M2 has a longer decay length than M1 since
it is closer to the critical point according to the discussion
after Eq. (22). Likewise, M3 and M4 have the same C(r)
deep inside the bulk, but M3 has a longer decay length of
C(r + R, r) than M4 since it is closer to the critical point. We
also remark that numerically, we find that the local marker at
the boundary sites deviates from the bulk value even if the
periodic boundary condition is employed. This is a feature
well known for this type of construction [7], since the position
operators î in Eq. (15) do not respect translational invariance.
Such an anomaly may be fixed by exponentiating the position
operator [8,10], which shall be explored elsewhere.

III. TOPOLOGICAL MARKERS IN THREE DIMENSIONS

In 3D TIs and TSCs, the topological operator has the fol-
lowing general form,

Ĉ3D = NDW [Qx̂PŷQẑP + Px̂QŷPẑQ]. (29)

The W matrix has different interpretations in different classes.
The numerical results for classes AIII, DIII, and AII are pre-
sented in Fig. 2 using prototype cubic lattice models simulated

on a 3D lattice of dimension Lx × Ly × Lz = 20 × 8 × 8. We
use a lattice that is elongated in the x̂ direction and plot the
results along this direction for the sake of increasing numeri-
cal accuracy. The details of each symmetry class are described
below.

A. 3D class AIII

In 3D classes AIII, the � matrices are given by [4]

�1∼5 = (αx, αy, αz, β,−iβγ 5),

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
, γ 5 =

(
0 1
1 0

)
. (30)

The chiral operator S = β demands d4(k) = 0, so for a lin-
ear Dirac model one chooses d1 = Akx, d2 = Aky, d3 = Akz,
and d5 = M + B

∑3
�=1 k2

� as the mass term that contains a
quadratic term to avoid fermion doubling. The spinor of 3D
class AIII contains only annihilation operators, which we
name generically as ψ = (ck1, ck2, ck3, ck4), where ckJ is the
Jth degree of freedom. Regularizing the linear Dirac model in
the whole BZ by

A k� → A sin k�,

M → M + B
D∑

�=1

k2
� → M + 2DB − 2B

D∑
�=1

cos k�, (31)

with D = 3 in this case, we may further construct a cubic
lattice Hamiltonian by performing a Fourier transform∑

k

cos k�c†
kI ckJ → 1

2

∑
i

{c†
iI ci+�J + c†

i+�I ciJ},

∑
k

i sin k�c†
kI ckJ → 1

2

∑
i

{c†
iI ci+�J − c†

i+�I ciJ}. (32)

Denoting t = A/2 and t ′ = B, the resulting lattice model is

H =
∑

i

t{−ic†
i1ci+x4 + ic†

i+x1ci4 − ic†
i2ci+x3 + ic†

i+x2ci3}

+
∑

i

t{−c†
i1ci+y4 + c†

i+y1ci4 + c†
i2ci+y3 − c†

i+y2ci3}

+
∑

i

t{−ic†
i1ci+z3 + ic†

i+z1ci3 + ic†
i2ci+z4 − ic†

i+z2ci4}

+
∑

iδ

it ′{c†
i1ci+δ3 + c†

i+δ1ci3 + c†
i2ci+δ4 + c†

i+δ2ci4}

+
∑

i

(−iM − i6t ′){c†
i1ci3 + c†

i2ci4} + H.c. (33)

The omitted Dirac matrix is the chiral operator W = β =
�4 = S, and the normalization factor is ND = −8π i.

The parameters t = t ′ = 0.5 and {M1, M2, M3, M4} =
{−0.5,−0.2, 0.2, 0.5} are used in the numerical simulation.
The results shown in Fig. 2(a) clearly demonstrate the features
outlined after Eq. (28): Deep inside the bulk, the left panel of
Fig. 2(a) indicates that M1 and M2 have the same topological
marker C(r) ≈ 1 (red and green lines coincide) because they
belong to the same topologically nontrivial phase, and M3 and
M4 have the same C(r) ≈ 0 (blue and orange lines coincide)
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because they are both topologically trivial. On the other hand,
the right panel of Fig. 2(a) shows that the nonlocal marker
C(r + R, r) of M2 is more long ranged than M1 (green line
extends longer than red line) because M2 is closer to the crit-
ical point Mc = 0, and M3 is more long ranged than M4 (blue
line extends longer than orange line) for the same reason.
These features are found to be true for all models we have
examined in any dimension and symmetry class, as can be
clearly identified from Figs. 2–4, with the same color codes
that designate {M1, M2, M3, M4}.

B. 3D class DIII

A concrete example of 3D class DIII is the B phase of
superfluid 3He [37,38]. For the purpose of discussing the
2D class DIII case after a dimensional reduction, which will
be addressed in Sec. IV E, we use the representation of �

matrices in the Bernevig-Hughes-Zhang (BHZ) model [39,40]

�1∼5 = {sx ⊗ σz, sy ⊗ I, sz ⊗ I, sx ⊗ σx, sx ⊗ σy}. (34)

The TR, PH, and chiral operators in this basis are T = −iI ⊗
σyK , C = sx ⊗ IK , and S = �5. Since we aim to demonstrate
the topological marker on a lattice, we regularize the pairing
terms of the B phase of 3He on a square lattice by �ki →
� sin ki, and likewise the kinetic terms, and arrange our spinor
according to Eq. (34) by η

†
k = (c†

k↑, c−k↑, c†
k↓, c−k↓). The

leads to the parametrization of the Hamiltonian

H =
∑

k

η
†
k

(
4∑

i=1

di�
i

)
ηk, d1 = � sin kx, d2 = � sin ky,

d3 = 2t (cos kx + cos ky + cos kz ) − μ, d4 = −� sin kz,

(35)

so the unused Dirac matrix is the chiral operator W = S = �5,
and the normalization factor is ND = −8π i. We then con-
struct a square lattice model in a similar manner as Eq. (32),
yielding

H =
∑
iσδ

−t (c†
iσ ci+δσ + c†

i+δσ ciσ ) − μ
∑

iσ

c†
iσ ciσ

+
∑

i

�(−ici↑ci+x↑ + ic†
i+x↑c†

i↑ + ci↑ci+y↑ + c†
i+y↑c†

i↑)

+
∑

i

�(ici↓ci+x↓ − ic†
i+x↓c†

i↓ + ci↓ci+y↓ + c†
i+y↓c†

i↓)

+
∑

i

�(ici↑ci+z↓ − ic†
i+z↓c†

i↑ + ici↓ci+z↑ − ic†
i+z↑c†

i↓),

(36)

where δ = {x, y, z}. We use t = � = 0.5 and
{μ1, μ2, μ3, μ4} = {4, 3.5, 2.5, 2} in the numerical
calculation. Note that besides decaying with R, the nonlocal
marker C(r + R, r) shown in Fig. 2(b) also oscillates with
R. This is a manifestation of the fact that gap closing at the
critical point μc = 3 is not located at the � point, as explained
after Eq. (23).

C. 3D class AII

The 3D class AII is relevant to prototype TIs such as
Bi2Se3 and Bi2Te3. To draw relevance to real materials, we
will use the model for the low-energy sector described by the
Dirac matrices [41,42]

�1∼5 = {σ x ⊗ τ x, σ y ⊗ τ x, σ z ⊗ τ x, Iσ ⊗ τ y, Iσ ⊗ τ z}. (37)

The spinor is ψk = (cks↑, ckp↑, cks↓, ckp↓)T , where s and p
stand for the P1+

− and P2−
+ orbitals in real materials. The

low-energy Hamiltonian given by the lowest-order term in the
k · p theory,

Ĥ = (
M + M1k2

z + M2k2
x + M2k2

y

)
�5 + B0�4kz

+ A0(�1ky − �2kx ), (38)

can be regularized on a cubic lattice, yielding [43]

H = −
∑
iIσ

μc†
iIσ ciIσ +

∑
iσ

M̃{c†
isσ cisσ − c†

ipσ cipσ }

+
∑

iI

t‖{c†
iI↑ci+aI↓ − c†

i+aI↑ciI↓

− ic†
iI↑ci+bI↓ + ic†

i+bI↑ciI↓ + H.c.}
+

∑
iσ

t⊥{−c†
isσ ci+cpσ + c†

i+csσ cipσ + H.c.}

−
∑

iσ

M1{c†
isσ ci+csσ − c†

ipσ ci+cpσ + H.c.}

−
∑
iδσ

M2{c†
isσ ci+δsσ − c†

ipσ ci+δpσ + H.c.}, (39)

where M̃ = M + 2M1 + 4M2, t‖ = A0/2, t⊥ = B0/2, I =
{s, p}, and I = {p, s} are the orbital indices, δ = {a, b, c} de-
notes the lattice constants, and σ = {↑,↓} is the spin index.
From Eq. (38), it is clear that the Dirac matrix that has not
been used is W = �3, and the normalization factor is ND =
−8π i. In the numerical calculation, we use the parameters
t‖ = t⊥ = M1 = M2 = 1, and four values {−2,−1, 1, 2} for
the mass term M to capture the critical behavior near Mc = 0.

D. 3D class CII

The minimal model of 3D class CII is a 8 × 8 Dirac
model [3], where the seven � matrices are given by [4]

�a = �a
4×4 ⊗ ηx, for a = 1 ∼ 4,

�5 = I4×4 ⊗ ηy, �6 = I4×4 ⊗ ηz,

�7 = (−i)3�1�2 . . . �6, (40)

where �a
4×4 are those in Eq. (30). The chiral symmetry is

implemented by �6 = S. The Hamiltonian expressed in terms
of the other six � matrices has a block-off-diagonal form

H (k) =
∑

i=1,2,3,4,5,7

di�
i =

⎛
⎜⎜⎝

D11 D12

D21 D22

D∗
11 D12

D21 D∗
22

⎞
⎟⎟⎠,

D11 =
(

h
h

)
= −D∗

22, D12 =
(

g f
f ∗ −g∗

)
= D†

21.

(41)
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Within linear Dirac model, we consider

f = d1 − id2 = Akx − iAky, g = d3 + id7 = d3 = Akz,

h = d4 − id5 = d4 = M. (42)

The Dirac matrices that are omitted in the Hamiltonian are
{�5, �6, �7}, so we choose W = �5�6�7, and the normaliza-
tion factor is ND = −4π i/c. Since this symmetry class is less
explored in the literature, and given that complexity involved
in this 8 × 8 model, the examination of the lattice model is
left for future investigations.

E. 3D class CI

For 3D class CI, we resort to the 8 × 8 Hamiltonian ex-
panded by 4 out of the 7 Dirac matrices [3],

H =
4∑

i=1

di�i =
(

D
D†

)
,

D =
(

D12

D21

)
=

⎛
⎜⎜⎝

f ∗ −g
−g∗ − f

− f ∗ g
g∗ f

⎞
⎟⎟⎠, (43)

with f = d1 − id2 and g = d3 + id4. The 8 × 8 TR and PH
operators are T = I ⊗ I ⊗ σxK and C = I ⊗ I ⊗ (−iσy)K ,
which require d1 ∼ d3 to be odd in momentum, and d4 to be
the mass term that is even in momentum. Note that we do
not need to know the explicit form of the unused �5 ∼ �7

matrices to calculate their product W = �5�6�7, since we
know that

�1�2�3�4�5�6�7 = �1�2�3�4W = c I8×8. (44)

Because �1�2�3�4 = diag(−1, 1)8×8, one sees that W =
diag(−c, c)8×8 = −cS is given by the chiral operator, and
ND = −4π i/c. The exploration of the lattice model corre-
sponding to this 8 × 8 Hamiltonian will be left for further
investigations.

IV. TOPOLOGICAL MARKERS IN TWO DIMENSIONS

For 2D TIs and TSCs, the topological operator reads

Ĉ2D = NDW [Qx̂PŷQ − Px̂QŷP]. (45)

We find that there are only two kinds of topological markers
in 2D: For classes A, C, and D that break TR symmetry, the
topological marker is the Chern marker [7] described by W ∝
I . On the other hand, the TR-symmetric classes AII and DIII
are described by the spin Chern number, yielding a spin Chern
marker W ∝ σz that counts the difference between the spin up
and down channels. The numerical calculation using 20 × 20
lattices for all the 5 nontrivial symmetry classes is presented
in Fig. 3, as detailed below.

A. 2D class A

The minimal model of 2D class A is expanded by all three
components of Pauli matrices H = ∑3

i=1 diσi, and the model

regularized on the whole BZ,

d1 = A sin kx, d2 = A sin ky,

d3 = M + 4B − 2B cos kx − 2B cos ky, (46)

gives the Chern insulator, whose lattice model has been
given previously [26,43]. Since all Pauli matrices are used,
we have W = I , and the normalization factor is ND = 2π i.
The projection to lattice sites |r〉 is equivalent to the orig-
inal Chern marker that have been intensively studied [7],
and the off-diagonal elements has been called nonlocal
Chern markers [26]. Nevertheless, for the sake of com-
pleteness of the presentation, we perform simulations using
the parameters t = A/2 = 1, t ′ = B = 1, {M1, M2, M3, M4} =
{−2,−0.8, 0.8, 2}.

B. 2D class D

A concrete system that realizes the 2D class D is the spin-
less chiral p-wave SC [3], described by the lattice Hamiltonian

H =
∑

iδ

t (c†
i ci+δ + c†

i+δci ) − μ
∑

i

c†
i ci

+
∑

i

�(−icici+x + ic†
i+xc†

i + cici+y + c†
i+yc†

i ), (47)

where δ = {x, y}, and ci is the spinless fermion operator at
site i. All three components of Pauli matrices are used, so we
also use W = I and ND = 2π i. The parameters examined are
t = −1, � = 0.5, {μ1, μ2, μ3, μ4} = {−3,−3.7,−4.3,−5}.

FIG. 3. Local (left column) and nonlocal (right column) topo-
logical markers for prototype square lattice models in the five
topologically nontrivial symmetry classes in 2D, including (a) the
Chern insulator in class A and the BHZ model in class AII that
have identical results, (b) the chiral p-wave SC in class D and helical
p-wave SC in class DIII that have identical results, and (c) a quadratic
band crossing model in class C.
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C. 2D class C

The minimal model of the 2D class C is a 2 × 2 Dirac
model [33], where the off-diagonal pairing term around the
HSP can be expanded by d1 − id2 = kn+

+ kn−
− , with k± = kx ±

iky. We consider a spinless model of particle-hole basis η
†
k =

(c†
k, c−k ), where the PH operator C = σyK requires all di(k)

to be even in momentum; i.e., the model has even-order band
crossing at TPTs. For concreteness, we choose to examine
the model with the power n+ = 0, n− = 2, which may be
regularized on a lattice to give the following pairing term,

�k = �(2 cos kx − 2 cos ky − 2i sin kx sin ky). (48)

This leads us to consider the lattice model that contains both
nearest- and next-nearest-neighbor pairings of the same am-
plitude but a phase difference

H =
∑

iδ

t (c†
i ci+δ + c†

i+δci ) − μ
∑

i

c†
i ci

+�
∑

i,σ=±
(cici+σx + c†

i+σxc†
i − cici+σy − c†

i+σyc†
i )

+ �

2

∑
i

{−icici+x+y + icici+x−y + icici−x+y − icici−x−y

+ ic†
i+x+yc†

i − ic†
i+x−yc†

i − ic†
i−x+yc†

i + ic†
i−x−yc†

i }. (49)

Since the model already uses all the Dirac matrices, one has
W = I and ND = 2π i. We use the parameters t = 1, � = 0.5,
and {μ1, μ2, μ3, μ4} = {2, 3, 4.3, 5}. Note that deep inside
the bulk and in the topologically nontrivial phase, we obtain
C(r) ≈ 2, consistent with that expected from the quadratic
band crossing [33].

D. 2D class AII

For 2D class AII that has TR symmetry, we consider
the prototype BHZ model with spinful s and p orbitals
ψ = (s↑, p↑, s↓, p↓)T , which uses the Dirac matrices of this
model already given in Eq. (34). Interestingly, the unused
Dirac matrices combined to give the spin operator W =
�3�4 = iI ⊗ σ z, and the normalization factor is found to
be ND = π . The diagonal and off-diagonal elements of this
topological operator have been called local and nonlocal spin
Chern markers previously, whose validity applied to the BHZ
model has been elaborated explicitly. The numerical result is
exactly the same as the Chern insulator in Sec. IV A if the
same parameters are used, as expected since the BHZ model
is equivalently two copies of Chern insulators, one for each
spin species.

E. 2D class DIII

The lattice model of 2D class DIII can be obtained from
that of the 3D class DIII presented in Sec. III B via a di-
mensional reduction, which turns off all the sin kz and cos kz

terms in the momentum-space Hamiltonian in Eq. (35), and
equivalently all the terms that contain ci+zσ or c†

i+zσ in the
lattice Hamiltonian in Eq. (36). Since we arrange our spinor
by η

†
k = (c†

k↑, c−k↑, c†
k↓, c−k↓), this results in a Hamiltonian

that is block-diagonal, where each block corresponds to a

chiral p-wave SC addressed in Sec. IV B for one spin species,
and therefore describes a helical p-wave SC.

The 3D class DIII model in Sec. III B already omits the
�5 component, and the dimensional reduction to 2D turns off
the �4 matrix, so the unused � matrices multiplied together
W = �3�5 = iI ⊗ σ z give the spin polarization operator, in-
dicating that the topological operator is precisely the spin
Chern operator discussed in Sec. IV D with a normalization
factor ND = π . Physically, this means that the topological
invariant is given by the difference between the Chern number
of the spin up chiral p-wave SC and that of the spin down
component. As a result, the spin Chern marker of the helical
p-wave SC is identical to the Chern marker of the chiral
p-wave SC given in Sec. IV B at the same parameters.

V. TOPOLOGICAL MARKERS IN ONE DIMENSION

The topological operator in 1D takes the form

Ĉ1D = NDW [Qx̂P + Px̂Q]. (50)

Interestingly, for all the symmetry classes in 1D that preserve
chiral symmetry (AIII, BDI, CII, DIII), the product of unused
Dirac matrices is always proportional to the chiral operator
W ∝ S, whereas the class D that does not preserve chiral
symmetry has a different interpretation of W . The numerical
results for these 5 classes are given in Fig. 4 and are described
in detail below.

A. 1D class BDI

For 1D class BDI, we use the prototype spinless Su-
Schrieffer-Heeger (SSH) model as an example, which is
described by the lattice Hamiltonian [44]

H0 =
∑

i

(t + δt )c†
AicBi + (t − δt )c†

Ai+1cBi + H.c., (51)

where cAi and cBi are the fermion annihilation operators on
sublattice A and B in the unit cell i, respectively, and t ± δt are
the alternating hopping amplitudes. The 2 × 2 Hamiltonian
expressed in momentum space with the basis (cAk, cBk ) is
expanded by σx and σy, so the only Pauli matrix that has not
been used is the chiral operator W = S = σz, and the normal-
ization factor is unity ND = 1. Note that as discussed after
Eq. (8), to realize the position operator x̂ as a diagonal matrix,
the A and B sublattices within the same unit cell located at
i are assigned with the same position xi, even though they
are frequently drawn as a certain distance apart. We choose
parameters t = 1, {δt1, δt2, δt3, δt4} = {−0.5,−0.2, 0.2, 0.5}
and 20 lattice sites in the numerical simulation, and the gap-
closing momentum is located at k0 = π for the critical point
δtc = 0, yielding an oscillating and decaying nonlocal marker
C(r + R, r) as shown in Fig. 4(a). Some other 1D models
investigated below also show an oscillating C(r + R, r) for the
same reason.

B. 1D class AIII

The low-energy linear Dirac model [33] for 1D class AIII
can be expanded by H (k) = Akxσx + Mσz, with the unused
Pauli matrix being the chiral symmetry operator W = S = σy

and the normalization factor ND = 1. The regularization in
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FIG. 4. Local (left column) and nonlocal (right column) topolog-
ical markers for the lattice models in the five topologically nontrivial
symmetry classes in 1D, including (a) the SSH model in class BDI,
(b) a regularized lattice model in class AIII, (c) a class DIII model
obtained from dimensional reduction, (d) the Kitaev p-wave SC
chain in class D, and (e) a regularized lattice model in class CII.

Eqs. (31) and (32) leads to a lattice model

H =
∑

i

(M − 2t ′)(c†
i1ci1 − c†

i2ci2)

+
∑

i

t ′(c†
i1ci+x1 + c†

i+x1ci1 + c†
i2ci+x2 + c†

i+x2ci2)

+
∑

i

t (−ic†
i1ci+x2 + ic†

i+x2ci1 − ic†
i2ci+x1 + ic†

i+x1ci2).

(52)

We have used t = 1, t ′ = 0.4, {M1, M2, M3, M4} =
{0.6, 0.2,−0.2,−0.6}, and 60 lattice sites in the numerical
simulation.

C. 1D class DIII

We construct a lattice model of 1D class DIII by per-
forming dimensional reduction twice on the 3D class DIII
model in Sec. III B, which is done by turning off all the
{sin ky, sin kz, cos ky, cos kz} terms in Eq. (35), and analo-
gously turning off all the {ci+yσ , c†

i+yσ , ci+zσ , c†
i+zσ } terms in

Eq. (36). The resulting Hamiltonian omits {�2, �4, �5} ma-
trices defined in Eq. (34), so W = �2�4�5 = S is given by
the chiral operator, and the normalization factor is ND = i/2.
We use the parameters t = 1, � = 0.5, {μ1, μ2, μ3, μ4} =
{1, 1.8, 2.2, 3} and 20 lattice sites in the numerical
calculation.

D. 1D class D

For 1D class D, we examine the spinless Kitaev p-wave SC
chain described by [45]

H =
∑

i

t (c†
i ci+1 + c†

i+1ci ) − μ
∑

i

c†
i ci

+
∑

i

�(cici+1 + c†
i+1c†

i ), (53)

where ci is the spinless fermion annihilation operator at
site i. The Hamiltonian in momentum space in the basis of
(ck, c†

−k )T is spanned by σz and σy, so the only Pauli matrix
that has not been used is W = σx, and ND = 1. A 30-site lat-
tice with the parameters t = 1, � = 0.5, {μ1, μ2, μ3, μ4} =
{1, 1.8, 2.2, 3} is used in the numerical simulation.

E. 1D class CII

For 1D class CII, we adopt the � matices [46]

�a = {σx ⊗ τz, σy ⊗ τz, I ⊗ σx, I ⊗ τy, σz ⊗ τz}, (54)

and the TR and PH operators are interpreted by T = σy ⊗ IK
and C = I ⊗ τyK . The minimal model in momentum space is
H = d2�

2 + d3�
3 = Ak�2 + M�3, and we denote the spinor

by ψ
†
k = (c†

1k, c†
2k, c†

3k, c†
4k ) where the four degrees of freedom

are enumerated by 1 ∼ 4. The regularization on a lattice gives

H =
∑

i

t{−c†
i1ci+x2 + c†

i2ci+x1 + c†
i3ci+x4 − c†

i4ci+x3}

+
∑

i

(−t ′){c†
i1ci+x3 + c†

i3ci+x1 + c†
i2ci+x4 + c†

i4ci+x2}

+
∑

i

(M + 2t ′){c†
i1ci3 + c†

i2ci4} + H.c. (55)

The unused Dirac matrices multiplied together are propor-
tional to the chiral operator W = �1�4�5 = −iS, and the
normalization factor is ND = i/2. We use the parameters t =
1, t ′ = 0.5, {M1, M2, M3, M4} = {−1,−1.8,−2.2,−3} and a
30-site lattice in the simulation.

VI. CONCLUSIONS

In summary, we show that topological marker can be
constructed in a unified manner for TIs and TSCs in any
dimension and symmetry class. The central object in our
formalism is the topological operator in Eq. (15) derived
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from the universal topological invariant in momentum space,
which takes the form of alternating projectors to the lattice
eigenstates and the position operators, multiplied by the Dirac
matrices that are omitted in the Hamiltonian. The rth diagonal
element of the topological operator gives the local topolog-
ical marker that recovers the topological invariant for lattice
sites deep inside the bulk. In addition, the (r + R, r)th off-
diagonal element yields a nonlocal topological marker that
decays with R, whose decay length diverges at TPT and
may be interpreted as a Wannier state correlation function,
thereby serving as a faithful correlator to identify TPTs in
real space. The topological operator is constructed explicitly
for each of the 15 topologically nontrivial symmetry classes
in 1D to 3D. For 13 out of these 15 cases, we perform nu-
merical calculation on concrete lattice models to demonstrate
the validity of our topological marker, which cover a great
number of prototype TIs and TSCs including the SSH model,
Majorana chain, Chern insulator, BHZ model, chiral and he-
lical p-wave SCs, 3D TR invariant TIs, lattice model of 3He
B-phase, among many others, suggesting the ubiquity of our
formalism.

Our results point to many open questions that remain to
be clarified. First, it is known that the deviation of the Chern
marker at the boundary sites of the 2D lattice, which occurs
even if the periodic boundary condition is imposed, comes
from the fact that the position operators î in Eq. (15) do
not respect the translational invariance, and may be cured by
exponentiating the position operators [8–10]. Whether such an
exponentiating trick can be generally applied to topological
markers in any dimension and symmetry class, and whether
it has some noncommutative interpretation on the topolog-
ical order in general, remains to be investigated. Second,
a major category of topological materials that we did not

address are the topological semimetals in D dimensions, such
as graphene in 2D, in which the momentum-space topological
invariant is the wrapping number in Eq. (1) but integrated
over a (D − 1)-dimensional surface enclosing a nodal point.
Because the momentum integration is one dimension lower,
it is unclear to us at present whether the projector algebra in
Sec. II A still applies, or how it may be modified to construct
a topological marker for semimetals. Third, concerning the
experimental measurement of the topological marker, it has
been pointed out that the Chern marker in 2D TR-breaking
systems can be measured by circular dichroism [26], and the
spin-Chern marker in 2D TR-symmetric systems can be de-
tected by spin-resolved circular dichroism [27]; both are due
to the linear response of valence electrons to polarized electric
field. However, because TIs and TSCs in other dimensions
do not respond linearly to the electric field [47], it remains
to be investigated whether higher-order responses can help to
extract the topological marker in other dimensions, or whether
one has to resort to some other kind of experimental protocol.
Finally, we emphasize that our formalism is based on the
momentum-space topological invariant in Eq. (1) applicable
only to Dirac Hamiltonians, and consequently the resulting
universal topological marker is also applicable only to lat-
tice Dirac models, which nevertheless covers a great variety
of theoretical models. An obvious question is then whether
our marker will still remain quantized for systems that are
beyond the paradigm of Dirac models, such as 2D class AII
systems with spin-orbit coupling [48], of which only concrete
calculations can tell. All these open questions, together with
the applications of the universal topological marker on issues
such as real-space inhomogeneity, interfaces, and interacting
or periodically driven systems, are intriguing subjects that
await to be explored.
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