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spin symmetry: Exact spectrum and critical exponents
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Universal scaling relations for dissipative Tomonaga-Luttinger (TL) liquids with SU(N) spin symmetry are
obtained for both fermions and bosons, by using asymptotic Bethe-ansatz solutions and conformal field theory
(CFT) in one-dimensional non-Hermitian quantum many-body systems with SU(N) symmetry. We uncover that
the spectrum of dissipative TL liquids with SU(N) spin symmetry is described by the sum of one charge mode
characterized by a complex generalization of c = 1 U(1) Gaussian CFT, and N − 1 spin modes characterized by
level-1 SU(N) Kac-Moody algebra with the conformal anomaly c = N − 1, and thereby dissipation only affects
the charge mode as a result of spin-charge separation in one-dimensional non-Hermitian quantum systems. The
derivation is based on a complex generalization of Haldane’s ideal-gas description, which is implemented by the
SU(N) Calogero-Sutherland model with inverse-square long-range interactions.
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I. INTRODUCTION

Recent advances in the study of ultracold atoms have
opened a new arena to investigate open quantum many-body
systems, where a variety of unique phenomena that have
no counterpart in isolated quantum systems occur [1–10].
Experimentally, high controllability of ultracold atoms has
facilitated investigations of nonequilibrium quantum dynam-
ics in open quantum systems, where strong coupling to
the environment plays a vital role [11–19]. In particular,
non-Hermitian (NH) Hamiltonians have shed new light on
investigations of dissipation-induced quantum many-body
physics [20–22]; examples include loss-induced quantum
phase transitions [23–25], measurement-induced entangle-
ment dynamics [26–34], NH quantum phases as a result
of postselections of measurement outcomes by means of
quantum-gas microscopy [35–39]. Notably, one-dimensional
(1D) NH quantum many-body systems show intriguing
quantum critical phenomena induced by dissipation; e.g.,
correlation functions of dissipative Tomonaga-Luttinger (TL)
liquids show unique critical behavior characterized by two TL
parameters [36,39], and exceptional points, where the effec-
tive Hamiltonian cannot be diagonalized, cause anomalous
singularities that accompany the divergence of correlation
length [40]. These studies have shown that dissipation dras-
tically alters the universal properties of quantum many-body
phenomena in isolated systems.

Another important aspect that has attracted broad inter-
est in ultracold atoms is a multicomponent generalization
of many-body phenomena, which show rich quantum phases
as a result of strong correlation [41–50]. In particular, mul-
ticomponent fermions have been actively investigated in
experiments over the last decade by controlling internal

*yamamoto.kazuki.72n@st.kyoto-u.ac.jp

(nuclear) spin degrees of freedom, providing unique oppor-
tunities for quantum simulations of many-body systems. The
milestone experiments have realized observations of anti-
ferromagnetic correlations in SU(2) Fermi-Hubbard models
with degenerate 40K and 6Li [51–56], and exotic quantum
phases stemming from SU(N) (N > 2) spin symmetry with
ultracold alkaline-earth-like atoms such as 173Yb and 87Sr
have recently been reported [57–63]. Multicomponent bosons
are also successfully loaded into an optical lattice, where
hyperfine states of bosonic atoms like 87Rb can be used,
offering the possibility to explore novel highly entangled
many-body states [64,65]. Moreover, it is worth noting that
physics with SU(N) symmetry in ultracold atoms has recently
extended its research area to nonequilibrium quantum systems
as represented by SU(N) Hubbard models with two-body loss
[10,16,23,38,40,66,67]. Thus, it is natural to consider how
the universal properties of many-body physics with SU(N)
symmetry are affected by dissipation. However, it is a highly
nontrivial problem to identify the universality class of dissi-
pative quantum many-body systems with internal degrees of
freedom.

To study universal properties of strongly-correlated sys-
tems, 1D critical systems have been a subject of intense
research in condensed matter physics, because they realize
TL liquids, which present a general description of low-energy
quantum many-body phenomena [68–71]. Importantly, con-
formal invariance in 1D critical systems has brought about
many valuable insights into many-body quantum systems
[72–75], where TL liquids are characterized by U(1) Gaus-
sian conformal field theory (CFT) with the central charge
c = 1. To access the universality class of TL liquids, Hal-
dane has proposed that quantum models with inverse-square
long-range interactions, which were initially introduced by
Calogero and Sutherland [76–80], give a unified understand-
ing of 1D quantum critical phenomena [81–85]. He has
demonstrated that the model gives an ideal-gas description
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in one dimension, providing a variant notion of fractional
statistics, dubbed fractional exclusion statistics [86,87], which
has an intimate relation to the fractional quantum Hall effect
[88,89]. For example, semion, a particle with statistical 1/2 in-
teractions, appears in the S = 1/2 Heisenberg spin chain with
inverse-square exchange [81–83]. Studies with inverse-square
interactions have been successfully generalized to multicom-
ponent systems, and they have demonstrated the universal
properties of TL liquids with SU(N) spin symmetry [90–95].

In this paper, we elucidate the universal properties of
dissipative TL liquids with SU(N) spin symmetry for both
fermions and bosons in one dimension, based on a complex
generalization of Haldane’s ideal-gas description with the NH
SU(N) Calogero-Sutherland (CS) model. As a main result,
we obtain critical exponents describing general NH quantum
critical systems with SU(N) symmetry. By analyzing the NH
CS model, we obtain the asymptotic Bethe-ansatz (ABA)
solutions and the finite-size scaling formula in CFT. We
demonstrate that the spectrum of dissipative TL liquids with
SU(N) spin symmetry is described by one charge mode char-
acterized by a complex generalization of c = 1 U(1) Gaussian
CFT, and N − 1 spin modes characterized by level-1 SU(N)
Kac-Moody algebra with c = N − 1. Since the spin modes
are protected by SU(N) symmetry, dissipation only affects
the charge mode as a result of spin-charge separation in 1D
NH quantum systems. Although our results are derived from
specific integral models, universal scaling relations obtained
can be applied to a wide range of NH quantum critical systems
that are experimentally relevant, e.g., dissipative TL liquids
with SU(2) spin symmetry describe the critical properties of
the Fermi-Hubbard model with a complex-valued interaction.

The rest of this paper is organized as follows. First, in
Sec. II, we summarize the main results of the universal scaling
relations in NH quantum critical systems for SU(N) fermions
and bosons, including SU(2) fermions as a special case. In
the subsequent sections, we explain the detailed derivations
of the universal properties of dissipative TL liquids with and
without internal symmetry, based on a complex generalization
of Haldane’s ideal-gas description. In Sec. III, we analyze the
NH CS model based on the ABA solutions and the finite-size
scaling analysis in CFT. We generalize the results to mul-
ticomponent systems by analyzing NH SU(N) CS model in
Sec. IV. We finally conclude with a summary and outlook in
Sec. V.

II. MAIN RESULTS: UNIVERSAL SCALING RELATIONS

In this section, we present a summary of the main results
of this paper, that is, universal scaling relations for dissipative
TL liquids with SU(N) spin symmetry. The class of models
that we want to consider throughout this paper is the critical
system described by a NH Hamiltonian with SU(N) symme-
try. We note that SU(N) symmetry is imposed not only on the
original Hermitian Hamiltonian but also on dissipation, result-
ing in the whole SU(N) symmetry of the NH Hamiltonian.
Although the scaling relations are obtained by an ideal-gas
approach based on specific integral models as detailed in the
following Secs. III and IV, they are universal and applicable
to generic 1D dissipative many-body systems.

Before going to the main results of scaling relations, we
introduce important concepts of two-types of correlation func-
tions that appear in NH systems. In NH systems that are
described by the effective Hamiltonian Heff , a right eigenstate,
which is defined by Heff |�R〉 = E |�R〉, and a left eigenstate,
which is defined by H†

eff |�L〉 = E∗|�L〉, are different from
each other. Therefore, two types of correlation functions can
emerge according to whether the right or left eigenstate is
assigned to the bra vector in the expectation value. The first
type is a mathematical generalization of correlation functions
to NH systems defined by L〈· · · 〉R ≡ 〈�L

g | · · · |�R
g 〉/〈�L

g |�R
g 〉,

where |�L
g 〉 and |�R

g 〉 are the left and right ground states (in
the sense of the real part of the energy) of Heff , respectively.
This type of correlation functions is calculated through path
integrals [23,39], and has been shown that it is directly related
to a complex extension of CFT [39]. The second type is
defined by R〈· · · 〉R ≡ 〈�R

g | · · · |�R
g 〉/〈�R

g |�R
g 〉, which is ob-

tained in the postselected sector with no loss events as follows.
First, the dynamics of the quantum state in such sectors is de-
scribed by the Schrödinger equation i∂t |ψ〉 = Heff |ψ〉. Then,
with the use of the postselected ground state |ψ〉 = |�R

g 〉,
we obtain a standard quantum-mechanical expectation value
R〈· · · 〉R, which corresponds to an experimentally measurable
physical quantity [36,39]. We call the correlation functions
L〈· · · 〉R and R〈· · · 〉R the biorthogonal correlation function and
the right-state correlation function, respectively. We note that
the subscripts L and R for the brackets are not related to the
left and right branches of TL liquids. In the following two
subsections, we give universal scaling relations for right-state
correlation functions, which are physical observables and rel-
evant to cold-atom experiments.

A. Critical exponents for fermions described by dissipative TL
liquids with SU(2) spin symmetry

We first focus on fermions described by dissipative TL liq-
uids with SU(2) spin symmetry separately, since such SU(2)
models have been by far the best studied until now both in
solid state systems and cold atom systems. In particular, SU(2)
fermions are relevant to Fermi-Hubbard models, which has
been a subject of intense study in condensed matter physics.

Now, we give universal scaling relations for dissipative TL
liquids with SU(2) spin symmetry. In NH fermionic quantum
critical systems with SU(2) symmetry (with zero magnetic
field), we obtain the long-distance behavior of the right-state
charge-density correlator as

R〈ρ(x)ρ(0)〉R � A1 cos(4kF x)x−β1

+ A2 cos(2kF x)x−β2 + A0
1

x2
, (1)

where ρ(x) =∑σ c†
σ (x)cσ (x), Aj is a correlation amplitude,

and the critical exponents β1 and β2 are given by

β1 = 4Kφ
ρ , (2)

β2 = 1 + Kφ
ρ . (3)

As the ground state is given by the SU(2) singlet, we have
defined the Fermi momentum kF = πn/2 with the density n =
M/L, where M is the total number of fermions and L is the
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circumference of the system imposed by periodic boundary
conditions. Importantly, the exponent Kφ

ρ is obtained by the
complex-valued TL parameter K̃ρ as [39]

1

Kφ
ρ

= Re

[
1

K̃ρ

]
, (4)

where K̃ρ is defined through the 4kF oscillating piece
in the biorthogonal correlation function L〈ρ(x)ρ(0)〉R �
cos(4kF x)x−β̃1 as

K̃ρ = β̃1

4
. (5)

We emphasize that the TL parameter is affected by dissi-
pation, making it different from the one for the standard
Hermitian TL liquid, and this fact leads to the emergence of
two kinds of real TL exponents, which characterize exper-
imentally measurable quantities as shown below. Here and
henceforth, we use the symbol Ã to emphasize that the quan-
tity Ã is complex valued.

For the right-state fermion correlator, the long-distance
behavior is written as

R〈c†
σ (x)cσ (0)〉R � C1 cos(kF x)x−ηF , (6)

where C1 is a correlation amplitude and the critical exponent
ηF is given by

ηF = 1

2
+ 1

4Kθ
ρ

+ Kφ
ρ

4
. (7)

The exponent Kθ
ρ is obtained from the complex-valued TL

parameter K̃ρ as [39]

Kθ
ρ = Re[K̃ρ]. (8)

We note that Eq. (6) does not depend on spin indices for the
SU(2) singlet ground state.

We emphasize that the scaling relations (2), (3), and (7)
are universal, and describe the general critical properties of
fermions characterized by dissipative TL liquids with SU(2)
spin symmetry. Equations (4) and (8) also highlight the uni-
versal properties of the U(1) charge part of dissipative TL
liquids, which are characterized by the complex-valued TL
parameter [39].

One of the prototypical dissipative models that have
SU(2) symmetry is given by the NH Fermi-Hubbard model
[10,23,38,40,67]

HHubbard
eff = −t

∑
jσ

(c†
jσ c j+1σ + H.c.) + Ũ

∑
j

n j↑n j↓, (9)

where Ũ is a complex-valued interaction as a result of dis-
sipation, t is a hopping parameter, σ denotes up or down
spin of fermions, c jσ is the annihilation operator of a spin-σ
fermion at site j, and n jσ ≡ c†

jσ c jσ . Such model is realized by
introducing two-body loss due to inelastic collisions between
fermions as observed in cold-atom experiments [16,19], e.g.,
with the use of photoassociation lasers. In the following, we
consider dissipation that gives complex-valued interactions,
and therefore other types of dissipation that cause, e.g., asym-
metric hopping of particles are not addressed in our study
[96]. We note that, in the previous studies that deal with

the NH Fermi-Hubbard model, such as superfluid states with
attractive interactions [10,23] and Mott insulators with repul-
sive interactions [38,40] have been considered, but the critical
properties of metallic phases have not been investigated so far.

We demonstrate that critical properties of such NH SU(2)
quantum models are described by dissipative TL liquids with
SU(2) spin symmetry discussed in this subsection. In the
NH Fermi-Hubbard model (9), critical properties of metal-
lic phases are described by dissipative TL liquids with
U(1)×SU(2) symmetry, and the universal scaling relations are
given by Eqs. (2), (3), and (7) by taking the continuum limit
as cσ (x) = c jσ /

√
a with the lattice constant a.

B. Critical exponents for fermions and bosons described by
dissipative TL liquids with SU(N) spin symmetry

In this subsection, motivated by the recent progress in
SU(N) quantum phenomena in ultracold atoms, we summa-
rize a generalization of universal scaling relations in NH
quantum critical systems to SU(N) symmetric cases. We give
universal scaling relations for both fermions and bosons de-
scribed by dissipative TL liquids with SU(N) spin symmetry.
The right-state charge-density correlator is the same for both
fermions and bosons, and the long-distance behavior reads

R〈ρ(x)ρ(0)〉R �
N∑

j=1

Aj cos[2(N − j + 1)kF x]x−β j + A0

x2
,

(10)

where Aj is a correlation amplitude, and the critical exponent
β j corresponding to the 2(N − j + 1)kF oscillation is given
by

β j = 2(N − j + 1)( j − 1)

N
+ 2(N − j + 1)2

N
Kφ

ρ . (11)

Here, we have defined the Fermi momentum kF = πn/N ,
which reflects the SU(N) singlet ground state. As in the SU(2)
case, the critical exponent Kφ

ρ is obtained by the complex-
valued TL parameter K̃ρ through Eq. (4). In this case, K̃ρ is
generalized to the system with SU(N) symmetry, resulting in

K̃ρ = β̃1

2N
, (12)

which corresponds to the 2NkF oscillating piece of
the biorthogonal correlation function L〈ρ(x)ρ(0)〉R �
cos(2NkF x)x−β̃1 .

On the other hand, the single-particle correlator is different
between fermions and bosons. For fermions described by dis-
sipative TL liquids with SU(N) spin symmetry, we obtain the
same correlator as Eq. (6), where the critical exponent ηF is
generalized to SU(N) symmetric cases;

ηF = N − 1

N
+ 1

2NKθ
ρ

+ Kφ
ρ

2N
. (13)

We note that the exponent Kθ
ρ is obtained from Eq. (8) with

Eq. (12), and the fermion correlator (6) is independent of
spin indices for the SU(N) singlet ground state as in the
SU(2) symmetric cases. For the right-state boson correlator,
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we obtain the long-distance behavior as

R〈b†
σ (x)bσ (0)〉R � B1x−ηB , (14)

where bσ (x) is the annihilation operator of bosons, B1 is a
correlation amplitude, and the critical exponent ηB is given by

ηB = N − 1

2N
+ 1

2NKθ
ρ

. (15)

We note that the bosonic correlator (14) does not depend
on the spin σ as in the case of fermions. It is worth noting
that the bosonic correlator (14) is not accompanied by the kF

oscillation that appears in the fermion case because of Bose
statistics (see Sec. III for details).

We emphasize that the scaling relations (11), (13), and (15)
are universal, and characterize the general critical properties
of fermions and bosons described by dissipative TL liquids
with SU(N) spin symmetry, where the critical theory consists
of one charge mode characterized by a complex generalization
of c = 1 U(1) Gaussian CFT [39], and N − 1 spin modes char-
acterized by c = N − 1 level-1 SU(N) Kac-Moody algebra
(see Sec. IV for details). Importantly, the algebraic structure of
the spin sectors is fixed to the real one as a result of symmetry
enhancement. In Sec. IV, we give the detailed derivation that
includes the ABA solutions and the finite-size scaling analysis
in CFT on the basis of a complex generalization of Haldane’s
ideal-gas description.

III. DISSIPATIVE TOMONAGA-LUTTINGER LIQUIDS
WITHOUT INTERNAL SYMMETRY

In this section, we analyze the NH CS model without
internal symmetry, based on a complex generalization of Hal-
dane’s ideal-gas description, which is embodied by the ABA
solution. We will see that the ideal-gas description captures
universal properties of single-component dissipative TL liq-
uids.

A. Model

We consider a 1D long-range interacting NH quantum sys-
tem with the circumference L described by

Heff = −
M∑

j=1

∂2

∂x2
j

+
∑
j>l

V (x j − xl ), (16)

V (x) = g̃
∞∑

n=−∞
(x + nL)−2 = g̃π2

L2

[
sin
(πx

L

)]−2
, (17)

where M is the number of particles, and g̃ is the dimen-
sionless complex parameter of the inverse-square long-range
interaction. This model is a generalization of the CS model
[76–80,84] to NH quantum many-body systems [97]. Mod-
els with inverse-square interactions have been investigated
intensively to date, for example, in a quantum spin chain
(Haldane-Shastry model [81–83]), in a supersymmetric t − J
model [91,98,99], and in a continuum model interacting by the
inverse-square potential (CS model). These models are known
to be integrable [100–102], for which the ground-state wave
function is given by a Jastrow form, i.e., products of two-body
wave functions [76–80].

FIG. 1. Distribution of the quasimomentum k j in the ground state
of long-range interacting systems (16). The quasimomentum k j is
equally spaced along the straight line with the interval 2πλ̃/L, and
±Q, which are called the quasi Fermi points, denote the edges of the
quasimomentum distribution. The generalized signature between km

and kl gives the phase shift θ (km − kl ) (see text).

An important aspect of this class of integrable models is
that they can describe the essential properties of 1D quantum
critical systems as an ideal gas, as demonstrated by Haldane
[81,83,86]. To explain the essence of the idea, let us start by
analyzing the ground state of the NH CS model (16). A little
algebra leads to a complex generalization of the ground-state
wave function of the Jastrow form (see Appendix for detailed
calculations)

�g =
∏
j>l

∣∣∣∣sin
π (x j − xl )

L

∣∣∣∣
λ̃−s(

sin
π (x j − xl )

L

)s

, (18)

where x j > xl , λ̃ = [(1 + 2g̃)
1
2 + 1]/2, Re[λ̃] � 1/2 is as-

sumed, and we have introduced s = 1 for fermions and s = 0
for bosons, respectively. The wave function (18) reduces to the
one for free fermions or hard-core bosons in the limit λ̃ → 1.
The Jastrow-type wave function indicates that the two-body
scattering is essential to the system. This observation moti-
vated Sutherland to propose the ABA method [77–80], which
states that the many-body scattering is decomposed into the
product of two-body scatterings as a result of the integrability
in spite of long-range nature of interactions [103]. The ABA
solution provides a concrete way to implement the ideal-gas
description, as described below.

B. Asymptotic Bethe ansatz: Ideal-gas description

Now, we derive the ABA solution of the NH CS model.
The phase shift as a result of the two-body scattering is read
off from the Jastrow wave function (18) as [84]

θ (k) = π (λ̃ − 1)sgn∗(k), (19)

where we have defined the function sgn∗(k) for the com-
plex quasimomentum k = αeiξ (α ∈ R,−π/2 < ξ < π/2) as
sgn∗(k) = sgn(α) (see Fig. 1). There is an important feature
in Eq. (19): The phase shift is characterized by a single k-
independent parameter λ̃ and a step-function in k space, which
is contrasted to ordinary integrable models for which the cor-
responding phase shift is k dependent. We therefore see that
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the above two-body phase shift incorporates the interaction ef-
fect via a level repulsion parameter λ̃ in a way similar to ideal
gases such as free fermions or hard-core bosons [81,83,86].

The philosophy of the ABA (ideal-gas description) lies in
the fact that the two-body phase shift (19) exactly describes
the whole spectrum of the long-range interacting system (16)
for arbitrary densities due to the integrability [103]. Based on
this idea, we obtain the ABA equation as

k jL = 2π I j +
M∑

i=1

θ (k j − ki ), (20)

where

I j : integer, (21)

for fermions, and

I j = M + 1

2
(mod 1), (22)

for bosons, respectively. It is worth noting that both fermions
and bosons are described by the transcendental equation (20),
and only the selection rule of the quantum number I j dis-
tinguishes their statistics. By using the quasimomentum k j ,
we obtain the energy as E =∑ k2

j , and the momentum as
P =∑ k j . We note that, in NH systems, integrability has
been shown to hold by explicitly constructing the Bethe
equation for models having, e.g., asymmetric hoppings and
complex-valued interactions [20,39,40,96,104,105].

We consider the ground state and obtain the quasimomen-
tum distribution. The quantum numbers for the ground state
{I j} are successive integers (half-odd integers), which are dis-
tributed symmetrically around the origin. Then, we obtain the
quasimomentum as

k jL = πλ̃(2 j − M − 1) (23)

for odd-M fermions and bosons by using I j = (2 j − M −
1)/2, and

k jL = πλ̃(2 j − M − 1) + π (24)

for even-M fermions with the use of I j = (2 j − M − 1)/2 +
1/2. We see from Eqs. (23) and (24) that the quasimomentum
is equally spaced along the straight line in the complex plane
as depicted in Fig. 1. This is nothing but the fact that each
particle feels the complex-valued repulsion due to a step func-
tion in the complex phase shift given in Eq. (19). As shown in
the following, the constant shift 1/2 in the even-M fermion’s
quantum number I j leads to the characteristic selection rule
for fermions, which convey the current accompanied by the
change of the particle number. It is worth noting that bosons
do not know the Fermi point as a result of Bose statistics,
and this fact causes the difference between the single-particle
correlators of fermions and bosons.

C. Velocity of excitations

Next, we calculate the velocity of excitations that controls
the bulk quantities, for which we first obtain the dressed en-
ergy and the distribution function in the thermodynamic limit.
We note that the velocity of excitations becomes complex
reflecting the effect of dissipation in open quantum systems.

Here, we consider an elementary excitation from the ground
state. By inserting a hole into the ground-state distribution of
the quasimomentum, the dressed energy ε(k) is calculated by
using the ABA equation (20) as

ε(k) = k2 − μ̃ − (λ̃ − 1)
∫ Q

−Q
dk′δ(k − k′)ε(k′), (25)

which leads to

ε(k) =
{

k2 − μ̃ (|k| > |Q|),
1
λ̃

(k2 − μ̃) (|k| < |Q|), (26)

where Q = πnλ̃ with the density n = M/L. Here, we have
introduced the delta function δ(k) that satisfies

∫
C dkδ(k −

k0) f (k) = f (k0) for an arbitrary function f (k) on the contour
C, which is the straight line shown in Fig. 1. As the dressed
energy satisfies ε(±Q) = 0 at the quasi-Fermi points ±Q, the
complex-valued chemical potential is given by μ̃ = π2n2λ̃2.
Similarly, the distribution function in the thermodynamic limit
σ (k| ± Q) is calculated as

σ (k| ± Q) = 1

2π
− (λ̃ − 1)

∫ Q

−Q
dk′δ(k − k′)σ (k′| ± Q),

(27)

which leads to

σ (k| ± Q) =
{ 1

2π
(|k| > |Q|),

1
2πλ̃

(|k| < |Q|).
(28)

Finally, by using Eqs. (26) and (28), we obtain the velocity of
excitations as

ṽ = ε′(Q)

2πσ (Q| ± Q)
= 2πλ̃n, (29)

where ε′(k) denotes the derivative of ε(k) with respect to k.
We emphasize that the velocity of excitations (29) becomes
complex as a result of dissipation.

D. Finite-size scaling analysis in CFT

In this subsection, we perform the finite-size scaling
analysis in CFT [106–111] by explicitly calculating the
ground-state energy, the excitation energy, and the momentum
transfer for both fermions and bosons [84]. First, we calcu-
late the ground-state energy. By substituting Eqs. (23) and
(24) into E =∑ k2

j , we arrive at the ground-state energy for
fermions and bosons as

E0 = π2λ̃2

L2

M∑
j=1

(2 j − M − 1)2 = Lε0 − π ṽλ̃

6L
, (30)

where we have introduced ε0 = π2λ̃2n3/3, and the energy
becomes complex as the system decays due to dissipation.
We note that the calculation in Eq. (30) is exact, and we
have shifted the ground-state energy for even-M fermions by
π2n/L because this term does not affect the universality. One
notices that Eq. (30) is peculiar since the central charge could
be given by c = λ̃, hence changes continuously in the complex
plane. However, this artifact solely comes from the long-range
nature of the interaction in a finite-size system, where we have
applied the cylindrical geometry to the long-range interacting
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system [84], and the universality class is described by the
central charge c = 1 as we see from the conformal dimensions
below.

Next, we calculate the excitation energy from the ground
state �E and the associated momentum transfer P. There are
two types of excitations characterized by the quantum num-
bers �M and �D other than the particle-hole excitations. �M
denotes the change of the particle number and �D describes
the number of particles that move from the left Fermi point to
the right one accompanied by the large momentum transfer P.
Then, the excitation energy �E is calculated as

�E = π2λ̃2

L2

[
M+�M∑

j=1

(
2 j − M − �M − 1 + 2�D

λ̃

)2

−
M∑

j=1

(2 j − M − 1)2

]

= μ̃�M + 2π ṽ

L

[
λ̃

4
(�M )2 + 1

λ̃
(�D)2

]
+ O

(
1

L2

)
.

(31)

The associated momentum transfer P is obtained as

P = πλ̃

L

M+�M∑
j=1

(
2 j − M − �M − 1 + 2�D

λ̃

)

= 2kF �D + 2π

L
�M�D, (32)

where kF = πn is the Fermi momentum. Importantly, the
difference between fermions and bosons only appears in the
selection rule between �M and �D;

�M : integer, (33)

�D = �M

2
(mod 1), (34)

for the Fermi case, and

�M : integer, (35)

�D : integer, (36)

for the Bose case, respectively. In the Fermi case, we can-
not take the current �D to be independent of the change
of the particle number �M. Finally, by adding particle-hole
excitation terms characterized by the quantum numbers n±,
which are nonnegative integers, we arrive at the finite-size
scaling formula for the excitation energy and the associated
momentum transfer as

�E = μ̃�M + 2π ṽ

L

[
λ̃

4
(�M )2 + 1

λ̃
(�D)2 + n+ + n−

]
,

(37)

P = 2kF �D + 2π

L
(�M�D + n+ − n−). (38)

It is worth noting that the excitation energy becomes complex
due to dissipation, but the momentum transfer remains real.
From Eqs. (37) and (38), we can read off the conformal

weights characterizing the holomorphic and antiholomorphic
parts of the underlying Virasoro algebra as

�±(�M; �D; n±) = 1

2

(
�M

√
λ̃

2
± �D√

λ̃

)2

+ n±. (39)

The conformal dimensions (39) are typical for a complex
generalization of c = 1 U(1) Gaussian CFT [39], and the
universal behavior of the system is characterized by the
complex-valued TL parameter K̃ = 1/λ̃. The critical expo-
nents of dissipative TL liquids have already been obtained
in Ref. [39], where we have calculated both biorthogonal
correlation functions and right-state correlation functions, by
using path integrals and ground-state wave function approach,
respectively. Summarizing this section, we have confirmed
that an ideal-gas description based on the ABA solution of the
NH CS model captures the essential properties of dissipative
TL liquids in NH quantum critical systems.

IV. DISSIPATIVE TOMONAGA-LUTTINGER LIQUIDS
WITH SU(N) SPIN SYMMETRY

In this section, we generalize the NH CS model to multi-
component systems with SU(N) symmetry, and analyze the
NH SU(N) CS model based on a complex generalization of
Haldane’s ideal-gas description.

A. Model

We consider a complex generalization of the SU(N) CS
model to 1D NH quantum systems. The NH SU(N) CS model
with the circumference L is given by

Heff = −1

2

M∑
i=1

∂2

∂x2
i

+
∑
i< j

D(xi − x j )
−2λ̃′(λ̃′ + Pσ

i j ), (40)

where D(x) = (L/π )| sin(πx/L)| is the chord distance,
Pσ

i j (σ = 1, 2, · · · , N ) is an operator that exchanges particle
spins between the sites i and j, λ̃′ is the dimensionless com-
plex parameter of the long-range interaction, and we have
assumed Re[λ̃′] > 0. We note that the SU(N) CS model was
originally solved by Ha and Haldane [90], and we use similar
notations that are used in Ref. [90]; λ̃′ in Eq. (40) and λ̃ in
Eq. (16) are related by λ̃′ = λ̃ − 1, and Eqs. (40) and (16) are
different from each other by a factor 2 in the single-component
limit. Such difference in notations does not affect the univer-
sality.

The ground-state wave function of the SU(N) CS model is
a Jastrow type, and it has been demonstrated that the Jastrow
factor does not contain the internal spin degrees of freedom
[90–93]. Then, we obtain the ground-state wave function by
generalizing the results obtained in the Hermitian case [90] to
the NH case as

�g =
∏
l>m

|zl − zm|λ̃′−s′
�0, (41)

where

�0 =
∏

j

z
Jσ j

j

∏
l>m

{
(zl − zm)s′+δσl ,σm exp

[
i

2
πsgn(σl − σm)

]}
.

(42)
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FIG. 2. Distribution of the quasimomentum k(σ )
j in the ground

state of the NH SU(N) CS model (40) (chemical potential imbal-
ance between different spin-σ particles is included). Each region
Cτ is constructed from two straight lines, which are symmetric
with respect to the origin; C+

τ (the region between Qτ and Qτ+1)
and C−

τ (the region between −Qτ and −Qτ+1). Quasimomentum is
equally spaced in each region Cτ , and k(σ )

j is distributed in the region∑N
τ=σ Cτ , where ±Qσ denote the endpoints of the quasimomentum

distribution of k(σ )
j . The generalized signature between k(σ )

m and k(σ ′ )
l

gives the phase shift θ (k(σ )
m − k(σ ′ )

l ) (see text).

Here, zm = exp(2π ixm/L), σl is the ordered spin index, Jσ is
the global current of the spin-σ particle, δ is the Kronecker’s
delta, and we have introduced s′ = 0 for fermions and s′ = 1
for bosons, respectively. Thus, we see from Eq. (41) that the
complex interaction parameter λ̃′ in the Jastrow factor only
affects the charge degrees of freedom even in the NH case.

B. Nested asymptotic Bethe ansatz

Next, to exploit an ideal-gas description, we derive the
ABA solution of the NH SU(N) CS model. By generaliz-

ing the S matrices in the Hermitian multicomponent systems
[91,93,112–114], we obtain the S matrices of the NH SU(N)
CS model as

Si j = exp ( − iλ̃′θ (ki − k j )) lim
η→0

ki − k j + iηPσ
i j

ki − k j + iη
, (43)

for fermions, and

Si j = exp ( − i(λ̃′ − 1)θ (ki − k j )) lim
η→0

ki − k j + iηPσ
i j

ki − k j − iη
, (44)

for bosons, respectively. Here, we have introduced θ (k) =
πsgn∗(k), where the function sgn∗(k) for the complex quasi-
momentum k = αeiξ (α ∈ R,−π/2 < ξ < π/2) is defined
by sgn∗(k) = sgn(α) (see Fig. 2) in the same way as in
the case without internal symmetry. It is noted that, for
ki − k j = αeiξ in the S matrices, we take the limit η → 0
as η′ → +0 with η = η′eiξ (η′ ∈ R). The additional phase
shift in the exponential in the S matrices π (λ̃′ − s′)sgn∗(ki −
k j ) comes from the Jastrow factor in Eq. (41). The S
matrices in Eqs. (43) and (44) satisfy the Yang-Baxter equa-
tion S jkSikSi j = Si jSikS jk , hence we can construct the nested
ABA [91,93,112–114] in NH multicomponent systems with
SU(N) symmetry. We note that, in the limit λ̃′ → 0, the S
matrix for fermions (43) reduces to the one for free fermions
with SU(N) internal spin symmetry [112,113]. As for the limit
λ̃′ − 1 → 0, the S matrix for bosons (44) corresponds to the
one for the SU(N) Haldane-Shastry model [91,114].

By using the S matrices (43) and (44), the nested ABA
equations for fermions (s′ = 0) and bosons (s′ = 1) are cal-
culated as [91,93,112–114]

exp
(
ik(1)

j L
) = (−1)(M1−1)s′

M2∏
m

f1
(
k(2)

m − k(1)
j

) M1∏
l ( �= j)

exp
[− iλ̃′θ

(
k(1)

l − k(1)
j

)]
, (1 � j � M1), (45)

Mσ∏
l ( �=m)

f2
(
k(σ )

m − k(σ )
l

) =
Mσ−1∏

j

f1
(
k(σ )

m − k(σ−1)
j

)Mσ+1∏
q

f1
(
k(σ )

m − k(σ+1)
q

)
, (1 � m � Mσ , 2 � σ � N − 1), (46)

MN∏
l ( �=q)

f2
(
k(N )

q − k(N )
l

) =
MN−1∏

j

f1
(
k(N )

q − k(N−1)
j

)
, (1 � q � MN ), (47)

respectively. Here, we have introduced fm(x) = limη→0(x − imη/2)/(x + imη/2), and the number of the quasimomentum k(σ )
j

as Mσ =∑N
τ=σ Nτ , where Nσ is the number of particles with spin σ . The nested ABA equations (45)–(47) describe a charge

excitation (σ = 1) characterized by the complex-valued interaction parameter λ̃′, and N − 1 kinds of spin excitations (2 � σ �
N), where λ̃′ does not appear. The particles that appear in the spin sectors are called spinons, which are frequently used to
describe spin excitations in the Haldane-Shastry model [83]. We see that the only difference between fermions and bosons is
the factor of (−1)M1−1 in the right-hand side in Eq. (45), hence is included into the quantum number in the charge sector I (1)

j as
shown below. Then, by taking the logarithm, we obtain the transcendental ABA equations as

k(1)
j L = 2π I (1)

j +
M2∑
m

θ
(
k(2)

m − k(1)
j

)+ λ̃′
M1∑
l

θ
(
k(1)

j − k(1)
l

)
, (1 � j � M1), (48)

Mσ∑
l

θ
(
k(σ )

m − k(σ )
l

)+ 2π I (σ )
m =

Mσ−1∑
j

θ
(
k(σ )

m − k(σ−1)
j

)+
Mσ+1∑

q

θ
(
k(σ )

m − k(σ+1)
q

)
, (1 � m � Mσ , 2 � σ � N − 1), (49)
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MN∑
l

θ
(
k(N )

q − k(N )
l

)+ 2π I (N )
q =

MN−1∑
j

θ
(
k(N )

q − k(N−1)
j

)
, (1 � q � MN ), (50)

where the quantum number I (1)
j that characterizes a charge

excitation is given by

I (1)
j = M2

2
, (mod 1), (51)

for fermions, and

I (1)
j = M1 + M2 + 1

2
, (mod 1), (52)

for bosons, respectively. On the other hand, N − 1 kinds of
spin excitations (2 � σ � N) are described by the same quan-
tum numbers in the case of fermions and bosons;

I (σ )
j = Mσ−1 + Mσ + Mσ+1 + 1

2
, (mod 1, 2 � σ � N ),

(53)

where MN+1 = 0. The energy of the system is given in terms
of the quasimomentum k(1)

j in the charge sector as E =
(1/2)

∑
j[k

(1)
j ]2. Importantly, dissipation parameter λ̃′ only

appears in the charge sector in Eq. (45) and Eq. (48) in the
nested ABA equations. This fact is nothing but the protection
of spin sectors by SU(N) internal symmetry in NH quantum
systems, and can be seen as a NH generalization of the spin-
charge separation in 1D quantum many-body systems [38,39].

C. Velocity of excitations

In this subsection, we obtain the velocity of excitations, for
which we generalize the distribution function and the dressed
energy to NH quantum systems with SU(N) symmetry. We
first consider the ground state for general cases, where the
chemical potential imbalance between different spin-σ par-
ticles is included. In such ground states, quantum numbers
{I (σ )

j } are the successive integers distributed symmetrically
around the origin. As the phase shift in the NH SU(N) CS
model is a step function with a complex coefficient, the quasi-
momentum is equally spaced in each region Cτ between ±Qτ

and ±Qτ+1, where |Q1| � |Q2| � · · · � |QN | and QN+1 = 0
(see Fig. 2). As we see from Fig. 2, the quasimomentum k(σ )

j

is distributed in the region
∑N

τ=σ Cτ , where ±Qσ denote the
endpoints of the quasimomentum distribution of k(σ )

j . Accord-
ingly, the distribution function in the thermodynamic limit
ρσ (k) introduced for the quasimomentum k(σ )

j takes a constant
complex value in each region Cτ , and is given by

ρσ (k) = τ − σ + 1

2π (1 + τ λ̃′)
, (τ � σ, σ = 1, 2, · · · N ). (54)

By using the distribution function (54), the particle density
with spin σ is obtained as

nσ = Nσ

L
=
∫
∑N

τ=σ Cτ

ρσ (k)dk −
∫
∑N

τ=σ+1 Cτ

ρσ+1(k)dk, (55)

where we have assumed n1 � n2 � · · · � nN , and the end-
point of each quasiparticle distribution Qσ is given by the
following set of equations:

QN = πnN (1 + N λ̃′), (56)

QN−1 − QN = π (nN−1 − nN )(1 + (N − 1)λ̃′), (57)

...

Q1 − Q2 = π (n1 − n2)(1 + λ̃′), (58)

which become complex reflecting the quasimomentum distri-
bution in the complex plane.

Now, we concentrate on the SU(N) singlet ground state,
where Q1 = · · · = QN = πn(1 + N λ̃′)/N with the total den-
sity n = M/L. In this case, only the region CN exists and the
quasimomentum k(σ )

j is distributed in the region CN depicted
by the straight line (see Fig. 2). By inserting a hole into the
ground-state distribution of the quasimomentum, the dressed
energy is calculated with the help of the nested ABA equa-
tions (48)–(50) as

ε1(k) = 1

2
k2 − μ̃ +

∫ QN

−QN

δ(k − k′)ε2(k′)dk′

− λ̃′
∫ QN

−QN

δ(k − k′)ε1(k′)dk′, (59)

εσ (k) =
∑

q=−1,0,1

(−1)q+1
∫ QN

−QN

δ(k − k′)εσ+q(k′)dk′,

(σ = 2, 3, · · · , N − 1), (60)

εN (k) =
∑

q=−1,0

(−1)q+1
∫ QN

−QN

δ(k − k′)εN+q(k′)dk′, (61)

where the complex chemical potential μ̃ is obtained by using
εσ (±QN ) = 0 as μ̃ = π2n2(1 + N λ̃′)2/2N2. Finally, we ar-
rive at the velocity of excitations for the SU(N) singlet ground
state as

ṽσ = ε′
σ (QN )

2πρσ (QN )
= πn

N
(1 + N λ̃′) ≡ ṽ, (62)

where ε′
σ (k) denotes the derivative of εσ (k) with respect to

k. Here, ṽ1 characterizes the charge velocity and ṽσ (σ =
2, 3, · · · , N) describes the N − 1 kinds of spin velocity. We
note that the velocity for the charge excitation ṽ1 and that
for the spin excitations ṽσ (σ = 2, 3, · · · , N) are the same
in long-range interacting systems (40). It is worth noting that
both the charge velocity and the spin velocity are affected by
dissipation through λ̃′ as a result of the nested equations of
ABA.

D. Finite-size spectrum

In this subsection, we obtain the finite-size spectrum that
leads to the universal scaling relations for dissipative TL
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liquids with SU(N) spin symmetry in NH quantum critical
systems. In Hermitian systems, SU(N) CS model has been
shown to describe the universal properties of TL liquids
with SU(N) spin symmetry as an ideal gas, e.g., SU(2) CS
model successfully describes the SU(2) spin symmetric TL
liquids, which characterize the critical properties of Hubbard
models [92,93,115–117]. The excitation energy in a finite
system for the NH SU(N) CS model can be obtained by
using the nested ABA equations (48)–(50) [91]. This method
is useful to understand conformal properties stemming from
U(1)×SU(N) symmetry underlying in the ABA equations as
we see below. On the other hand, the finite-size spectrum for
the Hermitian SU(N) CS model was originally obtained by
Ha and Haldane [90] with the use of the bosonization method,
which also embodies an ideal-gas description. This method
is beneficial to interpret the particle picture and the origin of
associated selection rules for Fermi and Bose statistics. To un-
derstand the effect of dissipation on each particle more clearly,
we start from the particle picture introduced in Ref. [90]
and then transform it to the ABA picture underlying in
Eqs. (48)–(50).

By constructing excited states over the SU(N) singlet
ground state in Eq. (41) systematically, we end up with the
finite-size spectrum, which is given by analytically continuing
the one obtained in Ref. [90] to the case of the NH SU(N) CS
model. The result is written down as

�E = π ṽ

L

∑
σσ ′

[
1

2
Aσσ ′�Mσ�Mσ ′ + 2A−1

σσ ′�Jσ �Jσ ′

]
, (63)

where we have to pay careful attention to the fact that not
only the interaction parameter λ̃′ but also the velocity of exci-
tations ṽ becomes complex-valued as a result of dissipation
[39]. We also note that particle-hole excitation terms that
form conformal towers inherent in the underlying Virasoro
algebra are omitted in Eq. (63) because they do not affect the
critical exponents of leading order that we consider in the next
subsection. In Eq. (63), the coefficient Aσσ ′ = λ̃′ + δσσ ′ is the
matrix element of the N × N matrix A given by

A =

⎛
⎜⎜⎜⎝

λ̃′ + 1 λ̃′ λ̃′ · · ·
λ̃′ λ̃′ + 1 λ̃′

λ̃′ λ̃′ . . .
...

⎞
⎟⎟⎟⎠, (64)

and A−1
σσ ′ = −λ̃′/(1 + N λ̃′) + δσσ ′ is that of the inverse matrix

A−1, which is given by

A−1 =

⎛
⎜⎜⎜⎝

χ + 1 χ χ · · ·
χ χ + 1 χ

χ χ
. . .

...

⎞
⎟⎟⎟⎠, (65)

where we have introduced χ = −λ̃′/(1 + N λ̃′). We note that
�Mσ and �Jσ are the vector elements of the N × 1 column
vectors that characterize two types of excitations given by �M

and �J, respectively. Here, �Mσ denotes the particle-number
excitations, and �Jσ describes the excitations accompanied
by the large momentum transfer Pσ for a spin-σ particle,
which is given by

Pσ = 2kF �Jσ , (66)

where the Fermi momentum kF = πn/N is generalized to the
SU(N) singlet ground state.

As we see in Eq. (64), dissipation affects all the elements
of the matrix A equally via the complex-valued interaction
parameter λ̃′. We emphasize that the difference of statistics
between fermions and bosons are incorporated into the selec-
tion rules of quantum numbers, which are given by

�Mσ : integer, (67)

�Jσ = �Mσ

2
(mod 1), (68)

for fermions, and

�Mσ : integer, (69)

�Jσ : integer, (70)

for bosons, respectively. We see that the selection rules for
each spin-σ particle (67)–(70) are the same as those in the
single component cases (33)–(36).

The basis of the matrices used in Eqs. (64) and (65) is
the one that was introduced by Ha and Haldane [90] and
different from the one used in the ABA equations (48)–(50).
The basis transformation between them is conducted by using
the following N × N matrix α [94],

α =

⎛
⎜⎜⎜⎜⎜⎝

1 −1
1 −1 0

. . .
. . .

0 . . . −1
1

⎞
⎟⎟⎟⎟⎟⎠, (71)

which gives the inverse matrix as

α−1 =

⎛
⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 1 · · · 1

1 · · · 1

0 . . . 1
1

⎞
⎟⎟⎟⎟⎠. (72)

Then, with the help of Eq. (71), the excitation energy (63) is
rewritten as �E = (π ṽ/L)(mt Dm/2 + 2dt D−1d ), where the
matrix A is transformed into the matrix D, which is calculated
as

D ≡ αt Aα =

⎛
⎜⎜⎜⎜⎜⎝

λ̃′ + 1 −1
−1 2 −1 0

−1 2 . . .

0 . . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠. (73)
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Similarly, with the use of Eq. (72), the inverse matrix D−1 is written as follows:

D−1 ≡ α−1A−1(αt )−1 = 1

1 + N λ̃′

⎛
⎜⎜⎜⎜⎜⎝

N N − 1 N − 2 · · · 1
N − 1 (N − 1)(λ̃′ + 1) (N − 2)(λ̃′ + 1) · · · λ̃′ + 1

N − 2 (N − 2)(λ̃′ + 1) (N − 2)(2λ̃′ + 1)
...

...
...

... (N − 2)λ̃′ + 1
1 λ̃′ + 1 2λ̃′ + 1 · · · (N − 1)λ̃′ + 1

⎞
⎟⎟⎟⎟⎟⎠. (74)

Accordingly, the basis transformations for the quantum num-
ber vectors �M and �J are given by

m = α−1�M, (75)

d = αt�J, (76)

where the quantum numbers m1 and d1 characterize excita-
tions in the charge sector with the Fermi point NkF , and mσ

and dσ (2 � σ � N) describe excitations in the spin sectors
with the Fermi point (N − σ + 1)kF . In detail, mσ denotes
the change of the number of charge particles for σ = 1, and
that of spinons for 2 � σ � N . Accordingly, dσ carries the
large momentum P′

σ associated with charge (σ = 1) or spin
(2 � σ � N) excitations as follows:

P′
σ = 2(N − σ + 1)kF dσ . (77)

By using the quantum numbers mσ and dσ , the selection rules
are rewritten as

mσ : integer, (78)

dσ = mσ−1 + mσ+1

2
(mod 1), (79)

with m0 = m1 and mN+1 = 0 for fermions, and

mσ : integer, (80)

dσ : integer, (81)

for bosons, respectively. The selection rules for mσ and dσ

given in Eqs. (78)–(81) are rather complicated than those for
�Mσ and �Jσ given in Eqs. (67)–(70), but are easily obtained
by using the basis transformation given by the matrix α in
Eq. (71).

Notably, the matrix D in Eq. (73) reflects the SU(N) in-
ternal spin symmetry underlying in the present dissipative
TL liquids. (N − 1) × (N − 1) matrix obtained by deleting
the first column and the first row in D is called the SU(N)
Cartan matrix, which characterizes N − 1 kinds of spin ex-
citations with c = N − 1 level-1 SU(N) Kac-Moody algebra
[118–122]. On the other hand, we see in Eq. (73) that the
effect of dissipation through the complex parameter λ̃′ only
appears in the charge sector, which is characterized by a
complex generalization of c = 1 U(1) Gaussian CFT [39] as in
the case without internal spin symmetry discussed in Sec. III.

E. Universal scaling relations

Finally, we obtain the critical exponents, which provide
universal properties of dissipative TL liquids with SU(N) spin
symmetry. From the excitation energy spectrum (63) and the

basis transformation given in Eq. (73), the general formula of
the (complex) critical exponents that express dissipative TL
liquids with SU(N) spin symmetry are read off as [123]

η̃ = 1
2�Mt A�M + 2�Jt A−1�J (82)

= 1
2 mt Dm + 2dt D−1d, (83)

where the first line (82) corresponds to the basis introduced by
Ha and Haldane [90], and the second line (83) corresponds to
the one used in the ABA equations (48)–(50). It is noted that
η̃ is the critical exponent of biorthogonal correlation functions
in NH systems [39], hence is a complex value. In the follow-
ing, we obtain the scaling formula for both biorthogonal cor-
relation functions and right-state correlation functions in NH
systems based on the formula of η̃ given in Eqs. (82) and (83).

1. Critical exponents for biorthogonal correlation functions

We first calculate the critical exponents for biorthogonal
correlation functions. The exponents of biorthogonal correla-
tors become complex, and are directly obtained by the formula
η̃ given in Eqs. (82) and (83). First, the long-distance behavior
of the biorthogonal charge-density correlator is given by

L〈ρ(x)ρ(0)〉R �
N∑

j=1

Ã j cos[2(N − j + 1)kF x]x−β̃ j + Ã0

x2
,

(84)

which has the same form both in the case of fermions and
bosons. Here, the exponent β̃ j denotes the 2(N − j + 1)kF os-
cillating part (1 � j � N ) of the biorthogonal charge-density
correlator (84), and Ã j is a complex-valued correlation ampli-
tude. As Eq. (84) conserves the particle number, the selection
rules for �M and m for this type of excitations reduce to

�M = m = 0, (85)

which brings about the same form of the charge density cor-
relators for both fermions and bosons. For the excitations
that convey the large momentum transfer given in Eqs. (66)
and (77), the selection rules corresponding to the 2(N − j +
1)kF oscillations (1 � j � N ) associated with the momentum
transfer 2NkF , 2(N − 1)kF , · · · , 2kF are given by

2NkF oscillation,

�J = (1, 1, · · · , 1)t , d = (1, 0, 0, · · · , 0)t , (86)

2(N − 1)kF oscillation,

�J = (0, 1, · · · , 1)t , d = (0, 1, 0, · · · , 0)t , (87)
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...

2kF oscillation,

�J = (0, · · · , 0, 1)t , d = (0, 0, · · · , 0, 1)t , (88)

respectively. Equations (86)–(88) provide the critical expo-
nent β̃ j corresponding to the 2(N − j + 1)kF oscillating piece
(1 � j � N ) as

β̃ j = 2(N − j + 1)( j − 1)

N
+ 2(N − j + 1)2

N
K̃ρ, (89)

where the complex-valued TL parameter K̃ρ is given by K̃ρ =
1/(1 + N λ̃′) with the use of Eq. (12). Notably, from Eq. (89),
we see that the effect of dissipation is included only in the
charge excitation described by K̃ρ .

On the other hand, fermion correlators and boson correla-
tors are different from each other. The long-distance behavior
of the biorthogonal fermion correlator, which accompanies the
kF oscillation, is written as

L〈c†
σ (x)cσ (0)〉R � C̃1 cos(kF x)x−η̃F , (90)

where C̃1 is a complex-valued correlation amplitude. It should
be noted that the biorthogonal fermion correlator (90) is inde-
pendent of spin indices for the SU(N) singlet ground state. As
the correlation function (90) changes the particle number by
one, the selection rules for the biorthogonal fermion correlator
(90) are given by

σ = 1

�M = (1, 0, · · · , 0)t , m = (1, 0, · · · , 0)t , (91)

�J = ( 1
2 , 0, · · · , 0

)t
, d = ( 1

2 ,− 1
2 , 0, · · · , 0

)t
, (92)

σ = 2

�M = (0, 1, 0, · · · , 0)t , m = (1, 1, 0, · · · , 0)t , (93)

�J = (0, 1
2 , 0, · · · , 0

)t
, d = (0, 1

2 ,− 1
2 , 0, · · · , 0

)t
,

(94)
...

σ = N

�M = (0, · · · , 0, 1)t , m = (1, 1, · · · , 1)t , (95)

�J = (0, · · · , 0, 1
2

)t
, d = (0, · · · , 0, 1

2

)t
, (96)

all of which lead to the same critical exponent η̃F as

η̃F = N − 1

N
+ 1

2NK̃ρ

+ K̃ρ

2N
. (97)

Again, we see from Eq. (97) that dissipation only affects the
exponent of the charge excitation characterized by K̃ρ , and the
exponent stemming from spin excitations, (N − 1)/N , is fixed
to be real as a result of the underlying SU(N) symmetry.

The long-distance behavior of the biorthogonal boson cor-
relator, which does not accompany any oscillations, are given
by

L〈b†
σ (x)bσ (0)〉R � B̃1x−η̃B , (98)

where B̃1 is a complex-valued correlation amplitude. We note
that the boson correlator in Eq. (98) is independent of spin in-
dices for the SU(N) singlet ground state as in the fermion case
(90). As the leading part of the biorthogonal boson correlator
(98) does not carry the large momentum from the left Fermi
point to the right one, the selection rules for �J and d read

�J = d = 0. (99)

The boson correlator (98) changes the number of particles by
one as in the fermion case (90), hence the selection rules for
�M and m are the same as Eqs. (91)–(96). Then, we obtain
the critical exponent η̃B as

η̃B = N − 1

2N
+ 1

2NK̃ρ

, (100)

where the piece proportional to the TL parameter does not
appear in contrast to the one in the fermion case (97). Impor-
tantly, the critical exponents of the biorthogonal correlation
functions (89), (97), and (100) provide the universal scaling
relations for dissipative TL liquids with SU(N) spin symme-
try.

2. Critical exponents for right-state correlation functions

Next, we analyze the right-state correlation functions,
which are experimentally relevant in ultracold atoms. We
emphasize that the exponents of right-state correlators are
real because right-state correlation functions are obtained
as a standard quantum-mechanical expectation value for the
ground state [36,39].

The critical exponents of the right-state correlation func-
tions are obtained from Eqs. (89), (97), and (100) by replacing
K̃ρ with Kφ

ρ , and 1/K̃ρ with 1/Kθ
ρ , respectively. This sim-

ple transformation comes from the fact that dissipation only
affects the charge excitation characterized by the complex-
valued TL parameter K̃ρ . As K̃ρ describes the charge degrees
of freedom, the relations among the TL parameters K̃ρ , Kφ

ρ ,
and Kθ

ρ given in Eqs. (4) and (8) hold for dissipative TL liquids
both with and without internal symmetry [39]. As a result,
two types of real TL parameters Kφ

ρ and Kθ
ρ describe the uni-

versal properties of right-state correlation functions through
the general formula (4) and (8) in dissipative TL liquids with
SU(N) spin symmetry. Therefore, in terms of Kφ

ρ and Kθ
ρ , we

obtain the universal scaling relations for β j , ηF , and ηB in the
right-state correlation functions as Eqs. (11), (13), and (15) as
summarized in the main results in Sec. II. These exponents
characterize the universal behavior of dissipative TL liquids
with SU(N) spin symmetry, and are relevant to experiments.

In Fig. 3, we plot the critical exponents Kθ
ρ given in Eq. (8)

and ηF given in Eq. (13) in long-range interacting SU(N) sym-
metric systems (40) for the case of N = 2 and N = 4. We note
that Kφ

ρ is not affected by dissipation in the present case due to
an artifact of long-range interactions. From Fig. 3(a), we see
that the TL parameter Kθ

ρ is suppressed as dissipation Imλ̃′ is
increased. This is a similar behavior obtained in the NH Lieb-
Liniger model [36], where the TL parameter is suppressed
due to dissipation as a result of the continuous quantum Zeno
effect [7,10–12,14,23]. As we deal with the continuum model,
the increase in TL parameters as a result of the umklapp scat-
tering reported in lattice models is not seen [39]. Accordingly,
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FIG. 3. Critical exponents (a) Kθ
ρ and (b) ηF as a function of

the complex-valued interaction parameter λ̃′ for N = 2 (orange) and
N = 4 (blue) in the NH SU(N) CS model (40). Reλ̃′ and Imλ̃′ denote
a (real-valued) interaction, and dissipation, respectively. Kθ

ρ and ηF

do not depend on the sign of Imλ̃′.

the behavior of ηF shown in Fig. 3(b) reflects the suppression
of Kθ

ρ via dissipation Imλ̃′, and shows the enhancement due to
dissipation. The enhancement in ηF gives the suppression of
the fermion correlator (6), the behavior of which is consistent
with the one obtained in the NH Lieb-Liniger model [36]. In
Fig. 3(b), we see that the enhancement of ηF due to dissipation
Imλ̃′ becomes significant in the limit of free fermions, and
the difference of ηF induced by dissipation between N = 2
and N = 4 also becomes significant in this limit. We note that
almost the same behavior as that of ηF is obtained for ηB given
in Eq. (15).

V. CONCLUSIONS

We have explored the universal properties of dissipative TL
liquids with SU(N) spin symmetry in one dimension based on
a complex generalization of Haldane’s ideal-gas description,
which is realized by the SU(N) Calogero-Sutherland model.
As the main results, we have obtained the universal scaling
relations for dissipative TL liquids with SU(N) spin sym-
metry for both fermions and bosons. We have demonstrated
that the spectrum of dissipative TL liquids with SU(N) spin
symmetry is described by the sum of one charge mode char-
acterized by a complex generalization of c = 1 U(1) Gaussian
CFT, and N − 1 spin modes characterized by level-1 SU(N)

Kac-Moody algebra with the conformal anomaly c = N − 1.
We have elucidated that dissipation only affects the charge
sector in the correlation exponents by deriving ABA solu-
tions and using CFT in NH quantum critical many-body
systems. The scaling relations obtained in the present paper
are relevant to a wide variety of cold-atom experiments in
NH quantum critical systems with SU(N) symmetry, e.g.,
ultracold alkaline-earth-like atom 173Yb is a promising candi-
date, where the Fermi-Hubbard model is successfully loaded
into an optical lattice, and dissipation is introduced by using
photoassociation techniques [19]. As a useful tool to postse-
lect special measurement outcomes that realize NH quantum
many-body systems, quantum-gas microscopy can be utilized
[36–39] to observe dissipative TL liquids with SU(N) spin
symmetry.

There remains an interesting question how the present
results for dissipative TL liquids are related to the critical
behavior studied in open quantum systems [124,125]. Criti-
cal exponents of correlation functions and correlation length
are essential to investigate the microscopic origin of quan-
tum phase transitions. As critical exponents in open quantum
systems have been investigated by using the framework of
Lindblad master equations [124,125], it is important to clarify
the universality class that lies in dissipative quantum critical
systems from the perspective of CFT. As for the relations
between NH quantum systems and Markovian open quantum
systems, it is known that the spectrum of the Liouvillian is
obtained from that of the NH Hamiltonian when the system
follows loss-only dynamics [40,105,126]. This may benefit
us for finding out universal relations of critical exponents
between NH quantum systems and Markovian open quan-
tum systems. Moreover, in view of recent advancement of
CFT description in NH quantum systems [127–129] and
measurement-induced entanglement dynamics [130–133], it
is interesting to investigate how CFT in NH quantum many-
body systems is related to the one in measurement-induced
dynamics.

Dissipation makes the theory nonunitary and the entire
spectrum of the NH quantum many-body systems can be
complicated. However, low-energy physics shows universal
properties in NH quantum systems with internal degrees
of freedom, which leads to unconventional quantum critical
phenomena characterized by a complex extension of CFT.
Since systems with inverse-square long-range interactions
are known to be closely related to the fractional quantum
Hall effect [86,87], characterization of NH fractional quan-
tum Hall effects [134,135] by using the present framework
remains a future research subject. As ultracold mixtures with
SU(N ) × SU(N ′) symmetry have been realized [136], it is of
interest to extend our theory to more general multicomponent
systems beyond SU(N) symmetry. Our results in this paper
will certainly stimulate further study on multicomponent ex-
tension of dissipative TL liquids in open quantum systems
[32,36,37,125,137–144].
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APPENDIX: GROUND-STATE WAVE FUNCTION

In this Appendix, we give a proof that a complex gen-
eralization of the wave function of the Jastrow form (18)
provides the eigenstate of the effective Hamiltonian (16) with
the complex-valued ground-state energy E0 given in Eq. (30).
Here, we consider the case of bosons for simplicity, and that
of fermions can be proved similarly by taking the anticom-
mutation relations of fermions into account. We calculate the

term −∑ j ∂
2�g/∂x2

j by using the identity

∂ log �g

∂x j
= 1

�g

∂�g

∂x j
. (A1)

Since ∂ log �g/∂x j is calculated as

∂ log �g

∂x j
= πλ̃

L

∑
i( �= j)

cot
π (x j − xi )

L
, (A2)

we obtain

− ∂2

∂x2
j

�g = −π2λ̃

L2

⎡
⎢⎣λ̃

⎛
⎝∑

i( �= j)

cot
π (x j − xi )

L

⎞
⎠

2

−
∑
i( �= j)

1

sin2(π (x j − xi )/L)

⎤
⎥⎦�g

= −π2λ̃

L2

(∑
i( �= j)

λ̃ − 1

sin2 (π (x j − xi )/L)
− λ̃(N − 1) + 2λ̃

∑
〈i,k〉( �= j)

cot
π (x j − xi )

L
cot

π (x j − xk )

L

)
�g, (A3)

where we have used the identity cot2 x = 1/sin2 x − 1 in the second equality, 〈i, k〉 denotes the combination over the pair of i
and k with i �= k, and 〈i, k〉( �= j) means that both i and k are different from j. By taking the sum of Eq. (A3), we get

−
∑

j

∂2

∂x2
j

�g

= π2λ̃

L2

[
− 2

∑
i> j

λ̃ − 1

sin2 (π (xi − x j )/L)
+ λ̃N (N − 1) − 2λ̃

∑
〈i, j,k〉

(
cot

π (x j − xi )

L
cot

π (x j − xk )

L
+ (i → j → k)

)]
�g,

(A4)

where 〈i, j, k〉 denotes the combination over the pair of {i, j, k} that are different from each other, and (i → j → k) stands for
two terms of cyclic permutations of the first term in the same parentheses. Finally, by using the identity

cot x cot y + cot y cot z + cot z cot x = 1, (x + y + z = 0), (A5)

we arrive at

−
∑

j

∂2

∂x2
j

�g =
⎛
⎝π2N (N2 − 1)λ̃2

3L2
− 2π2λ̃(λ̃ − 1)

L2

∑
i> j

1

sin2(π (xi − x j )/L)

⎞
⎠�g. (A6)

One notices that the second term in the right-hand side of Eq. (A6) has the same form as the interaction term (17). Therefore, by
taking 2λ̃(λ̃ − 1) = g̃, the wave function (18) becomes the eigenstate with the ground state energy E0 given in Eq. (30).
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