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We establish, in the spirit of the Lieb-Schultz-Mattis theorem, lower bounds on the spectral degeneracy
of quantum systems with higher (gaugelike) symmetries with rather generic physical boundary conditions in
an arbitrary number of spatial dimensions. Contrary to applying twists or equivalent adiabatic operations, we
exploit the effects of modified boundary conditions. When a general choice of boundary geometry is immaterial
in determining spectral degeneracies while approaching the thermodynamic limit, systems that exhibit rigid
noncommuting gaugelike symmetries, such as the orbital compass model, must have an exponential (in the size
of the boundary) degeneracy of each of their spectral levels.
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I. INTRODUCTION

In the current work, we extend earlier results concerning
the degeneracy of quantum systems (principally, those relying
on the Lieb-Schultz-Mattis theorem [1] and its higher dimen-
sional generalizations [2–4]) to models with rigid “higher
symmetries” that exhibit an exponential [in the linear (d =
1) system size, area (d = 2), or higher (d > 2) dimensional
volume] spectral degeneracy [4–14]. Known arguments for
establishing degeneracies (including, principally, the Lieb-
Schultz-Mattis theorem) employ geometries with generalized
Bloch type boundary conditions [15]. While, as we will
explain, the proof of exponential degeneracy for systems ex-
hibiting rigid higher symmetries is rather trivial in classical
(large spin or similar) limits, this is not the case for quantum
systems.

In our efforts to establish the exponential spectral degen-
eracy that these quantum systems feature, we will follow
an approach different from that of the known proofs of the
Lieb-Schultz-Mattis theorem and its extensions. Our proof
will, instead, rely on altering the boundary geometry of the
system from that of a pristine hypercubic (or other) lattice
with (Born-von Karman or Bloch type [16]) periodic bound-
ary conditions to the very same lattice having an exterior
boundary that is not cleaved so perfectly as to be symmetric
along all Cartesian directions. For such general “real life”
boundaries, we will rigorously establish a degeneracy that
is exponential in the size of the boundary. As we will spell
out in some detail, this modified boundary geometry may be
changed by the inclusion of terms forming a “zipper Hamil-
tonian.” When added to the existing interactions (i.e., the
system with generic non-Bloch type boundary conditions for
which we may rigorously prove exponential degeneracy in a
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finite-size system), the zipper Hamiltonian effectively restores
conventional periodic boundary conditions. We will illustrate
that, under rather mild assumptions, in the thermodynamic
limit of various systems, the zipper Hamiltonian may not lift
the exponential degeneracy.

Recently, there has been a renewed surge of interest
in physical theories whose extensive degeneracy is inti-
mately related to associated higher symmetries (also heavily
studied in myriad contexts as “d-dimensional gaugelike sym-
metries” [11–14,17–20] “unusual” [21], “stratified” [5,6],
low-dimensional [7,22], “sliding” [8,23], “infinite but nonex-
tensive set of conservation laws” [24], “generalized,” “gen-
eralized global,” or “higher form symmetries” [25–31] (and
their “higher group” mixtures [32,33]), and “subdimensional”
or “subsystem symmetries” [34–41]). In numerous theories
with d-dimensional gaugelike symmetries, the spatial support
of the symmetries is malleable and thus of a topological
character while in many other theories, this spatial support
cannot be deformed arbitrarily and is rigid. Some authors
like to reserve the designation of “subsystem symmetries” to
automatically imply these d-dimensional gaugelike symme-
tries associated with specific rigidly defined d-dimensional
spatial regions that cannot be arbitrarily deformed. We will
explicitly refer to these symmetries as “rigid higher sym-
metries.” In this latter case, which will form the focus of
our work, there may generally be an extensive number of
independent symmetries. Numerous finer classifications of
higher symmetries and their extensions exist (e.g., whether
they are invertible or not) with nontrivial consequences, e.g.,
Refs. [42–45]. References [17,18] initiated a study explaining
how the gauge like character of these symmetries mandates,
in various circumstances, topological order. Subsequent, very
penetrating, results linking these symmetries to topological
phases appeared in Ref. [26] and other illuminating works. As
befits their name(s), these higher or d-dimensional gaugelike
symmetries act nontrivially on a d (or d + 1)-dimensional

2469-9950/2023/107(4)/045109(20) 045109-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7947-7829
https://orcid.org/0000-0003-3254-4494
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.045109&domain=pdf&date_stamp=2023-01-09
https://doi.org/10.1103/PhysRevB.107.045109


ZOHAR NUSSINOV AND GERARDO ORTIZ PHYSICAL REVIEW B 107, 045109 (2023)

spatial (or space-time) subvolume of a theory defined in D
(or D + 1) spatial (space-time) dimensions. The d = 0 and
d = D (or d = D + 1) dimensional spatial (or space-time)
limits correspond to the standard local (gauge) and global
symmetries, respectively.

The more nontrivial d-dimensional gaugelike symmetries
lie between the diametrically opposite limits of local and
global symmetries (0 < d < D) (and thus act on a lower
dimensional subvolume of the physical system). These sym-
metries may be associated with various groups. A general
study of the consequences of these symmetries and, in partic-
ular, of the dimensional reductions that they imply in systems
with topological order first appeared in Refs. [11–13,17–20].
The upshot is that, as a rule, when the dimension of these
symmetries is smaller than that of the system (d < D), a
generalization [11,12] of Elitzur’s theorem [46] (physically
capturing the existence of d-dimensional topological defects
in D spatial dimensions) leads to an effective dimensional
reduction from D → d dimensions for various observables
and general spatio-temporal correlation functions [11–14,17–
20]. This holds true regardless of whether the submanifolds
on which the d-dimensional gaugelike symmetries operate
are spatially rigid or not. For low d , the proliferation of d-
dimensional topological defects at finite temperatures may,
unfortunately, lead to a loss of memory in topological quan-
tum memory schemes [13] in the absence of active error
correction. This particular corollary concerning memory loss
may be proven by application of the generalized dimensional
reduction inequalities [12,13,17–20] to the autocorrelation
functions of various systems subjected to thermal noise. For
the special cases of stabilizer models (including the cele-
brated Kitaev toric code [47], the Chamon model [48], the
Haah code [49], the X-cube [50], and other models, e.g.,
Refs. [13,51,52]) the lower dimensional symmetry inequal-
ities are further augmented by exact dualities [12,13,17–
20,51,52] that map the partition functions and the equations of
motion of these higher (D > 1) dimensional systems to those
of dual one-dimensional systems. A trivial consequence of
those dimension reducing dualities is that the equations of mo-
tion for general observables will exactly map to those of the
lower dimensional dual systems [12,19,20,53]. This implies
that their autocorrelation functions are identical to those of
lower dimensional systems, suggesting that in the absence of
active error correction some of these systems might not be
immune to thermal fluctuations [54].

Intrinsically, the action of d-dimensional symmetries on
a spatially smooth low-energy configuration [i.e., one with
infrared (IR) Fourier components] may generate other de-
generate low-energy states that are not, at all, necessarily
slowly varying in space, and have significant weight associ-
ated with their ultraviolet (UV) components. This seemingly
rather odd facet has reignited various questions and inves-
tigations as to how continuum field theories may describe
such highly degenerate systems with unconventional IR-UV
mixing [30,34,55,56]. Of particular current note are studies
of “fracton” theories [28–30,34,35,38,48–52,56–68] and their
hybrids [69,70] (including, using the above noted dualities,
the exact finite temperature solutions [12,51,52] of all of the
first fracton models [48,49,57,59]). Some qualitatively similar
behaviors also appear in theories exhibiting a “fragmentation”

of their Hilbert space into individual ergodic subspaces that do
not readily enable transitions from one subspace to another
[71]. Predecessors of current fracton-like models featuring
an extensive number of d-dimensional gaugelike symmetries
have been the “compass models” and their duals that we
will study in Sec. III [[5–8,10–14,17–20,24],[72–77]], which
include celebrated Kugel-Khomskii type models [14,21,72].
These decades-old models [72] and their extensions describe
orbital (and spin) degrees of freedom in transition metal
compounds [72–74]. Compass models are some of the sim-
plest models capturing the quintessential physics associated
with the physical connections between degeneracies and d-
dimensional gaugelike symmetries that we wish to explore.

Before proceeding further, we briefly comment on the rela-
tion between symmetries and degeneracies in classical (large
spin or similar) limits with a particular focus on theories ex-
hibiting rigid higher symmetries such as the classical variant
of the 90◦ square lattice compass model [14] that we will
specifically elaborate on later. In classical theories, the system
is in a product type state. In these theories, no entanglement
exists between the disjoint spatial regions where the differ-
ent higher symmetries may operate. Thus, given a classical
(spin, field, or other) configuration C, one may turn, in a
binary fashion, “on” or “off” the Mcl independent classical
higher symmetries that operate on different subregions of C.
The 2Mcl different binary strings defined by the choice of
applying/not applying these Mcl different symmetries may,
generally, be associated with 2Mcl states that are degenerate
with C. Symmetries that have more than two group elements,
allowing for more than just “on” or “off” applications, may
yield a degeneracy that is larger yet. If the number of in-
dependent symmetries Mcl scales as a lower dimensional
subvolume of the system then the above implies sub-extensive
exponential degeneracies. Apart from classical compass type
systems and classical renditions of various quantum models
with topological order [78], different subvolume exponential
degeneracies were also found to appear in classical field theo-
ries with non-Abelian backgrounds [79], originally introduced
as models of glasses [80], as well as a host of classical spin
models with spiral and other ground states [78,81,82]. In both
classical and quantum continuum gauge theory formulations
that treat elasticity as that of a strongly anisotropic medium
in space-time, defects are constrained to lower dimensional
regions [83,84] matching more recent fracton inspired gauge
theory formulations [66].

As is well known, in quantum theories the relation between
symmetries and degeneracies is more intricate. Quantum fluc-
tuations may lift classical degeneracies. These fluctuations
can select and stabilize a particular lower energy ordered state
in a space spanned by a plethora of many classically degener-
ate states—a mechanism often colloquially called “quantum
order by disorder” [14,85–90]. Despite being notably differ-
ent, this phenomenon is superficially reminiscent of anomalies
in quantum mechanics. Anomalies arise in situations in which
a symmetry that exists classically is no longer a symmetry
of its regularized quantum theory. Although the classical d-
dimensional symmetries at hand may remain symmetries of
the quantum theory, unlike quantum anomalies, the degenera-
cies that the classical symmetries imply need not carry over
to their quantum counterparts. Indeed, in the quantum arena,
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symmetries do not straightforwardly imply the existence of
degeneracies (e.g., the eigenstates of the Hamiltonian may
transform as singlets under the various symmetry operations).
One of the simplest textbook examples illustrating this dictum
is afforded by the absence of nontrivial transformations of
the (even and odd) symmetric (D = 1) double well eigen-
states under the parity symmetry operator. By sharp contrast,
degeneracies always necessarily mandate the existence of
symmetries (within any linear subspace spanned by n � 2
orthogonal degenerate eigenstates, there is an internal SU(n)
“rotation” symmetry associated with general superpositions of
these degenerate states) that, rather trivially, does not change
the energy (see, e.g., Ref. [17]). Determining the spectral
degeneracies is typically done on a case by case basis for
numerous problems across diverse fields, both fundamental
and applied [91–95]. Degeneracies that do not exist in finite
size systems can, in some instances, rear their head so as to
only emerge asymptotically in the thermodynamic limit. The
latter situation arises in diverse situations including, e.g., those
cases in which tunneling between edge states is suppressed in
the thermodynamic limit [96]. In the context of the compass
model (with periodic boundary conditions) that we will use as
an example in this work, an exponential degeneracy was sug-
gested to appear in the thermodynamic limit in Refs. [9,10].

Our work aims to show how, in specific circumstances
(including those of altered boundary conditions), higher sym-
metries may rigorously lead to degeneracies in quantum
systems. We will discuss how localized changes (zipper in-
teraction terms) in the system Hamiltonian may connect it to
the Hamiltonian of a system with exactly provable degenerate
states. Furthermore, if the choice of boundary conditions is
immaterial (i.e., if this particular choice does not modify the
spectral properties of the system in the thermodynamic limit)
then exact spectral degeneracies may still emerge asymptoti-
cally in this limit for general boundary conditions.

Our principal findings can be succinctly summarized by
two basic inter-related maxims for a system of linear size L
featuring d-dimensional gaugelike symmetries.

(a) Rigid d-dimensional gaugelike symmetries mandate
exponential degeneracies when the choice of boundary con-
ditions is immaterial in the thermodynamic (L → ∞) limit.
That is, the logarithm of the degeneracy g(E ) of each level
[97] of energy E scales asymptotically at least as fast as Ld ′

,

lim
L→∞

L−d ′
ln g(E ) > 0, (1)

with

d ′ = D − d (2)

denoting the co-dimension of the spatial dimension (d) of the
higher (gaugelike) symmetries.

(b) Given boundary conditions for which exponential de-
generacy may be rigorously proven for finite system sizes,
the same exponential degeneracy may persist in the thermo-
dynamic limit in the presence of other boundary conditions or
interactions with different environments.

In what follows, we provide simple formal proofs of these
maxims for general systems before turning to model system
applications. Readers preferring to have a concrete application
in mind before reading these general results may instead first

peruse Sec. III, and only then read the more general abstract
discussion in Sec. II below. At the very end of this work, we
will rationalize our formal exact results by general intuitive
considerations.

II. ON EXPONENTIAL DEGENERACY AND
BOUNDARY CONDITIONS

A. A fundamental theorem

In what follows, by symmetries we allude to unitary oper-
ators that commute with the system Hamiltonian. In order to
establish maxim (a), we start with a simple Lemma.

Lemma 1. Consider a system governed by a Hamiltonian
Hopen on a D-dimensional spatial volume �D, and free (open)
boundaries, for which there are two “dual” sets of independent
symmetries {Ua} and {Va} (with a = 1, 2, . . . ,M) satisfying
the following two conditions:

(1) All operators in one of these two sets mutually com-
mute with one another,

[Ua,Ua′ ] = 0. (3)

(2) For any symmetry Ua in the above set there is only
a single dual operator Va that does not commute with it.
Specifically,

[Ua,Va] ≡ Wa �= 0 and [Ua,Va′ ] = 0 for a �= a′, (4)

where the operator Wa does not have a null space.
When the above conditions are met, each eigenstate of

Hopen is, at least, 2M-fold degenerate.
Proof. Given condition (1), we may label all of the eigen-

states of Hopen by the eigenvalues {λa} of the M independent
symmetries {Ua} (along with any additional quantum numbers
if additional degeneracies appear in a sector of fixed eigenval-
ues of all of the mutually commuting symmetry operators {Ua}
operators). That is, all of the energy eigenstates are of the form

|ψ〉 = |λ1 . . . λa . . . λM, {ν}〉, (5)

with {ν} additional labels (comprised of the energy eigenvalue
and other quantum numbers if any) for all states within a given
sector of {λa}Ma=1. To illustrate that for any a, there are, at least,
two states with different eigenvalues of Ua having the same
energy, we may next invoke condition (2). As the commutator
Wa does not have a null space (Wa|ψ〉 �= 0), it follows that |ψ〉
is not an eigenstate of Va. Thus the state Va|ψ〉 is linearly in-
dependent of |ψ〉. Since Va is a symmetry of the Hamiltonian,
it further follows that the two states |ψ〉 and Va|ψ〉 are linearly
independent eigenstates of Hopen sharing the same eigenvalue
(energy). Lastly, the commutativity [Ua,Va′] = 0 for a �= a′
implies that Va|ψ〉 is still an eigenstate of all other operators
Ua′ with a′ �= a. Repeating the latter sequence of steps when
the two states |ψ〉 and Va|ψ〉 are acted by other symmetries
Va′ with a′ �= a, it follows that the states V na

a V na′
a′ |ψ〉 (where

na = 0, 1 and na′ = 0, 1) constitute four linearly indepen-
dent eigenstates of the Hamiltonian. Recursively iterating the
above procedure for other symmetries of the V type, one
sees that the 2M states V n1

1 V n2
2 . . .V nM

M |ψ〉 (where for each
1 � a � M, we may set na to be either 0 or 1) are linearly
independent degenerate eigenstates of the Hamiltonian. The
existence of (at least) the above 2M independent degenerate
eigenstates establishes the lemma. �
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If all quantum numbers {ν} in Eq. (5) are eigenvalues of
operators that each commute with the symmetries {Ua} and
{Va} then the degeneracy of each state of fixed {ν} exhibits a
degeneracy that is an integer multiple of 2M.

A simple application of this lemma illustrates the well
known fourfold degeneracy of the toric code model [47] on a
simple 2-torus. In this model, there are only M = 2 indepen-
dent symmetries of the U type and M = 2 of the V type that
satisfy the conditions of lemma 1. Indeed, these are none other
than the standard logical Z and X operators of the toric code
model, realizing a Z2 × Z2 (d = 1) gaugelike symmetry [47].
However, as we will detail, far more nontrivial degeneracies
appear when there is a large number M of independent higher
symmetries that satisfy the conditions of lemma 1.

In particular, this lemma leads us to our central theorem,
Theorem 2. General Hamiltonian systems (e.g., lattice the-

ories on general graphs) that exhibit, at least,

M � cLd ′
, c, d ′ > 0, (6)

independent symmetries that satisfy the conditions of lemma
1, have for all energy eigenvalues E of the Hamiltonian a
degeneracy

g(E ) � 2cLd ′
. (7)

Proof. This follows from an immediate application of
lemma 1 given Eq. (6). �

In Sec. III D, we will illustrate via an example of a compass
model [5–8,10–14,17–21,72–76] with modified boundary
conditions, so that the conditions of lemma 1 are satisfied,
how higher symmetries imply a nontrivial exact exponential
degeneracy. If the symmetries in lemma 1 correspond to spa-
tially rigid independent higher (or gaugelike) symmetries of
dimension d that, by virtue of being independent, cannot be
continuously deformed into one another, then d ′ = D − d as
explained above. We note that since there may be additional
multiplicities of {ν} associated with any set of the eigenvalues
of the mutually commuting operators (including Hopen itself),
the degeneracy of each of the eigenvalues E of Hopen may
be an integer multiple of 2M associated with independent
sign flips of each of the eigenvalues λa of the symmetries Ua.
We emphasize that the theorem refers to symmetries that are
independent. This is crucial since its number M is dependent
upon the type of boundary condition, as we will explain below.

The above considerations may be sharpened and further
generalized as follows.

Corollary 3. Consider the situation in which (i) the opera-
tors {Ua} and {Va} are not symmetries of the full Hamiltonian
Hopen and commute with Hopen only in a sector of given fixed
energy E and (ii) the operators {Ua} and {Va} satisfy Eqs. (4)
and (5). In this case, the proofs of lemma 1 and theorem
2 apply for the projected Hamiltonian PE HopenPE with PE

being the projection operator onto the space of energy E to
establish exponential degeneracy. Thus, even if {Ua} and {Va}
are not exact symmetries of the full Hamiltonian Hopen and
only commute with it within a given energy subspace (i.e.,
these operators are emergent symmetries [98]) then in that
energy subspace the exponential degeneracy of theorem 2 is
ensured. Similar results apply if {Ua} and {Va} satisfy Eqs. (4)

and (5) and only become symmetries in projected sectors of
fixed quantum numbers other than those of constant energy.

In the systems that we will investigate in more detail, in-
cluding compass model [5–8,10–14,17–21,72–76] examples
in Sec. III, the many-body Hamiltonian Hopen is a sum of few
body interactions or “bonds” bγ ,

Hopen =
∑

γ

bγ . (8)

We stress that the exact exponential degeneracy of theorem 2
applies to all eigenstates and is not limited to the ground-state
sector of the system. Indeed, later on we will discuss finite
temperature theories.

We next outline the reason why, for typical spin and
bosonic systems, boundary conditions can be invoked such
that the conditions of lemma 1 apply for M � cLd ′

inde-
pendent symmetries with the co-dimension d ′ of Eq. (2). In
fact, common open boundary realizations of real physical
systems satisfy Eq. (6). In what follows, we will denote the
generic local spin or Bose operators by {φμ

r }. Here, μ is an
internal label and r the appropriate external position (site)
index. These operators will explicitly become the Pauli op-
erators {σμ

r } (with μ = x, y, z) in spin S = 1/2 models. For
generic finite size lattices (or graphs) different from those with
periodic boundary conditions, such an extensive number of
independent symmetries trivially appear as a result of geo-
metric considerations. In Bose and spin systems, whenever the
symmetry operators {Ua} have their support on d-dimensional
regions {Ra} that are spatially disjoint (i.e., when these re-
gions share no common sites), then they will commute since
Bose and spin operators on different spatial sites trivially
commute and Eq. (3) is satisfied. This is generally not true
when they do overlap and nontrivial commutators will appear.
Indeed, if the regions Ra and R̃a (respectively, the spatial
supports of the symmetries Ua and Va) share common sites
while Ra and R̃b (respectively, the spatial supports of the
symmetries Ua and Vb with a �= b) share no common sites
then, generally, Ua and Va need not commute with one another.
Lastly, Ua and Vb with a �= b do not have overlapping spatial
support and may trivially commute [giving rise to Eq. (4)]. In
mathematical terms,

Ra ∩ Rb = ∅, for a �= b,

Ra ∩ R̃b = ∅, for a �= b,

Ra ∩ R̃a �= ∅. (9)

In many systems, geometry alone [whether the spatial (or
spatiotemporal) support of the symmetry operators overlaps
or does not] mandates Eqs. (3) and (4). That is, geometry
determines whether the symmetry operators commute. By
definition, for a system in D spatial dimensions exhibiting
d-dimensional gaugelike symmetries, the symmetries Ua or
Va have their support on a d-dimensional spatial region Ra

and R̃a. For a generic open volume �D in D dimensions (i.e.,
not one with square or cubic boundaries), there are foliations
of �D into O(Ld ′

) regions {Ra} and into O(Ld ′
) regions {R̃b}

on which the symmetries {Ua} and {Vb} have their support.
That is, for random open boundaries of �D, we can partially
slice it into O(Ld ′

) nonoverlapping d-dimensional hyper-
planes satisfying the conditions of lemma 1. For fermionic
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(or noncommuting elementary degrees of freedom) systems,
if the symmetries involve an even number of operators per
site (and/or regions {Ra} and {R̃b} having an even number of
sites) then the mutually commuting nature of the symmetries
on different disjoint regions is, once again, ensured.

The above discussion might seem a bit abstract. To make
it more concrete, we will shortly turn (Sec. III) to simple
examples. An important ingredient will be the use of general
boundary conditions that are different from those of the con-
ventional Born-von Karman form. These general boundary
conditions are not merely academic. Indeed, real materials
are not wrapped around tori that endow them with periodic
boundary conditions nor are they boxed to textbook type
square (or hypercubic) boundaries. The boundaries ∂�D of
real physical systems �D are typically very different from
these conventions and may generally span many possible ge-
ometries. The use of periodic boundaries has indeed largely
been a matter of convenience (i.e., since these allow for a
Fourier space analysis and have no identifiable boundary sites
so as to emulate bulk macroscopic systems in which nearly
all real space sites lie far from the boundaries). The use of
periodic boundary conditions has, for these and related rea-
sons, become very common by now. In Sec. III D below, we
will examine boundaries different from the periodic ones to
illustrate how our central theorem 2 mandates an extensive
degeneracy of this system. Nearly identical constructs may
be introduced for many other theories and disparate boundary
conditions different from those that are customarily employed.

Before proceeding further, however, we must reiterate and
underscore that our considerations do not apply for many
other systems, such as the earlier noted Kitaev’s toric code
model [47], where local operators are defined on bonds
and not sites (vertices). In particular, the (D = 2 dimen-
sional) Kitaev toric code model [47] supports its well-known
d = 1 symmetries [17,47] but our geometric construct will
not allow for these to be independent of one another. As
we remarked after illustrating lemma 1, only M = 2 sets
of these independent symmetries exist for the toric code
model. In a related geometrical vein, the symmetries of
the Kitaev toric code model are not rigid. These symmetries
are associated with the products of Pauli matrices along any of
the many contours that wind around one of the two cycles of
the torus. An arbitrary smooth deformation of a given initial
contour on which a Pauli string product is defined leads to
another operator that remains a symmetry. This new string
product on the deformed contour is not independent from
the symmetry operator associated with the initial contour. In
fact, all such deformations lead to symmetry operators that
act identically on a given ground state. By contrast, for the
compass models that we detail in Sec. III, the symmetries have
their support on particular rigid spatial regions. When these
regions are disjoint, the associated symmetries are indepen-
dent of one other.

B. Exact universal exponential degeneracy of hybrids of
thermal systems and their environment

We next turn to two exceptionally simple yet general re-
sults relating to maxim (b).

We consider a Hamiltonian Hopen that is a sum of bonds
{bγ } (Eq. (8)) with each of these bonds being invariant under
all of the symmetries {Ua} and {Va}. For this Hamiltonian, we
may establish

Corollary 4. If a degeneracy that is an integer multiple of
an exponential in the linear system length (or any other) is
established for each level of Hopen satisfying the requirements
of theorem 2 then, a degeneracy of (at least) 2M also follows
for the expectation value (as evaluated in eigenstates of Hopen)
in the same Hilbert space, of any Hamiltonian Hsub that is
formed by summing any subsets of the bonds appearing in
Hopen.

Proof. The sequence of steps used to establish theorem 2
can be repeated verbatim here since each of the individual
bonds bγ , whose sum forms Hsub, commutes with all the
symmetries {Ua} and {Va}. Thus, for each eigenstate |ψ〉 of
Hopen, the expectation value 〈ψ |Hsub|ψ〉 will remain invariant
under the change of sign of any of the symmetry eigenval-
ues {λ1 . . . λa . . . λM}. Since there are 2M such subsets, the
corollary follows. �

The subsets of the above bonds appearing in Hopen may
tessellate any subregion �sub of the domain �D. The above
proof is rather general and also holds when subregion �sub

is not be geometrically contiguous. In what briefly follows,
we consider what occurs when �sub is not composed of dis-
joint volumes. Formally, in the thermodynamic limit, we may
regard �sub ⊂ �D as the “system bulk” and the remaining
�env ≡ (�D − �sub) as the thermal reservoir or “environ-
ment” with which it interacts and is in equilibrium with.
This is so since the combined “system-environment” hybrid
is described by Hopen. If this hybrid is in thermal equilibrium
then its state will be a thermal state defined by Hopen. From
theorem 2 and corollary 4, in each of the exponentially many
degenerate ground states (which may be regarded as thermal
states at temperature T = 0) of the environment-system hy-
brid of Hopen, the energy of the system alone 〈Hsub〉 is exactly
the same. Identical results trivially hold for all excited states.
Thus the logarithm of the number of states of this hybrid
having the same system energy 〈ψ |Hsub|ψ〉 is bounded from
below by O(Ld ′

). The linear dimension L of the system is
less than or equal to that of the “system-environment” hybrid
�D for which theorem 2 applies. We stress that this con-
clusion holds for all possible Hamiltonians Hopen satisfying
the requirements of theorem 2 that includes the system Hsub

as a subset. For any such Hamiltonian, we may deform the
volume �env defining the “environment” and make it arbitrar-
ily small as long as the requirements of theorem 2 are still
satisfied. In particular, since �sub ⊂ �D, for all such defor-
mations of the environment that geometrically surrounds the
system, we will consistently obtain a universal minimal lower
bound of O(Ld ′

) on the ground-state entropy. This hints that
the introduction of various boundary effects in the thermody-
namic limit may still leave the ground-state entropy bounded
by O(Ld ′

).
We should perhaps emphasize that, in general,

[Hopen, Hsub] �= 0. Thus despite the fact that they may
share the same eigenvalues of their common d-dimensional
symmetry operators when diagonalized separately, Hopen and
Hsub do not have identical eigenstates. That is, corollary 4 is
not a trivial consequence of enlarging the Hilbert space of the

045109-5



ZOHAR NUSSINOV AND GERARDO ORTIZ PHYSICAL REVIEW B 107, 045109 (2023)

system (on which Hsub operates) by the additional degrees of
freedom of the environment.

We may further invert the roles of the “system” and
“environment” to obtain an additional result. Towards
this end, we may let the closed “system-environment”
hybrid be a system for which we cannot prove by theorem
2 the exponential degeneracy (i.e., when the conditions of this
theorem are not met) and take the “system” to be a theory
on a volume �sub for which the conditions of theorem 2 are
satisfied. When ensemble equivalence holds (as expected in
the thermodynamic L → ∞ limit), this will lead to another
very simple consequence.

Corollary 5. Consider a subvolume �sub of linear dimen-
sion L for which the conditions of theorem 2 apply. We
further assume that an ensemble equivalence holds between
the system properties on �sub when it is closed (i.e., within
the microcanonical ensemble) and for the system proper-
ties on �sub within the (canonical ensemble type) thermally
equilibrated system-environment hybrid on �D. Under these
conditions, the system’s ground-state entropy on �sub will be
� O(Ld ′

).
Proof. The von-Neumann entropy of the “system” on �sub

at any given temperature (including the limiting T = 0 case
associated with the ground-state sector) is

Ssub = −Trsubρsub log2 ρsub, (10)

where the reduced density matrix

ρsub = Trenv ρsub-env (11)

is formed by a partial trace of the density matrix of the system-
environment ρsub-env over the Hilbert space of the environment
(env). In the microcanonical ensemble, the entropy of the
system is given by the logarithm of the number of its ground
states. Thus, from theorem 2,

Ssub � O(Ld ′
). (12)

We next invoke ensemble equivalence. This equivalence im-
plies that calculations with the reduced density matrix of
Eq. (11) reproduce computations with the density matrix
of the closed system (i.e., those within the microcanonical
ensemble). Considering the ground-state sector of the system-
environment hybrid, we see from Eqs. (10) and (12), that
whenever the system satisfies the requirements of theorem 2,
the partial trace of Eq. (11) yields a reduced density matrix
for the system with an entropy that is bounded from below by
O(Ld ′

). �
Similar entropy bounds may be derived on various system-

environment hybrids that contain one or more subregions. All
such bounds are consistent with known entropy inequalities
such as those of Ref. [99]. However, further applying the
entropy inequalities of Ref. [99] and subsequent works to
the considerations underlying corollary 5 does not rigorously
establish exponentially large ground-state degeneracy in any
theory with higher symmetries on an arbitrary volume �D

(i.e., including those for which the conditions of theorem
2 are not satisfied). Returning to the proof of corollary 5,
we emphasize that even if the ground states of the system-
environment hybrid are not highly degenerate, for all “system”
subvolumes �sub for which the conditions of theorem 2 are
met, the ground-state entropy bounds of Eq. (12) are satisfied.

Notwithstanding special exceptions (see, e.g., Ref. [100]),
as is heavily emphasized in statistical mechanics textbooks,
ensemble equivalence is quite pervasive in the thermodynamic
L → ∞ limit of rather general theories. In the above, we
considered general ensembles formed by system-environment
hybrids. In the conventional “canonical” setting, the environ-
ment is far larger than the system while in the microcanonical
ensemble, the system on �sub is closed and there is no en-
vironment. Here, ensemble equivalence in the form of the
irrelevance of the fine details of the boundary environment
with which the system interacts and equilibrates with is con-
ceptually similar to independence of the system behavior from
its boundary conditions.

In order to make the content of corollaries 4 and 5 clear, we
will discuss their implications for the square lattice compass
model at the end of Sec. III D.

In Sec. IV, we will return to a general discussion of maxim
(b) as it pertains to the effects of boundary conditions. In
the Conclusions (Sec. VI), we will further suggest why an
exponential degeneracy may emerge in the thermodynamic
limit of rather general systems with rigid higher symmetries
irrespective of their particular boundary conditions.

III. EXAMPLES: SQUARE AND CUBIC LATTICE
COMPASS MODELS

A. Definition of the 90◦ square lattice model

As an example in which theorem 2 comes to life, we will
first consider the spin S = 1/2 square lattice 90◦ compass
model, the simplest of all compass models [5–8,10–14,17–
20,72–77].

We start with a brief definition of this model. The 90◦
square lattice or planar compass model (PCM) [8] on a square
lattice of size N = L × L (with a lattice constant that we set to
be unity) is given by a simple bilinear in the Pauli operators,

HPCM = −
∑

r,μ=x,y

Jμ σμ
r σ

μ
r+eμ

. (13)

Interactions (or “bonds”) involving the x spin operators
Sx

r = σ x
r /2 (here and throughout we set h̄ = 1) occur only

along the spatial x direction of the lattice. Similar spatial
direction-dependent spin exchange interactions appear for the
y components of the spin. Thus the PCM displays exchange
interactions with two Pauli matrix flavors along the x and y
square lattice directions, which we henceforth refer to as eμ

with μ = x, y (see Fig. 1). This model may be regarded as a
square lattice rendition of Kitaev’s honeycomb model [101]
(in which all three different Pauli matrices appear along the
three honeycomb lattice directions connecting nearest neigh-
bors).

Before proceeding, we provide a quick summary of how
compass models such as that of Eq. (13) naturally arise. These
models have been used in numerous arenas [14] including
frustrated magnetism, cold atoms, and quantum information
[75] to name a few. Compass models are best known for
describing the real-space directional character of orbitals in
transition metal compounds. In these systems, the orbital
states dictate the overlaps between electrons on neighboring
real space ions. This, in turn, leads to a dependence of the
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FIG. 1. The PCM, Eq. (13), on an open square lattice. Interac-
tions along the two external Cartesian directions are associated with
couplings Jμ, μ = x, y. Corresponding with each of the highlighted
contours Cx

� and Cy
�′ are the symmetries of Eq. (15).

interactions in real space on internal-space pseudospin states
describing the orbitals. This intricate coupling leads to Hamil-
tonians describing these systems that, similar to the PCM,
exhibit a dependency of real space couplings on the internal
pseudospin components. Inasmuch as finite size computations
can ascertain [9,10,77], when endowed with periodic bound-
ary conditions, the PCM exhibits a spectral gap between its
claimed ground-state sector of an exponentially large number
(O(2L )) of states and the lowest-energy excited states.

Obviously, models exactly dual to the PCM will share
identical spectra [19,20]. For instance, a simple duality taking
Jx ↔ JP and Jy ↔ h [8,20] maps the PCM of Eq. (13) onto a
model first introduced by Xu and Moore [24] for describing
Josephson coupled superconducting arrays,

HXM = −JP

∑

�

∏

r∈�
σ z

r − h
∑

r

σ x
r . (14)

In Eq. (14),
∏

r∈� σ z
r and

∑
� denote, respectively, the prod-

uct of the four spins lying at the vertices of minimal square
lattice plaquettes � and the sum over all such plaquettes � in
the square lattice. As discussed elsewhere [8,24], HXM (in a
finite square lattic) displays O(L) mutually commuting d = 1
non-independent symmetries. In the next sections, we turn to
the investigation of the symmetries of the PCM on systems
with conventional and modified boundary conditions. A proof
of a high degeneracy of the PCM (employing its mutually non-
commuting symmetries on systems with modified boundary
conditions) allows a demonstration of a similar degeneracy
for HXM.

B. d = 1 Gaugelike symmetries of the square lattice 90◦

compass model

The PCM is invariant under the following Z2 symmetries
[8–11,13]

Ôμ

� =
∏

r∈Cμ

�

iσμ
r , for μ = x, y (15)

with Cμ

� ⊥ eμ axis (see Fig. 1). We briefly review some of the
properties of these symmetries. Our notation will follow that
of [8,11,13], while the results pertaining to the commutation

and anti-commutation of these symmetry operators amongst
themselves were first reported in [9,10]. All of the symmetries
associated with lines Cμ

� , that are all parallel to the same
direction μ, commute amongst themselves,

[
Ôμ

� , Ôμ

�′
] = 0. (16)

By contrast, operators of the type of Eq. (15) that are related
to orthogonal lines anticommute with one another,

{
Ôx

�, Ôy
�′
} = 0. (17)

The above anticommutativity is apparent since any two
orthogonal lines � and �′ intersect and share one common
lattice site r′. Associated with this point of intersection, Ôx

�

has a single factor of σ x
r′ in the string product of Eq. (15).

Similarly, Ôy
�′ has, in the string product of Eq. (15) that

defines it, a factor of σ
y
r′ . The anticommutator {σ x

r′ , σ
y
r′ } = 0

implies the anticommutation relation of Eq. (17). For general
boundary conditions discussed in the next subsections [102],
different independent composites of the two dual sets of d = 1
symmetries {Ôy

�′ } and {Ôx
�} on horizontal and vertical lines

correspondingly relate, in the general setting of our central
theorem 2, to the two respective sets of operators {Ua} and
{Va}.

When Jx = Jy, a global reflection symmetry augments the
symmetries of Eq. (15) [17]. We will, however, focus on the
anisotropic model of Eq. (13) with Jx �= Jy. As [HPCM, Ôμ

� ] =
0, similar to Eq. (5), we can label, with some abuse of nota-
tion, the eigenstates of the Hamiltonian HPCM by

|ψ〉 = |λμ;1 . . . λμ;L, {ν}〉, (18)

with λμ;� = ±1 an eigenvalue associated with the mutually
commuting symmetries Ôμ

� (all operators with the same value
of μ) and {ν} an additional label for all states within a given
sector of {λμ;�}L

�=1. This latter label may mark the energies
of these states and, when additional degeneracies appear, any
other remaining quantum numbers.

The symmetries Ôμ

� of Eq. (15) have exceptionally sim-
ple pictorial representations. For all sites r lying along
columns/rows, these symmetries respectively correspond to
reflections about internal spin directions μ. Specifically, given
a site r, the operators Ôμ

� either implement
(i) for μ = x, the transformation Sx

r → Sx
r and Sy

r → −Sy
r

for any vertical line � containing r, or (ii) for μ = y, the
transformation Sx

r → −Sx
r and Sy

r → Sy
r for any horizontal line

�′ containing r.
In the large spin S limit of HPCM, the model transforms

into a classical spin model with classical XY spins of unit
norm �Sr = (Sx

r , Sy
r ) replacing the Pauli operators in Eq. (13).

It is readily verified that the above two operations (i) and
(ii) remain symmetries of this large S rendition of the HPCM

Hamiltonian. As we now explain, the symmetries (i) and (ii)
imply that the classical (S → ∞) limit of the PCM trivially
exhibits a degeneracy that is exponential in the linear system
length L. Towards this end, envision classical XY spins at
any lattice site r. Clearly, any such classical spin �Sr cannot
be parallel to both its internal vertical and horizontal spin
directions. Thus any such classical spin will change under
the application of (at least) one of the two symmetries Ôx

�

and Ôy
�′ associated with the vertical and horizontal lines that
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pass through the site r. With this simple observation made,
proving the exponential degeneracy of the classical system
is rather immediate. Towards this end, consider traversing
the real space square lattice along one of its main diagonals
(comprised of L sites). In what follows, we sequentially label
the L sites along such a given diagonal by rdiag. Consider any
rdiag that lies at the intersection of the vertical line � and the
horizontal line �′. The classical spin at rdiag (as well as the spin
at any other site) might be invariant under a reflection about
its internal x direction or its internal y axis. However, as just
noted above and as we reiterate again, any such classical spin
cannot possibly be simultaneously invariant under reflections
about both its internal x and y directions. Thus by applying,
given any site rdiag, at least one of the two reflection operations
Ôx

� or Ôy
�′ will generate a new degenerate classical spin config-

uration. For each of the L sites lying along the diagonal, let us
define an associated reflection symmetry Ôrdiag [of either type
(i) or (ii)] that is guaranteed to change its configuration. As
we traverse the square lattice along one of its main diagonals,
we may turn “on” or “off” these L reflection symmetries Ôrdiag .
Following this recipe, we may generate 2L states (i.e., XY spin
configurations) that are degenerate with any initially given
classical spin state. This is an example of the rather universal
exact degeneracies of the classical model (which appear for
general systems independent of their size or boundary condi-
tions) that were discussed in the Introduction. In the context of
that earlier discussion, in the PCM, the number of independent
classical rigid higher symmetries, Mcl = L.

Complementing these above exact d = 1 reflection sym-
metries, the classical system further exhibits an emergent
continuous rotational symmetry that appears in its ground-
state sector. For instance, for positive coupling constants
Jx = Jy = J , it is indeed readily established that all uniform
(i.e., ferromagnetic) states are ground states of the Hamilto-
nian with continuous global rotation connecting these ground
states [5,6,14]. These global emergent symmetries remain
unchanged in the classical limit for states formed by the ap-
plication of any combination of the d = 1 symmetries on the
classical ferromagnetic states. Similar to anomalies in quan-
tum field theories, this continuous symmetry of the classical
system in its ground state is no longer a symmetry of the
quantum theory in its ground-state sector. In this sense, this
is an emergent anomaly.

In what follows, we focus our attention on the spin S = 1/2
quantum model of Eq. (13).

C. Open square lattice with boundaries parallel to
the Cartesian directions

We first briefly summarize the standard open boundary
condition realization of the S = 1/2 PCM. We will then turn
to consider other boundary conditions and illustrate how they
imply an exponential degeneracy of the spectrum. Our bound
on the degeneracy applies for each level of the spectrum, not
only the ground-state sector.

When the square lattice is aligned along the Cartesian x
and y directions, then given any eigenstate of the form of
Eq. (18) with μ fixed to be either x or y, we can apply a
symmetry operator of the type Ôμ′ �=μ

�′ to |ψ〉. This leads to

a new eigenstate of HPCM,

Ôμ′ �=μ

�′ |λμ;1 . . . λμ;L, {ν}〉 = | − λμ;1 · · · − λμ;L, {ν}〉
≡ |ψ ′〉 (19)

that has the same energy as the original state |ψ〉. The result
of Eq. (19) is the same for all lines Cμ′

�′ with 1 � �′ � L.
Thus, given any initial eigenstate |ψ〉, we see that we can
construct a second eigenstate that has the same energy. A two-
fold degeneracy [10] thus follows from the existence of the
noncommuting symmetries of Eqs. (15) and (17). An identical
effect and conclusion trivially follow from time-reversal sym-
metry (and Kramers degeneracy) as applied to square lattices
with an odd L × L size [13]. On a square lattice having its
edges parallel to the Cartesian directions, no additional de-
generacy follows from symmetries. Indeed, numerically only
a two-fold degeneracy is observed on finite size square lattices
[9,10]. Indeed, as our proofs make clear (requiring the need
for the conditions underlying theorem 2 to be satisfied), the
existence of higher symmetries does not imply an exponentially
large degeneracy of all finite size systems. A curious numerical
observation [10,77] of the PCM on finite size square lattice
(insofar as finite size calculations can suggest) is that as the
system size becomes progressively larger, multiplets of O(2L )
states each seem to become degenerate as L → ∞ (with a
gap between these multiplets that decays algebraically with
system size). The results of our work rationalize how such a
degeneracy that is exponential in the system perimeter may
arise. We first explain why in open systems with various
boundaries, the symmetries of Eq. (15) mandate a degeneracy
of each level that is exponential in the perimeter.

D. “Cylindrical cuts,” “toroidal cuts,” “dilute vacancies,” and
other boundary conditions or changes of internal geometry for

which exponential degeneracy follows from symmetries

We next consider, see Fig. 2, a finite L × L square lattice
which lies inside a parallelogram of an angle θ relative to
the x axis [with the x and y coordinates defining the nearest-
neighbor compass interactions of Eq. (13)]. This lattice can
be viewed as that generated by “cutting” and “opening up” an
L × L square lattice with cylindrical boundary conditions. If
the cut were performed along a Cartesian direction (θ = π/2
in Fig. 2), the result would be the standard square lattice with
open boundary conditions. If, however, the cut is performed
at another general angle θ , the resulting parallelogram will
define the lattice that we focus on now. This parallelogram
will be composed of L horizontal lines (each of length L). In
Fig. 2, we show a parallelogram formed by choosing θ = π/4.
In traversing the lattice by a distance of order unity along
the vertical direction, these lines are horizontally displaced
relative to one another by one lattice constant. Thus, over-
all, the horizontal span of the lattice is equal to (2L) lattice
constants. We will denote the Hamiltonian of Eq. (13) on
the so-generated open cylindrical cut by Hopen. As earlier, the
operators of Eq. (15) are symmetries for lines Cμ

� orthogonal
to the μ direction. Now, however, we have the lines {Cx

� }2L
�=1

and {Cy
�′ }L

�′=1. Clearly, if two eigenstates have a differing set of
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FIG. 2. The system of Eq. (13) on a square (L = 8) lattice with
cylindrical boundary conditions (black grid, left panel) and its cut
along a slanted line (highlighted in red). The cut leads to the system
shown on the right. On the original cylinder, the two (yellow) lines
marked by P1 were one and the same. The nearest-neighbor PCM
Hamiltonian on the open parallelogram on the right can be made to
agree with that on the cylinder by inserting additional interactions
(staircase blue line) that become nonlocal on the parallelogram.
The sum of these additional 2L − 1 interaction terms defines the
“zipper Hamiltonian” Hzip. See Sec. IV and, in particular, Eq. (28)
for a discussion of the Hzip that captures the blue staircase bonds
needed to seal the open parallelogram on the right, and transform it
(as a closing a zipper) to the closed cylinder on the left. Both the
cylindrical system on the left and the open parallelogram on the right
are invariant under d = 1 symmetries of the type of Eq. (15). Both,
open and cylindrical, systems are invariant under the symmetries
Ôy

�′ associated with the horizontal lines Cy
�′ (marked in green). The

open system is invariant under the symmetries Ôx
� affiliated with all

vertical lines Cx
� connecting one side of the open system to the other.

However, since the vertical boundaries of the cylindrical system dif-
fer from those of the open system, its symmetries differ. For instance,
individually, while the two operators Ôx

�2=3 and Ôx
�1=11 (marked in

yellow) are exact symmetries of the open system Hamiltonian Hopen

they are no longer symmetries of the cylindrical system. However,
the product Ôx

3Ôx
11 is that of Eq. (15) associated with a vertical gen-

erator of the cylinder and, as such, is a symmetry of the cylindrical
system.

λy;�′ eigenvalues then they will be orthogonal to one another,

〈λy;1 . . . λy;L, {ν}|λ′
y;1 . . . λ′

y;L, {ν}〉 =
L∏

�′=1

δλ
y;�′ ,λ

′
y;�′

. (20)

From the symmetry operators of Eq. (15), we can construct
the subset of composite symmetry operators

Ôx
S =

∏

�∈S
Ôx

�, (21)

where S is any of the possible subsets of the integers
{1, 2, 3, . . . , L} labeling the L leftmost vertical lines. Note
that here we allow for the action of the independent vertical
symmetry operators {Ôx

�} only on the L leftmost vertical lines
out of the (2L) vertical lines. The effect of higher � > L
vertical symmetry operators Ôx

� on the eigenvalues λy;1 . . . λy;L

can be expressed in terms of that of lower � operators {Ôx
�}L

�=1.
That is, with reference to Fig. 2, for all 1 � � < L, the result of
applying Ôx

�Ôx
L+� on the set of eigenvalues λy;1 . . . λy;L is the

same as that of applying Ôx
L (which simply flips the sign of all

of these eigenvalues). There is an exponentially large number
(i.e.,

∑L
k=0

(L
k

) = 2L) of such independent subsets of products

amongst the vertical symmetry operators. On the square lattice
of Sec. III C, the application of these symmetry operators in
this subset can lead to one of two outcomes: if the set S
contains an even number of integers then given any eigenstate
of the form of Eq. (18), the product Ôx

S |ψ〉 will give back the
same full set of symmetry eigenvalues λy;�′ . By contrast, if
the set S contains an odd number of integers 1 � � � L then
Ôx

S |ψ〉 = |ψ ′〉 with |ψ ′〉 being the state defined in Eq. (19).
Now, here is one of trivial yet nonetheless crucial points that
we wish to bring to the fore: The application of the symmetry
operations of Eqs. (21) on an initial state |ψ〉 will give rise to
an exponential number of orthogonal states,

Ôx
S |ψ〉 = ∣∣λS

y;1 . . . λS
y;L, {ν}〉 ≡ |ψS〉. (22)

Here, λS
y;�′ = η�′λy;�′ . For a given �′, the Ising variable η�′ =

±1 denotes the even/odd parity of the number of vertical
lines Cx

� associated with the set S (i.e., � ∈ S) that intercept
the line Cy

�′ . Each of the possible different general choices for
the set S will uniquely lead to a different binary string B =
(λS

y;1 . . . λS
y;L ). By the orthogonality relation of Eq. (20), this

implies an exponentially large number of degenerate orthogo-
nal eigenstates. In particular, since each amongst the possible
different choices of the strings (λy;1 = ±1, . . . , λy;L = ±1)
can be achieved then the system will have a degeneracy which
is (at least) of size 2L. More generally, the degeneracy as
associated with the λy;� eigenvalues alone is bounded by the
cardinality M = |B| = |S| of the set of attainable binary
strings by applying the different operators {Ôx

S} as in Eq. (22).
For general θ , the number of such binary strings scales as
|B| = 2L. When θ = π/2, the number of different obtainable
binary strings (and thus a lower bound on the degeneracy) is
|B| = 2 (as in Sec. III C). If, in approaching the thermody-
namic limit, the same degeneracy is found irrespective of the
tilt angle θ then we see how a degeneracy of 2L must appear
for a square lattice oriented along the Cartesian axes.

In fact, this is an example of the consequences of
our general theorem 2. Towards this end, we may iden-
tify U1 = Ôy

�′=1, V1 = Ôx
�=1, U2 = Ôy

�′=2, V2 = (Ôx
�=1Ôx

�=2),
. . . ,U1<a�L = Ôy

�′=a, V1<a�L = (Ôx
�=a−1Ôx

�=a), . . . so that
M = 2L. (See Ref. [102] for further comparison to the case
of conventional boundary conditions.)

Interestingly, our open parallelogram is a bipartite lattice
with sublattices �A and �B of equal cardinality. One can
construct the unitary operator

Uch =
∏

r∈�A

σ z
r , (23)

such that {Hopen,Uch} = 0, meaning that the spectrum of Hopen

is symmetric with respect to zero and, thus, Uch is a chiral
symmetry. This result is valid for any bipartite lattice.

Thus far, in this subsection, we considered a cut of the
cylinder of Fig. 2 to generate the open system of Hopen for
which we can establish the exponential degeneracy. Along
nearly identical lines, we may similarly examine a torus that
is cut a general angle θ �= π/2 and opened up to as produce
an oblique cylinder. For such general angles θ , theorem 2
will then imply the existence of an exponential ground-state
degeneracy on the resultant oblique cylinders.
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Similar constructs may be devised for many other bound-
ary geometries. For instance, placing the square lattice on a
closed cone (with the generating line of the cone defining
the y axis and its base parallel to the x axis) instead of the
cut cylinder of Fig. 2, would, for general opening angles of
the cone, enable a proof a degeneracy that would scale, once
again, exponentially in the linear system dimension. One may
similarly examine a hybrid of two such cones sharing the
same base and in an analogous fashion also for a trapezoid.
A particular realization of these other geometries is that of the
“Aztec diamond” lattice (a square lattice rotated at 45◦ so as to
have a diamond shaped boundary) [103–105]. More generally,
a repetition of the above steps for generic geometries in which
the top and bottom boundaries (or, similarly, left and right
boundaries) are shifted relative to one another by a distance
that is O(L), will yield a lower bound of the logarithm of
the degeneracy that is of order O(L). Further yet, numerous
other open boundaries exist other than the above boundary
conditions that correspond to different cuts of cylindrical or
toroidal systems. As the reader can indeed see, the bound-
aries of generic open two-dimensional systems of linear size
L will allow for O(L) independent d = 1 symmetries. Thus
the logarithm of degeneracy of general physical realizations
of two-dimensional systems will scale as O(L). The same
considerations can be extended to arbitrary dimensions.

In addition to modifying boundary conditions to go to the
open parallelogram or other systems for which we can prove
our theorem, we can also modify the internal geometry by
inserting dilute vacancies such that the conditions of theorem
2 are satisfied. For the PCM on an L × L square lattice, we can
remove a single site from every column at a different height,
i.e., we insert L vacancies. Then, an exponential degeneracy
is assured by theorem 2.

Along related lines, we may arrive at similar conclu-
sions by noting that there is, in the conventional square
lattice boundary condition geometry of Section III C, a two-
dimensional representation of all of the algebraic relations,
Eqs. (16) and (17), and thus a required two-dimensional de-
generacy of each level yet not beyond that. That is, for the
conventional boundary conditions, we may represent each of
these horizontal/vertical d = 1 symmetries as, respectively,
the same single Pauli y or same Pauli x operator while still
maintaining all of the algebraic relations. We cannot do this
for the modified boundary conditions discussed in this subsec-
tion since, by our construction, the algebraic relations between
the operators of Eq. (15) are no longer uniform. Depending
on the lines on which they act, the operators Ôμ

� will com-
mute or anticommute with different other subsets of these
d = 1 symmetries. Then, this increase of dimensionality of
the smallest irreducible representation capturing the algebra
(a representation of minimal size 2L) mandates that each of
the levels is exponentially degenerate.

Before concluding this subsection, we briefly return to
corollaries 4 and 5. In the context of corollary 4, we note that
if the region �D is a parallelogram (as it is in the current exam-
ple of the PCM) then we may take its subset, for instance, to
be a square that can be inscribed in the parallelogram �D. For
situations in which we can prove exponential degeneracies for
Hopen augmented by a number of additional boundary terms
(e.g., any number of horizontal bonds in our example of the
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FIG. 3. The cubic lattice compass model and its symmetries of
Eq. (24) (see text).

PCM and a reduction by a factor of a half in our lower bound
on the degeneracy when any vertical bond was added), we
may similarly remove any subset of the bonds to establish,
at least, the same degeneracies. With reference to corollary 5,
we may take �D to be of any shape (including the open square
lattice of Sec. III C) and �sub ⊂ �D to be a parallelogram of
linear scale L inscribed within it. �sub may similarly be any
other subvolume of �D such that the Hamiltonian Hopen on
it satisfies the requirements of theorem 2. Corollary 5 then
asserts that if ensemble equivalence holds (as expected in the
thermodynamic limit), given the T = 0 ground-state sector
density matrix on �D, the reduced density matrix of Eq. (11)
on �sub yields an entropy satisfying Eq. (12).

E. The cubic lattice 90◦ compass model

Complementing Kitaev’s honeycomb model [101], the
above square lattice compass model may be trivially extended
to other geometries [14]. In particular, the cubic (L × L × L)
lattice 90◦ compass model Hamiltonian HCCM is given by the
righthand side of Eq. (13) with the sum over μ now spanning
the three external spatial Cartesian directions μ = x, y, z and
the three associated internal spin components (see Fig. 3).
This model features d = 2 symmetries given by Eq. (15)
where, on the cubic lattice, μ = x, y, and z and Cμ

� ⊥ eμ

now become d = 2 dimensional planes P ⊥ eμ. That is, rather
explicitly,

Ôμ
P =

∏

r∈P

iσμ
r , for μ = x, y, z. (24)

Similar to the discussion in Sec. III B, in the large spin clas-
sical (S → ∞) limit, the d = 2 symmetries that this system
hosts become reflections about internal spin directions. The
exponential degeneracy in the number of planes L similarly
follows. We now discuss the S = 1/2 quantum model.

With the trivial replacement of the d = 1 dimensional line
label � by that of the d = 2 dimensional plane P, the sym-
metries Ôμ

P satisfy the commutation relations of Eq. (16), i.e.,
[Ôμ

P , Ôμ

P′ ] = 0. Whenever there are, at the intersection of two
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orthogonal planes P ⊥ eμ and P′ ⊥ eμ′ �=μ, an odd number of
sites, we will find the D = 3 dimensional analog of Eq. (17),
i.e., the anticommutator

{
Ôμ

P , Ôμ′
P′

} = 0. (25)

As in the square lattice compass model, the eigenstates of the
Hamiltonian HCCM will be of the form of Eq. (18), |ψ〉 =
|λμ;1 . . . λμ;L, {ν}〉 with {λμ1, λμ2 , . . . λμL } now being the set
of eigenvalues {λμP} of the symmetries {Ôμ

P} associated with
the L parallel planes {P} that are orthogonal to eμ. So long
as we ensure that intersecting orthogonal planes share an odd
number of common sites so that Eq. (25) is satisfied, all of
the previous considerations that detailed above for the square
lattice may be repeated for the cubic lattice. In particular, if
we consider boundary conditions satisfying this intersection
property then we may examine three-dimensional variants of
the deformed boundary conditions of Sec. III D. Given the
L symmetry eigenvalues {λμP}, repeating the considerations
for the square lattice compass model for the cubic compass
model, we find that each energy eigenvalue (whether that of a
ground state or an arbitrary excited state) enjoys, once again,
a degeneracy that is an integer multiple of 2L.

F. Continuous symmetry compass type models

All of the symmetries in the compass model examples
discussed thus far were of a discrete (Z2) nature. A simple
model harboring a continuous U(1) symmetry is given by the
cubic lattice Hamiltonian

HU(1) = −J
∑

r,ν �=x

(
σ y

r σ
y
r+eν

+ σ z
r σ z

r+eν

) + HI
({

σ x
r

})
, (26)

where HI ({σ x
r }) is any (Ising type) Hamiltonian in the oper-

ators {σ x
r }. The Hamiltonian of Eq. (26) is invariant under

continuous rotations in the planes P ⊥ ex,
∏

r∈Cx
P

eiθσ x
r /2. (27)

In the taxonomy of Refs. [11–14,17–20], the operators of
Eq. (27) are d = 2 dimensional (since the planes P are two-
dimensional) U(1) symmetries. On an L × L × L lattice, there
are L such planes P and thus L symmetries of the type of
Eq. (27).

A more realistic and much more isotropic compass type
system displaying continuous higher SU(2) symmetries is that
of the Kugel-Khomskii model [14,72], that we briefly alluded
to in the Introduction. The three-dimensional Kugel-Khomskii
model was first introduced [72] to describe super-exchange in
transition metal systems. This model features planar SU(2)
symmetries associated with each of the individual (d = 2)
planes [14,21].

From a generalization of Elitzur’s theorem [11,12] that
invokes an extension [106] of the Mermin-Wagner-Coleman
theorem [107,108] to zero temperature gapped systems, con-
tinuous d � 2 symmetries in systems having a spectral gap
cannot be broken even at zero temperature nor can they be
broken at finite temperatures (i.e., at positive energy density
above the ground state) in both gapped and gapless systems.
Various U(1) (and SU(2)) symmetric systems harbor a spectral
gap, e.g., Ref. [109] (including the AKLT spin chain [110]).

In the context of the focus of the current paper, it follows
that in gapped renditions of the above and similar systems,
two-dimensional (and/or other continuous) U(1) symmetries
cannot be broken. The above U(1) symmetric model illustrates
how continuous higher symmetries may appear in lattice sys-
tems.

In what follows, when referring to examples, the canonical
model that we will refer to will largely be that of the spin
S = 1/2 PCM of the earlier sections.

IV. EFFECTS OF BOUNDARY CONDITIONS ON
SPECTRAL DEGENERACIES

We next turn to the influence of the boundaries on spectral
degeneracies. We will do so by amending the open system
Hamiltonian Hopen on the volume �D by additional terms
(whose sum is the “zipper Hamiltonian” Hzip) that will capture
the effects of changing the boundary conditions. In effect, we
will “stitch” back the open system to form a closed surface.
Intuitively, one may anticipate Hzip to not radically influence
the spectrum of the bulk system. As we will argue, the effect
of Hzip on the system degeneracy may indeed be rather modest
(vanishing in the thermodynamic limit) in certain situations.
Augmenting corollaries 4 and 5, this will strengthen the plau-
sibility of maxim (b) of Introduction as it pertains to boundary
effects. To make our discussion clear, we first explain what
Hzip is for the PCM of Eq. (13) and then outline results for
general systems.

We proceed with the “surgery” outlined in Fig. 2. Follow-
ing the incision of the lattice on the cylinder (left panel of
that figure) and the “flattening” of the square lattice leading to
a open parallelogram boundary (right panel), we may “sew”
back the missing cut links associated with the lattice sites that
lie on the boundaries of the open square lattice. We do so as to
exactly reproduce the Hamiltonian of Eq. (13) on the original
square lattice on the cylinder.

Within the coordinate frame of the open square lattice, all
of the interactions contained in Hzip (linking one boundary
site on one side of the system to another on the opposite
side) are long ranged (of spatial separation that is of the order
of the system size O(L) → ∞ in the thermodynamic limit).
Referring to Fig. 2, we may write

Hzip ≡ −
∑

r∈BL

(
Jx σ x

r σ x
r+(L−1)ex

+ Jy σ y
r σ

y
r+(L−1)ex+ey

)

≡
∑

∂γ

b∂γ . (28)

The unitary operator Uch of Eq. (23) anticommutes with Hzip

implying that like Hopen it, too, trivially has a spectrum that is
symmetric about zero. For the PCM, the index ∂γ in Eq. (28)
labeling the boundary bonds forming Hzip is comprised of the
spatial location r ∈ BL marking the line of sites lying to the
left of the “cylindrical” cut and the index μ = x, y denoting
the internal components of the spins appearing in the first
equality of Eq. (28). In the (uncut) cylindrical system on the
left panel of Fig. 2, these long range terms b∂γ correspond
to nearest neighbor interactions (see also the staircase on the
righthand panel of that figure), and Hzip is a one-dimensional
Hamiltonian having a rather trivial spectrum (Appendix A).
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The complication arises for the full spectral problem posed by
the cylindrical Hamiltonian

Hcyl = Hopen + Hzip. (29)

In the zipper Hamiltonian bonds associated with interac-
tions between spins that lie on the same row commute with
all of the symmetries Ôy

�′ and thus do not lift the degeneracy
of the states of Eq. (21) associated with their eigenvalues. By
contrast, the vertical bonds in Hzip do not commute with these
symmetries and thus may lift the earlier found exponential
degeneracy.

Indeed, both the open cylindrical cut Hamiltonian Hopen

and the closed cylinder Hamiltonian Hcyl commute with the
horizontal line symmetries {Ôμ

�′ } of Eq. (15) (and thus, triv-
ially, with their products). However, it is only for Hopen that we
are able to rigorously establish the existence of an exponential
degeneracy for arbitrary linear system size L. In the PCM, if
we add (i.e., “stitch back”) a subset of Lvert

zip vertical bonds that
appear in Eq. (28) and further similarly add (or “sew back”)
all of the horizontal bonds appearing in Eq. (28) to Hopen then
we will be left with (L − Lvert

zip ) horizontal symmetries {Ôμ

�′ }.
Repeating mutatis mutandis the steps of Sec. III, we will then
be able to prove that each of the eigenstates has a degeneracy
that is an integer multiple of 2L−Lvert

zip .
In the common eigenbasis of the symmetries {Ua} (i.e., the

symmetries Ôy
�′ commuting with Hcyl) and Hcyl, the effect of

Ôx
� is to flip the sign of the single vertical line Cx

� that has P as
one of its endpoints. Furthermore, the open string Ôx

� flips the
sign of all of the Ôy

�′ eigenvalues {λ1, . . . , λL} associated with
horizontal lines Cy

�′ that intersect with Cx
� . In the ground state,

one would expect all of the vertical links to have a negative
contribution to the energy.

Although the first equality of Eq. (28) is specific to the
PCM, the more abstract second equality may apply to any
system. In all such systems, when summed over all ∂γ , the
individual long range boundary bond operators will form the
relevant zipper Hamiltonian. In general, the boundary bonds
b∂γ are functions of local operators (fields) φμ

r associated
with the boundary r ∈ BL. Whenever we change the boundary
conditions for an arbitrary local Hamiltonian (that may differ
from that of the PCM), we will be able to express Hzip as
a sum of such local terms. Similarly, instead of sewing the
boundaries of the open parallelogram to form a cylinder, one
may repopulate the dilute vacancies discussed towards the end
of Sec. III D to form other zipper type Hamiltonians (in which
the Hilbert space will now be increased) that are a sum of local
terms.

Generically, the full Hamiltonian involving Hzip does not
commute with Hopen. This noncommutativity makes the anal-
ysis using symmetries less obvious. Nonetheless, rather broad
conclusions may still be drawn. In what follows, we outline
the general structure of the exact eigenstates when the effects
of the zipper Hamiltonian Hzip are included. We then dis-
cuss the diagonal matrix elements of Hzip in the eigenbasis
of Hopen in systems with a spectral gap. The latter result
shows that, to lowest order in perturbation theory, exponential
degeneracy remains asymptotically unchanged in the thermo-
dynamic limit. Henceforth, our discussion will become more
qualitative.

We now return to the general problem (not focusing our
discussions to the example of the PCM) and reformulate some
of our considerations more broadly. Since the symmetries {Ua}
are not lifted by Hzip, it follows that the eigenstates of Hcyl

may be expressed as a linear superposition of eigenstates of
Hopen, in general of different energy [Eq. (5)], with the same
symmetry eigenvalues, i.e., as

|λ1λ2 . . . λL, {νcyl}〉=
∑

{ν}
cλ1λ2...λL,{ν}|λ1λ2 . . . λM, {ν}〉. (30)

We underscore that in the above sum, sectors of differing
quantum numbers {ν} of the open system eigenstates may
be mixed. By contrast, different eigenvalues of the symmetry
operators Ua cannot be superposed. Thus, rather trivially, Hzip

cannot directly lift the degeneracy associated with the symme-
tries {Ua} by mixing states with different eigenvalues of these
symmetries. In a related vein, since Hcyl commutes with the
symmetries {Ua}, it follows that all of the projected Hamil-
tonians P{ν}HcylP{ν ′} are block diagonal in the eigenspace of
Hopen. This structure of Hamiltonian (and ensuing form of its
eigenstates) is reminiscent of that in textbook type [16] Bloch
systems wherein mixing may occur only between states, dif-
fering by reciprocal lattice vectors �K , in different Brillouin
zones (playing the role of {ν}) yet not between states belong-
ing to the same Brillouin zone (with crystal momentum labels
�k in the first Brillouin zone replaced here by the eigenvalues
λ1λ2 . . . λL). Augmenting Eq. (30), as the commutation rela-
tions [Hcyl,Ua] = 0, for all a = 1, 2, . . . ,M, further make
clear, symmetry considerations trivially reduce the eigen-
value problem of Hcyl to that in the 2M decoupled sectors
labeled by different eigenvalue strings {λ1 . . . λM}. In each
such sector, we need to diagonalize the projected Hamilto-
nian Pλ1...λMHcylPλ1...λM with Pλ1...λM denoting the projection
operator to a set of fixed higher symmetry eigenvalues. The
union of the eigenvalues of these projected Hamiltonians over
all {λ1 . . . λM} trivially forms the complete spectrum of Hcyl.
Since [Hopen,Va] = 0, the eigenvalues of the projected Hamil-
tonians Pλ1...λMHopenPλ1···λM are the same in different sectors
{λa}Ma=1, this is, in essence, the content of lemma 1. As we
noted previously, for the very same reasons, the demonstra-
tion of exponential degeneracy can be further extended to
the eigenstates of Hc

cyl ≡ Hopen + Hc
zip where Hc

zip is the sum
of all of the bonds appearing in Hzip that commute with all
of the operators {Va}Ma=1. In the context of the PCM, Hc

zip is
the sum of all horizontal boundary terms appearing in Fig. 2
connecting sites that lie along opposite sides of the cylindri-
cal cut. However, as we further underscored for the full the
zipper Hamiltonian Hzip (not the sum Hc

zip of the subset of
bonds in Hzip that commute with {Va}Ma=1), due to Eq. (29) the
commutator [Hzip,Va] = [Hcyl,Va] �= 0 for general Va. As a
consequence of this nonvanishing commutator, the eigenvalue
problem of Pλ1...λMHcylPλ1...λM in different sectors λ1 . . . λM
is not identically the same. This discrepancy led to the afore-
mentioned possible removal of the spectral degeneracy. This
lifting of the degeneracy is associated with the mixing of states
of different quantum numbers {νcyl} in Eq. (30) (as noted, the
latter labels include the respective eigenvalues of Hopen).

As we elaborate in Appendix B, the Wigner-Eckart theo-
rem may be naturally extended for higher symmetries. This
trivial generalization leads to selection rules on nonvanishing
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matrix elements of general operators (including the zipper
Hamiltonian) in the common eigenbasis of Hopen and its sym-
metries.

The expectation values of Hzip in the cylindrical states
|λ1λ2 . . . λL, {νcyl}〉 of Eq. (30) are trivially equal to the ener-
gies associated with Hzip on these states on the closed cylinder.
Since Hzip is a sum of short range terms on the cylinder, the
expectation values in these cylindrical states are, generally,
finite (also within the thermodynamic L → ∞ limit). For the
translationally invariant ground states on the cylinder, these
expectation value will equal to the average expectation per
bond within the global ground state of Hcyl times the number
of bonds appearing in Hzip.

We now briefly turn to a somewhat more specific discus-
sion of theories (dependent on the local operators {φμ

r }) that
exhibit higher symmetries. In the eigenbasis of Hopen, the
diagonal matrix elements of Hzip are the expectation values of
the sum of these interactions (Hzip = ∑

∂γ b∂γ ({φμ
r })) in the

eigenstates of Hopen. Note that in any eigenstate 〈ψ |b∂γ |ψ〉 is
a sum of correlation functions involving the boundary local
operators {φμ

r }. If the connected correlation function between
local observables in eigenstates of Hopen decays exponentially
in distance between these observables then we may state an-
other simple lemma.

Lemma 6. Consider the open system Hamiltonian Hopen to
be a sum of interactions of finite range and strength (Eq. (8))
such that the eigenstates of Hopen do not support, in any eigen-
state, infinite range nor algebraic correlations between local
boundary fields φμ

r (i.e., for asymptotically large separation
distance L, the correlation functions [111] are given by C +
O(e−L/ξ ) with C being a constant that depends only on the
energy eigenvalue of Hopen, and ξ a characteristic correlation
length). Under these conditions, the diagonal elements of Hzip

in the eigenbasis of Hopen (i.e., 〈ψ |Hzip|ψ〉 = ∑
∂γ 〈ψ |b∂γ |ψ〉

with |ψ〉 an eigenstate of Hopen) must tend to a uniform con-
stant in the L → ∞ limit.

Proof. Hzip is a sum of, at most, O(LD−1) boundary in-
teractions between local boundary operators φμ

r that are a
distance O(L) apart. Given the assumption above, each of the
interaction terms b∂γ formed by their products has, in a sector
of fixed eigenvalue of Hopen, a constant expectation value of C
up to exponentially small corrections in L. This implies that
the diagonal matrix elements of Hzip are a sum of O(LD−1)
individual expectation values 〈b∂γ 〉 that, up to the above stated
uniform shift, are each bounded by decaying exponential in
L. Such a sum is bounded from above by a number of order
O(LD−1e−L/ξ ) and thus tends to zero in the L → ∞ limit. �

Thus, in the thermodynamic limit, the expectation values
〈Hcyl〉 in each of the exponentially many degenerate eigen-
states of Hopen are the same. We reiterate that, as our proof of
lemma 6 illustrates, this property emerges only in the asymp-
totic L → ∞ limit. For finite L, there are additional deviations
O(LD−1e−L/ξ ) about the asymptotic uniform constant value of
〈Hcyl〉.

In those models in which Hzip is a positive semidefinite
operator and C = 0 in the ground-state manifold of Hopen,
there is an (asymptotic) exponentially large degeneracy in the
ground state of Hcyl. The proof of the latter assertion is nearly
immediate as we now explain. In such all such models, each
of the ground states of Hopen of which, by theorem 2, there are

exponentially many, may be taken as variational ground states
for Hcyl. In each of these (linearly independent) variational
states [112,113], lemma 6 asserts that the expectation value of
Hzip tends, in the thermodynamic limit, to zero. On the other
hand, positive semidefinite Hamiltonians Hzip imply that the
ground states of Hopen provide lower bounds to Hcyl. It follows
that Hcyl enjoys precisely the same (asymptotic) exponentially
large (in Ld ′

) ground-state degeneracy in the thermodynamic
limit.

In Appendix C, we will review general arguments for
the exponential decay of correlations in the ground states of
Lorentz invariant gapped systems that admit a Wick rotation.
If the thermal averages may be replaced by eigenstate aver-
ages (in the spirit of the Eigenstate Thermalization Hypothesis
[114–117]) then it follows that all diagonal matrix elements of
Hzip vanish in the thermodynamic limit.

In Appendix D, we specifically demonstrate that lemma
6 mandates that to lowest order in degenerate perturbation
theory (in the perturbation Hzip that alters the system boundary
conditions), the exponential degeneracy of Hopen is not lifted.

In Appendix E, we review and extend the discussion of
perturbation theory of a different sort. For the particular case
of the PCM, such perturbative considerations complemented
by numerical results for the isotropic model with periodic
boundary conditions [9,10,77] suggest that, within its ground-
state sector, the PCM may preferably order along the x or y
spin directions. Thus a natural set of variational ground states
for the PCM is given by the 2L product states of spins along
different columns (or rows) that are all positively or all nega-
tively oriented along the x (or y) and superpositions thereof.

V. THEORIES WITH UV/IR MIXING DISPLAYING
CONVENTIONAL IR BEHAVIOR

We now discuss the physical consequences of the degen-
eracies that we rigorously established for various boundary
conditions and suggested for others. As we reviewed in the
Introduction, the application of higher symmetries naturally
leads to a mixing of IR and UV modes. This mixing is ap-
parent in the ground states. Already at the classical level,
the low-energy field configurations involve Fourier modes
of both very low and very high wavenumbers. Similar to
(d = 0) gauge symmetries, also d = 1 discrete symmetries
or d = 2 continuous symmetries that give rise to low-energy
short wavelength variations of the fields cannot, by the gener-
alized Elitzur theorem [11,12], be spontaneously broken. Just
as in gauge theories in which the local symmetries cannot
be spontaneously broken, these low d-dimensional gaugelike
symmetries do not preclude the existence of usual thermody-
namic transitions. Indeed, just as the two-dimensional Ising
model displays spontaneous symmetry breaking, general sys-
tems with higher d � 2 discrete symmetries (either exact or
emergent) may be broken spontaneously [11,12].

We first briefly discuss the case of exact higher symmetries
in which our earlier results establish a degeneracy of each
energy level. Lemma 1 implies that if all quantum numbers {ν}
in Eq. (5) are eigenvalues of mutually commuting operators
that also commute with all of the symmetries {Ua} and {Va}
then the finite temperature partition function of the full system
Zopen = Tr(e−βHopen ) is trivially an integer multiple (2M) of the
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partition function associated with the trace of e−βHopen over
a restricted Hilbert space in which all eigenvalues λa (with
a = 1, 2, . . . ,M) are of a uniform sign. This, e.g., implies
that if the higher symmetries are of the Z2 type (as in the
PCM) then we may “fold” the system back onto the sector
in which the symmetry eigenvalues are uniform and do not
change when traversing the lattice. That is, the contribution to
the partition function from states associated with a “UV” type
rapid change of the symmetry eigenvalues {λa} is identical
to that from either of the uniform “IR” sectors of these sym-
metry eigenvalues in which they all obtain a uniform value,
λ1 = . . . λM = ±1. For more general higher symmetries, we
may examine low temperature fluctuations about any of the
exponentially many ground states. The contributions to the
partition functions from those eigenstates associated with low-
energy fluctuations about uniform states (states {|ψlow,IR〉})
are identical to those associated with their counterparts that
are related by applying the symmetry operators Va on these
states {|ψlow,IR〉}. Notwithstanding an exponential degeneracy,
the free energy density will thus be equal to that of the “IR”
system that one may focus on.

We note (as was briefly mentioned in the Introduction)
that in several theories featuring higher symmetries, an exact
dimensional reduction may occur as may be established via
dualities, e.g., Refs. [12,14,51,52]. The associated dual lower
dimensional models [12,14,51,52] may belong to universal-
ity classes with conventional IR behaviors. These dualities
have been used to establish exponential degeneracies in other
systems, such as those trivially encountered when mapping
spins to Majorana fermions in high dimensional interacting
(Hubbard type and other) systems, as in, e.g., Ref. [118].

As we underscored earlier, some systems have symmetries
that are not exact but rather only emerge at low energies as
symmetries of the projected ground-state subspace, e.g., the
classical 120◦ compass model that exhibits emergent discrete
d = 2 symmetries in its ground-state sector [5,6,14]. In this
and other theories with such higher symmetries, entropic fluc-
tuations may stabilize ordering about a uniform state [5,6,14]
or those with other symmetry allowed orders [11,12]. Where
rigorous results exist, it is seen that at positive tempera-
tures, whenever spontaneous symmetry can occur, UV/IR
mixing may be lifted [5,6,14] and, at low temperatures, the
system will display long wavelength fluctuations about the
low-energy, higher symmetry allowed [11,12] orders. Such
finite temperature entropic “order by disorder” stabilization
effects appear in numerous other systems [14,86,119–121].
As we alluded to in Introduction, such symmetries may lead to
a proliferation of minimizing modes on d-dimensional (“flat
band” type) surfaces in k space [14]. Such numerous low-
energy states can also lead to glassy dynamics and rich spatial
structures [79,122,123].

VI. CONCLUSIONS

Our central result is that of theorem 2. Systems displaying
spatially rigid higher (independent) symmetries that are em-
bedded on general open geometries display an exponentially
large spectral degeneracy. The situation for the conventional
textbook Born-von Karman (i.e., periodic) boundary condi-
tions is more subtle, since those symmetries may not be

independent. We demonstrated that by modifying the bound-
ary conditions, the independent higher symmetries may be
guaranteed to transform given eigenstates differently. By the
modification of the boundary conditions (or, as discussed in
Sec. III D, internal geometry), the number of such indepen-
dent symmetries can be made to be vary from finite values
to a number that is exponentially large in the system size.
This independence allows for a spectral degeneracy that is
exponential in the number of independent symmetries. If this
result does not depend on the boundary conditions then the
degeneracy holds rather universally. We discussed specific
conditions under which this degeneracy may persist asymp-
totically when the geometry is deformed to be that of the
Born-von Karman or other types by the addition of external
environments with which the system interacts or by the inser-
tion of a “zipper Hamiltonian.”

Our formal theorem for the exponential degeneracy of
systems with rigid higher symmetries may be rationalized
more intuitively whenever the correlations are local. Indeed,
as noted in the Introduction and Sec. III B, in the classical
analogs of the systems discussed, the degeneracy is expo-
nentially large. This occurs since the localized rigid higher
symmetry operations that act on different regions of space
are, in the product type states appearing in the classical limit,
independent of each other. The number Mcl of these higher
symmetries in the classical limit scales as Ld ′

, where L is the
linear extent of the system residing in D spatial dimensions.
Here, d ′ = D − d with d characterizing the dimensionality of
the higher symmetries (these symmetries act on volumes of
size Ld ). The degeneracy of each configuration of the classical
system is, at least, exponential in Mcl. The subtlety that trig-
gered the current paper originates from nontrivial correlations
between the fields/spins. These correlations enable the entire
quantum state of the system to transform as a singlet (or
doublet, etc.) under different rigid higher symmetries. In other
words, correlations allow for the situation in which a new
independent quantum state does not appear whenever any of
the numerous independent rigid higher symmetry operations
(whose number we denoted by M) is applied. However, if
the correlations between the disparate independent symmetry
operators that have their support on different spatial regions
decay asymptotically with the distance between the regions of
their support (say with a finite correlation length R) then the
classical arguments as to why the logarithm of the degener-
acy should scale with the system size might still be repeated
verbatim for M = O((L/R)d ′

) independent symmetries.
The above intuition can further rationalize why, for the

modified boundary conditions that we employed in the current
work, the exponential degeneracy may also rigorously persist
also for finite size systems. Indeed, by comparison to the
more conventional case, when our boundary conditions are
employed, the fields/spins along the boundaries are attached
to fewer other fields/spins and are thus less correlated with
these. This, in turn, may allow for a larger independence
between the higher symmetries enabling a higher degeneracy.
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APPENDIX A: SPECTRUM OF THE COMPASS MODEL
ZIPPER HAMILTONIAN Hzip

Much of our discussion focused on the projected Hzip in
the common eigenbasis of Hopen and the symmetries in a
sector fixed {ν} and {ν ′}. We may also readily compute the
eigenvalues of Hzip sans such a projection. Towards that end,
we simply view Hzip as a one-dimensional Hamiltonian on a
2L spin chain formed by the “zipper” Hamiltonian of Eq. (28)
which we rewrite as

Hzip = −Jx

L∑

j=1

σ x
2 j−1σ

x
2 j − Jy

L−1∑

j=1

σ
y
2 jσ

y
2 j+1, (A1)

with open boundary conditions. This Hamiltonian can be di-
agonalized analytically by using the techniques developed in
Ref. [124]. Each eigenvalue is at least 2L-fold degenerate.
If we examine our Hzip on the original Hilbert space of the
N spins lying on the cylinder of Fig. 2, each eigenvalue is,
at least, 2N−L-fold degenerate. In addition, the spectrum of

Hzip is symmetric with respect to zero, since there exists a
chiral operator equivalent to the Uch of Eq. (23) that satisfies
{Hzip,Uch} = 0.

APPENDIX B: WIGNER-ECKART-TYPE SELECTION
RULES AND SPARSITY OF THE ZIPPER HAMILTONIAN

Independent bounds, fortifying the considerations under-
lying our results, arise from the Wigner-Eckart theorem
[91,93,125] as in its common applications to SU(2) and other
symmetry groups [126]. Here, we extend these considera-
tions to the matrix elements of the few body operators b∂γ

[Eq. (28)] in the higher (d � 1 dimensional) symmetry opera-
tor eigenbasis [17]. The arising symmetry constraints will, in
particular, demand that each of the operators b∂γ is a sparse
matrix when written in the eigenbasis of Hopen spanned by
the states of Eq. (5). To see why this is so, we first consider
as a general illustrative example, the textbook situation of an
SU(2) symmetry eigenbasis labeled by the eigenvalues of the
total squared angular momentum J2 [eigenvalue j(j + 1)] and
Jz (eigenvalue m). Specifically, for the M independent higher
form symmetries, we consider situations in which we express
the zipper Hamiltonian Hzip as a sum of products of spherical
tensors {T k�q�

� }M�=1 that transform irreducibly under each of
these higher symmetries. With the full eigenvalue spectrum of
Hopen labeled by the higher symmetry eigenvalues along with
any additional multiplet index {ν} (that includes the energy
eigenvalue), the Wigner-Eckart theorem states that for any
irreducible operator T k�q�

� ,

〈
j′1m′

1 . . . j′�m′
� . . . j′Mm′

M, {ν ′}∣∣T k�q�

�

∣∣ j1m1 . . . j�m� . . . . . . jMmM, {ν}〉

= 1√
2j� + 1

〈
j′1 . . . j′� . . . j′M, {ν ′} ∣∣T k�

�

∣∣ j1 . . . j� . . . jM, {ν}〉〈j′�m′
�; k�q�

∣∣j�m�

〉
. (B1)

Here, 〈j′�m′
�; k�q�|j�m�〉 denote the Clebsch-Gordan coefficients associated with the d-dimensional gaugelike symmetry of the

�-th layer. Thus, for any Hamiltonian Hzip that spans, at most, the spatial support of R independent d-dimensional symmetries
disjoint regions, the matrix element between two orthogonal eigenstates of the d � 1-dimensional symmetry operator

〈
j′1m′

1 . . . j′�m′
� . . . j′Mm′

M, {ν ′} ∣∣T k�q�

�

∣∣ j1m1 . . . j�m� . . . . . . jMmM, {ν}〉 = 0 (B2)

in numerous instances. Given its above definition, R may
be viewed as a measure of the “range of the interaction.”
If when contrasting the ket and bra of Eq. (B2), more than
R different eigenvalue pairs (j�m�) differ from one another
then the associated matrix element of T k�q�

� will vanish. Fur-
thermore, for those few symmetry eigenvalues that do differ
from one another (i.e., those marking off-diagonal elements in
the symmetry eigenbasis), additional constraints will appear
if the tensors T k�q�

� are products of a finite number of single
body operators (each of finite maximal angular momentum).
Thus, when the off-diagonal matrix elements are nonzero,
since the total (d-dimensional) angular momentum that a local
operator can carry is finite, the eigenvalue differences |j� − j′�|
and |m� − m′

�| can assume, at most, system size indepen-
dent values of order unity. Such constraints can indeed be
readily extended for symmetries other than SU(2). Applying
these symmetry selection rules illustrates that, for the com-
pass and other local models, the matrix elements of various

local operators in the eigenbasis of Hopen of Eq. (5) vanish.
Indeed, Hzip is diagonal in the symmetry projected eigenbasis
of Hopen. The application of the higher symmetry variant of
the Wigner-Eckart theorem to other local operators generally
illustrates that these may only have sparse nonvanishing ma-
trix elements.

APPENDIX C: EXPONENTIAL DECAY OF THE MATRIX
ELEMENTS OF THE PROJECTED Hzip IN THE

EIGENBASIS OF GENERAL GAPPED SYSTEMS AS
SUGGESTED BY WICK ROTATIONS IN LORENTZ

INVARIANT THEORIES

We next briefly review considerations for exponential de-
cay of correlations in gapped systems and extensions thereof
to off-diagonal matrix elements. An insightful approach [127]
for establishing the exponential decay of spatial correlations
relies on quasi-adiabatic processes and the Lieb-Robinson
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bounds [128]. In what follows, we discuss and extend an
earlier method that relates correlations and evolution in time
to those in space. Specifically, we will briefly touch on an
analytic continuation (specifically a Wick rotation) of Lorentz
invariant theories or their effective nonrelativistic limit. This
will allow us to relate temporal correlations (that are natu-
rally associated with spectral gaps) to spatial correlations. We
will extend the dynamics provided by a general Hamiltonian
Hopen with eigenvectors {|ψm〉} to the Euclidean domain and
illustrate that when the respective energy difference of the as-
sociated eigenstates is finite then the diagonal matrix elements
of the additional bonds (Hzip) that appear when the boundary
conditions are changed,

lim
L→∞

〈λμ;1 . . . λμ;L, {ν ′}|Hzip|λμ;1 . . . λμ;L, {ν}〉 = 0. (C1)

To establish Eq. (C1), we trivially apply standard Eu-
clidean space demonstrations of the decay of correlations
in the presence of a spectral gap (i.e., that of the diagonal
component of the field bilinears) as in, e.g., Ref. [129]. We
will consider, for a general Hamiltonian, equal time matrix
elements of the product of two fields (spins). We define

Fμ(r, r′) ≡ 〈ψ0|φμ
r φ

μ

r′ |ψ0〉 =
∑

m

〈ψ0|φμ
r |ψm〉〈ψm|φμ

r′ |ψ0〉

(C2)

with |ψ0〉 denoting a ground state and |ψm〉, m �= 0, an excited
eigenstate of Hopen. We next focus on each of the matrix
elements in the sum of Eq. (C2) and evaluate these by analytic
continuation to the field theory to Euclidean space where we
can invoke rotational invariance. In the original theory, the two
fields φμ

r and φ
μ

r′ at the sites r and r′ lie on the same time slice.
With some of abuse of notation with r and r′ next denoting the
corresponding Euclidean space vectors that include temporal
coordinates, the separation (r′ − r) is, obviously, spacelike.
We can express the two fields in terms of displacements from
the field at the origin,

φμ
r = e−ipr φ

μ
0 eipr,

φ
μ

r′ = e−ipr′
φ

μ
0 eipr′

. (C3)

On inserting the complete set of eigenstates of the Hamilto-
nian Hopen, Eq. (C2) becomes

Fμ(r, r′) =
∑

m

〈ψ0|e−ipr φ
μ
0 eipr |ψm〉〈ψm|e−ipr′

φ
μ
0 eipr′ |ψ0〉.

(C4)

We next use the aforementioned translational and rotational
invariance of the Euclidean theory to evaluate Fμ(r, r′). With
the aid of these symmetries, we may translate and perform a
Wick rotation so as to arrive at r → (0, �0) and r′ → (±|t ′ −
t |, �0) [130]. The resulting vectors lie along the time axis of
the Euclidean theory with |t ′ − t | = |r′ − r|. With p denoting
the energy-momentum 4-vector, this yields e−ipr′

φ
μ
0 eipr′ →

e∓H (t ′−t ) φ
μ
0 e±H (t ′−t ). Here, the sign in the exponential is cho-

sen so as to ensure a well-defined analytic continuation. This
yields

Fμ(r, r′) =
∑

m

|〈ψ0|φμ
0 |ψm〉|2e−(Em−E0 )|r′−r|. (C5)

To obtain the connected correlation function, i.e., the con-
tribution to Fμ(r, r′) from the excited states, we subtract
from Eq. (C5) the ground-state products 〈ψ0|φμ

0 |ψ0〉2. The
exponential factor in Eq. (C5) then suggests that, in gapped
systems, the constant time connected correlation function
must decay exponentially in the spatial separation |r −
r′|. Equation (C5) therefore illustrates that if Hzip contains
O(L) terms that each connect sites separated by a distance
|r − r′| = O(L) then, in the presence of finite gaps, Em −
E0 > 0, the diagonal matrix elements of Hzip in the eigen-
basis of Hopen will vanish in the L → ∞ limit. Although,
one may expect individual off-diagonal matrix elements of
bounded local operators to decay with increasing system
size (as in, e.g., the Eigenstate Thermalization Hypothe-
sis [114–117]), the full contribution of the (exponential in
size) number of off-diagonal matrix elements to the energy
eigenvalues is more complex. Clearly not all off-diagonal
matrix elements (i.e., those between different excited states
|ψm〉) can be uniformly bounded such their sum vanishes
exponentially with the distance |r − r′| when the square
norm (φμ

0 φμ
r )†(φμ

0 φμ
r ) is a constant and thus so is its expec-

tation value in any state, e.g., 〈ψm|(φμ
0 φμ

r )†(φμ
0 φμ

r )|ψm〉 =∑
n |〈ψm|φμ

0 φ
μ

�r |ψn〉|2 = const. An example of a situation in
which such a square norm is constant is that of the Pauli
bilinears appearing in the zipper Hamiltonian of the compass
model [Eq. (28)]. When φμ

r are Pauli operators, the latter
“const” is equal to one.

APPENDIX D: LOWEST-ORDER DEGENERATE
PERTURBATION THEORY

In this short Appendix, we establish a simple theorem:
Theorem 7. Given the assumptions of lemma 6, in the

thermodynamic L → ∞ limit, to lowest order in degenerate
perturbation theory, the exponential degeneracy of Hopen will
not be lifted by the perturbation Hzip.

Proof. To lowest order in degenerate perturbation theory,
we need to diagonalize Hzip in a projected fixed energy eigen-
basis of Hopen. In general, Hzip contains off-diagonal matrix
elements that may mix the different degenerate states of Hopen

that have different eigenvalues of the symmetry operators. The
diagonalization of Hzip in this exponentially large space of
degenerate eigenstates of Hopen is not at all trivial. However,
the assumption of lemma 6 simplifies the problem consider-
ably and immediately leads to the above stated result. The
diagonalization of Hzip in the projected subspace of degen-
erate states of Hopen will trivially lead to states that are still
eigenstates of Hopen having the same fixed eigenvalue of Hopen.
By lemma 6, given any such eigenstate |ψ〉 of Hopen, the corre-
sponding expectation value associated the correlator between
the boundary fields that are a distance L apart,

〈ψ |b∂γ

({
φμ

r

})|ψ〉 = C + O(e−L/ξ ), (D1)

with C a fixed constant independent of the state |ψ〉 (de-
pendent only on the energy eigenvalue of Hopen), and ξ a
correlation length.

Thus the proof of lemma 6 demonstrates that, in the ther-
modynamic L → ∞ limit, the expectation value of any of the
terms appearing in Hzip will tend to a uniform constant value.
As we emphasized above, since the condition underlying
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lemma 6 is made for any eigenstate of Hopen, it will, in par-
ticular, include also those specific eigenstates that diagonalize
Hzip in the projected fixed energy eigenbasis of Hopen. These
latter states are the zeroth order eigenstates in degenerate
perturbation theory. The eigenvalues of these states yield the
energy to first order in degenerate perturbation theory. We thus
see that, to this order in perturbation theory, all corrections
due to Hzip correspond to a uniform energy shift. Thus, to
first order in perturbation theory, when L → ∞, the, at least,
2M-fold degeneracy of Hopen is not lifted by Hzip. �

We briefly remark in [131] on our PCM example where
Hzip is a bilinear in the boundary spins and 〈Hzip〉 becomes a
sum of two-point correlators. In systems with a spectral gap
(as further discussed in Appendix C for Euclidean theories),
the ground-state correlation functions may indeed decay ex-
ponentially with the distance between the local fields.

APPENDIX E: ANOTHER (HIGHER-ORDER)
PERTURBATION THEORY

We now sketch a different perturbative approach that
generalizes those introduced in [9,10] for the PCM. The
perturbation theory that we consider is that for rather gen-
eral systems that exhibit higher symmetries. Specifically,
we consider systems in D spatial dimensions displaying d-
dimensional symmetries (d < D) for which the Hamiltonian
can be expressed as

H = H0 + Hpert. (E1)

Here, H0 is a Hamiltonian that has its support on M =
O(Ld ′

) decoupled d-dimensional regions {Ra} where the d-
dimensional higher symmetries operate. Here, as throughout,
d ′ = D − d (Eq. (2)). The perturbative “interaction” Hpert

couples these M regions each of dimension d to one another.
In what follows, we will ask what transpires when Hpert is a
sum of local operators. Following the steps that led to lemma
1, we see that, in the absence of the interaction term Hpert, each
level has a degeneracy that is an integer multiple of 2M (for
spin-1/2 systems). The corresponding basis set of eigenstates
can be expressed as the tensor product

|λ1λ2 . . . λM, {ν}〉
= |λ1, {ν1}〉 ⊗ |λ2, {ν2}〉 ⊗ . . . ⊗ |λM, {νM}〉. (E2)

Here, each of the wave functions |λa, {νa}〉 has its support on
the d-dimensional volume Ra. As throughout, λa mark the
eigenvalues of the symmetry operators Ua. Since Hpert is local,
only terms that are of sufficiently high order O(||Ra||) =
O(Ld ) in perturbation theory might lift the degeneracy of the
eigenstates of Eq. (E2). Thus, in the thermodynamic L → ∞
limit, the exponential degeneracy may remain unchanged to
all orders in perturbation theory. In [136], we briefly review
and write this perturbation theory for the PCM which suggests
that these simple product states as good variational ground
states (which may become better with increasing system
size L).
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