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Nature of quasiparticle interference in three dimensions
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Quasiparticle interference (QPI) imaging is a powerful tool for the study of the low-energy electronic structure
of quantum materials. However, the measurement of QPI by scanning tunneling microscopy (STM) is restricted
to surfaces and is thus inherently constrained to two dimensions. QPI has proved immensely successful for the
study of materials that exhibit a quasi-two-dimensional electronic structure, yet it raises questions about how to
interpret QPI in materials that have a highly three-dimensional electronic structure. In this paper, we address this
question and establish the methodology required to simulate and understand QPI arising from three-dimensional
systems as measured by STM. We calculate the continuum surface Green’s function in the presence of a defect,
which captures the role of the surface and the vacuum decay of the wave functions. We find that defects at
different depths from the surface will produce unique sets of scattering vectors for three-dimensional systems,
which nevertheless can be related to the three-dimensional electronic structure of the bulk material. We illustrate
the consequences that the three-dimensionality of the electronic structure has on the measured QPI for a simple
cubic nearest-neighbor tight-binding model, and then demonstrate application to a real material using a realistic
model for PbS. Our method unlocks the use of QPI imaging for the study of quantum materials with three-
dimensional electronic structures and introduces a framework to generically account for kz dispersions within
QPI simulations.

DOI: 10.1103/PhysRevB.107.045107

I. INTRODUCTION

Quasiparticle interference (QPI), the spatial perturbation to
the local density of states (LDOS) in the presence of defects
or boundaries, is an important phenomenon that enables scan-
ning tunneling microscopy (STM), a real-space technique,
to uncover information about electronic states in momentum
space [1,2] with unparalleled energy resolution [3]. The per-
turbations due to QPI arise as a direct result of scattering
between two electronic states and therefore measuring the
Fourier transform of these spatial perturbations provides a
route to uncover the electronic structure of a material [4,5].

These measurements have been immensely successful
in understanding materials with a highly two-dimensional
(2D) electronic structure, such as the cuprates [6–8] and
ruthenates [9,10], where a comparison between experimental
measurements and theoretical models is rather straightfor-
ward. On the other hand, in anisotropic materials with
non-negligible interlayer hopping, such as the iron-based su-
perconductors [11–13] or heavy-fermion systems [14–16], it
has become apparent that the resulting three-dimensionality
of the electronic structure results in visible changes to the
measured QPI beyond a simple 2D model [17,18].

The challenge to understand the QPI of 3D electronic
structures is fundamentally linked to the fact that STM is a
surface-sensitive technique, limited to measuring the LDOS
at surfaces and in two spatial dimensions. This raises an
important question about how to interpret Fourier transforms
of QPI measurements in systems that have a notable three-
dimensional electronic structure.

*Corresponding author: lcr23@st-andrews.ac.uk

Previous theoretical and experimental work studying the
QPI of 3D electronic structures have shown that the direction
and intensity of the QPI standing wave patterns are controlled
by the Fermi velocity of the electronic states [19–21]. More
recently, in conjunction with the experimental constraint that
STM is a local technique, it has been argued that any standing
waves generated by electronic states which have finite group
velocity in the z direction [20], will actually traverse into the
bulk of the material and therefore not generate a coherent
long-range QPI signal that would be noticeable as sharp peaks
in the Fourier transform [18,22].

So far, however, these arguments have not considered the
role that the surface has on the electronic states, where kz is
no longer a good quantum number. In this paper, we address
this issue by theoretically studying the consequence that the
surface has on the formation of QPI. By utilizing the recently
developed continuum LDOS (cLDOS) technique [23,24],
which takes into account the inter-unit-cell superposition of
the electronic states above the surface of a material, we show
that information about the bulk 3D electronic structure can
be readily obtained from experimental QPI measurements.
We additionally show that defects at different distances from
the surface will produce unique QPI patterns and that a full
comparison between theory and experiment requires the con-
sideration of defects at both different sites and depths from the
surface.

II. THEORETICAL FRAMEWORK

To simulate Fourier-transformed QPI, we begin by cal-
culating the cLDOS ρ(r, ω) using the continuum Green’s
function G(r, r, ω) following Refs. [10,23,24],

ρ(r, ω) = − 1

π
Im G(r, r, ω). (1)
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Here, r is a 3D continuous real-space vector, ω is the energy,
and the continuum Green’s function is defined via the contin-
uum transformation of the discrete lattice Green’s function,
G(R, R′, ω), in the presence of a pointlike impurity,

G(r, r′, ω) =
∑

R

∑
R′

G(R, R′, ω)W (R − r)W (R′ − r′).

(2)
Here, R is the discrete lattice vector and W (R − r) is a local-
ized Wannier function connecting the discrete and continuous
space.

The discrete lattice Green’s function in the presence of a
defect is obtained from the unperturbed lattice Green’s func-
tion (G0(R, ω)) using the T -matrix formalism,

G(R, R′, ω) = G0(R − R′, ω) + G0(R, ω)T (ω)G0(−R′, ω)
(3)

where T (ω) describes the scattering from a single pointlike
defect,

T (ω) = V̂ [1̂ − V̂ G0(R = 0, ω)]−1. (4)

Here, we use V̂ = 100 meV and G0(R, ω) is the Fourier
transform of the noninteracting Green’s function G0(k, ω)
obtained from

G0(k, ω) = [(ω + i�)1̂ − H (k)]−1. (5)

We calculate G0(R, ω) via a Fourier transform of G0(k, ω) on
a discretized k grid of 512 k points in each dimension, and
fixed the energy broadening parameter � = 1 meV.

For the nearest-neighbor cubic model discussed here, we
use an isotropic s-wave Gaussian Wannier function,

W (r) = e−r2/2C2σ 2
, (6)

with C = √
2 ln 100 as the Wannier function. A Gaussian of

this form ensures that the correct radial decay for the atomic
wave functions at surfaces is captured, while allowing us to
tune the overall radius of the Gaussian by using the parame-
ter σ , where W (r = σ ) = 0.01. Here, we choose a value of
σ = 1.8, in units of the lattice constant, to ensure sufficient
overlap between nearest-neighbor atoms, while ensuring the
next-nearest-neighbor overlap can be neglected. The choice of
this parameter does not affect the qualitative behavior of the
QPI vectors as we show in the Supplemental Material [25].

The cLDOS, Eq. (2), is then calculated on a large real-
space grid over rx and ry at a fixed height rz = h, and the 2D
Fourier transform is taken to generate ρ̃(q‖, ω) which can be
compared with experimental measurements.

To understand the influence of the 3D electronic structure
on QPI measurements, we begin by considering the simple
cubic lattice with nearest-neighbor hopping,

H (k) = tx cos(kx ) + ty cos(ky) + tz cos(kz ). (7)

We then consider two scenarios, one where the defect is lo-
cated deep in the bulk of the material, as sketched in Fig. 1(a),
and the second for a defect located at the surface of a large
slab, as sketched in Fig. 1(b). For the former we calculate
Eq. (1) using the Hamiltonian in Eq. (7), whereas for the sur-
face calculation we first perform a coordinate transformation

FIG. 1. Consequence of out-of-plane hopping on the bulk and
surface QPI patterns. (a), (b) Sketch of the two scenarios considered:
(a) a defect situated in the bulk of a material, and (b) a defect
at the surface of a material. Here, h refers to the 2D plane used
to study the Fourier transformation of the local density of states.
(c), (d) 3D Fermi surface and cQPI ρ̃(q‖, ω) at rz = h, calculated
for the bulk defect (left half) and surface defect (right half) for
the nearest-neighbor cubic model with tx = ty = 0.1 and tz = 0. (e),
(f) Equivalent simulations for tz = 0.05, (g), (h) tz = 0.1 (isotropic
case). The surface projected spectral functions are plotted in Fig. S2
in the Supplemental Material [25].

to an N-layered slab,

H (k‖) =

⎛
⎜⎜⎜⎝

H0(k‖) H1(k‖) H2(k‖) · · ·
H1(k‖) H0(k‖) H1(k‖) · · ·
H2(k‖) H1(k‖) H0(k‖) · · ·

· · · · · · · · · · · ·

⎞
⎟⎟⎟⎠, (8)

045107-2



NATURE OF QUASIPARTICLE INTERFERENCE IN THREE … PHYSICAL REVIEW B 107, 045107 (2023)

(a) (b) (c) x1 x10
surface subsurface surface subsurface

rx kx qx

qykyrz

h

0

0

0

0

FIG. 2. Consequence of defect position for measured QPI. (a) Sketch of defects at different positions from the surface. (b) Partial spectral
function of the surface layer (left half) and subsurface layer (right half). (c) cQPI ρ̃(q‖, ω) for a defect located at the surface [left half, red
atom in (a)] and subsurface [right half, blue atom in (a)]. The intensity of the simulated cQPI due to a subsurface defect has been enhanced by
a factor of 10 for comparison with the surface cQPI pattern.

where we have separated the Hamiltonian such that each
row and column in the N × N block matrix describes a one-
unit-cell thick layer along the z axis and the crystallographic
momentum is now defined parallel to the x-y plane [k‖ =
(kx, ky)]. The individual elements are then defined as

HRz (k‖) =
∑
R‖

H (R‖, Rz )eik‖R‖ . (9)

For the nearest-neighbor cubic model, H (±1, 0, 0) = tx,
H (0,±1, 0) = ty, H (0, 0,±1) = tz.

Without loss of generality we assume that the surface does
not distort the physical structure, nor induce any charge imbal-
ance. To describe these would require modification of H0(k‖)
for the surface layer(s) in Eq. (8).

III. RESULTS

We begin by comparing the QPI pattern in the cLDOS
(cQPI) at the Fermi level expected from a bulk or surface cal-
culation when out-of-plane hopping is neglected (tz = 0). We
find that the two-dimensional square Fermi surface [Fig. 1(c)]
will produce a square QPI pattern, regardless of whether a
bulk or surface defect is considered. This is shown in the
left- and right-hand sides of Fig. 1(d), respectively. This is
expected, as the slab Hamiltonian of Eq. (8) will be diagonal
in the absence of out-of-plane hopping [H1(k‖) = 0]. As tz
is increased, however, the differences between a bulk and
surface cQPI simulation become increasingly apparent. Bulk
simulations, shown on the left-hand side of Figs. 1(f) and 1(h),
produce several sharp scattering vectors, which can be linked
predominately to the nesting of states with kz = 0 or kz = π ,
shown as red lines in Figs. 1(e) and 1(g), as well as some
broader intensity emanating from the center due to poorly
nested scattering between the states with different kz. Surface
cQPI simulations do not produce such sharp scattering vec-
tors. While the qualitative features do resemble those observed
for bulk calculations, the uncertainty in kz produces much
broader scattering vectors and this broadness increases with
increasing tz.

As all experimental measurements are performed above the
surface of a material, this implies that measurements on mate-
rials with a highly three-dimensional electronic structure will

observe broad QPI scattering patterns from surface defects.
Nevertheless, the presence of a surface also creates an addi-
tional consideration about the position of the defect. While in
a bulk material, defects in different unit cells will only induce
a phase shift in the simulated cQPI, near the surface, the depth
of the defect generates unique environments [Fig. 2(a)]. This
will alter the possible scattering vectors that can be observed.
To illustrate this, we plot in Fig. 2(b) the partial spectral
function Az(k‖, ω) for the surface and subsurface layers of the
nearest-neighbor cubic model with isotropic hopping,

Az(k‖, ω) = − 1

π
Im Gzz(k‖, ω), (10)

with Gzz being the matrix element of the noninteracting
Green’s function for the zth layer of the N-layer slab [25].
Here, we observe that the electronic states at the surface have
a very different spectral density depending on whether we are
looking at the surface unit cell [left-hand side of Fig. 2(b)] or
the subsurface unit cell [right-hand side of Fig. 2(b)]. At the
surface, the spectral weight is spread out over the entire range
of k‖ spanned by the bulk 3D Fermi surface [Fig. 1(g)] with
a maximum intensity at kz = π

2 , whereas the subsurface spec-
tral function exhibits a suppression of spectral weight around
kz = π

2 and maximum intensity around kz = π
4 and 3π

4 . It is
also found that the projected spectral function at deeper layers
will introduce additional nodes which eventually converge to
the bulk kz averaged spectral function for a large number of
layers N in the slab, as shown in Fig. S2 in the Supplemental
Material [25].

This effect is a consequence of quantum interference in
the z direction due to the surface breaking the translation
symmetry resulting in resonatorlike states in the vicinity of
the surface, much as the quasiparticle interference of a one-
dimensional defect in a 2D electron gas [1]. This has a
pronounced effect on the spectral function, modulating the
spectral density of the states in different depths and thus the
strength with which scattering vectors for defects located at
certain depths are observed. QPI scattering vectors arising
from subsurface and deeper defects will produce qualitatively
different patterns compared to surface defects, as shown in
Fig. 2(c), and these scattering vectors can be related to the
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FIG. 3. cQPI calculation for the rocksalt structure PbS. (a) Crystal structure of PbS, with larger black atoms as Pb and smaller orange
atoms as S. (b) 3D electronic structure taken at E = 1 eV above the Fermi level. (c) Total QPI pattern obtained via calculating Eq. (11) of the
main text with the weights αi set to 1. The sum was performed over four Pb defects from the top four surface layers and four S defects from
the top four surface layers. (d) Experimental differential conductance QPI image of PbS from Ref. [22], taken at V = 0.80 eV. The individual
contributions to (c) are shown in (e)–(h). The scattering patterns originating from Pb-site defects at a specific depth are shown on the left-hand
side of each panel and the ones originating from S defects are shown on the right-hand side. The maximum intensity of the color scale has
been defined relative to the left-hand side of (e).

full three-dimensional electronic structure of the bulk material
by analyzing the corresponding spectral function at a specific
depth from the surface. For defects at a known depth, one
may use this knowledge to extract information about the kz

dispersion of the full three-dimensional electronic structure,
or, conversely, for a known electronic structure the scattering
pattern can be used to determine the defect depth. We note that
this is a general phenomenon resulting in a modulation of the
spectral function Az(k‖, ω) as a function of depth z.

It is worth noting that the intensity of the QPI from sub-
surface defects is rather weak. As illustrated in Fig. 2(c), the
intensity of QPI arising from a subsurface defect in this toy
model is only 10% of that from a surface defect. Nevertheless,
this does not imply that the QPI from these defects cannot
be observed. In fact, it implies that if one wishes to directly
reproduce experimental measurements of QPI arising from 3D
systems, then one needs to sum the contribution of all types
of defects, i, not just of different elements, but from different
sites and depths, to the total cLDOS [ρ i(q, ω)], and multiply
these by a realistic approximation for the different number of
each type of defect,

ρexpt (q‖, ω) =
∑

i

αiρ
i(q‖, ω). (11)

In some systems, it may be sufficient to only consider surface
defects, however, this will be dependent on the materials’
chemical composition and the relative number of each type of

defect. For intrinsic bulk defects, αi should be approximately
equal and independent of i.

To illustrate this, in Fig. 3 we present equivalent cQPI slab
calculations for a density functional theory (DFT)-derived
tight-binding model of PbS, a semiconducting rocksalt mate-
rial shown in Fig. 3(a) where QPI measurements have recently
been reported [22]. The valence bands of this material are
dominated by the p orbitals of Pb and at an energy of 1 eV
above the Fermi level exhibits a 3D electronic structure with
no states around kz = 0, as shown in Fig. 3(b). This model
was generated using QUANTUM ESPRESSO [26] and WAN-
NIER90 [27], and details can be found in the Supplemental
Material [25]. In Fig. 3(c), we present the result of calculating
Eq. (11) for a 16-unit-cell-thick slab of PbS, for the (100)
surface, assuming all Pb and S defects are equally likely. This
produces a complex pattern which is in good qualitative agree-
ment with the experimental QPI measurement from Ref. [22]
at a similar energy (0.8 eV) shown in Fig. 3(d).

Figures 3(e)–3(h) reveal the power of the methodology
employed here. Each Pb defect (left) and S defect (right)
that was considered produces a unique QPI scattering pattern
depending on the relative distance from the surface, and it can
be seen that some scattering patterns [e.g., left-hand side in
Figs. 3(f) and 3(h)] are remarkably similar to the experimen-
tal measurement. This could suggest an uneven distribution
of αi in this system [22] and highlights that this numerical
simulation technique can be used to identify not only the
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three-dimensional electronic structure of a system but also
the relative concentration of unique defects at or below the
surface, assuming the electronic structure is sufficiently well
understood. To confirm if this defect anisotropy is generic,
one could perform DFT-based slab calculations and study the
energy of each type of defect. However, this is beyond the
scope of the present work.

IV. DISCUSSION

Our analysis of cQPI simulations for three-dimensional
systems highlights an important consideration regarding the
comparison and interpretation of QPI measurements. Defects
of the same type, but at different distances from the surface,
will produce unique sets of scattering vectors governed by
unique regions of kz. It implies that if one wishes to truly com-
pare and understand the electronic structure of 3D materials
using QPI, one needs to compare the experimental measure-
ment with a simulation that takes into account multiple defects
not just of different types, but at different depths from the sur-
face. Additionally, unless surface states are present [28–30],
if the system exhibits non-negligible out-of-plane hopping,
the sharpest QPI features present in Fourier-transformed mea-
surements will originate not from defects at the surface but
from subsurface defects. In cases where a surface state exist,
e.g., on the noble metal (111) surface [31] the surface state
scattering will dominate the scattering intensity.

These details were not captured in previous theoretical
studies of three-dimensional systems [18,22,28,32], due to the
use of discrete, site-centered Green’s functions. The contin-
uum transformation employed here is therefore a very useful

tool to reliably and accurately compare STM measurements
with theoretical simulations for generic materials.

In this paper, we performed the continuum transformation
assuming Gaussian- or Slater-type orbitals, and left the radii
of these orbitals as a free parameter which could be fit to
experimental measurements [25], however, it is also possi-
ble to more accurately capture the orbital overlap and decay
into vacuum by explicitly calculating the Wannier orbitals,
e.g., from density functional theory [10,23,24]. This may be
required in more complex systems with multiple atomic el-
ements, particularly in systems where the surface layer does
not contribute any states to the Fermi level.

To summarize, we have studied how out-of-plane hopping
modifies the electronic response in realistic simulations of
QPI. Our results provide a generic framework to understand
this behavior, and highlight the importance of defect depth,
position, and type on experimental observables. The methods
introduced here unlock the ability to understand the three-
dimensional electronic structure of materials using scanning
tunneling microscopy. The formalism presented here can be
used analogously to describe the behavior of magnons [33]
or phonons near surfaces, providing a broader framework to
describe how quasiparticles can be detected at the surfaces.

Underpinning data are available at Ref. [34].
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