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Topological quantum computation relies on a protected degenerate subspace enabling complicated operations
in a noise-resilient way. To this end, hybrid platforms based on non-Abelian quasiparticles such as parafermions
hold great promise. These are predicted to emerge at the interface between fractional quantum Hall states and
superconductors and therefore naturally couple to superconducting qubits. Here, we study a parafermionic
fluxonium circuit and show that the presence of topological states yields a striking periodicity in the qubit
spectrum. In addition, peculiar and marked signatures of different parafermion coupling, associated with multiple
tunneling of fractional quasiparticles, can be detected in the qubit microwave spectrum. Finite parafermion
coupling can reduce the full degeneracy of the non-Abelian manifold, and we show that this configuration can
be used to assess the remaining degree of protection of the system.
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I. INTRODUCTION

The possible existence of non-Abelian quasiparticles [1,2],
together with their potential in performing nontrivial uni-
tary operations on a degenerate subspace, have triggered a
great scientific effort recently. The ensuing topological pro-
tection against local perturbations holds great promise for
noise-resilient quantum computation [3–8], and non-Abelian
statistics constitutes a first key element toward fault-tolerant
quantum computation [1,7]. Novel topological solid-state
platforms range from exotic fractional quantum Hall (FQH)
states [1,2,9–12] to hybrid superconductor-semiconductor de-
vices [13–17] and topological insulators [18,19]. These may
host Majorana zero-energy modes (MZMs) [13,20,21] or new
topological states of matter called parafermions (PFs) (or
fractionalized Majoranas) [22–35]. However, despite the huge
ongoing experimental efforts, up-to-date very scarce evidence
of non-Abelian statistics in FQH systems has been reported
[9,12], together with no unambiguous detection of MZMs
[13,36,37].

Parafermions can be thought of as a nontrivial general-
ization of MZMs featuring, for instance, a larger topological
degeneracy, which results in greater computational capabil-
ities [38]. Moreover, differently from MZMs, PFs can be
coupled via several different and intriguing mechanisms [39].
A full characterization of these couplings, which is still lack-
ing to the best of our knowledge, would represent a precious
tool to detect the presence of PFs, manipulate them, and
clarify their interplay with the system they are embedded in
[29,40]. In this respect, one of the most promising platforms
for hosting parafermions is a FQH state in proximity to a
superconductor (SC) characterized by strong spin-orbit inter-
actions. Indeed, the strong correlations present in the system

[41–46] allow for the localization of these entangled zero-
energy modes at the SC-FQH interface [47–50]. Different
possible realizations have been theoretically inspected, with
various FQH filling factors or SC geometry [23,40,47–51], but
still await any experimental evidence.

Here, we study spectroscopic signatures of PFs and their
hybridization, within a setup consisting of a FQH-based
platform and a fluxonium superconducting qubit [52]. In
particular, we show how superconducting circuits [4,53–56],
which have been already proposed as efficient tools to detect
MZMs [57–68], can be also implemented for the detection
of PFs and, crucially, for the direct characterization of non-
trivial PF hybridization, absent in the MZM case, efficiently
discriminating between different coupling mechanisms. More
in detail, we consider Z2m PFs, hosted by a hybrid SC-FQH
system in the ν = 1/m Laughlin state. In analogy with a
specific proposal for the detection of MZMs [62], we consider
a fluxonium qubit sharing the SC leads with the hybrid setup
and study its coupling with the PFs. We show how the PF-
mediated 4mπ -Josephson effect yields a 4mπ periodicity of
the qubit spectrum as a function of the applied external flux. In
addition, we consider several terms describing the hybridiza-
tion of the four PFs in the circuit. These extra spurious terms,
which have never been explicitly considered in the literature
to our knowledge, modify the periodicity of the spectrum in
a very recognizable way, thus providing a striking signature
of the presence of PFs and of their properties. We discuss
the physical origin of these couplings and propose possible
ways to enhance or suppress their action through local gating
on the QH region, i.e., using a tip of a scanning gate micro-
scope (SGM) [69–75]. As a relevant observable, we study
the microwave (MW) spectrum detected by a nearby MW
resonator and show how clear evidence of the 4mπ periodicity
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FIG. 1. (a) Schematics of a parafermionic fluxonium. Four PFs
α0, . . . , α3 (yellow) localize at the ends of two SC leads (blue),
shunted by a superinductor. (b) 12π -periodic spectrum for m =
3, showing the ground and first excited fluxonium states for
the 6 possible PF numbers np (thick purple line corresponds to
np = 0). (c) Zoom of (b) around �/�0 = π . (d) MW spectrum
showing allowed transitions assuming all np states are equally
populated. Transitions belonging to a given np are marked with
a color-coded dashed line. Parameters are EJ = 0.45ωp, EL =
0.03ωp, γ

(1) = 0.04ωp, γ
(2,3) = λ(k) = 0.

appears, together with marked specific signatures of PF cou-
pling through anomalous periodicity. Our results open the way
to a systematic study of the parafermionic topological state
and of fundamental quasiparticle processes in the system, and
complement well proposals based on transport spectroscopy
[51].

II. PARAFERMION SYSTEM

We consider the system shown in Fig. 1(a), describing a
FQH system in the ν = 1/m Laughlin state, interrupted at the
center by two trenches that host superconducting leads, such
as NbN [44]. Four parafermions αi are predicted to emerge
at the ends of the two SC leads, with i = 0, . . . , 3. The local-
ization of PFs is well described in Refs. [34,48]: chiral FQH
edge states of given spin projection are brought into proximity
on the sides of the SC leads, as schematized in Fig. 1(a), and
effectively form a Luttinger liquid (see our Appendices). The
latter is specified by two independent nonchiral fields, φ and
θ , obeying [φ(x), θ (x′)] = i(π/m)�(x − x′) with ρ = ∂xθ/π

the electronic density. The relevant pairing acting under-
neath the SC leads generates an inhomogeneous sine-Gordon
term that pins φ to one of the 2m inequivalent minima of
the potential, φ = πN̂μ/m, with Nμ = 0, . . . , 2m − 1. Anal-
ogously, outside the SC regions, the Hall droplet induces
strong backscattering between the chiral modes that fixes θ

and we can then set θ = πN̂c/m and θ = π N̂ l (r)
b /m in the

central, left, and right regions, respectively. Commutation re-
lations between the φ and θ fields induce [N̂R, N̂c] = im/π

and [N̂L(R), N̂ l
b] = im/π , and localized modes appear at the

ends of the SC leads, which are written as [48]

α1(2) = ei π
m (N̂L(R)+N̂c ), α0(3) = ei π

m (N̂L(R)+N̂ l (r)
b ). (1)

The resulting Zp parafermions with p = 2m are character-
ized by peculiar algebraic properties, α

p
i = 1, α

p−1
i = α

†
i , and

αiα j = ei2π/p α jαi (for i < j), generalizing the Majorana case
p = 2 (m = 1). The Fock space associated with a single pair
of Zp PFs is p-dimensional. In particular, since eiπ/pα

†
1α2 =

e2π i(N̂R−N̂L )/p, the state of the pair {α1, α2} can be specified by
the number N̂R − N̂L [76]. The conservation of the total PF
parity,

P̂ = α
†
1α2α

†
3α0 = e2π i(N̂ l

b−N̂r
b )/p, (2)

allows us to identify p decoupled sectors, with fixed total PF
parity, within the whole p2-dimensional space associated with
the four PFs α0, . . . , α3. It is useful to introduce the so-called
“Fock parafermions” [31,40,77], which allow defining num-
ber operators n̂ and to properly label the states spanning pairs
of PFs. Operatively, we can set n̂p = (N̂L − N̂R − 1) mod(p)
and n̂0 + n̂p = (N̂ l

b − N̂r
b − 1) mod(p) (for details, see the

Appendices).
The coupling between the two PFs {α1, α2} localized at the

junction accounts for tunneling of quasiparticles with frac-
tional charge 2e/p between the two SC leads. This can be
seen by noticing that the operator Û = α

†
2α1 yields Û †N̂cÛ =

N̂c + 1 [48]. Single Cooper pair tunneling between the SC
leads requires then p iterations to complete a cycle, rendering
the energy 2pπ periodic in the gauge-invariant phase differ-
ence ϕ between the SC leads. A closer inspection reveals that
this is not the only possible process at the junction and that
multiples of charge e/m can tunnel through the gapped region
between the SC leads. Indeed, powers of Û increase the charge
in the central region in the form (Û †)kN̂cÛ k = N̂c + k. This
corresponds to 2πk slippage of the field θ , from one minimum
to the kth nearest minima of the cosine potential (see the
appendices). By artificially reducing backscattering between
the fractional edge channels in the central region between
the SC leads, we can allow for higher-order processes and
asymptotically approach the 2pπ -periodic sawtooth current-
phase relation of the fractional Josephson effect in highly
transparent junctions [48]. This can be done via local gating
in the FQH region through the tip of a local SGM [71–74] that
produces an antidot and enhances resonant tunneling between
the fractional Hall edge states, as depicted in Fig. 1(a). At
lowest orders, the most general PF coupling at the junction
reads

H (0)
PF =

p/2∑
k=1

γ (k) cos

(
k
ϕ + 2π n̂p

p

)
, (3)

which is controlled by the amplitudes γ (k). The latter depend
exponentially on the distance between the PFs compared to
the magnetic length and can be calculated through the in-
stanton technique [29,39,40,78]. In the perturbative regime,
tunneling of k charge e/m quasiparticles (or of a charge ke/m
quasiparticle) is suppressed as γ (k) ∝ γ k .

We can proceed analogously and consider tunneling of
quasiparticles through the SC leads. Focusing on the left SC
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FIG. 2. (a) Schematics of the setup with a U-shaped SC lead
and a local tip that allows for tuning of the couplings λ(k).
(b)–(d) Spectrum of the lowest fluxonium band in the presence of
off-diagonal PF couplings. Black coloring of the lines indicates hy-
bridization between different np values. In (b), λ(1) = 0.015ωp lifts
all crossings, giving 2π periodicity. In (c), λ(2) = 0.01ωp describes
charge 2e/3 tunneling, giving 4π periodicity. In (d), λ(3) = 0.01ωp

describes charge e tunneling, giving 6π periodicity. All the other
parameters are identical to Fig. 1. (e) MW spectrum corresponding
to the scenario of panel (b), when only the ground state is populated.

lead and considering only the p-dimensional sector spanned
by n̂p for a fixed total PF parity, the generic coupling of PFs
{α0, α1} reads (see the Appendices)

H (1)
PF =

p/2∑
k=1

λ(k)αk
1 + H.c. (4)

The amplitudes λ(k), associated with 2kπ phase slippage of
the field φ and charge ke/m quasiparticle tunneling, are con-
trolled by the coherence length of the superconductor and, in
the perturbative regime, they scale as λ(k) ∝ λk . To actively
manipulate those amplitudes, we envision a slightly modified
geometry, depicted in Fig. 2(a), where a U-shaped left SC
lead allows for direct PF coupling via the quantum Hall gap,
controlled by local gating [72,73,79]. This opens the possi-
bility to study several fundamental processes of quasiparticle
tunneling and assess their effects on the parafermionic spectra.
Their detection and characterization, enabled by the fluxo-
nium qubit described below, are of great relevance as they
nontrivially extend the physics of Majorana hybridization,
which is inherently limited to electronic tunneling.

III. PARAFERMIONIC FLUXONIUM RESPONSE

The coupling of the parafermion system to a super-
conducting fluxonium qubit [55] realizes an interesting
conventional/topological architecture [68] and is obtained by
closing the Josephson junction between the left and right SC
leads on a superinductor, formed by a long chain of Josephson

junctions. The fluxonium Hamiltonian reads

HF = −4EC∂2
ϕ + 1

2 EL(ϕ − 2π�/�0)2 − EJ cos(ϕ), (5)

where EJ is the Josephson energy [80], EL = (�0/2π )2/L is
the inductive energy, EC = e2/(2C) is the charging energy,
and the external flux � is measured in units of �0/(2π ) =
h̄/(2e). PFs αi couple to the fluxonium through the ϕ-
dependent term Eq. (3) and the total Hamiltonian including
PF couplings Eq. (C2) reads

H = HF + H (0)
PF + H (1)

PF . (6)

An effective Hamiltonian can be derived by introducing
fluxon states |nϕ〉, which describe states of circulating cur-
rent in the loop whose number changes via tunneling of
fluxoids at the Josephson junction described by the term
T ±

ϕ |nϕ〉 = |nϕ ± 1〉. In addition, we consider eigenstates |np〉
of n̂p, through which the PF coupling at the junction reads
γ (k) cos[2kπ (nϕ + np)/p]. Finite PF coupling in the SC leads
introduces coupling between different |np〉 states through gen-
eralized Pauli matrices. In the combined basis |nϕ, np〉 the
low-energy Hamiltonian is

Heff = EL

2
(2πnϕ − 2π�/�0)2 − ES

2

∑
a=±

T a
ϕ

+
p/2∑
k=2

γ (k) cos[2πk(nϕ + np)/p] + H (1)
PF , (7)

with ES = ES (EC, EJ , γ
(1) ) the phase slip rate at the Joseph-

son junction [81,82]. The spectrum of the Hamiltonian is
obtained by numerical diagonalization of H as a function of
the external flux �. For definiteness, we choose the simplest
m = 3 case (Z6 PFs), set the parameter regime 0 < γ (1) <

π2EL < EJ [62], and introduce the plasma frequency ωp =√
8ECEJ . The spectrum features two bands, which originate

from groups of parabolic curves spaced in �/�0 approxi-
mately by 2π with anticrossings around �/�0 ∼ π + 2nπ of
size ES , in agreement with Eq. (7).

At first, we consider all λ(k) = 0, so that PF tunneling only
occurs at the junction and n̂p is a conserved quantity. The
result is shown in Fig. 1(b), where we only consider γ (1) �=
0. Within each band, we observe p = 6 different curves
corresponding to the possible PF occupation numbers np =
0, . . . , 5. Each curve exhibits a 12π periodicity. In Fig. 1(c),
we focus on the interval [0, 2π ] to highlight the presence
of protected crossings between curves associated with dif-
ferent values of np. We observe crossings at �/�0 = 2nπ ,
involving states whose PF number differs by 2 mod(p), and at
� = π + 2nπ , involving states which differ by 1 or 3 mod(p).
Additional PF couplings γ (2) and γ (3) at the junction do not
change the 12π periodicity and, therefore, do not qualitatively
modify our findings (see the appendices). This is an important
result of the present work: the spectrum of the fluxonium
allows for detection of the 2pπ -Josephson effect, which is not
affected by the presence of extra tunneling processes through
the junction.

A useful tool to characterize the spectral properties of
the system is provided by the microwave spectrum (MWS)
that is read out by a nearby resonator. Assuming a minimal
inductive coupling to the phase operator ϕ̂, the MWS captures
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transitions from the ground state |0〉 to the excited states |n〉
and it is given by Fermi golden rule expression

S(ω) =
∑

n

|〈0|ϕ̂|n〉|2δ(ωn − ω0 − ω). (8)

In Fig. 1(d), we show the MWS around �/�0 ∼ π obtained
by considering transitions from each one of the 6 lowest
energy states, with fixed np = 0, . . . , 5, to the corresponding
first excited states. Depending on np (see the color of the
dashed lines), the position of the minimum is shifted from
�/�0 = π . The existence of these different minima and the
presence of protected crossings in Fig. 1(d) are a good (al-
beit indirect) indication of the system 12π periodicity. The
latter can be directly observed by preparing the system in
a single eigenstate of n̂p. In this case, a sweep of �/�0

from −6π to 6π reveals indeed all the 6 inequivalent minima
located around �/�0 ∼ π + 2mπ (see the appendices). In
passing, we note that a (possibly time-resolved) microwave
spectroscopy can be used to investigate population transfer be-
tween sectors with different np, due to external mechanisms,
by studying changes in the relative intensity of the different
minima in the MWS. This can shine a light on the role played
by different kinds of quasiparticle poisoning events whose un-
derstanding, in analogy with the Majorana case [83–86], is of
great relevance, e.g., for the future development of PF-based
qubits.

We now study the effect of PF coupling within the left
SC lead, i.e., of finite λ(k). Since a nonzero H (1)

PF does not
conserve np, the degeneracy at the crossing points is gen-
erally lifted by the off-diagonal PF couplings. Importantly,
however, depending on which type of coupling is considered,
the crossings are lifted in different ways. If the two PFs on
the left SC lead exchange charge ke/3 quasiparticles, the
splitting of the crossings occurs for states whose np differ by
m̄k mod(p), where the integer m̄ � 1 indicates the order of
the process in λ(k). In particular, for λ(1) �= 0, all the crossings
are split, with the largest gaps appearing between states whose
np differ by 1. This scenario is shown in Fig. 2(b), where the
overall periodicity is reduced from 12π to 2π and two large
splittings appear at �/�0 = π between states with np = 5, 1
and np = 2, 3. Second-order processes open smaller energy
gaps at �/�0 = 2mπ while a third-order process determines
an even smaller anticrossing between the np = 1 and 4 states.
Analogously, the (exclusive) presence of a nonzero λ(2) or
λ(3) does not open all the crossings. Tunneling of charge 2e/3
quasiparticles for finite λ(2) only conserves np mod(2) and the
periodicity of the spectrum is reduced to 4π , as shown in
Fig. 2(c). Finally, tunneling of charge e quasiparticles for finite
λ(3) conserves npmod(3) and the periodicity of the spectrum
is reduced to 6π ; see Fig. 2(d). In general, we have shown that
ke/3 tunneling conserves the PF number np mod(k), leading
to 2kπ -periodicity of the spectrum of the parafermionic flux-
onium. The analysis of the latter can thus precisely detect the
presence of different tunneling mechanisms, also character-
izing their strength and possible tunability via local gating.
This represents a second important result of our work, which
paves the way for the identification of different types of PF
hybridizations in a hybrid FQH setup, distinguishing them
in terms of their effects on the protection of the topological
manifold of the PF system.

FIG. 3. (a) Spectrum of the device for EL = 0.03ωp, EJ =
0.5ωp, γ = 0.05ωp, and λ(1) = λ(2) = λ(3) = 0.02ωp. Inset: Zoom
showing the avoided crossings. (b) MWS obtained by populating
only the ground state.

The effects of nonzero λ(k) also emerge in the MWS. In
Fig. 2(e), for example, we show the MWS corresponding to
the spectrum shown in panel (b), characterized by λ(1) �= 0,
for the case in which only the ground state is populated.
Three different transitions are activated, which directly sig-
nals the presence of tunneling of a charge e/3 quasiparticle,
and thus the hybridization of states whose np differ by 1. In
particular, a faint low-energy transition is activated between
the ground state and the first excited state, resulting from the
hybridization of the np = 0, 5 PF states. The more pronounced
second and third transitions involve the excited states of the
fluxonium degree of freedom, still featuring np = 0, 5. To
appreciate even better the effects of λ(k) on the MWS, we
slightly modify the parameters of the fluxonium by increasing
EJ , so that some states belonging to the second fluxonium
band intersect with the ones of the first band. These additional
crossings make it straightforward to detect and distinguish the
presence of different nonzero λ(k) by analyzing the MWS. We
demonstrate this in Fig. 3 where, to show the maximal effect
of PF hybridization, we simultaneously switch all λ(k) on.
The fluxonium spectrum, in panel (a), features several avoided
crossings that emerge also in the corresponding MWS, shown
in panel (b), obtained by only populating the ground state.
There, the main gaps opened by λ(1), λ(2), and λ(3) (high-
lighted with blue, yellow, and green arrows, respectively) can
be easily identified and distinguished between each other.

IV. CONCLUSIONS

We have studied a parafermionic fluxonium circuit, where
signatures of PF hybridization can be clearly detected with
MWS, identifying the degree of topological degeneracy. The
elucidated “selection” rules hold also in presence of additional
crossings, which can result from the touching of the two flux-
onium bands around �/�0 ∼ ±π, . . . in the presence of a
larger EJ . In this respect, we note that one could also envision
more complicated couplings that involve three or four PFs,
while still conserving the total PF parity. Those terms would
result in the generalization of the σy operator that may appear
in the Majorana case. However, we expect the “selection”
rules highlighted so far to still be valid.
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APPENDIX A: PARAFERMION DESCRIPTION

The low-energy physics and the localization of PFs is well
captured by the description provided in Refs. [34,48], where
the major players are chiral counterpropagating FQH edge
states of the Laughlin fraction ν = 1/m of given spin pro-
jection, described by the fields φμ, with μ = R, L, satisfying
[φμ(x), φμ(x′)] = σμi(π/m)sgn(x − x′), with σR/L = ±1 and
[φL(x), φR(x′)] = i(π/m). Low-energy right- and left-moving
quasiparticles of charge e/m are created by the operators
eiφR/L , which exhibit anyonic exchange statistics,

eiφμ(x)eiφμ(x′ ) = eiφμ(x′ )eiφμ(x)eiσμ(π/m)sgn(x′−x), (A1)

from which it follows that the electron operators given by
ψR/L ∝ eimφR/L obey fermionic statistics. Introducing φR/L =
φ ± θ obeying [φ(x), θ (x′)] = i(π/m)�(x − x′) with ρ =
∂xθ/π the electronic density, the unperturbed Hamiltonian
describing the edge states reads

H0 = mν

2π

∫
dx[(∂xφ)2 + (∂xθ )2]. (A2)

Underneath the SC leads the fermionic pairing interaction has
the form

∫
dx�(x)ψ†

L (x)ψ†
R(x) + H.c., so that the relevant

pairing interaction involves only the φ field and it is written
as

Hsc ∝ −
∫

dx�(x) cos[2mφ(x)]. (A3)

The pairing fixes the field φ in the superconducting region to
one of the 2m minima of the cosine, φ = πN̂μ/m, where the
operator N̂μ is specified by the eigenvalues Nμ = 0, . . . , 2m −
1. Outside the SC regions strong backscattering between the
chiral modes is provided by the Hall droplet itself, through an
interaction term of the form

∫
dxψ†

R(x)ψL(x) + H.c., which
involves only the θ field and reads

Hfqh ∝ −
∫

dx t (x) cos(2mθ ), (A4)

which is analogous to that in Eq. (A3), with φ replaced by θ

and with t (x) a tunneling amplitude between counterpropagat-
ing edge states. The interaction gaps the modes by fixing θ and
we can then set θ = πN̂c/m and θ = π N̂ l (r)

b /m in the central,
left, and right regions, respectively. The commutation rela-
tions satisfied by the fields φ and θ induce [N̂R, N̂c] = im/π

and [N̂L(R), N̂ l
b] = im/π , and localized modes appear at the

boundaries of the SC leads, which can be written as [62]

α1(2) = ei π
m (N̂L(R)+N̂c ), α0(3) = ei π

m (N̂L(R)+N̂ l (r)
b ). (A5)

The resulting Zp parafermions with p = 2m are characterized
by peculiar algebraic properties, α

p
i = 1, α

p−1
i = α

†
i , and the

anyonic exchange statistics

αiα j = ei2π/p α jαi for i < j. (A6)

We now introduce the so-called “Fock parafermions” di,
which allow us to define a number operator and thus to
properly label the state. According to Ref. [77], relations
connecting an even number of parafermion operators to Fock
parafermions that generalize the Majorana case (p = 2 or
equivalently m = 1) can be written as

α2i−1 = di + (d†
i )p−1,

α2i = eiπ/p[di + (d†
i )p−1](ei2π/p)ni , (A7)

where the Fock PF number ni reads

ni =
p−1∑
m=1

(d†
i )mdm

i , (A8)

which satisfies [ni, d†
i ] = d†

i and [ni, di] = −di. The peculiar
algebraic properties of parafermions, i.e.,

α
p
i = 1,

α
p−1
i = α

†
i ,

αiα j = ei2π/p α jαi, for i < j, (A9)

naturally induce the following properties of the Fock PF oper-
ators,

d p
i = (d†

i )p = 0,

did j = ei2π/p d jdi, for i < j,

d†
i d j = e−i2π/p d jd

†
i , for i < j,

(d†
i )mdm

i + d p−m
i (d†

i )p−m = 1, for m = 1, . . . , p − 1.

(A10)

It is important to note that each PF operator α2 j−1 (and α2 j)
cycles between the p possible occupation numbers associated
with the site j. Equation (A7) can be inverted giving the
expression

di = p − 1

p
α2i−1 − 1

p

p−1∑
m=1

(ei2π/p)m2/2+mαm+1
2i−1(α†

2i )
m. (A11)

In the main text we consider four PFs α0, α1, α2, α3, with
α1 and α2 located at the two opposite sides of the weak link of
the Josephson junction. The pair α1, α2 is specified by N̂R −
N̂L, in a way that eiπ/pα

†
1α2 = e2π i(N̂R−N̂L )/p. Analogously we

can write e−iπ/pα
†
3α0 = e−2π i(N̂R−N̂L )/pe2π i/p(N̂ l

b−N̂r
b ). The total

PF parity can be defined as

P = α
†
1α2α

†
3α0 = e2π i(N̂ l

b−N̂r
b )/p. (A12)

In terms of the Fock PF operators, the number operator np ≡
n1 counts the number of Fock PFs associated with the cou-
ple α1, α2. The others PFs are localized farther to the left
(α0) or to the right (α3) and their combined occupation is
described by the number operator n0. Operatively, we can set
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n̂p = (N̂L − N̂R − 1) mod(p) and n̂0 + n̂p = (N̂ l
b − N̂r

b −
1) mod(p). The parity operator for a set of sites S is given
by

P = (ei2π/p)
∑

i∈S ni . (A13)

The Fock space associated with two couples of Zp PFs is
p2-dimensional. If the total PF parity P = (ei2π/p)n0+n1 is con-
served, the whole Fock space splits into p decoupled sectors
with a fixed total PF parity. In the following, we will work
within one of these sectors, say the one with P = 1. A conve-
nient basis for this sector consists of the states B = {|np〉} that
are eigenstates of the number operator n̂p|np〉 = np|np〉 with
np = 0, . . . , p − 1 (in what follows we will interchangeably
use n1 or np).

For the sake of concreteness, we now explicitly write the
matrix representation of d1 (and related operators) using the
basis B. We focus, in particular, on the p = 6 case. In particu-
lar, we have

d1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

n1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A14)

α1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From these expressions, it is evident that α1 cycles between
the 6 different occupation numbers defined by the two PFs on
the opposites sides of the weak link.

APPENDIX B: PARAFERMIONIC JOSEPHSON EFFECT

The goal is to find the Hamiltonian describing the coupling
between the two PFs α1 and α2, localized on the two oppo-
site sides of the weak link. Since this coupling corresponds
to the tunneling of quasiparticles with fractional charge e/p
between the two superconductors, we expect the energy to be
2pπ periodic in the phase difference ϕ between the SCs. In
Ref. [48] has been derived the low-energy Hamiltonian

HPF = EPF

(
mod

[
ϕ

p
+ π + 2πn1

p
, 2π

]
− π

)2

(B1)

for a gapless weak link (i.e., no scattering between the two
SCs that gap out the edge states) and “even” p = 2m PF.
Note the expected dependence on ϕ/p which leads to the 2pπ
periodicity, as well as the phase shift depending on the number
operator n1. In the presence of a strong gap in the weak link,

FIG. 4. Spectrum of the whole system as a function of the ex-
ternal flux � for the case of γ (1) = 0.07ωp, γ (2) = 0, and γ (3) =
0.035ωp and with fluxonium parameters given by EJ = 0.4ωp, EL =
0.03ωp, EC = 0.3125ωp, with ωp = √

8ECEJ . Different lines refer
to different values of np. In particular, the thick purple (green) lines
highlight the np = 0 (np = 3).

we describe the coupling between the PF as

HPF = γ (1) cos

(
ϕ

p
+ 2πn1

p

)
, (B2)

that generalizes the Majorana-mediated (p = 2) 4π anoma-
lous Josephson effect and features all the expected properties.
Note that

e−iπ/pα
†
1α2 = ei2πn1/p, (B3)

which can be easily verified by taking matrix elements
〈n|e−iπ/pα

†
1α2|m〉 between Fock parafermion states |n〉.

Higher-order coupling at the junction is accounted for by
noticing that (e−iπ/pα

†
1α2eiϕ/p)k = eikϕ/pei2kπn1/p so that addi-

tional tunneling terms read

H (k)
PF = γ (k) cos

(
kϕ

p
+ 2kπn1

p

)
. (B4)

If we focus on a given sector with fixed n1, say n1 = 0, the
potential terms associated with the tunneling on the Josephson
junction reads

U (ϕ) = EJ cos(ϕ) + γ (1) cos(ϕ/6)

+ γ (2) cos(ϕ/3) + γ (3) cos(ϕ/2), (B5)

and accounts for tunneling of Cooper pairs, single PFs, pairs
of PFs, and e-charged quasiparticles (three PFs). As long as
γ �= 0, this part of the potential is thus 12π periodic in ϕ.
Moreover, if there are no relative extra phases (which would
come, e.g., from complex amplitudes) we have the additional
symmetry ϕ ↔ −ϕ. The spectrum with the additional term
γ (3) on, describing electron tunneling at the junction, is shown
in Fig. 4, with the cases np = 0 and np = 3 highlighted as
thick purple and green lines, respectively.
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APPENDIX C: PARAFERMION COUPLINGS AND
SPURIOUS TERMS

We now consider finite PF couplings, in terms of tunneling
of quasiparticles, through the SC leads. By defining V̂ = α

†
0α1

we have that (V̂ †)kN̂LV̂ k = N̂L + k, so that tunneling of charge
ke/m quasiparticles through the left SC lead is associated with
the 2kπ phase slip of the φ field, whose amplitude λ(k) can
be calculated through the instanton technique analogously to
the tunneling through the Hall droplet γ (k). In this case, the
coherence length of the superconductor sets the scale of the
process and in general in the perturbative regime the tunneling
of k quasiparticles of charge e/m scales as λ(k) ∝ λk .

Focusing on the left SC lead, the most general process is
described by the generic term

H (1)
PF =

3∑
k,n=1

λ(k)(α†
0 )kαn

1 + H.c. (C1)

By fixing the total parity we require H (1)
PF to commute with P

and thus fix n = k. By further restricting our analysis on a sec-
tor with defined global PF parity, and thus on a 6-dimensional
space spanned by the basis B consisting of the eigenstates
of np, the generic coupling of PS α0, α1 can be effectively
expressed as

H (1)
PF =

p/2∑
k=1

λ(k)αk
1 + H.c., (C2)

where the λ(k)’s can be complex. Note that, basically, the three
matrices α1, α2

1 , and α3
1 are the three generalization of the σx

matrix used for the Majorana case. We could also envision
more complicated couplings that involve three or four PFs,
while still conserving the total PF parity. Those terms would
result in matrices entering Eq. (C2) that do not only contain
“1”s, but also complex phases. In this sense, they would
represent a generalization of the σy operator that could be
considered in the Majorana case as a result, for example, of
the coupling γ0γ1γ2γ1 = −γ0γ2 (with γi Majorana fermion
operators, not to be confused with the amplitudes γ (k)). Nev-
ertheless, in general we expect the “selection” rules induced
by the spurious terms and described in the main text to still be
valid.

Reduced periodicity

As discussed in the main text, the coupling between the two
PFs on the left SC lead determines a reduction of the period-
icity of the spectrum as a function of the external magnetic
flux. In particular, tunneling of charge ke/3 quasiparticles,
with amplitude λ(k), makes the spectrum 2kπ periodic. In
Fig. 5, we explicitly show this effect. In panel (a), obtained
for a finite λ(1) = 0.015ωp, all the level crossings are split
and the spectrum is thus 2π periodic. Indeed, if we focus
on the ground state, its adiabatic evolution when the flux is
ramped from �/�0 = 0 → 2π is still the ground state of the
system. The same applies for all the other excited states, since
all the crossings are lifted. The situation is different in panel
(b), where we consider only a finite λ(2) = 0.01ωp. There,
focusing again on the ground state, the presence of protected
crossings requires the flux to be (adiabatically) ramped all

FIG. 5. Periodicity of the spectrum of the whole system, for
different off-diagonal terms λ(k). In (a), a finite λ(1) = 0.015ωp makes
the spectrum 2π periodic. In (b), a finite λ(2) = 0.01ωp makes
the spectrum 4π periodic. In (c), a finite λ(3) = 0.01ωp makes the
spectrum 6π periodic. The other parameters are γ (1) = 0.07ωp,
γ (2) = γ (3) = 0, EJ = 0.4ωp, EL = 0.03ωp, EC = 0.3125ωp, with
ωp = √

8ECEJ . The color scheme is the same as in Fig. 2 of the main
text.

the way to �/�0 = 0 → 4π in order to recover the initial
situation. The same applies to all the other levels and the
spectrum is thus 4π periodic. Finally, in panel (c) we consider
the effect of a finite λ(3) = 0.01ωp. In this case, even more
crossings are protected and the flux has to be increased from
�/�0 = 0 → 6π to recover the initial configuration. The pe-
riodicity is thus 6π .

APPENDIX D: MICROWAVE SPECTRUM

Assuming the system to be in the state |n〉, with energy ωn

(which can be the ground state or another state of the lowest
band, for example with a fixed number of PFs), the amplitude
In→m associated with the microwave-induced transition to the
state |m〉 with energy Em > En is computed through the Fermi
golden rule expression

Sn→m(ω) = |〈ψn|φ̂|ψm〉|2δ(ω − ωnm), (D1)

with ωnm = ωm − ωn.

1. Position of the minima of the microwave spectrum
(no spurious terms)

Without additional PF couplings, neither diagonal (γ (2) =
γ (3) = 0) nor off-diagonal (λ(k) = 0), it is possible to analyt-
ically determine the (approximate) positions of the minima
of the microwave spectrum (MWS). The latter are associated
with anticrossings in the fluxonium spectrum and, therefore,
occur whenever the ϕ-dependent potential energy V (ϕ) of the
whole system features two equal global minima. We have

V (ϕ)

EJ
= EL

2EJ
(ϕ − �/�0)2 − cos(ϕ) − γ

EJ
cos

(
ϕ

6
+ 2πn1

6

)
.

(D2)
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FIG. 6. MWS of the system as a function of the external flux
� for the entire 12π periodicity, for the np = 0 case and for
γ = 0.07 ωp, γ (2) = γ (3) = 0, and with fluxonium parameters given
by EJ = 0.4ωp, EL = 0.03ωp, EC = 0.3125ωp, with ωp = √

8ECEJ .
The vertical red dashed lines indicate the positions of the minima,
which differ from integer multiple of π (shown as vertical dotted
lines), according to the analytical approximation for �

(np=0)
m , given

in Eq. (D3).

For γ = 0, it is easy to verify that the condition for having
two equal global minima is �k/�0 = (2k − 1)π (k ∈ Z). Let
us study how this scenario is modified in the presence of a
finite γ , but assuming the regime EJ  γ , EL. In this case,
the position of the minima is still mainly controlled by the
cosine with prefactor 1. By expanding the potential around
the different minima of this cosine, one can find the condition

�(n1 )
m

�0
= (2m + 1)π

+ γ

EL

cos[(n1 + m)π/3] − cos[(n1 + m + 1)π/3]

2π2
,

(D3)

specifying the (approximate) values of the flux associated
with minima in the MWS.

In the MW spectrum, the 12π periodicity mainly manifest
itself in terms of the position of the minima, which deviates
from (2k − 1)π , where the amplitude of these deviations is
proportional to γ /EL for γ , EL � EJ . The full MW spectrum
showing the 12π periodicity is shown in Fig. 6: the position
of the minima is indeed slightly shifted from multiples of
�/�0 = π . In turn, the maxima also show a marked fre-
quency dependence. Position and energy of the minima and
maxima clearly depend on the overall energy-phase relation.

2. Effects of off-diagonal couplings

In Fig. 3 of the main text, we chose the parameters so that
some states belonging to the second fluxonium band intersect
with the ones of the first band. This leads to additional cross-
ings that make it straightforward to detect and distinguish
the presence of different nonzero λ(k) from the analysis of

FIG. 7. MWS of the system as a function of the external flux �

without off-diagonal couplings [panel (a)], with λ(1) = 0.02ωp [panel
(b)], with λ(2) = 0.02ωp [panel (c)], and with λ(3) = 0.02ωp [panel
(d)]. All the other parameters are the same as in Fig. 3 of the main
text, i.e., EL = 0.03ωp, EJ = 0.5ωp, γ = 0.05ωp, and λ(1) = λ(2) =
λ(3) = 0.02ωp.

the MWS. In particular, to show the maximal effect of PF
hybridization, there we turned on all the λ(k). Here, in Fig. 7,
we consider the same scenario, but we consider only a single
nonvanishing λ(k) at a time. In panel (a), all λ(k) are set to
zero and no avoided crossing appears in the MWS spectrum.
For a finite λ(1) = 0.02ωp, in panel (b), a large splitting at
�/�0 = π is observed. For a finite λ(2) = 0.02ωp, in panel
(c), a clear splitting appears around �/�0 ∼ 0.9π . Finally,
for a finite λ(3) = 0.02ωp, in panel (d) a clear splitting appears
around �/�0 ∼ 0.82π . This analysis allows us to claim that
each of the three big splittings shown in Fig. 3(b) of the main
text, and highlighted with three colored arrows, is associated
with a specific coupling term λ(k).
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