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Majorana nanowires, Kitaev chains, and spin models
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Motivated by the fact that the idealized Kitaev chain toy model and the experimental semiconductor-
superconductor Majorana nanowire can both host the Majorana zero modes, we theoretically investigate the
question to what extent the two models are equivalent or similar, using the perspective of the corresponding dual
spin models for both. We start with the duality between the Kitaev chain and the transverse-field XY spin model
through the Jordan-Wigner transformation with the goal of establishing the connection between the Kitaev chain
and the nanowire. By applying the Jordan-Wigner transformation to the nanowire, we find that the corresponding
bosonic spin model is a generalized spin cluster model, containing 3- and 4-spin terms, with staggered couplings.
By projecting out the upper band of the bare SM with higher energy, we obtain an effective low-energy spinless
system from the spinful nanowire system deep in the topological regime. Finally, we establish the connection
between the Kitaev chain and Majorana nanowire by showing that the spinless Kitaev chain can be viewed as
the first-order approximation of the spinful Majorana nanowire deep in the topological regime.

DOI: 10.1103/PhysRevB.107.035440

I. INTRODUCTION

The Majorana zero modes (MZMs) are non-Abelian Ising
anyons with potential application to fault-tolerant topolog-
ical quantum computing because of the robustness of the
quantum degenerate ground state against local perturbations
protected by a topological gap [1,2]. One prototypical model
that was shown to host boundary MZMs is the Kitaev chain
[3], which contains nearest-neighbor hopping and p-wave su-
perconductivity in a spinless system [4]. Given appropriate
parameters and conditions, a pair of MZMs can emerge at
both ends of the Kitaev chain by construction. Although, the
Kitaev chain is an idealized toy model to show a proof of
principle, because spinlessness and p-wave superconductivity
are hard to find in nature, the model has been influential in
focusing attention on non-Abelian MZMs, topological super-
conductivity, topological quantum phase transition (TQPT),
and topological quantum computing using MZMs. Therefore,
realistic experimentally feasible models have been proposed
to search for MZMs. The most prevailing scheme used in
experiments—see, e.g., Ref. [5] and references therein for
a recent effort to experimentally realize MZMs in semicon-
ductor (SM)-superconductor (SC) hybrid structures—is the
one-dimensional (1D) SM-SC nanowire [6–9], where the SM
nanowire with a large Rashba-type spin-orbit coupling (SOC)
acquires p-wave superconductivity from an s-wave SC due
to the proximity effect, and a pair of MZMs should appear
at the ends of the nanowire given a sufficiently large mag-
netic field. This realistic SM-SC system is often referred to
as a Majorana nanowire since the MZMs are predicted to
arise at the two ends of the nanowire under suitable con-
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ditions. However, although both Kitaev chain and Majorana
nanowire systems can host MZMs, they are two completely
different models which, at first sight, appear to have little to
do with each other except for their one-dimensionality and
the possible existence of MZMs. For example, the Kitaev
chain is a lattice model made of spinless fermions, whereas
the nanowire is a continuum system with real spinful elec-
trons. Also, in the Kitaev chain, p-wave superconductivity
is assumed a priori in the model, whereas in the Majorana
nanowire, the effective topological p-wave superconductivity
is emergent under the subtle combined effects of induced
s-wave SC, Rashba SOC, and Zeeman spin splitting. Histor-
ically, the Majorana nanowire proposal arose not motivated
by the Kitaev chain idea, but from various two-dimensional
(2D) proposals involving SOC, s-wave SC, and spin splitting
[8,10,11]. After the fact, however, it seems obvious that the
two models, the Kitaev chain and the Majorana nanowire,
should be related since both depend on having an effectively
spinless p-wave SC leading to MZMs localized at the ends of a
1D system. However, the extent to which they are generically
equivalent to each other remains unclear despite some isolated
efforts [12–15] to connect them through specific properties.
References [16,17] were among the first to have preliminary
discussions on possible connections between the Kitaev chain
and the Majorana nanowire models.

This lack of clarity sometimes leaves a misconception
that these two models, the Kitaev chain and the Majorana
nanowire, are always equivalent, which is incorrect, as we will
show later under which circumstances these two models are
equivalent and when they cannot be mapped into each other.
This lack of complete equivalence between the two models
is rather obvious if one considers that the Kitaev model is
a spinless one-band model, whereas the nanowire model is
a spinful multiband model. Thus, a claim that the nanowire
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model can be obtained by taking the continuum limit of the
Kitaev chain and projecting onto the low-energy degrees of
freedom is technically incorrect since such a low-energy pro-
jection is meaningless for the original Kitaev chain model.
Thus, we are motivated to study the underlying general con-
nection between the Kitaev chain and the SM-SC nanowire
to try to see whether we can find an exact Majorana mapping
between them. Mapping both onto effective spin models by
eliminating the fermionic degrees of freedom enables a direct
one-to-one comparison between the models to figure out how
they are connected and how they are not. This is what we
accomplish in this paper.

We first recall the duality [3,18,19] between the Kitaev
chain and the transverse-field XY model (which can be further
tuned to the transverse-field Ising model given appropriate
parameters), as this is the origin of the term Ising anyon for
MZMs (which is often used [1]). This mapping of the Kitaev
chain to the corresponding transverse-field XY/Ising model
is achieved by a nonlocal Jordan-Wigner transformation con-
verting the fermions to bosonic spin operators. For the same
reason, to see the connection between the Kitaev chain and the
SM-SC Majorana nanowire, we should ask first how to map
an SM-SC Majorana nanowire to a corresponding spin model
through the Jordan-Wigner transformation. However, we find
that the resulting spin model is, unlike the relatively simple
form of the transverse-field XY model (as for the Kitaev
chain), rather complicated—it is a generalized cluster model
containing up to 4-spin interactions with staggered couplings,
which do not exist in the mapping of the Kitaev chain to the
transverse-field XY model. Thus, the connection between the
two models appears much more obscure in the spin language
than in the fermionic language, where at least both models at
their cores are free fermion band problems.

We, therefore, approach the SM-SC Majorana nanowire
from another angle: The first step is to convert the spinful
nanowire into an effective low-energy model by projecting
out the upper band of the bare SM with higher energy in
momentum space in the limit of the large magnetic field. We
can then manually construct a spinless model by ignoring the
band index and incorporating the superconducting term. We
find that the form of the effective low-energy Hamiltonian in
momentum space is already a spinless p-wave SC that con-
tains a normal SM part plus an antisymmetric SC part, which
is superficially similar to the Kitaev chain. To make a more
direct comparison, we expand the Hamiltonian in momentum
space in the limit of a large magnetic field and recover the
real-space Hamiltonian up to the third order of approximation.
We find that the first order of this high-field expansion can be
exactly mapped into the Kitaev chain, and the higher-order
approximation will result in longer-range hoppings and pair-
ings. Therefore, the Kitaev chain can be viewed at least as a
first-order approximation of the SM-SC nanowire model at
a high magnetic field deep in the topological regime. This
also makes physical sense because, in the high-field limit,
the low-energy Majorana nanowire projection essentially pro-
duces a spinless p-wave SC, as assumed by construction in the
Kitaev model. The two models obviously cannot be equivalent
at a low magnetic field deep in the trivial phase since the
nanowire-induced proximity SC is essentially s-wave in the

trivial phase, whereas by construction, the SC is p-wave in
the Kitaev chain.

This paper is organized as follows. In Sec. II, we state
the conventions for the Jordan-Wigner transformation adopted
throughout this paper. In Sec. III, we recapitulate and expand
on the duality between the Kitaev chain and the transverse-
field XY model through the Jordan-Wigner transformation.
Then we generalize the Jordan-Wigner transformation for the
spinful model and directly apply it to the SM-SC Majorana
nanowire Hamiltonian to obtain a generalized spin cluster
model with staggered couplings in Sec. IV A. Finally, we
present the direct mapping between the Kitaev chain and the
SM-SC nanowire by projecting out the higher-energy band in
Sec. IV B. Our conclusion is in Sec. V.

II. JORDAN-WIGNER TRANSFORMATION

The Jordan-Wigner transformation [20] is a nonlocal trans-
formation that connects a fermionic operator and a series of
nonlocal bosonic operators (in 1

2 -spin systems) while keeping
the canonical commutation relation the same. We define the
Jordan-Wigner transformation following the conventions as

f †
i =

i−1∏
j=1

( − σ z
j

)
σ+

i ,

fi =
i−1∏
j=1

( − σ z
j

)
σ−

i , (1)

where fi ( f †
i ) is the fermionic annihilation (creation) operator

acting on site i in real space, and σ+
i (σ−

i ) is the bosonic ladder
operator that raises (lowers) the spin by one unit at site i in
1
2 -spin systems, which can be expressed in terms of the Pauli
matrix:

σ±
i = 1

2

(
σ x

i ± iσ y
i

)
. (2)

It is straightforward to verify that the anticommutating
relation of the fermionic operators defined in Eq. (1) is also
restored by the commuting bosonic spin operators.

For a general noninteracting fermionic Hamiltonian, the
bilinear form of a local product of two fermionic operators
can be transformed into the product of a series of local spin
operators through the Jordan-Wigner transformation, e.g.,

f †
i fi = 1

2

(
1 + σ z

i

)
,

f †
i+1 fi = σ+

i+1σ
−
i , (3)

f †
i+1 f †

i = −σ+
i+1σ

+
i ,

which preserves the locality.

III. KITAEV CHAIN

We first briefly review, for the sake of clarity and com-
pleteness, the duality between the Kitaev chain and the s = 1

2
1D transverse-field XY model [21], which can be mapped
into each other through the Jordan-Wigner transformation of
Eq. (1). The Kitaev chain [3] is a spinless fermionic lat-
tice tight-binding model with the nearest-neighbor hopping
t , and p-wave superconducting pairing energy �, where its
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Hamiltonian in real space is

Ĥ ( f )
KC =

N∑
i=1

−μ f †
i fi + (−t f †

i+1 fi + � f †
i+1 f †

i + H.c.). (4)

Here, μ is the onsite chemical potential, N is the total number
of sites in the Kitaev chain, and we take the periodic boundary
condition for simplicity.

By defining the Fourier transformation f̃ †
k =

1√
N

∑
j f †

j eik j , we can rewrite the Hamiltonian in momentum
space as

Ĥ (k)
KC=

∑
k

(−2t cos k−μ) f̃ †
k f̃k−(i� sin k f̃ †

k f †
−k+H.c.). (5)

To obtain the band structure, we construct the Bogoliubov–
de Gennes (BdG) Hamiltonian in momentum space, Ĥ (k)

KC =
1
2

∑
k f̃

†
kHBdG

KC (k) f̃ k − 2t cos k − μ, where f̃ k = ( f̃k, f̃ †
−k )ᵀ

and

HBdG
KC (k) = (−2t cos k − μ)τz + 2� sin kτy. (6)

Therefore, by squaring the BdG Hamiltonian, the band struc-
ture for the Kitaev chain in Eq. (4) is E2

KC(k) = (2t cos k +
μ)2 + 4�2 sin2 k.

By applying the Jordan-Wigner transformation in Eq. (1),
we obtain the corresponding bosonic spin model by substitut-
ing Eq. (3) into Eq. (4):

Ĥ (σ )
KC =

N∑
i=1

−μ

2

(
1+σ z

i

)−(tσ+
i+1σ

−
i +�σ+

i+1σ
+
i +H.c.)

= −μN

2
−

N∑
i=1

t+�

2
σ x

i+1σ
x
i + t−�

2
σ

y
i+1σ

y
i +μ

2
σ z

i ,

(7)

which is the s = 1
2 1D transverse-field XY model. Note that

Eq. (7) may be easily converted to the simpler transverse-field
Ising model by making special choices for t , �, etc., but
the generic mapping of the Kitaev chain is always to the
transverse-field XY model, a distinction (i.e., Ising or XY)
often overlooked in discussions of the Kitaev chain.

The direct mapping from the Kitaev chain in Eq. (4) to the
transverse-field XY model in Eq. (7) indicates that they have
the same band structures and wave functions. Furthermore,
the two phases in the Kitaev chain also correspond to the two
different phases in the transverse-field XY model, where the
phase transition happens at the same point. In both cases, there
are two gapped phases, separated by a critical point. For the
Kitaev chain, the band gap closes at 2|t | = |μ|, where two dif-
ferent phases, trivial and topological, exist for 2|t | < |μ| and
2|t | > |μ|, respectively. For the transverse-field XY model,
if we can reduce it to a transverse-field Ising model [22] by
setting t = ±� (as we can tell that the change of � cannot
close the band gap from the fermionic Hamiltonian), the two
phases, the paramagnetic and ferromagnetic states, exist for
2|t | < |μ| and 2|t | > |μ|, respectively. This paramagnetic-
to-ferromagnetic transition is, however, not a TQPT—it is a
standard breaking of the SU(2) spin symmetry at a phase tran-
sition. The Ising model does not possess Ising anyons. Despite

their dual nature revealed by the Jordan- Wigner transfor-
mation converting one to the other, the physics of the two
models is qualitatively different. The Kitaev chain manifests
a topological phase transition protected by the particle-hole
symmetry throughout the entire change of parameters, while
the transverse-field XY model is a conventional spontaneous
symmetry-breaking (SB) phase transition, where the spin Z2

symmetry breaks as |t | increases. The spin symmetry is not
protected, as any random local magnetic field fluctuation can
break it, as was already clearly stated in a footnote in Ref. [3].

IV. SM-SC NANOWIRE

All of the above are standard procedures to show the dual-
ity between the Kitaev chain and the transverse-field XY (or
Ising) model via the Jordan-Wigner transformation. However,
the Kitaev chain is a mere toy model to establish the proof of
principle that p-wave spinless SC can support MZMs, which
was in fact already pointed out in Ref. [4] in the context of
2D systems and fractional quantum Hall effects. In experi-
ments, the SM-SC nanowire is a real spinful electronic 1D
Majorana nanowire utilizing a SM with a large Rashba-type
SOC in proximity to a conventional s-wave SC in the presence
of a magnetic Zeeman spin-splitting field to implement an
effective spinless p-wave superconductor. The minimal model
of a 1D single-channel SM-SC nanowire can be described in
continuum real space as

ĤNW =
∫ L

0

{∑
s,s′

f †
s (x)

(
− h̄2∂2

x

2m∗ − μ − iασy∂x + VZσx

)
s,s′

× fs′ (x) + [� f †
↑ (x) f †

↓ (x) + H.c.]

}
dx, (8)

where L is the total length of the nanowire, fs(x)† [ fs(x)]
creates (annihilates) an electron at the position x with spin
s (s =↑/↓), m∗ is the effective mass of electrons in the con-
duction band, μ is the chemical potential, α is the magnitude
of the Rashba-type SOC which is aligned perpendicular to
the direction of the 1D nanowire, VZ is the Zeeman splitting
energy arising from the magnetic field applied along the di-
rection of the 1D nanowire, and � is the proximitized s-wave
SC pairing term. In the Hamiltonian in Eq. (8), the term in
the first parentheses accounts for the SM denoted as ĤSM, and
the term in the second parentheses is for the SC denoted as
ĤSC. Note that, although Eq. (8) is a realistic Hamiltonian
for experimental SM-SC hybrid nanowires, it is still a free
fermion Hamiltonian within the mean-field BdG description
of the induced SC.

Although the SM-SC nanowire serves as a realistic model
of the Kitaev chain to host a pair of MZMs at the wire
ends, the connection between the Kitaev chain and the SM-
SC nanowire remains nonobvious. For example, the SM-SC
nanowire is established in a spinful system with more terms
in the normal (SM) part than the Kitaev chain. Therefore, we
wonder how these two models are connected, e.g., whether
there exists any duality between the two models that allows
us to map one model into the other. To answer this question,
we consider two approaches: First, we follow the same pro-
cedure as in the Kitaev chain by converting the fermionic
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Hamiltonian of the SM-SC nanowire into the bosonic spin
Hamiltonian through the Jordan-Wigner transformation and
comparing the converted spin model with the transverse-field
XY model [which is what the Kitaev chain in Eq. (4) is for-
mally equivalent to] in the hope of finding some hints for how
they might be connected. Alternatively, we can first project
the complete spinful Hamiltonian for the SM-SC nanowire
onto an effective low-energy Hamiltonian to obtain an effec-
tive spinless system and then establish the connection since
both systems are spinless now. We will explain the details of
the first approach in Sec. IV A and the second approach in
Sec. IV B.

Since we establish the Kitaev chain in a lattice model
Eq. (4), we need to study the lattice version of the continuous
Hamiltonian for the SM-SC nanowire in Eq. (8) for a direct
comparison. The discretization procedure is standard and used
extensively. By replacing the differential operator with the fi-
nite difference (i.e., ∂x f †

s (x) �→ [ f †
s (x + a) − f †

s (x − a)]/2a,
where a is the fictitious lattice constant in the discretization),
we obtain a lattice model for the SM-SC nanowire as

Ĥ ( f )
NW =

N∑
i=1

∑
s,s′

[ f †
i,s(2t − μ + VZσx )s,s′ fi,s′

+ f †
i,s(−t − iαRσy)s,s′ fi+1,s′ + H.c.]

+ (� f †
i,↑ f †

i,↓ + H.c.), (9)

where f †
i,s = f †

s (ia) and fi,s = fs(ia) are the creation and
annihilation operators defined at the lattice site i, effective
nearest-neighbor hopping t = h̄2

2m∗a2 , and reduced SOC αR =
α
2a . Here, for a direct comparison between the lattice model
for the SM-SC nanowire and the Kitaev chain in Eq. (4), we
impose the periodic boundary condition and drop the factor of
L
N before Eq. (9) which arises from the discretization.

Like the Kitaev chain, the SM-SC nanowire also carries
two topologically distinct phases that cannot be adiabatically
connected, which requires us to first solve the band structure
of the SM-SC nanowire to find the vanishing of the band gap.
Therefore, we rewrite the Hamiltonian in Eq. (9) in momen-
tum space by imposing the periodic boundary condition as

Ĥ (k)
NW =

∑
k

[2t (1− cos k)−μ]( f̃ †
k,↑ f̃k,↑+ f̃ †

k,↓ f̃k,↓)

+ [(VZ−2iαR sin k) f̃ †
k,↑ f̃k,↓+� f̃ †

k,↑ f̃ †
−k,↓+H.c.],

(10)

where f̃ †
k,s = 1√

N

∑
j f †

j,se
ik j , and we set the fictitious lat-

tice constant a = 1 for notational simplicity. To diagonalize
the Hamiltonian in Eq. (10), we construct an effective
BdG Hamiltonian Ĥ (k)

NW = ∑
k

1
2�(k)†HBdG

NW (k)�(k) + 2t (1 −
cos k) − μ, where

HBdG
NW (k) = [2t (1 − cos k) − μ + VZσx + 2αR sin kσy]τz

−�σyτy, (11)

and �(k) = ( f̃k,↑, f̃k,↓, f̃ †
−k,↑, f̃ †

−k,↓)ᵀ. Here, σ and τ are vec-
tors of Pauli matrices acting on the spin and particle-hole
space, respectively. Therefore, the band structure of the SM-
SC is

E2
NW,±(k) = ξ 2(k) + V 2

Z + �2 + α2(k)

± 2
√

V 2
Z �2 + V 2

Z ξ 2(k) + α2(k)ξ 2(k), (12)

where ξ (k) = 2t (1 − cos k) − μ, and α(k) = 2αR sin k. By
tracking the vanishing of the band gap at k = 0, we find that
the TQPT happens at V 2

Z = μ2 + �2 with the trivial (topo-
logical) phase being V 2

Z < μ2 + �2 (V 2
Z > μ2 + �2) to be

contrasted with 2|t | < |μ| (trivial) and 2|t | > |μ| (topologi-
cal) in the Kitaev chain.

A. Complete spinful model and generalized cluster model

We start by directly applying the Jordan-Wigner transfor-
mation to the SM-SC nanowire in Eq. (9). First, we need
to generalize the previous definition of the Jordan-Wigner
transformation for the spinless system to a spinful system with
fi,↑ and fi,↓. We define the nonlocal spin operators using the
same relation for the Jordan-Wigner transformation Eq. (1)
following a designated order as per

f1,↑ f1,↓ · · · fi,↑ fi,↓ fi+1,↑ fi+1,↓ · · · fN,↑ fN,↓. (13)

Therefore, the Jordan-Wigner transformation for a spinful
fermionic system takes different forms depending on its spin,
i.e.,

f †
i,↑ =

i−1∏
j=1

(
σ z

j,↑σ z
j,↓

)
σ+

i,↑,

f †
i,↓ = −

i−1∏
j=1

(
σ z

j,↑σ z
j,↓

)
σ z

i,↑σ+
i,↓, (14)

where σ+
i,↑ and σ+

i,↓ can be viewed as the raising operators at
site i with spin up and down, respectively.

Since the Hamiltonian for the SM-SC nanowire not only
couples the nearest neighbors but also the further sites [fur-
ther in the sense of the designated order in Eq. (13)], e.g.,
the SOC couples f †

i,↑ and fi+1,↓, which are separated by a
distance of 3, it is worth considering the general form of
the spin model arising from the coupling between any two
fermionic sites separated by a distance of α in the basis of
Majorana operators (due to the existence of the SC term),
γ̄i,sγi+α,s′ , where γi,s = f †

i,s + fi,s, γ̄i,s = i( fi,s − f †
i,s). Follow-

ing the Jordan-Wigner transformation for spinful fermionic
operators in Eq. (14), we can define the transformation for
Majorana operators as

γi,↑ =
i−1∏
j=1

(
σ z

j,↑σ z
j,↓

)
σ x

i,↑,

γ̄i,↑ =
i−1∏
j=1

(
σ z

j,↑σ z
j,↓

)
σ

y
i,↑,

γi,↓ = −
i−1∏
j=1

(
σ z

j,↑σ z
j,↓

)
σ z

i,↑σ x
i,↓,

γ̄i,↓ = −
i−1∏
j=1

(
σ z

j,↑σ z
j,↓

)
σ z

i,↑σ
y
i,↓. (15)

We summarize in Table I that the product of two Majo-
rana operators (in the form of iγ̄ γ ) that are separated by a
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TABLE I. Spin models for the coupling between two Majorana
operators separated by a distance of α.

Fermionic models α Spin models

iγ̄i+1,↓γi,↑ −3 σ
y
i,↑σ

z
i,↓σ

z
i+1,↑σ

y
i+1,↓

iγ̄i+1,↑γi,↑/iγi+1,↓γi,↓ −2 −σ
y
i,↑σ

z
i,↓σ

y
i+1,↑/ − σ

y
i,↓σ

z
i+1,↑σ

y
i+1,↓

iγ̄i,↓γi,↑/iγ̄i+1,↑γi,↓ −1 σ
y
i,↑σ

y
i,↓/σ

y
i,↓σ

y
i+1,↑

iγ̄i,↑γi,↑/iγ̄i,↓γi,↓ 0 σ z
i,↑/σ

z
i,↓

iγ̄i,↑γi,↓/iγ̄i,↓γi+1,↑ 1 σ x
i,↑σ

x
i,↓/σ

x
i,↓σ

x
i+1,↑

iγ̄i,↑γi+1,↑/iγ̄i,↓γi+1,↓ 2 −σ x
i,↑σ

z
i,↓σ

x
i+1,↑/ − σ x

i,↓σ
z
i+1,↑σ

x
i+1,↓

iγ̄i,↑γi+1,↓ 3 σ x
i,↑σ

z
i,↓σ

z
i+1,↑σ

x
i+1,↓

distance of α (the index of γ minus that of γ̄ ) will result in
an (α + 1)-spin interaction in the form of σ x σ z . . . σ z︸ ︷︷ ︸

|α|−1

σ x or

σ y σ z . . . σ z︸ ︷︷ ︸
|α|−1

σ y depending on the sign of α, except for α = 0,

which simply corresponds to a polarizing field along the z
direction.

Therefore, owing to the second term in Eq. (9) de-
scribing the hopping between f †

i,s and f †
i+1,s′ , we expect

many spin interactions, i.e., n-spin interactions with n �
2, which looks superficially similar to the cluster model
[21,23]. Therefore, to obtain the spin model corresponding to
Eq. (9), we first rewrite Eq. (9) in terms of Majorana opera-
tors by replacing f †

i,s fi,s with (1 + iγ̄i,sγi,s)/2, f †
i,s f j,s′ + H.c.

with i(γ̄i,sγ j,s′ + γ̄ j,s′γi,s)/2 [(i, s) 	= ( j, s′)], and f †
i,s f †

j,s′ +
H.c. with i(γ̄i,sγ j,s′ − γ̄ j,s′γi,s) [(i, s) 	= ( j, s′)]. The Hamilto-
nian in the Majorana basis is still simply quadratic [because
the Hamiltonian in Eq. (9) is indeed a free fermion problem in
the mean-field level] as per

Ĥ (γ )
NW = (2t − μ)N + i

2

N∑
i=1

(2t − μ)(γ̄i,↑γi,↑ + γ̄i,↓γi,↓)

+VZ(γ̄i,↑γi,↓ + γ̄i,↓γi,↑) − t (γ̄i,↑γi+1,↑ + γ̄i,↓γi+1,↓
+ γ̄i+1,↑γi,↑ + γ̄i+1,↓γi,↓) − αR(γ̄i,↑γi+1,↓ + γ̄i+1,↓γi,↑
− γ̄i,↓γi+1,↑ − γ̄i+1,↑γi,↓) + �(γ̄i,↑γi,↓ − γ̄i,↓γi,↑).

(16)

Next, we refer to Table I and substitute all products of Ma-
jorana operators in Eq. (16) to obtain the Hamiltonian for the
corresponding bosonic spin model for the SM-SC nanowire as
per

Ĥ (σ )
NW = (2t − μ)N + 1

2

N∑
i=1

(2t − μ)
(
σ z

i,↑ + σ z
i,↓

)
+ (VZ + �)σ x

i,↑σ x
i,↓ + (VZ − �)σ y

i,↑σ
y
i,↓

+ αR
(
σ x

i,↓σ x
i+1,↑ + σ

y
i,↓σ

y
i+1,↑

) + t
(
σ x

i,↓σ z
i+1,↑σ x

i+1,↓

+ σ
y
i,↓σ z

i+1,↑σ
y
i+1,↓ + σ x

i,↑σ z
i,↓σ x

i+1,↑ + σ
y
i,↑σ z

i,↓σ
y
i+1,↑

)
− αR

(
σ x

i,↑σ z
i,↓σ z

i+1,↑σ x
i+1,↓ + σ

y
i,↑σ z

i,↓σ z
i+1,↑σ

y
i+1,↓

)
.

(17)

Equation (17) is essentially a generalized cluster model
with staggered couplings if we relabel the indices of spin
operators according to the order in Eq. (13). By redefin-
ing σ

x,y,z
i,↑ = σ

x,y,z
2i−1 and σ

x,y,z
i,↓ = σ

x,y,z
2i , the generalized cluster

model becomes obvious as

Ĥ (σ )
C = (2t − μ)N +

2N∑
i=1

(
J1,iσ

z
i +

∑
s={x,y}

Js
2,iσ

s
i σ

s
i+1

+ Js
3,iσ

s
i σ

z
i+1σ

s
i+2 + Js

4,iσ
s
i σ

z
i+1σ

z
i+2σ

s
i+3

)
, (18)

with constant couplings for Jx,y
1,i and Jx,y

3,i , and the staggered
couplings for Jx,y

2,i and Jx,y
4,i :

J1,i = 2t − μ

2
,

Jx
2,i =

{
αR
2 i ∈ 2Z+

VZ+�
2 i ∈ 2Z+ − 1

,

Jy
2,i =

{
αR
2 i ∈ 2Z+

VZ−�
2 i ∈ 2Z+ − 1

,

Jx
3,i = Jy

3,i = t

2
,

Jx
4,i = Jy

4,i =
{

0 i ∈ 2Z+

−αR
2 i ∈ 2Z+ − 1

. (19)

Due to the 3- and 4-spin interactions, we see that the spin
model for the SM-SC through a direct Jordan-Wigner trans-
formation is much more complicated than that of the Kitaev
chain, i.e., a transverse-field XY model in Eq. (7) which only
contains the polarizing term and 2-spin interactions. Thus,
one key formal difference between the Kitaev chain and the
Majorana nanowire is that, while the former becomes more
transparent theoretically through the Jordan-Wigner transfor-
mation by mapping into a spin problem well understood for
more than 50 years [22], the latter is more transparent, in
fact, in the original fermionic picture, as its spin dual model is
essentially an unknown and complex spin cluster model.

For a generalized cluster model in 1D, it has been shown
[24] that a chain composed of an even number of spin interac-
tions (in the form of σ xσ z . . . σ zσ x ) has Z2 SB, while a chain
composed of an odd number of spin interactions can carry
symmetry-protected topological (SPT) phases. However, in
our spin model in Eqs. (18) and (19), i.e., with a collection of
both even and odd numbers of spin interactions with staggered
spin couplings, the connection to the SPT phases or SB phase
and how the transition happens are not obvious in the spin
language.

B. Effective low-energy spinless model and Kitaev chain

Although the direct application of the Jordan-Wigner trans-
formation to the SM-SC nanowire does not provide a mapping
to the Kitaev chain due to the 3- and 4-spin interactions, we
can see their connection by projecting the spinful SM-SC
nanowire onto an effective spinless low-energy model. The
logic is that (1) we first solve the band structure of the SM
part in the Hamiltonian in Eq. (9) by rewriting it in momentum
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space; (2) then we obtain an effective low-energy model by
projecting out the upper band with higher energy; (3) finally,
we rewrite the projected effective low-energy Hamiltonian
back into real space and compare that with the Kitaev chain.
The logic is based on the idea that eliminating the spinfulness
of the Majorana nanowire in a systematic manner converting
it into an effective low-energy spinless system should provide
a direct clue to its connection with the spinless Kitaev chain.

To solve the SM (normal) term Ĥ (k)
SM [obtained by setting

� = 0 in Eq. (10)] as the first step, we can directly
diagonalize it to obtain the band structure of the bare

SM, ESM,±(k) = 2t (1 − cos k) − μ ±
√

4α2
R sin2 k + V 2

Z .
Therefore, the Hamiltonian for the SM part can be
reconstructed as

Ĥ (k)
SM =

∑
k

E+(k) f̃ †
k,+ f̃k,+ + E−(k) f̃ †

k,− f̃k,−, (20)

where f̃ †
k,+ and f̃ †

k,− create an electron in the upper and lower
bands, respectively, and are connected to the original (physi-
cal) f̃ †

k,↑ and f̃ †
k,↓ through the unitary transformation:(

f̃ †
k,+

f̃ †
k,−

)
= 1√

2

(
1 eiφ(k)

e−iφ(k) −1

)(
f̃ †
k,↑

f̃ †
k,↓

)
, (21)

where φ(k) = arctan( 2αR sin k
VZ

).
Since we are only interested in low-energy physics, we can

project out the upper band E+(k) by simply setting f̃ †
k,+ to

0. Thus, the effective low-energy model can be obtained by
substituting Eq. (21) into the SC part of the Hamiltonian in
Eq. (10) as

Ĥ (k)
eff =

∑
k

[
2t (1− cos k)−μ−

√
4α2

R sin2 k+V 2
Z

]
f̃ †
k f̃k

+ 2i�αR sin k√
(2αR sin k)2+V 2

Z

( f̃ †
k f̃ †

−k+ f̃k f̃−k ), (22)

where we drop the band index ± in fermionic operators from
now on due to the elimination of the upper band. Thus, the
effective low-energy model in Eq. (22) can be also viewed
as a spinless system, which takes a more similar form to the
Kitaev chain.

However, such a projection has implicitly assumed the
large VZ limit to minimize the occupancy on the upper
band ESM,+(k), which further indicates the deep topologi-
cal regime. For smaller VZ, the effective low-energy model
fails to faithfully characterize the band bottom of ENW,−(k)
near zero momentum, which is where the band gap vanishes.
Therefore, this low-energy model cannot reproduce the real
TQPT at V 2

Z = μ2 + �2. Despite this low-energy model being
unsuitable to describe the physics of the SM-SC nanowire in
all regimes, we may still treat the effective low-energy model
as an independent model from a purely theoretical viewpoint
by ignoring the fact that this approximation relies on large VZ.

Therefore, we obtain the band structure and track the
vanishing of the band gap by writing down the BdG Hamil-
tonian for Eq. (22), Ĥ (k)

eff = 1
2

∑
k f̃

†
kHBdG

eff (k) f̃ k + 2t (1 −
cos k) − μ −

√
4α2

R sin2 k + V 2
Z , where f̃ k = ( f̃k, f̃ †

−k )ᵀ,

and HBdG
eff (k) = h(k) · τ. Here, h(k) = [hx(k), hy(k), hz(k)],

where

hx(k) = 0,

hy(k) = − 4�αR sin k√
(2αR sin k)2 + V 2

Z

, (23)

hz(k) = 2t (1 − cos k) − μ −
√

4α2
R sin2 k + V 2

Z .

Therefore, the band structure is simply Eeff,±(k) =
±√

hy(k)2 + h2
z (k), and the band gap vanishes when

VZ = −μ at k = 0 or VZ = 4t − μ at k = π , which divides
the phase diagram into three topologically distinctive regimes
(VZ < −μ, −μ < VZ < 4t − μ, and VZ > 4t − μ).

To study the topological property in each regime, we define
the winding number W = 1

2π

∮
dθ (k) in the hy-hz plane as

the topological invariant, where θ (k) = arctan[hz(k)/hy(k)],
which is further equivalent to a simpler form:

W = sign[hz(0)hz(π )]. (24)

Therefore, by applying Eq. (24) to the three aforementioned
regimes, we find two phases: the topological phase with
|W| = 1 for −μ < VZ < 4t − μ and the trivial phase with
|W| = 0 for VZ > 4t − μ or VZ < −μ. We note that the triv-
ial regime for VZ > 4t − μ can be eliminated in practice by
setting a sufficiently small fictitious lattice constant a. This
second trivial phase appears to be an artifact of discretization.
Thus, our statement of large VZ indicating deep topological
regime still holds in the ideal case, where t approaches in-
finity. Therefore, the physical phase boundary is just VZ =
−μ, which is different from the original SM-SC nanowire
(V 2

Z = μ2 + �2) because of the inaccurate projection from
the complete spinful Hamiltonian in Eq. (10) onto the ef-
fective low-energy spinless Hamiltonian in Eq. (22) near the
real TQPT. Thus, we will focus on the model deep inside
the topological regime with a reasonably good approximation
of the projection and restore the real-space Hamiltonian to
uncover the connection between the SM-SC nanowire and
Kitaev chain by establishing a direct mapping.

So far, from the effective low-energy model in momentum
space in Eq. (22), we can already tell that it is a spinless
p-wave SC with a normal part in the first line and an antisym-
metric SC part in the second line. However, there are still some
slight differences between Eq. (22) and the Kitaev chain in
Eq. (5), e.g., Eq. (22) contains a much more complicated form
of the p-wave superconducting pairing than Eq. (5). To see the
underlying connection between the two models, we need to
obtain the effective low-energy spinless model in real space by

expanding the Hamiltonian in Eq. (22) [i.e.,
√

4α2
R sin2 k + V 2

Z

in the normal part and 2i�αR sin k√
(2αR sin k)2+V 2

Z

in the SC part] near
αR
VZ

∼ 0 (assuming the large VZ limit) to the nth order, as
shown the second column in Table II. From the form of the
expansion, we notice the long-range hoppings and pairings
arising from high-frequency modes (e.g., cos 2k, sin 3k) for
the expansion with an order >2. By performing the inverse
Fourier transformation, we restore the effective low-energy
spinless model in real space, as shown in the third column
in Table II.
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TABLE II. Effective low-energy spinless models up to nth order approximation.

n k-space Ĥ (k)
eff,n = ∑

k . . . r-space Ĥ (r)
eff,n = ∑L

i=1 . . .

0 [2t (1 − cos k) − μ − VZ] f̃ †
k f̃k (2t − μ − VZ) f †

i fi − t ( f †
i fi+1 + H.c.)

1 [2t (1 − cos k) − μ − VZ] f̃ †
k f̃k + ( 2i�αR sin k

VZ
f̃ †
k f̃ †

−k + H.c.) (2t − μ − VZ) f †
i fi + (−t f †

i fi+1 + 2�αR
VZ

f †
i f †

i+1 + H.c.)

2
[2t (1 − cos k) − μ − VZ − 2α2

R sin2 k
VZ

] f̃ †
k f̃k

+( 2iαR� sin k
VZ

f̃ †
k f̃ †

−k + H.c.)
(2t − μ − VZ − α2

R
VZ

) f †
i fi + (−t f †

i fi+1 + α2
R

2VZ
f †
i fi+2 + H.c.)

+( 2�αR
VZ

f †
i f †

i+1 + H.c.)

3
[2t (1 − cos k) − μ − VZ − 2α2

R sin2 k
VZ

] f̃ †
k f̃k

+[( 2iαR� sin k
VZ

− 4iα3
R� sin3 k

V 3
Z

) f̃ †
k f̃ †

−k + H.c.]

(2t − μ − VZ − α2
R

VZ
) f †

i fi + (−t f †
i fi+1 + α2

R
2VZ

f †
i fi+2 + H.c.)

+[( 2αR�

VZ
− 3α3

R�

V 3
Z

) f †
i f †

i+1 + �α3
R

V 3
Z

f †
i f †

i+3 + H.c.]

In Table II, the zeroth order approximation is simply a
trivial SM without the SC pairing term, which is not of any
interest. However, more interesting mapping emerges once
we go to the first order, where the Hamiltonian Ĥ (r)

eff,1 be-
comes an exact Kitaev chain if we map (μKC, tKC,�KC) �→
(μ − 2t + VZ, t,− 2�αR

VZ
). The TQPT of this mapped Kitaev

chain from the first-order approximation is |μ − 2t + VZ| =
2t (as t = h̄2

2m∗a2 > 0), which also coincides with the TQPT of
the original effective low-energy spinless model in Eq. (22).
Therefore, the Kitaev chain can be at least viewed as a first-
order approximation of the SM-SC nanowire deep inside the
topological regime. For the higher orders of approximation,
more detailed corrections to the normal (SC) part are added
at an even (odd) order of approximation, which corresponds
to the Kitaev chain with a longer range of hoppings and pair-
ings. In principle, the original spinless effective low-energy
model in Eq. (22) should correspond to a real-space model
with infinite couplings. However, as opposed to the general
Kitaev chain with long-range couplings, which can carry mul-
tiple pairs of MZMs [25,26], all orders of Kitaev chains in
Table II are topologically equivalent because their resulting
band structures are all adiabatically connected due to the
exact vanishing of the high-frequency mode at k = 0 or k = π

(which is also where the band inversion happens). In principle,
one can have multiple pairs of MZMs in Majorana nanowires
if one allows the multisubband occupancy [27,28] (which is
actually a more experimentally realistic model) because the
Hamiltonian in Eq. (8) can be constructed completely real
in 1D (if the Zeeman field is parallel to the nanowire as
it is now), leading to an effective chiral symmetry in class
BDI characterized by Z invariant [29–31] in the 1D system
by redefining the time-reversal operator to a mere complex
conjugate K [32]. Therefore, the multisubband Hamiltonian
in Eq. (8) with N pairs of MZMs is equivalent to N occupied
Kitaev chains in Eq. (4) along with N unoccupied Kitaev
chains being energetically pushed upward by the sufficiently
large Zeeman splitting field [these N unoccupied bands are
also the bands that we projected out, as shown in Eqs. (20) and
(21)], which can be further considered a single Kitaev chain
with long-range hoppings and pairings in class BDI in 1D due
to the real SC pairings in the Hamiltonian in Eq. (4). However,
in this paper, because we restrict the Majorana nanowire in
Eq. (8) in the strict one-subband limit, we can only have
one pair of MZMs on both ends in the Majorana nanowire,
topologically equivalent to the case of a single Kitaev chain
where next-nearest-neighbor couplings along with all further
couplings in the Kitaev chain vanish [33], which can only

carry at most one pair of MZMs. Furthermore, the fact that
the leading terms in the long-range couplings in Table II decay
exponentially as ( αR

VZ
)d , with d being the distance between two

coupled sites, indicates that this model should essentially be
thought of as a short-range model equivalent to the Kitaev
chain with only the nearest-neighbor hoppings and pairings.
Therefore, all effective low-energy spinless models in Table II
have the same TQPT and thus the same phase diagram. Their
essential physics of a spinless p-wave topological SC is un-
changed despite the formal differences in terms of the range
of hoppings and pairings in the Hamiltonian at different orders
of approximation.

V. CONCLUSIONS

In this paper, we study the underlying connection between
the Kitaev chain toy model and the SM-SC realistic Majorana
nanowire model, motivated by the fact that both of these 1D
systems can host MZMs at the boundaries in the open geom-
etry. We first establish the known duality between the Kitaev
chain and the transverse-field XY model (which can be further
fine-tuned to a transverse-field Ising model under a specific
set of parameters) through the Jordan-Wigner transformation
and then ask what the corresponding spin dual model for the
SM-SC nanowire looks like if we apply the Jordan-Wigner
transformation directly. Following this logic, we eventually
find that, unlike the Kitaev chain, which can be transformed
into a well-known spin model with only 2-spin interactions,
the SM-SC nanowire corresponds to a complicated dual gen-
eralized spin cluster model with staggered couplings, which
indicates that the connection between the Kitaev chain and
the SM-SC nanowire is not a priori obvious.

Therefore, we resort to a different approach, which is to
project out the upper band of the bare SM with higher energy
to obtain an effective low-energy spinless nanowire model in
the large VZ limit. This spinless model in momentum space is
already a spinless p-wave SC, which can be further Fourier
transformed into the real space to show a direct mapping to
the original Kitaev chain. Finally, we find that the Kitaev
chain can be at least viewed as a first-order approximation
of the Majorana nanowire deep in the topological regime.
The two models are identical deep in the MZM-carrying
topological regime. However, the real TQPT cannot be faith-
fully reproduced in this effective low-energy model as the
projection from a complete spinful model to the effective
low-energy spinless model is only accurate in the large VZ

limit.
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We emphasize that the statement that the Kitaev chain is
isomorphic to the nanowire model [6], as is often claimed
in the literature, is incorrect or at least incomplete since the
Kitaev chain is spinless and the nanowire is spinful, and one
cannot thus obtain the nanowire model ever from the Kitaev
chain. However, the opposite statement that the Kitaev chain
may be a low-energy projection of the nanowire model into
a single-spin subband could be correct in some situations. In
this paper, we explicitly point out when this is true, when it
is not, and the necessary conditions for this restricted isomor-
phism. In general, the two models are very different except
that they belong to the same Ising anyon universality class for
the topological quantum critical transition between the trivial
and the topological phases.

In principle, we can find more quantitatively accurate pro-
jections considering the SC term as well by constructing
a pseudo-time-reversal symmetry as a function of momen-
tum to block-diagonalize the complete spinful SM-SC BdG
Hamiltonian such that spin-up and spin-down channels do not
couple. However, an extra degree of freedom then emerges,

as one can separate the normal part and SC part arbitrarily,
leading to nonunique effective models; but once we select
one effective model among them, we again have a spinless
model which can be used to compare with the Kitaev chain
throughout the trivial and topological regime (not just deep in
the topological regime). However, the choice of this gauge as
a function of k is a nontrivial question, which is left for future
work. In fact, it is unclear to us on physical grounds (i.e.,
the assumption of spinless p-wave SC in the Kitaev chain)
that it is possible to find a complete theoretical equivalence
between these two models except deep in the topological
regime.
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