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In this work we investigate non-Hermitian topological phase transitions using real-space edge states as a
paradigmatic tool. We focus on the simplest non-Hermitian variant of the Su-Schrieffer-Heeger model, including
a parameter that denotes the degree of non-Hermiticity of the system. We study the behavior of the zero-energy
edge states in the nontrivial topological phases with integer and semi-integer topological winding numbers,
according to the distance to the critical point. We find that, depending on the parameters of the model, the edge
states may penetrate into the bulk, as expected in Hermitian topological phase transitions. We also show that,
using the topological characterization of the exceptional points, we can describe the intricate chiral behavior
of the edge states across the whole phase diagram. Moreover, we characterize the criticality of the model by
determining the correlation length critical exponent directly from numerical calculations of the penetration length

of the zero-mode edge states.

DOLI: 10.1103/PhysRevB.107.035424

I. INTRODUCTION

Non-Hermitian (NH) Hamiltonians are widely used in
effective descriptions of a variety of phenomena. Photonic
systems [1-5], semimetals, insulators [6-9], electrical cir-
cuits [10,11], and interacting systems [12—-18] are some
examples in which NH phenomena emerge. One prominent
feature of NH Hamiltonians is the appearance of exceptional
points (EPs) in their spectra [19-21], which arise for spe-
cific values of the parameter space. Exceptional points are
spectral degeneracies where the eigenvectors coalesce and
the NH Hamiltonian becomes defective, inducing remarkable
topological properties [22,23] that have been observed and
explored in different experimental setups [1-5,9].

NH models exhibit a complex band structure [24], which
gives rise to different physical properties when compared to
standard Hermitian systems. One example where these differ-
ences become evident is the bulk-boundary correspondence.
In the Hermitian case, it states that the nonzero winding
number (W # 0) defined in the bulk determines the existence
of gapless zero-energy edge states (ZEESs), located at the
system’s edges (or boundaries). For instance, in the stan-
dard Hermitian one-dimensional Su-Schrieffer-Heeger (SSH)
model [25] if the winding number is trivial, i.e., W = 0, there
are no ZEESs, and therefore, the system is a usual insulator.
On the other hand, for specific values of the parameters,
the system undergoes a topological phase transition. At the
latter, the system is known as a topological insulator, where
W = 1. As a consequence, there will be a pair of ZEESs at
the edges of the system (one on the left side and one on
the right side of the chain) [26]. In other words, the bulk of
the system remains an insulator, while its edges can carry
an electric current in the nontrivial topological phase, which
makes it so attractive from the technological point of view. By
contrast, for NH systems, it is well known that the winding
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number can be fractionary [27] and that the bulk-boundary
correspondence fails [11]. A detailed review, with some at-
tempts to reestablish this correspondence, can be found in
Ref. [28].

Although a topological phase transition is essentially dis-
continuous, in the sense that the winding number jumps
discontinuously at the transition, the penetration length of
the edge states continuously diverges as a power law with a
well-defined exponent. In this sense, at least in the Hermitian
case, this kind of transition has critical properties [29-31].
Moreover, the interest in the critical properties of NH systems
is continuously growing. For instance, analyses of the ther-
modynamical properties [32] as well as computations of the
fidelity susceptibility [33] have been made. Disorder effects
have also been investigated [34]. In particular, different works
have indicated directly or indirectly the importance of the EPs
on the criticality of these NH systems [35-37].

In order to contribute to this issue, in this work we analyze
an extended SSH model, considering asymmetric hopping
[27,32], in order to investigate how the ZEESs behave near
topological phase transitions and how they are related to the
EPs and their chirality.

By means of numerical calculations, we compute the topo-
logical phase diagram, the complex gap structure, and the
edge states of the model. Our results show that, depend-
ing on the parameters, near the topological transitions, the
ZEESs may penetrate into the bulk, as expected from Her-
mitian topological phase transitions [29-31]. Surprisingly, the
ZEESs are not sensitive to the transition from W = 1/2 to
W = 1 winding numbers, which is proper for NH systems.
This fact indicates a noncritical character of this particu-
lar NH transition. In addition, from the spectrum analysis,
we show that one can also characterize the NH topological
phase transitions by means of the structure of the complex

energy gaps.
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FIG. 1. One-dimensional chain of the non-Hermitian SSH model
with asymmetric intracell hopping. Each unitary cell contains a pair
of sublattices A and B, the blue and red spheres, respectively. v is the
hopping term within the unitary cell, while w is the hopping term
out of the unitary cell. The real parameter g measures the degree of
non-Hermiticity of the model. When g = 0, we recover the standard
Hermitian SSH model.

Interestingly, from the topological phase diagram, we find
that at the nontrivial topological state with W = 1 [dark rhom-
bus in Fig. 4(a) below] the system exhibits two different
behaviors for the ZEESs, depending on the parameter space
of the model. One of them is essentially equivalent to the
usual Hermitian behavior, while the other is proper for NH
systems and is known as the NH skin effect [38,39], where
the zero-energy modes accumulate on the boundary. Through
a careful analysis of the topological characterization of the
EPs, which emerge in the spectrum, we describe each one of
these edge state behaviors and their chiralities.

Moreover, we characterize the criticality of the system
through the identification of the correlation length critical
exponent v of the topological transition from the numerical
calculation of the penetration length of the ZEESs as a func-
tion of the distance to the topological transition point using
concepts of scaling theory and critical phenomena [29,31,40—
43].

This paper is organized as follows: In Sec. II we present
the NH SSH model including a real parameter that encodes
the degree of non-Hermiticity of the system. In Sec. III we
describe the topological aspects of the model and characterize
the EPs that emerge in NH systems. In Sec. IV we obtain
the topological phase diagram and investigate the behaviors
of the EPs, ZEESs, and chirality depending on the parameters
of the model. In Sec. V we calculate the critical exponents that
characterize the NH topological transitions, and consequently,
we identify the universality class of the model. Finally, in
Sec. VI we conclude and make some remarks about our main
results.

II. THE SSH MODEL WITH ASYMMETRIC HOPPING

We will analyze the simplest NH variant of the one-
dimensional SSH model. In this modified version of the SSH
model, we introduce a real parameter g, which denotes an
asymmetry in the intracell hopping v. As usual, there is also a
term that encodes the intercell hopping w. In Fig. 1 we show a
schematic representation of the one-dimensional chain of the
non-Hermitian SSH model.

The Hamiltonian reads [27,32]

H = "[(v - gajby + (v + g)bjan

+w(al by + blan), (1

where al (a,) and b}: (b,) are the creation (annihilation)
operators at the nth A and B sites, respectively. Note that

the parameter g acts as the degree of non-Hermiticity of the
system, and when g = 0, we recover the SSH model [25].

Performing a Fourier transformation and using ¥ =
(b, ax)", we can rewrite the Hamiltonian in Eq. (1) as fol-
lows:

H =Y ¥k, )
k

with the one-particle Hamiltonian in the form
h(k) = hy(k)o, + hy(k)a)'a 3)

where o, , are the Pauli matrices and the components /4, and
hy are given by [27,32]

h,(k) = v 4+ wcos(k), (@)

hy(k) = w sin(k) — ig. 5)

For simplicity, we measure distances in terms of the lattice
spacing a, or we simply set a = 1.0. Note, again, thatif g = 0,
we recover the Hermitian SSH model [25], as expected. Due
to the fact that v, w € R, explicitly putting Eqgs. (4) and (5)
into Eq. (3), one can see how the parameter g breaks the
Hermiticity of the Hamiltonian. Computing the dispersion

relation of Eq. (3), we find E, = £ /h2 + hg, as usual.

When dealing with Hermitian systems, Hermiticity ensures
real eigenvalues as well as orthogonal eigenvectors. On the
other hand, for NH systems the eigenvalues may be complex,
and the Hamiltonian allows a complete biorthonormal system
of eigenvectors when it is diagonalizable [44]. In conclusion,
the Hilbert space of the system supports a biorthogonal basis
(utlitL) = 8;;, where i, j = +, — and it is the dual of u. These
bases are defined by

h(k)lux) = E(k)|u), Q)

h ()lis) = E*(k)lis), (N

where the eigenvectors are given by

—ig(k) —ip* (k)
|ui>=(iel ) |ﬁi>=(ﬂl ) ®)

(k) = tan™! (%) )

and

Note that &, (k) is a complex function that depends on k [see
Eq. (5)]. So the angle ¢(k) in Eq. (9) is, in general, complex.

It is worth emphasizing that due to the complex charac-
ter of the dispersion relation E(k), the spectrum has a more
involved structure than in the Hermitian case. So when deal-
ing with NH systems, we have two independent definitions
of complex energy gaps, which are given by the following
statements [7]:

(i) Point gap. A NH system presents a point gap if and
only if it is invertible and has nonzero eigenenergies, i.e.,
det H(k) # 0 and E (k) # OV k, respectively.

(ii) Real (imaginary) line gap. A NH system presents a
line gap in the real (imaginary) part of its spectrum if and
only if it is invertible and the real (imaginary) part of the
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FIG. 2. (a) The complex energy gap for v = 0.3 and g = 1.0. For
these parameters we have a point gap spectrum. (b) The complex real
line gap for v = —0.1 and g = 0.6. We fix w = 1.0 in both panels.

eigenenergies is nonzero, i.e., det H(k) # 0 and ReE (k) # 0
(ImE (k) # 0)V k, respectively.

The structure of the complex energy gaps is extremely
important to the topological characterization of NH systems,
as we will discuss later. In Fig. 2 we plot some examples of
gaps that appear in the NH SSH model with asymmetrical
hopping, and in Sec. IV we will give more details about the
complex energy gaps through the topological phase diagram
of the model.

III. TOPOLOGY AND EXCEPTIONAL POINTS

In the usual tenfold classification of Hermitian topological
phases [45,46], three symmetries are required for its descrip-
tion, which are the time-reversal, particle-hole, and chiral
symmetries. On the other hand, in the NH classification [47],
symmetries ramify due to the distinction between transposi-
tion and complex conjugation in NH Hamiltonians. In fact,
chiral symmetry, which gives rise to the topological properties
of the Hermitian SSH model, is distinct from the sublattice
symmetry, although they are equivalent in Hermitian physics.
The NH SSH model, defined in the last section, belongs to
class A with an additional sublattice symmetry (SLS), as
defined in [7],

Sh(k)S™' = —h(k),

where S, in general, is a unitary matrix of the non-Hermitian
38-fold classification (note that the model does not have chiral
symmetry, so it does not respect any AZ' symmetry).

For the Hamiltonian given by Eq. (3), S := o,. Addition-
ally, we have the winding number defined as [27]

§?=1, (10)

W = i f or¢ dk, (11)
21

where ¢ was previously defined in Eq. (9) and the integral is
taken along a loop with k from 0 to 2.

It is interesting to point out that if we compute the winding
number for the Hamiltonian in Eq. (3), we find that W is
quantized as 7 /2, rather than Z, as we have in the Hermi-
tian SSH model. This fractional winding number, although
unexpected, is in agreement with other topological character-
izations of NH systems. In Ref. [7], class A with SLS defines
a Z winding number for systems with a line gap spectrum
and a Z @ Z winding number for a point gap spectrum (see
Table VI of Ref. [7]). As pointed out in Ref. [27], we can
rearrange Eq. (11) as 2W = W; + W,, where W, and W, are

(@) (b)
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FIG. 3. {Re[h,], Re[h,]} plane and the encircling (dashed cir-
cles) of the exceptional points (red and blue dots) with fixed w =
1.0. (a) We take g =0 and v = 0.5, i.e., the nontrivial topological
phase of the standard Hermitian SSH model with W = 1. (b) Non-
Hermitian topological phase with W = 1/2, where g = 0.8 and v =
0.5. Note that in the Hermitian case both exceptional points are
located at the origin, while in the non-Hermitian case the exceptional
points are shifted along the Re[4,] axis, and only one is encircled.

Z topological invariants, so we can recover all the results of
the topological characterization of Ref. [7] using W, and W, as
defined in Ref. [27]. Interestingly, this Z /2 winding number
was recently realized in quantum simulators [9].

Due to the fact that Eq. (11) has contributions from only the
real part of the angle ¢(k), we can geometrically interpret the
7 /2 quantization as the manifestation of the encircling of the
EPs of the model in the {Re[A,], Re[h,]} space. To understand
this, let us find the location of the EPs by computing the zeros
of the dispersion relation, i.e., 1> + hf = 0, or, equivalently,

Re[h,] = —Im[hy], Re[h,] = Im[h,], (12)

Re[hy] = Im[h,], Re[h,] = —Im[A,]. (13)

So we can conclude that each of the two EPs appears in
the ordered pairs (—Im[A,], Im[A,]) and (Im[A,], —Im[A,]). In
Fig. 3 we show some examples of the different phases of the
model described by the EPs. In Fig. 3, the dashed circles are
the geometrical points of (Re[A,(k)], Re[h,(k)]) when k goes
from O to 27 for fixed values of the parameters.

In Fig. 3(a) we have both EPs merging at the origin, that is,
(hy, hy) = (0, 0), which can be recognized as the nontrivial
topological phase of the usual Hermitian SSH model with
W =1, while in Fig. 3(b) we have an exclusive NH topolog-
ical phase where W = 1/2. Note that for the latter, only one
EP is encircled.

In general, we can conclude that when two EPs are encir-
cled, W = 1/2. On the other hand, when only one of them is
wound, W = 1/2. Finally, when no EPs are encircled, W = 0.
We will use the trajectories of the EPs to describe the chirality
and the phase transitions of the model.

IV. TOPOLOGICAL PHASE DIAGRAM, CHIRALITY, AND
EDGE STATES

The topological phase diagram of the NH SSH model can
be obtained through the calculation of the topologically invari-
ant winding number given by Eq. (11). The phases that emerge
in the model are characterized by W = 0, 1/2, and 1, as shown
in Fig. 4(a). The central dark rhombus is characterized by a
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FIG. 4. (a) Phase diagram of the non-Hermitian SSH model ob-
tained from the calculation of Eq. (11) with fixed w = 1.0. We can
see three topological phases characterized by W = 0, 1/2, and 1 (see
color bar). The chirality of the model is represented by the presence
of left (L) or right (R) zero-energy edge states. Within the vertical
and horizontal solid yellow lines there are edge states on both sides
(left and right) of the chain, and they penetrate into the bulk of the
system as we approach the transition point. Note that these solid lines
divide the phase diagram into four quadrants inside the rhombus with
W =1, where the chirality depends on the parameters of the model
even at the nontrivial topological state with an integer topological
winding number. (b) Complex gap structure in each phase of the
system.

winding number W = 1; the blue zones out of the rhombus
are characterized by W = 1/2, while the white zones are in
the trivial topological phase W = 0. On the other hand, in
Fig. 4(b) we depict the complex gap structure of the model.
Note that the central rhombus exhibits a real line gap, while
the phases with a fractional winding number present a point
gap. Interestingly, the W = 0 regions have two different line
gaps. The upper and lower trivial regions (W = 0) have a
real line gap, while the left and right W = 0 regions have
imaginary line gaps.

Moreover, also note from Fig. 4(b) that within the line g =
0, i.e., in the Hermitian case, the topological phase transitions
exhibit only the real line gap, as expected. However, when
dealing with NH systems, i.e., for g # 0, one can see that
when the NH system undergoes a topological phase transi-
tion, the gap structure necessarily changes. Thus, we can also
characterize the NH system through its complex gap structure.
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FIG. 5. Chirality of the zero-energy edge states as we enter the
fractional topological phase with W = 1/2 from the trivial one.
(a) Left edge states in the semi-integer topological phase with left
chirality. (b) Right edge states in the semi-integer topological phase
with right chirality. (c) The left chirality can be determined by the
EP (red dot) that first enters the dashed unit circle, which is in the
{Im[h,], —Im[h,]} position. (d) The right chirality can be determined
by the EP (blue dot) that first enters the dashed unit circle, which is
in the {—Im[A,], Im[A,]} position. In (c) and (d) we fix v = 0.3 and
take g = —1.2 and g = 1.2, respectively. We show a restricted region
of the chain in (a) and (b) since there are only left or right edge states.

In the following we will discuss the chiral aspects of the
topological phase diagrams presented in Fig. 4(a) and the
character of the ZEESs as we approach the NH topological
phase transitions.

A. Chirality

In the topologically trivial phase with W = 0 the system
does not have ZEESs and behaves as a conventional insulator,
as expected. In the exclusive NH topological phase, where
W = 1/2, the two ZEESs are accumulated at the edge (left
or right side) of the chain, which is a direct manifestation of
the NH skin effect [28,38]. Moreover, the accumulation of
the ZEESs respects the chirality depicted in Fig. 4(a). This
behavior has a direct relation to the EPs and its position in the
{Rel[h,], Re[h,]} space.

The chirality of the ZEESs is determined by which EP
enters the unit circle first. For instance, in the topological
phase diagram in Fig. 4(a) the fractional phases with left or
right chirality exhibit left or right ZEESs, respectively [see
Figs. 5(a) and 5(b)]. In Fig. 5(c) we show that the EP in the
position {Im[h,], —Im[A,]} (red dot in all the figures) enters
the dashed unit circle first as we approach the semi-integer
topological phase with left chirality from the trivial one, while
Fig. 5(d) shows that the EP in position {—Im[h,], Im[A,]}
(blue dots in all the figures) enters in the dashed unit circle
first as we approach the semi-integer topological phase with
right chirality from the trivial one.
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FIG. 6. Penetration of the zero-energy edge states as we ap-
proach the topological transition point while varying v and g,
respectively. (a) The edge states penetrate into the bulk from the
semi-integer to trivial topological transition. (b) The edge states
get more localized for the semi-integer to integer transition as we
approach the criticality, increasing the degree of non-Hermiticity of
the system. Again, we show only part of the chain on the x axis since
we just have edge states on the left side. dy is the distance to the
transition point.

Surprisingly, the topological phase transition from W =
1/2 to W =1, and vice versa, does not affect the chirality
of the edge states, as can be seen in Fig. 4(a). This indicates
an odd character of this transition, which will be explored
in the discussion of the ZEES behavior in the next section.
Moreover, inside the rhombus with W = 1, we find an in-
teresting behavior for the chirality of the ZEESs. When we
cross the g = 0 line, the chiralities of the ZEES change. This
can be understood by the shift of the EPs around the origin
of the {Re[A,], Re[h,]} space. Within this line, we have the
Hermitian SSH model [25], so this crossover passing through
the Hermitian limit of the model affects the chirality. Anal-
ogously, if we cross the v = 0 line, we also have a change
in the chirality. We can track this through the symmetry that
the model has in the “parity” transformation of the parameters
(v, g) = (—v, —g). In fact, the EP positions are the same if
we perform this change in the parameters.

The chiral behavior of the ZEESs in the fractional phase
was previously reported in Ref. [27], but we clarify the two
lines for g = 0.0 and v = 0.0 inside the rhombus with W = 1
and the relation of the chirality in this region to the EPs.

B. Edge states and exceptional points

When we approach the transition with W =1/2 - W =
0, i.e., the semi-integer to trivial topological phase transition,
the ZEESs penetrate into the bulk in the same sense as Hermi-
tian topological phase transitions [29,31] [see Fig. 6(a)]. By
contrast, when we approach the topological phase transition
with W = 1/2 — W = 1, we obtain distinct behaviors as we
approach the transition point. For instance, the ZEESs get
more localized on the left (or right) side of the system as
we approach the transition point, increasing the degree of
non-Hermiticity g [see Fig. 6(b)]. On the other hand, as we
approach the transition while decreasing the value of g, the
ZEESs tend to penetrate into the bulk (not shown). In this
sense, we confirm that the degree of non-Hermiticity of the
system is associated with the chirality and acts to localize
the ZEES at the edges of the system. Furthermore, the ZEES
are not affected if we approach the semi-integer to integer

0.4 0.4
--- Edge states

(2)V=09,20=10,g=0.0,N=200

--- Edge states
b)v=0.0,0=10,g=-0.9,N=200

FIG. 7. Exponential decay of the amplitude of the wave function
of the zero-energy edge modes into the bulk according to the phase
diagrams in Fig. 4. (a) and (b) Edge state decay for vertical and hor-
izontal solid lines taking g = 0.0 and v = 0.0 close to the transition
point, respectively.

topological transition and vice versa, considering the same
angular coefficient for the chiral regions as in the topological
phase diagram in Fig. 4(a) (not shown), which, again, suggests
an unusual aspect for the NH topological transitions. In the
next section, we will relate the nonunique character of this
phase transition to a noncritical behavior. However, note that
we can, indeed, identify all the topological phase transitions
of the model through the change in the complex spectrum
structure, as pointed out before [see Fig. 4(b)].

Let us now focus on the rhombus with W = 1. Note that
the solid vertical line for g = 0 in Fig. 4(a) recovers the usual
topological transitions presented in the Hermitian SSH model
[25,29]. The ZEES on this line, near the transition, at the
upper edge of the rhombus, is shown in Fig. 7(a). The edge
states and the transition for the bottom edge of the thombus
are completely symmetric, i.e., changing the sign of v — —v,
as suggested by the topological phase diagram.

Surprisingly, on the horizontal solid line in Fig. 4(a), i.e.,
for v =0, at the nontrivial topological phase with W =1
we also obtain ZEESs at the both edges of the chain, as
shown in Fig. 7(b). This kind of behavior for the exclusive
anti-Hermitian case can be understood from the Hamiltonian
in Eq. (1). Note that when v = 0, the hopping terms present
the same magnitude in the modulus, i.e., |g|, which implies
that the net particle flux is equal for both sides (left and right)
of the chain. These two ZEESs are completely symmetric,
and the edge states penetrate into the bulk as we approach the
topological transition.

This penetration is expected for g = 0.0, that is, for the
Hermitian case, but it is not so trivial for the horizontal line
where v = 0.0. In this limit, the unit cell is completely anti-
Hermitian; however, clearly its edge states behave exactly
as the full Hermitian limit of the NH SSH model. If we
investigate the trajectories of the EPs in the {Re[A], Re[h,]}
parameter space, we see that, due to the fact that v = 0.0,
the unit circle is fixed at the origin, and the trajectories of
the EPs are perfectly symmetric with respect to the circle.
For the phases with v 7 0.0 and g # 0.0, the asymmetry of
the trajectories induces topological phase transitions where
one EP at a time enters the unit circle. This is not the case
for v = 0.0; that is, when we approach the topological phase
transitions at g = —1.0 and g = 1.0, the EPs cross the unit
circle together. Another interesting point is that the gaps
within the line v = 0.0 change from imaginary to real line

035424-5



RUI AQUINO, NEI LOPES, AND DANIEL G. BARCI

PHYSICAL REVIEW B 107, 035424 (2023)

(2) (®) (c)

Relh,] Re[ly] Re[ly]
P ~ P ~ P ~
s N s N e N\
/ \ 4 \ / \
/ \ / \ / \
[ |
R B N 4 for
\ / Relh] ‘\  Relh] ! , Relh]
\ / \ / \ /
\\~’/’ \\\’// \\~’//
(d) (©) f)

N2
VAR

/ \ReE ReE

FIG. 8. (a)-(c) The {Re[A,], Re[A,]} parameter space as we ap-
proach the topological transition within the horizontal solid line with
fixed v = 0.0 in Fig. 4(a) for g= —-0.6, g=—1.0, and g = —1.1,
respectively. The dashed unit circle remains fixed at the origin, while
the exceptional points move along the x axis. For this case, both
exceptional points enter (W = 1) or leave (W = 0) the unit circle
together at the topological transition point. (d)—(f) The line gaps
for the same values of g as in (a)—(c), respectively, showing the
nontriviality of these topological phase transitions within this special
line.

gaps (and vice versa) at the topological phase transitions [see
Fig. 4(b)]. In this special limit, the edge modes behave exactly
as in a Hermitian topological phase transition. We show these
trajectories of the EPs and their complex gaps in Fig. 8.

On the other hand, for any other case outside the solid
vertical or horizontal line in the region with W = 1 in Fig. 4,
we recover the NH skin effect, with the two modes accumu-
lating on the left or right edges. In this sense, we can conclude
that the two vertical and horizontal lines divide the rhombus
where W =1 into four quadrants. Again, these results are
completely symmetric for even and odd quadrants.

V. TOPOLOGICAL SURFACE STATES AND
CRITICAL EXPONENTS

When a system undergoes a phase transition, in principle,
there is only one diverging length, i.e., the correlation length
&, that dominates the phase transition in proximity to the
quantum critical point. Our main goal, when applying the
penetration depth technique [29,31], is to identify the diverg-
ing behavior of the penetration depth of the zero-energy edge
modes into the bulk as we approach the topological transition
point.

Itis possible to get information about the critical exponents
from simple scaling assumptions. For instance, very near the
phase transition, the singular term of the ground state en-
ergy density scales as f; o |t — 1.["@+?, where ¢ is a generic
control parameter and 7. is the transition point. d is the dimen-
sionality of the system, z is the dynamical critical exponent,
and the critical exponent v characterizes the divergence of
the correlation length [30]. Moreover, in the one-dimensional
non-Hermitian SSH case, the modulus of the spectrum of
excitations very close to the topological phase transition can

be written as

EGR)] ~ V= 1+ K. (14)

As an example, let us consider, for instance, v =0 and g — 1
in our model. In this case, by direct calculation,

|E(K)| ~ ~V2{(1 — g)> + K*}1/*. (15)

Thus, limg_, |E (k)| ~ k'/2, and limy_.o |E (k)| ~ (1 — g)/%.
Comparing Eq. (15) with Eq. (14), we identify 2z = 1 and
2vz = 1. Therefore, we get v = 1. We have checked all the
transition lines of our model, obtaining v = 1 for all the tran-
sitions from a nontrivial winding to a trivial one.

In this section, we will confirm the scaling hypothesis by
direct numerical calculation of the edge states in real space.
Since we already know the critical parameters, given exactly
in Fig. 4(a), instead of a finite-size scaling technique [48], we
choose an equivalent numerical procedure that has lower com-
putational cost and has already proved to be very accurate in
similar cases [29-31]. In this sense, diagonalizing numerically
the Hamiltonian given by Eq. (1), in real space, one can ob-
tain the eigenvalues and eigenvectors for the one-dimensional
chain with N sites. To define the penetration depth as the
diverging length of the topological transition, in principle,
the ZEESs may penetrate into the bulk as we approach the
transition point. In addition, we consider the distance to the
transition point in the form dy = |t — #.|, where ¢ is a generic
control parameter and , is the transition point. Since the wave
function of the zero-energy edge modes decays exponentially
as we approach the topological transition point, we can iden-
tify the correlation length & as the diverging length of the
topological transition, and therefore, we can use the scaling
relation & o< |t —t.|”" to obtain the value of the correlation
length critical exponent v by means of a log vs log plot
[29,31], as shown in Fig. 9.

Following this procedure, we can investigate the topologi-
cal phase diagrams of the non-Hermitian SSH model, given by
Fig. 4, in order to calculate the values of v for the topological
transitions and, consequently, characterize the criticality of the
SSH model with asymmetric hopping. We calculate the value
of the critical exponent v for the topological transition points
at the edges of the thombus with W =1 [see red circles in
Fig. 4(a)]. We approach the topological transition points from
different paths described by the superscript arrows in Table I,
and our numerical results show that these zero-energy edge
states penetrate into the bulk, which makes the penetration
depth method [29,31] suitable. Note that all values of v are
very close to unity, meaning that even for NH topological tran-
sitions, the universality class of the system is the same as that
for the Hermitian SSH model for the topological transitions at
the edges of the rhombus with W = 1.

On the other hand, for the transition within the diagonals
of the rhombus with W = 1, i.e., for the integer/semi-integer
topological transitions and vice versa, the ZEESs exhibit
distinct behaviors depending on the approach to the transi-
tion point. For example, if we approach the transition point
while fixing the value of v and increasing the degree of non-
Hermiticity of the system, the ZEESs localize at the edges (left
or right side) of the system due to the NH skin effect [28,38],
which is very similar to the behavior presented in Fig. 6(b).
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FIG. 9. Exponential decay of the wave function of the zero-
energy edge modes into the bulk of the system for the one-
dimensional SSH model with N = 800 and fixed w = 1.0 and g =
0.0, where dr = |t — 1|, as we approach the transition point. Note
that the edge states penetrate into the bulk as we get closer to the
critical point (§ — o0). Defining & as the correlation length of the
topological transition and using the scaling relation £ o d;", we can
identify the correlation length critical exponent v = 1 by means of
the angular coefficient of the fitting curve in a log vs log plot (see the
inset).

By contrast, if we approach the transition point while fixing
v and decreasing the value of g, the ZEESs tend to slightly
penetrate into the bulk, which confirms that the degree of non-
Hermiticity of the system plays an important role in localizing
the ZEESs at the edges (left or right side). Furthermore, if we
approach the integer/semi-integer transitions along the left or
right chiral region while taking the same angular coefficient of
the chiral lines as in the topological phase diagram, the ZEESs
are not affected, which denotes a noncritical feature for these
types of NH topological transitions due to the fact that there
is no diverging correlation length in this transition.

TABLE 1. Critical points, winding numbers, and the correlation
length critical exponents v obtained by means of the penetration
depth technique with N = 800 for the edges of the rhombus (red cir-
cles) with W = 1 in the topological phase diagram given in Fig. 4(a).
v, (horizontal approach) and v, (vertical approach) as well as the
superscript arrows describe different forms of approaching the tran-
sition point. We observe that all values of v are very close to unity.

(v, 8) w v

(0.95,0.0) 1 v] =0.998
(—0.95,0.0) 1 v} =0.998
(0.0,0.95) 1 v;” = 0.998
0.0, —0.95) 1 v~ =0.998
(1.0, —0.15) 1/2 v;> =0.979
0.23,-1.0) 1/2 v} =0.944
(=1.0,0.15) 1/2 v =0.979
(—0.23,1.0) 1/2 vl =0.944

VI. SUMMARY AND DISCUSSION

We have studied the NH topological phase transitions of
the SSH model with asymmetric hopping using numerical
methods to compute the edge states and an analytical approach
to display the topological characterization of the exceptional
points. One of our main results is shown in Fig. 4. We
computed in detail the numerical ZEESs and defined their
nontrivial chirality in the rhombus with winding W = 1. In
particular, the line where v = 0.0 presents a Hermitian behav-
ior due to the lack of the NH skin effect; that is, each mode is
on a specific edge of the system, and at the topological phase
transitions, for g = —1.0 and g = 1.0, the modes penetrate
into the bulk. We used the flow of the exceptional points in
the {Re[A,], Re[h,]} space to describe the chiral behavior in
the entire rhombus.

We also confirmed that the degree of non-Hermiticity of
the NH systems is related to the skin effect [28,38] that
localizes the edge states at the boundary (left of right side)
of the system. Our numerical results show that the semi-
integer/integer topological transition and the reverse present
an unusual aspect of the edge states; that is, depending on the
direction in parameter space from which the transition point
is approached, the edge states may localize or might slightly
penetrate into the bulk. Interestingly, when the transition point
is approached considering the same angular coefficient as that
of the chiral lines of the topological phase diagram, these
edge states are invariant on both sides of the transition. Thus,
the transition from W = 1/2 to W = 1 (or vice versa) is not
critical, and the edge states remain equally localized on each
side of the transition in the phase diagram.

From the complex gap structure analysis we confirm that
for the Hermitian case, i.e., for g = 0.0, the spectrum of the
system does not change when the system undergoes a topolog-
ical phase transition, exhibiting the real line gap, as expected.
On the other hand, when we consider NH effects, that is, for
g # 0.0, we show that one can identify all the NH topological
phase transitions on the NH SSH model by the change in its
spectrum.

Moreover, applying the penetration depth technique
[29,31,40], we have obtained the critical exponent v for the
topological phase transitions at the vertex of the rhombus
with W = 1 and on the transition lines W = 1/2 — 0 in the
topological phase diagram of the NH SSH model. Our results
show that the universality class of the NH SSH model is the
same as that of the Hermitian SSH model for these specific
transition points.

It would be interesting to investigate the model in the
limit v — 0, where we have Hermitian topological phase
transitions even though the system is non-Hermitian. Also the
integer/semi-integer phase transition still represents a chal-
lenge. So these aspects might be an interesting direction for
further investigations.
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