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Electron-hole coherence in core-shell nanowires with partial proximity-induced superconductivity
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By solving the Bogoliubov–de Gennes Hamiltonian, the electron-hole coherence within a partially proxim-
itized n-doped semiconductor shell of a core-shell nanowire heterostructure is investigated numerically and
compared with the Andreev reflection interpretation of proximity induced superconductivity. Partial proximiti-
zation is considered to quantify the effects of a reduced coherence length. Three cases of partial proximitization
of the shell are explored: radial, angular, and longitudinal. For the radial case, it is found that the boundary
conditions impose localization probability maxima in the center of the shell in spite of off-center radial prox-
imitization. The induced superconductivity gap is calculated as a function of the ratio between the proximitized
shell thickness and the total shell thickness. In the angular case, the lowest-energy state of a hexagonal wire with
a single proximitized side is found to display the essence of Andreev reflection, only by lengthwise summation
of the localization probability. In the longitudinal case, a clear correspondence with Andreev reflection is seen
in the localization probability as a function of length along a half-proximitized wire. The effect of an external
magnetic field oriented along the wire is explored.
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I. INTRODUCTION

Semiconductor nanowires with proximity induced su-
perconductivity have emerged as key elements in various
platforms proposed to realize qubits and other emerging tech-
nologies at the quantum scale [1–3]. The proximity effect is
generally hypothesized to stem from electron-hole coherence,
brought on by Andreev reflection at the superconductor inter-
face, where an incoming electron is retroreflected as a hole
[4–6]. The superconducting proximity effect has resurfaced
time after time in the past decades as a hot research topic
due to relevance to research topics in each decade [7–16],
most recently due to the search for Majorana zero modes
in nanostructures [17–19]. These zero modes are expected
to be hosted in synthetic topological superconductors, where
p-wave superconductivity can be engineered using spin-orbit
coupling in conjunction with Zeeman splitting and proximity
induced superconductivity in semiconductors [20–22].

Core-shell nanowires are radial heterojunctions consisting
of a core which is wrapped by one or more layers of different
materials. Due to crystallographic structure they usually have
polygonal cross sections [23–37], and thus the shells become
prismatic nanotubes, but circular systems have also been ob-
tained [38]. The sharp corners of the cross section induce
nonuniform electron localization along the circumference of
the tube, in particular, low-energy electrons are accumulated
in the vicinity of sharp edges, while carriers of higher energy
are shifted to the facets [39–42]. If the shell is very thin then
the low-energy electrons are depleted from the facets and
the shell becomes a multiple-channel system consisting of
well-separated one-dimensional (1D) electron channels situ-
ated along the edges. Due to their unique localization and a

variety of other interesting properties, core-shell nanowires
have been extensively investigated in the past two decades
[43,44], showing promise in multiple applications such as
lasers [45], energy harvesting devices [46,47], and photo-
voltaics [48]. By n doping, the chemical potential can be
moved into the conduction band such that electrons become
the only charge carriers and the material behaves effectively
as a metal with the effective mass of the host semiconductor.
Earlier investigations have indicated that due to 1D electron
channels along the sharp edges of prismatic tubes, multiple
Majorana zero modes can be hosted in a single core-shell
nanowire [49,50]. However, only if the electron-hole coher-
ence length is larger than the whole structure can the shell
be considered fully proximitized and electron-hole coherence
can be expected to be uniform.

In this paper, electron-hole coherence is investigated in an
n-doped semiconductor core-shell nanowire with partial prox-
imity induced superconductivity. Electron-hole coherence of
the lowest-energy states is compared with the Andreev reflec-
tion picture of proximitized superconductivity in the radial,
angular, and longitudinal interfaces arising within a single
nanowire.

II. ELECTRON-HOLE COHERENCE AND
THE PROXIMITY EFFECT

One of the earlier theoretical descriptions of the spatial
dependence of the order parameter in the superconducting
proximity effect was done by McMillan [51], using a Green’s
function approach based on the Gor’kov equations [52] to
describe a normal metal-superconductor (NS) junction. In this
method, the BCS potential for a quasi-1D problem is written
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in terms of the pairing interaction V (x) and the condensation
amplitude [11] F (x),

�(x) = V (x)F (x), (1)

where the ensemble average of field operators with opposite
spin projections describes the condensation amplitude [53]

F (x) = 〈ψ̂↑(x)ψ̂↓(x)〉. (2)

McMillan [51] called the problem of the NS junction possibly
the simplest one in space-dependent superconductivity and
proposed, in his own words, “a very nearly complete solution”
of the problem for the case of infinite length of both metals,
evaluating

F (x) = 1

π

∫ Ec0

0
Im[G12(E , x, x′)] dE , (3)

where Ec0 is the cutoff energy [54]. G12 is the upper off-
diagonal component of the 2 × 2 Green’s function

G(x, t, x′, t ′) = −i〈0|T {�(x, t )�†(x′, t ′)}|0〉, (4)

written in the Nambu [55] spinor formalism,

�(x) =
(

ψ̂↑(x)

ψ̂
†
↓(x)

)
, (5)

where T denotes time ordering and |0〉 the Heisenberg ground
state. F (x) is also known as the anomalous Green’s function
[56].

Another fundamental reference in the field is a book chap-
ter written by Deutscher and de Gennes [57] where the
distinction between a clean and dirty junction is made and
the following simplified result presented for the spatial depen-
dence of F (x). For a clean metal, where the mean free path lN
therein is larger compared to the coherence length, lN > ξN ,
the asymptotic form is obtained:

F (x) = φ(x) exp

(
−2πkBT

h̄vF
|x|

)
, (6)

where φ(x) is some slowly varying function, kB is the Boltz-
mann constant, T denotes temperature, and vF is the Fermi
velocity. For the limiting case of the temperature being close
to zero a result by Falk [58] is cited,

F (x) ∼ 1

|x| . (7)

Falks paper [58] has a similar Green’s function based ap-
proach to the Gor’kov equations as McMillan [51] and
proceeds McMillan’s work by five years. Andreev [4] con-
sidered the equations of motion obeyed by components of
the Green’s function in Eq. (4) in which diagonal and off
diagonals are coupled to derive a curious scattering process
at the plane boundary between the normal and superconduct-
ing phases which now bears his name. Andreev reflection,
Fig. 1, is the conjugate retroreflection of electrons and holes at
a metal-superconductor boundary [4]. Retroreflection means
that an incoming electron from the normal metal side is re-
flected such that it traces back the incident trajectory. In order
for an incident electron at the normal metal side with energy
below the gap parameter � to be transferred across the bound-
ary, the formation of a Cooper pair in the superconductor

F (x)

x
e

h

Δ
Normal conductor Superconductor

FIG. 1. Simplified sketch of the proximity effect in terms of the
condensation amplitude F (x) and Andreev reflection. An electron
with energy E < � at an N-S boundary will be retroreflected as a
hole while forming a Cooper pair within the superconductor [6].

requires another electron with equal and opposite momentum,
which can be seen as a reflected hole.

At present time, electron-hole coherence via Andreev
reflection is considered to be the mechanism behind the super-
conducting proximity effect [59,60]. Blonder, Tinkham, and
Klapwijk (BTK) refined the scattering approach to the prob-
lem using the Bogoliubov equations and further computed I-V
curves along with transmission and reflection coefficients for
all cases of energy relative to the superconducting gap includ-
ing a delta barrier at the interface [6]. This work has since
become seminal for Andreev reflection and is fundamental to
most tunneling spectroscopy experiments on superconducting
junctions [59]. The scattering formalism has the advantage
of being readily interpreted and familiar from the standard
educational problem in quantum mechanics of scattering from
a potential barrier. Klapwijk [11] later noted that the following
self-consistency equation was not incorporated in the original
BTK approach and the superconducting gap implemented as
a step function at the interface. The self-consistency equa-
tion can be written as

�(r) = V (r)F (r) = V (r)
∑

E

u(r)v†(r)[1 − 2 f (E )], (8)

where u(r) and v(r) are the electron and hole components of
the quasiparticle wave function, respectively, and f (E ) is the
Fermi-distribution function,

f (E ) = {1 + exp[E − μ/(kBT )]}−1. (9)

Even if the pairing interaction V (r) is zero in the normal
metal, F (r) can be nonzero, stemming from electron-hole
coherence, which can be interpreted as the superconductiv-
ity leakage in the normal metal [11]. The self-consistency
equation determines the variation of �(r) at the intersection
but the general features of Andreev reflection are indepen-
dent of it [61]. Self-consistency has been shown to be of
great importance for interfaces with d-wave superconductivity
[62,63]. The spatial propagation of the superconducting order
parameter at NS interfaces has been found [64] to be ade-
quately described by the Usadel equations [65], which are a
diffusive (dirty) limit of the Eilenberger-Larkin-Ovchinnikov
equations [66,67], which are a quasiclassical approximation
to the Gorkov equations [52]. The Gorkov equations can be
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used to derive the semiclassical Ginzburg-Landau theory [68]
from a microscopic description [69].

Considerable work has been done in the past decade on
the many subtleties of the superconducting gap parameter
in hybrid semiconductor-superconductor systems in relation
to the quest for experimental realization of Majorana zero
modes [70–74], in particular, where p-wave superconductiv-
ity is engineered in nanowires by combining the proximity
effect and Zeeman and Rashba spin-orbit interaction [21].
Another promising approach are hybrid systems using ferro-
magnetic materials [75] to obtain spin-triplet pairing [76–81]
allowing for topological states [82]. Properties of the induced
gap can be significantly altered in the presence of ferromag-
netism [83–87]. Furthermore, interfaces of superconductors
and ferromagnetic materials have opened up possibilities
for superconducting spintronics [88,89], allowing for spin-
dependent control of supercurrents [90,91] and transition
temperatures [92,93].

III. MODEL AND METHODS

A three-dimensional proximitized core-shell nanowire is
modeled in the zero temperature limit using cylindrical co-
ordinates, where the z axis is defined along the wire growth
direction. Using a divide and conquer algorithm [94] coded
in FORTRAN [95], energy spectra and states of the system are
obtained by numerical diagonalization of the Bogoliubov–de
Gennes (BdG) Hamiltonian [96,97],

HBdG =
(

[Hw − μ] ±�↑↓
∓�∗

↑↓ −[H∗
w − μ]

)
. (10)

The matrix elements are written in the composite basis |q〉
consisting of the transverse modes |a〉, longitudinal modes |n〉,
spin |σ 〉, and particle-hole eigenstates |η〉, such that

|q〉 = |ηanσ 〉, (11)

where |anσ 〉 are the eigenstates of the Hamiltonian for the
wire without proximity induced superconductivity,

Hw = Ht + Hl + HZ. (12)

The transverse and longitudinal components of the Hamilto-
nian are written as

Ht + Hl = (pφ + eAφ )2

2me
− h̄2

2mer

∂

∂r

(
r

∂

∂r

)
+ p2

z

2me
, (13)

where Aφ = 1
2 Br is the vector potential in the symmetric

gauge, incorporating an external magnetic field, B, directed
along the wire axis. The transverse eigenstates are expanded
in terms of the lattice sites

|a〉 =
∑

κ

ca|rκφκ〉 (14)

and matrix elements obtained by finite-difference discretiza-
tion of derivatives [41,42]. The cross-section geometry is
added by infinite potential boundary conditions defining the
hexagonal shape. For an infinite wire, the longitudinal modes
are expressed in an exponential plane wave basis so that
the Hamiltonian becomes a function of the longitudinal
wave vector. For a finite wire, they are expanded in a sine

basis,

|n〉 = L−1/2
z

√
2 sin

[
nπ

(
z

Lz
+ 1

2

)]
. (15)

The length of the wire is Lz; the origin is defined in the
nanowire center so that the wire spans the interval [−Lz

2 ,
Lz

2 ]
along the z axis. The external magnetic field B gives rise to
the Zeeman term

HZ = −g∗μBσB, (16)

where g∗ is the effective Landé g factor and μB the Bohr mag-
neton. The particle-hole symmetry and coupling are contained
in the quantum number η = ±1 and the matrix elements of the
BdG Hamiltonian are obtained by the following, for η = η′,

〈anση|HBdG|a′n′σ ′η′〉
= η[Re〈anσ |Hw|a′n′σ ′〉

+ iη〈anσ |Hw|a′n′σ ′〉 − μδ(anσ )(a′n′σ ′ )], (17)

and for η �= η′,

〈anση|HBdG|a′n′σ ′η′〉 = ησδσ,−σ ′δaa′δnn′�s. (18)

The chemical potential, μ, is set to correspond to an n-doped
semiconductor such that electrons are the main carriers of
the system. In accordance with the original works of An-
dreev [4] and BTK [6], the induced gap is a fixed parameter
and spin-orbit coupling is not considered. Partial proximiti-
zation is implemented in the superconducting gap parameter,
�s(r, φ, z), by step functions of position in the radial, angular,
and longitudinal direction of the shell, so that ideal junctions
with no interface barriers [98] are formed in each case. No
further boundary condition is imposed at the interface apart
from the step function of �s, which is known as a rigid bound-
ary condition [99]. Model parameters are set to correspond to
an InSb shell with γ = 1

2 g∗me = 0.393 and � = 0.50 meV.
The numerical simulations were performed for single shell
nanowires with cross-section diameter of 100 nm and shell
thickness d = 10 nm, the length was set to 10 µm in Secs. IV
and V along with a shorter wire of 1 µm, and an infinite one
explored in Secs. VI and IV, respectively.

IV. PARTIAL RADIAL PROXIMITIZATION

A core-shell nanowire fully coated with a superconducting
layer has a radially symmetric proximity induced gap in the
shell. Full-shell nanowire systems allow for additional control
of the superconducting energy gap due to the Little-Parks
effect [100–102]. Multiple fabrication-specific microscopic
details and material properties can influence the strength of
the induced gap [103]. To investigate electron-hole coherence
within the partially proximitized shell, the semiconductor
shell is considered to have a superconducting gap �s in its
outer half, brought on by a surrounding superconductor, not
included in the Hamiltonian. A cylindrical shell is studied to
isolate the effect of a partial proximitization radially, Fig. 2(a).
As the interface lies within the semiconductor shell, there
is no Fermi surface mismatch. Partial proximitization of a
semiconductor wire with a superconductor having a gap �s =
0.5 meV results in an induced gap of �i = 0.15 meV of the
whole system, Figs. 2(b) and 2(c). The wave function acquires
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FIG. 2. (a) Partial radial proximitization of the nanowire shell,
diameter of 2R. Half-proximitized shell with �s = 0.5 meV in the
outer half (purple) of the shell. (b) Finite wire BdG spectrum of the
nanowire system, showing the induced gap �i = 0.15 meV. (c) In-
finite wire BdG energy dispersion in terms of the dimensionless
product of the wave vector, k, and radius, R. (d) Energy dispersion
and chemical potential (red) of the infinite wire. (e) Longitudinal
summation of localization probability on interior sites for the hole
component |v|2 of the lowest positive and negative energy states, for
a single angular slice. (f) Corresponding electronic component |u|2.

the angular symmetry of the shell; the localization proba-
bility peak, however, is found to be centralized in the shell,
irrespective of the radial asymmetry of proximitization. This
follows from the boundary condition of no hopping over the
inner and outer boundary of the shell, which corresponds to
vanishing of the wave function in the continuous lattice limit.
Note that, according to Eq. (15), the localization probability
oscillates along the wire length. The oscillation wavelength
is determined by the chemical potential, Fig. 2(d), as the
higher energy level increases the frequency. Figures 2(e) and
2(f) show the longitudinal summation of localization prob-
ability for the first five positive and negative energy states.
The boundary conditions force the induced hole component
to be equally localized over both the proximitized and non-
proximitized parts of the wire shell. In this case, finite size
effects [98,104] dominate over scattering, leading to a uniform
electron-hole coherence and an induced gap in the whole
shell. In Fig. 3 the induced superconducting gap is shown
as a function of the ratio between the nonproximitized and
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FIG. 3. Induced superconducting energy gap of a partially prox-
imitized nanowire as a function of the ratio of the proximitized shell
thickness, d�, to the total shell thickness, dtot .

proximitized parts of the shell. The results are found to be in-
dependent of the shell thickness, for the given diameter of the
wire. The superconducting gap parameter of the proximitized
part is set to �s = 0.5 meV. The induced superconducting gap
of the fully proximitized system is lowered by 10% due to the
applied external magnetic field, | �B| = 65.8 mT, included in
the simulation to lift spin degeneracy. The spin degeneracy
is lifted to identify the chemical potential range that includes
both spins in the presence of a magnetic field, the effects of
which are further studied in Sec. VI.

V. PARTIAL ANGULAR PROXIMITIZATION

Systems where nanowires are proximitized by fabrication
of the wire on top of a superconducting slab are common
experimental platforms for Majorana physics [105–107]. A
hexagonal core-shell structure is considered to model such a
system where the effective coherence length is smaller than
the diameter of the nanowire, such that only a single side
can be considered fully proximitized, Fig. 4(a). In the fully
proximitized part, the gap parameter is set at �s = 1 meV
and the induced gap obtained is �i = 0.05 meV, Figs. 4(b)
and 4(c). For the first excited positive energy quasiparticle
state, in the case of the chemical potential including only
the lowest-energy band, Fig. 4(d), the Andreev picture of the
proximity effect in uncovered. However, it is only seen by
lengthwise summation of localization probability such that the
total localization probability is projected onto the wire cross
section, Figs. 4(e) and 4(f). The fully proximitized part of the
semiconductor shell has a hole component localized within it,
by definition of the BdG quasiparticle spectrum. Reminiscent
of Andreev reflection, the hole components spread out to the
normal conducting part of the shell, Fig. 4(e). The electron
localization probability is lowered within the superconducting
shell, Fig. 4(f), in accordance with the view that the super-
conductor incorporates an electron to form a Cooper pair and
reflects a hole in the process [6]. The electron-hole coherence
results in a near uniformly spread out BdG localization prob-
ability over the shell with peaks in the corners, due to corner
localization [41]. The first negative energy state has the oppo-
site electron-hole localization probability from Figs. 4(e) and
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FIG. 4. (a) Partial angular proximitization of a hexagonal
nanowire shell; single side proximitization with �s = 1 meV. (b) Fi-
nite wire BdG spectrum of the whole system, showing the induced
gap �i = 0.05 meV. (c) Infinite wire BdG spectra. (d) Dispersion
and chemical potential (red) of the infinite wire Hamiltonian. (e)
Longitudinal summation of localization probability for the hole com-
ponent |v|2 of the lowest positive energy state; brightness denotes
higher localization probability. (f) Corresponding electron compo-
nent |u|2.

4(f), as expected from electron-hole symmetry of the system.
Along the length of the wire, the wave function localization
probability of each state oscillates, Sec. VI, and the symmetry
of Figs. 4(e) and 4(f) can be inverted at specific sites. This
also happens for the adjacent higher energy states in which
the particle-hole coherence is inverted since for a given energy
value of the BdG spectra slightly above �, there are four states
in each band—two electron dominant and the other two hole
dominant.

VI. PARTIAL LONGITUDINAL PROXIMITIZATION

Another possibility of partial proximitization is partial
covering of a nanowire longitudinally with a superconduc-
tor [105,108]. A half proximitized wire is considered, such
that the superconducting gap is uniform in the whole shell
up to half the length of the wire, with �S = 0.5 meV.
Figure 5 shows the electron-hole coherence at a single corner
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FIG. 5. (a) Single corner site localization probability from the
composite BdG wave function of the lowest-energy state of a
half proximitized hexagonal wire with no external magnetic field.
(b) Corresponding electron and hole components, |u|2 and |v|2,
respectively.

site, for the case of no external magnetic field, of a long
hexagonal nanowire with L = 200 R, where the diameter of
the wire is 100 nm. An exponential decay of the composite
BdG localization probability into the nonproximitized part is
obtained, Fig. 5(a). This stems from coherence of electron
and hole tunneling tails into the nonproximitized half of the
wire, Fig. 5(b). Diminishing of the BdG localization prob-
ability in the proximitized half of the wire is caused by a
phase difference between the electron and hole wave function
components; the −π/2 phase difference is characteristic of
Andreev reflection [61,109].

If an external magnetic field is applied, Zeeman splitting
gives rise to a difference of the k vectors between the spin-split
states, resulting in an additional phase difference between the
electron and hole components, Fig. 6(b). This phase difference
leads to a beating pattern of the BdG localization probability,
Fig. 6(a).

In the case of a weaker superconducting gap parameter
�S = 50 µeV, Fig. 7, the exponential decay into the semi-
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FIG. 6. (a) Single corner site localization probability from the
composite BdG wave function of the lowest-energy state of a half
proximitized hexagonal wire, for the case of an external magnetic
field | �B| = 65.8 mT. (b) Corresponding electron and hole compo-
nents, |u|2 and |v|2, respectively.
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FIG. 7. (a) Single corner site localization probability from the
composite BdG wave function of the lowest-energy state of a half
proximitized hexagonal wire, �S = 50 µeV, with no external mag-
netic field. (b) Corresponding electron and hole components, |u|2 and
|v|2, respectively.

conducting part is enlarged compared with Fig. 5. The gap
parameter can thus be seen as an effective potential barrier
for the electron-hole coherence. For a shorter wire with L =
1 µm and �S = 0.5 meV, Fig. 8, the exponential decay is less
pronounced, compared with Fig. 5. The coherence length is
the same but the electron component at the interface is near
minimum in phase, rather than at maximum as in the case
of the longer wire. The wavelength of the wave function
depends on the Fermi level, and so the length can influence
the phase value of the electron and hole components at the
interface. For both finite wires, long and short, a direct cor-
respondence with Andreev reflection is found per site of the
shell, where the propagation of the quasiparticle wave func-
tion into the nonproximitized part can be understood in terms
of the electron-hole coherence.

VII. DISCUSSION

The manifestation of Andreev reflection in the electron-
hole coherence of the lowest-energy quasiparticle states of
partially proximitized core-shell nanowires has been in-
vestigated by separately considering radial, angular, and
longitudinal interfaces of an induced superconducting pairing
potential. In the radial case, finite-size effects in the thin shell
lead to in-phase electron and hole components, with a sym-
metric distribution of the total localization probability over
the interface. The shell is therefore found to be uniformly
gapped, with the superconducting gap of the wire as a whole
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FIG. 8. Single corner site localization probability of the compos-
ite BdG wave function and its corresponding electron |u|2 and hole
|v|2 components of the lowest positive energy state. Wire length is
L = 1 µm.

being suppressed with respect to the proximitized gap. For
the angular case, asymmetry of the total localization proba-
bility over the interface of the lowest-energy state is shown to
correspond to Andreev reflection phenomenology. Including
higher energy states results in more complex distributions of
the total localization probability, worthy of further investiga-
tion, as higher order scattering events come into play. The
most direct correspondence to Andreev reflection is found for
the longitudinal interface, where the electron-hole coherence
propagates the quasiparticle wave function into the nonprox-
imitized part of the wire. This is found for each transverse
site, which is effectively a one-dimensional nanowire. The
results confirm the applicability of the phenomenology for
partially proximitized wires of these dimensions. Andreev
reflection as described by BTK [6] is a one-dimensional
picture of electron-hole coherence from scattering at infinite
normal conductor-superconductor (NS) interface, utilizing the
Andreev approximation kN

e/h ≈ kS
e/h ≈ k f , i.e., that all wave

vectors are evaluated around the Fermi level. The notion has
proven to be very useful for understanding multiple aspects
of hybrid superconductor systems in the past decades [5,11]
and is still in full use [110,111]. It is, however, an effective
single-channel model and limitations of the phenomenology
can be expected to come to light with increasing complexity
and diversity of fabricated systems [112,113]. Significance of
normal reflection events for two-dimensional interfaces has
been shown analytically [114,115]. The scattering approach
has been shown to have its merits in multiple regimes [116]
and even advantages over quasiclassical Green’s function
approaches [117]. However, incorporating self-energy cor-
rections from the superconductor in the Green’s function of
proximitized nanowires has been shown to capture important
renormalization effects on proximity-induced topological su-
perconductivity [118], and has recently been used to quantify
the effects of disorder and Fermi surface mismatch in thin-film
proximitization [103]. The current methodology of numerical
diagonalization of the system in a position representation is
closer to the scattering approach, providing real-space solu-
tions of the wave functions.

VIII. CONCLUSIONS

Low-energy physics of the radial, angular, and longitu-
dinal superconductor interfaces of proximitized core-shell
nanowires has been explored using the Bogoliubov–de
Gennes equations. Partial proximitization is considered to
quantify the effects of a reduced coherence length and to
investigate the Andreev reflection interpretation of proximity
induced superconductivity. For a thin shell, boundary con-
ditions are found to impose symmetry of the localization
probability in spite of partial radial proximitization. In the
case of a hexagonal wire with a single proximitized side,
it is only by lengthwise summation of localization proba-
bility that the essence of Andreev reflection can be seen.
For a longitudinally half proximitized wire, electron-hole co-
herence is explicitly shown to propagate the quasiparticle
wave function into the nonproximitized part of the wire.
Application of an external magnetic field directed along the
wire axis is found to cause amplitude modulation of the
quasiparticle wave function. Correspondence with Andreev
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reflection is obtained per site of the shell, from considering the
localization probability as a function of length in the core-
shell nanowire. The results show in what way Andreev
reflection is compatible with electron-hole coherence at the
various interfaces that can arise in proximitized core-shell
nanowire systems.
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