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Topological features of the Haldane model on a dice lattice: Flat-band effect on transport properties
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We study the topological properties of a Haldane model on a band deformed dice lattice, which has three
atoms per unit cell (call them A, B, and C) and the spectrum comprises of three bands, including a flat
band. The bands are systematically deformed with the aim to study the evolution of topology and transport
properties. The deformations are induced through hopping anisotropies and are achieved in two distinct ways.
In one of them, the hopping amplitudes between the sites of B and C sublattices and those between A and
B sublattices are varied along a particular direction, and in the other, the hopping between the sites of A and B
sublattices are varied (keeping B-C hopping unaltered) along the same direction. The first case retains some of the
spectral features of the familiar dice lattice and yields Chern insulating lobes in the phase diagram with C = ±2
till a certain critical deformation. The topological features are supported by the presence of a pair of chiral edge
modes at each edge of a ribbon and the plateaus observed in the anomalous Hall conductivity support the above
scenario. Whereas, a selective tuning of only the A-B hopping amplitudes distorts the flat band and has important
ramifications on the topological properties of the system. The insulating lobes in the phase diagram have distinct
features compared to the case above, and there are dips observed in the Hall conductivity near the zero bias. The
dip widens as the hopping anisotropy is made larger, and thus the scenario registers significant deviation from
the familiar plateau structure observed in the anomalous Hall conductivity. However, a phase transition from a
topological to a trivial insulating region demonstrated by the Chern number changing discontinuously from ±2
to zero beyond a certain critical hopping anisotropy remains a common feature in the two cases.
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I. INTRODUCTION

Since the discovery of quantum Hall effect (QHE) in 1980
[1], there has been a surge of research on the topological
phases of matter in the condensed matter community. The
Hall conductivity in the QHE shows a series of plateaus
[2–5] quantized in units of e2/h and the topological invariant
which describes this quantization is known as the Thouless–
Kohmoto–Nightingale–den Nijs (TKNN) invariant [6]. Apart
from the Hall effect observed in presence of a magnetic field,
there has been proposal to realize such a behavior in the
absence of magnetic field, namely, the quantum anomalous
Hall effect (QAHE) [7–10] that relies on the breaking of
time-reversal symmetry (TRS) of the system. Haldane pio-
neered such an idea in a two-dimensional honeycomb lattice
[11]. To break the TRS, he proposed a complex next-nearest-
neighbor (NNN) hopping with a phase φ. In this model, the
bands are associated with a topological invariant, called the
Chern number, which is identical with the quantization of
the Hall conductivity. Further, a sublattice symmetry break-
ing term, which we shall call later as the Semenoff mass
(denoted by �) is included, which induces opening or clos-
ing of the spectral gap in the band structure. The variation
of the Chern number as a function, � and φ presents a
phase diagram which encodes these opening and closing of
band gaps at the Dirac points (usually denoted by the K
and K′ points) in the Brillouin zone (BZ). Further, the value
of the Chern number ascertains the nature of the gap, for

example, if it is finite (zero), it denotes a topological (trivial)
gap.

Following Haldane’s work in 1988, there has been of
immense interest on the QAHE in several two-dimensional
systems, such as, the Lieb lattice [12–15], checkerboard
lattice [16], Kagomé lattice [17–20], etc. Experimentally a
Haldane model has been realized in two dimensional honey-
comb structures, such as, Fe-based ferromagnetic insulators,
XFe2(PO4)2, where X may be K, Cs, La [21]. Further, cold
atoms in an optical lattice created by standing-wave laser
beams [22–24], for example, an optical honeycomb lattice
[25] also depicts similar nontrivial topological phases.

Most of these concepts are applied to two band systems,
where the Chern number assumes values ±1. Hence, to serve
a dual purpose of extending the calculations to other sys-
tems with larger number of bands (specifically a flat band),
along with achieving higher values of the Chern number for
a system, we consider a dice lattice. A dice lattice has the
structure of a honeycomb lattice with an additional lattice
point at the center of the hexagon, which is connected to either
of the A or B sublattice. This additional lattice point belongs
to a third sublattice C [26–35]. Thus the unit cell contains
three sublattices, namely, A, B, and C. The band structure
consists of a zero energy flat band that resides between the
upper (conduction) and the lower (valence) bands, and they
have degeneracies at the Dirac points (K and K′) in the sense
that all the bands touch each other at these points in the
BZ.
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There is in general a great deal of excitement with systems
possessing flat bands [26,36,37]. A flat band is dissipation-
less and provides an ideal platform for exploring electronic
correlations owing to a complete quenching of kinetic en-
ergy of the particles. In a way, they are analogous to the
Landau levels. There have been theoretical predictions about
several intriguing phenomena, such as, Wigner crystallization
in honeycomb structures [38], large superconducting critical
temperature [39], fractional Chern insulators [40,41], etc. On
the experimental front, flat bands have been achieved in pho-
tonic crystals [42], optical lattices [43], and metamaterials
[44]. Interestingly, in twisted bilayer graphene at the magic
angle, the excitement of a close resemblance with the phase
diagram of high-Tc cuprates is due to the presence of almost
flat bands in the spectrum [45].

In this work, we wish to explore topological properties
of flat band systems. Gapped flat band systems demonstrate
higher values of Chern number and they imply larger values
of the (anomalous) Hall conductivity [46]. Apart from the dice
lattice, there are many other systems that host higher Chern
numbers, such as, a decorated honeycomb structure or a star
lattice [47], a longer range hopping in the multiorbital trian-
gular lattice [48], Dirac [49], and semi-Dirac [50] systems,
etc. In presence of a spin-orbit coupling, a honeycomb lattice
[51,52], and ultracold gases in a triangular lattice [53,54]
also depict large Chern numbers. Further, in sonic crystals
created using acoustic components [55], Cr-doped laminar
sheets of Bi2(Se, Te)3 [56], or a magnetic doped topological
insulator [57], higher values of Chern numbers are predicted.
Experimentally, a multilayered structure consisting of alterna-
tively arranged doped (with magnetic materials) and undoped
topological insulator layers also reveals presence of several
higher Chern numbers [58] and the Hall conductivity is found
to scale with the number of layers. Also MnBi2Te4 devices at
high temperature show a Chern number, C = 2 [59,60].

In this paper, we focus on a dice lattice that includes the
TRS breaking complex NNN hopping term. The topological
and the transport properties of such a system may be pre-
dictable. Owing to an additional flat band at the Fermi level,
the topological properties are characterized by Chern numbers
±2. Further, the electrons in the flat band can not move,
and hence their contribution to the transport phenomena may
not yield interesting results. However our studies will have
larger impact if the flat band is rendered dispersive, which
will enable it to contribute to the transport and may have
important consequences on the topological properties. We
simulate the evolution of the topological properties of a band
deformed dice lattice where the effects of deformation of the
band structure are induced by an anisotropic hopping energy
between selected nearest-neighbor bonds. In a first attempt
(we shall call this as case I later), the hopping anisotropy
is introduced via tuning the nearest-neighbor (NN) hopping
amplitudes between the A-B (say, t1) and B-C (say, t ′) sub-
lattices identically along a particular direction, while those
along the rest of the NN directions (t) are kept unaltered (see
Fig. 1). Such an anisotropic hopping causes the band extrema
from the Dirac points to move closer to each other, and they
eventually merge at an intermediate M point. The spectral
gaps and the topological properties vanish at a special value
of the hopping t1, namely, t1 = t ′ = 2t . In the absence of the

FIG. 1. A dice lattice is shown in (a) where the red, blue, and
the green circles represent the sublattices A, B, and C, respectively.
The NN hopping strength between A and B sublattices along the δ1

direction (shown via the yellow arrow) is t1, while it is t ′ between
B and C sublattices along the same direction. The NNN hopping is
t2eiφ (t2e−iφ) for the clockwise (anticlockwise) direction. δi and a0

represent the NN vectors and lattice constant respectively. In (b) and
(c), the values of the NN hopping amplitude, namely, t ′ are shown
corresponding to cases I and II, respectively.

NNN hopping, the band dispersion for this particular value of
t1 and t ′ is quadratic along the kx direction and linear along
the ky direction, and is commonly referred to as the semi-
Dirac dispersion. However, the presence of NNN hopping
makes the spectrum anisotropic linear, that is, linear along
both the directions, but the electrons have unequal velocities.
This phenomenon is similar to the case for graphene, where
a topological phase transition takes place at the gap closing
semi-Dirac limit [61,62], except that in the dice lattice we
have an additional zero energy flat band. Thus disappearance
of a band gap is more involved here as we shall see below.

An alternative option to induce hopping anisotropy is via
“selectively” tuning the hopping t1 between the A and B
sublattices, while keeping t ′ between the B and C sublattices
unaltered. To distinguish it from the case above, we call it
case II. Such a selective hopping anisotropy leads to distinct
effects compared to the above case, where the band extrema
do not migrate, however the flat band gets deformed, which
eventually alters the gap between the conduction (or valence)
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and the flat band. Moreover, the deformation of the flat band
(which does not remain flat any longer) imparts a dispersive
character, and hence should enable it to contribute to the trans-
port properties. Finally, the spectral gap vanishes at certain
value of the anisotropy, namely, t1 = 1.67t which is different
from case I (that is, t1 = t ′ = 2t) and depends on the value of
NNN hopping amplitude t2. The latter is also a discernible
feature of this system, since the value of t2 did not play a
role earlier and any nonzero t2 induces topological properties.
Such vanishing of the band gap again leads to the vanishing of
the topological properties similar to the case above. However,
the Chern insulating regions in the phase diagram and the
anomalous Hall conductivities have differences in these two
cases. Specifically, the effects of the flat band being dispersive
will lead to observable consequences in the behavior of the
anomalous Hall conductivity.

Possible experimental scenarios in inducing hopping
anisotropy, at least for case I can be provided as follows. The
hopping energies t1 and t ′ can be altered simultaneously by
applying an uniaxial strain to the system which changes the
bond length along the direction of application of the strain.
Thus the hopping energies among the A-B and B-C sublat-
tices will be modified simultaneously. Such applications of
uniaxial strain in the honeycomb lattice structure, such as,
Si2O yields a semi-Dirac band structure [63]. For the sake of
completeness, we have applied both type of anisotropy to see
the properties of the dice lattice. Case II involves selective
control of the hopping amplitudes (see Fig. 1) and is included
for comparison owing to the interesting consequences detailed
above (and also later in Sec. IV). In general, the semi-Dirac
dispersion (albeit without the Haldane flux) is somewhat east-
ablished in experiments, such as, the BEDT-TTF2I3 organic
salts under pressure [64,65], in multilayered structures of
TiO2/VO2 [66,67], black phosphorene doped by means of
in situ deposition of potassium atoms [68] etc.

The paper is organized in the following way. In Sec. II, we
present the Hamiltonian of the system for the two cases (I and
II) and the energy dispersions are plotted for different values
of the anisotropy parameters in Sec. III. Section IV deals with
the topological properties in which Sec. IV A shows the phase
diagrams corresponding to different values of the anisotropic
hoppings. Further, the presence (or absence) of a pair of edge
modes of a nanoribbon for various parameters are shown in
Sec. IV B. Finally we present numerical computation of the
anomalous Hall conductivity in Sec. IV C for the cases I and
II. We finally conclude with a brief summary of the results
obtained in Sec. V.

II. THE HAMILTONIAN

A tight-binding Hamiltonian on a dice lattice can be written
as follows:

H =
[ ∑

〈i j〉
ti jc

†
i c j +

∑
〈〈i j〉〉

eiφi j c†
i c j + H.c.

]
+

∑
i

�ic
†
i ci. (1)

The first term is the nearest-neighbor (NN) hopping, where
the hopping ti j = t1 when i connects the site j along
the δ1 = a0(0, 1) direction, while it is t along the δ2 =
a0(

√
3/2,−1/2) and δ3 = a0(

√
3/2,−1/2) directions shown

in Fig. 1. Such values of ti j are restricted among the A and

B sublattices. Further, the NN hoppings between the B and
C sublattices along the δ1 direction is t ′ and t in the δ2,3

directions. As detailed earlier, we have considered two cases.
In case I we vary both t1 and t ′ in the range [t : 2t], while
is the second case, t ′ is kept fixed at t , and t1 is varied in
the range [t : 1.8t]. The second term in Eq. (1) represents the
complex NNN with an amplitude t2 and a phase φi j , where φi j

is positive (negative) when an electron hops in the clockwise
(anticlockwise) direction. The third term denotes the onsite
energy term (Semenoff mass), that assumes values ±� at the
sites that belong to the B and C sublattices, respectively.

The Fourier transformed Hamiltonian can be written as

H (k) =
⎛
⎝ h+

z (k) h(k, t1) 0
h∗(k, t1) 0 h(k, t ′)

0 h∗(k, t ′) h−
z (k)

⎞
⎠, (2)

where h(k, t̃ ) = hx(k, t̃ ) − ihy(k, t̃ ) with t̃ being either t1 or t ′.
The elements h±

z are defined as, h+
z (k) = h0(k) ± hz(k). The

expressions for the his can be written as

hx(k, t̃ ) =
{

t̃ cos ky + 2t cos
ky

2
cos

√
3kx

2

}
, (3)

hy(k, t̃ ) =
{

− t̃ sin ky + 2t sin
ky

2
cos

√
3kx

2

}
, (4)

hz(k) = � − 2t2 sin φ

{
2 sin

√
3kx

2
cos

3ky

2
− sin

√
3kx

}
,

(5)

and

h0(k) = 2t2 cos φ

{
2 cos

√
3kx

2
cos

3ky

2
+ cos

√
3kx

}
. (6)

We have presented the calculation of the electronic disper-
sion in Appendix. Further, The Haldane flux is kept constant
at π/2 so as to render the NNN hopping purely imaginary, and
we have considered � = 0, except for the computation of the
phase diagram in Sec. IV A.

III. SPECTRAL PROPERTIES

The electronic energy spectra of the system, where both t1
and t ′ are varied together, have been obtained via numerical
diagonalization of Eq. (2) and are shown in Fig. 2. Three
bands appear in the spectrum, which we term as the conduc-
tion band (shown in red), flat band (in green) and valence band
(in blue). In absence of the NNN hopping, there is no spectral
gap anywhere [Figs. 2(a)–2(c)] in the BZ. As we turn on the
NNN hopping, spectral gaps (of same magnitude) open up
at the K (2π/3

√
3a0, 2π/3a0) and K′ (−2π/3

√
3a0, 2π/3a0)

points [Fig. 2(d)]. Now if we increase t1 and t ′, the band
extrema at the K and the K′ points migrate towards each other
which results in diminishing of the band gap. At a special
value of the hopping amplitude, namely, t1 = t ′ = 2t , the band
gap vanishes at M (2π/3a0, 0) point even in the presence of
the Haldane term, t2 (that is, TRS remains broken) [Fig. 2(h)].
As both t1 and t ′ are increased beyond value 2t (t denotes NN
hopping), a spectral gap opens up again at the M point and
the band structure henceforth remains gapped for all values
of t1 > 2t and t ′ > 2t . It should be noted that without the
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FIG. 2. The band structure of the system in absence of t2 (t2 = 0)
is shown along the kx axis (at kya0 = 2π/3) for (a) t1 = t ′ = t ,
(b) t1 = t ′ = 1.5t , and (c) t1 = t ′ = 2t . Similarly, the dispersion in
presence of t2 (t2 = 0.1t ) is depicted for (d) t1 = t ′ = t , (e) t1 =
t ′ = 1.2t , (f) t1 = t ′ = 1.5t , (g) t1 = t ′ = 1.8t , (h) t1 = t ′ = 2t , and
(i) t1 = t ′ = 2.1t . In the figures, kx is rendered dimensionless by
multiplying with lattice constant a0.

Haldane’s NNN hopping, the band structure of the dice lattice
[Figs. 2(a)–2(c)] demonstrates very similar properties with
that of graphene, except that there is no flat band for the latter
[69,70]. At t1 = t ′ = 2t , the spectrum resembles a semi-Dirac
dispersion, that is, linear along ky, and quadratic along the kx

direction. The presence of t2 makes the dispersion anisotropic
linear, that is linear along both the directions, however the
electrons move with different velocities [see Fig. 2(h)]. Fur-
ther, the spectra for other values of t1 (for t2 �= 0) demonstrate
similar features as that obtained for graphene [61].

Now we discuss the spectral features corresponding to case
II where t ′ is fixed at t , while t1 is varied. The corresponding
plots are depicted in Fig. 3 for both t2 = 0 [Figs. 3(a)–3(c)]
and t2 �= 0 [Figs. 3(d)–3(i)]. For t2 = 0, one can observe a
spectral gap, which scales with t1, however the flat band
continues to remain flat. When t2 is turned on, the flat band
becomes dispersive for t1 �= t , and the spectral gap decreases.
Hence, we can no longer call it flat band as it becomes
dispersive and we refer to it from now on as the middle
band. It should be noted that the conduction band minimum
remains fixed at the K point, while the same near the K′
point is displaced along the positive kx direction. A similar
scenario occurs in the case of the valence band. In fact the
reverse occurs, that is, the valence band maximum at K′
point remains constant, while that at K shifts. Finally the
gap vanishes completely at a specific value of t1, namely
t1 � 1.67t . Beyond t1 � 1.67t , the gap reopens. Thus the gap
closing or the so called “semi-Dirac” limit occurs at much
lower value compared to t1 = 2t . Another important aspect

FIG. 3. The band structures corresponding to case II are shown
along the dimensionless kx axis (at kya0 = 2π/3) for (a) t1 = 1.2t ,
(b) t1 = 1.5t , and (c) t1 = 1.8t , without a Haldane term (t2 = 0). The
same for t2 �= 0 are shown in (d)–(i) for t1 = 1.1t , 1.3t , 1.4t , 1.5t ,
1.67t , and 1.9t , respectively. The values of t ′, φ and � are taken as
t , π/2, and zero respectively.

of keeping t ′ unchanged (t ′ = t) is that the closing of the
energy gap depends on the value of t2. The spectrum shown
in Figs. 3(d)–3(i) is for t2 = 0.1t for which the gap closes
at t1 = 1.67t . However, if t2 is increases (decreases) the gap
closes at higher (lower) values of t1. Further, as opposed to
all the three bands (threefold degeneracy) touching together at
the M point in case I, here we observed two bands (conduction
and middle bands) touching each other above the Fermi level,
while the other two (valence and middle bands) touch below
the Fermi level [see Fig. 3(h)].

IV. TOPOLOGICAL PROPERTIES

A. Chern number

In this section, we obtain the phase diagram of the system
by calculating the Chern number numerically. Since the NNN
hopping term breaks the TRS, we should get the nonzero
values of Chern number. Moreover, finite values of the onsite
energy also play an important role in opening or closing of the
energy gaps at the Dirac points which play an essential role
in inducing a topological phase transition. The Chern number
(C) of a system can be calculated from the relation [71,72],

C = 1

2π

∫∫
BZ

�(kx, ky)dkxdky. (7)

Here �(kx, ky) is the z component of the Berry curvature [73]
which is given by

�(kx, ky) = −2iIm

[〈
∂ψ (kx, ky)

∂kx

∣∣∣∣∂ψ (kx, ky)

∂ky

〉]
. (8)
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FIG. 4. The phase diagrams are shown for t1 = t ′ = t in (a), (e) and (i), t1 = t ′ = 1.5t in (b), (f), and (j), t1 = t ′ = 1.8t in (c), (g), and (k),
t1 = t ′ = 1.95t in (d), (h), and (l). These phase diagrams are presented corresponding to the valence, conduction, and flat bands in (a)–(d),
(e)–(h), and (i)–(l), respectively. The nonzero Chern numbers corresponding to blue and green regions have values +2 and −2 respectively
(indicated above the figures), while the white regions represent vanishing Chern number.

where ψ (kx, ky) is the eigenstate of the Hamiltonian defined
in Eq. (2) and Im denotes the imaginary part. Hence we obtain
the Chern numbers by varying both t1 and t ′ (case I) as a func-
tion of � and φ as presented in the phase diagrams in Fig. 4.
As can be noticed, the green and the blue regions in each fig-
ure represent the topological phases of the system with Chern
numbers C = +2 and −2, respectively, while the white region
denotes trivial phase with zero Chern number (C = 0). Also,
we have shown the boundaries separating the topological and
the trivial phases corresponding to the original Haldane model
for graphene by the black sinusoidal curve. When t1 = t ′ = t ,
that is, for the familiar dice lattice we get a maximum area
of Chern insulating lobes [Fig. 4(a)]. However, the Chern
insulating (topological) regions are smaller than those for the
original Haldane model. The phase boundary is sinusoidal for
0 � |φ| � π/2 and linear for |φ| > π/2. Further, with the
increase in the value of t1 and t ′ [Figs. 4(b)–4(d)], the area
of the Chern insulating region gradually decreases, but the
phase boundary follows the pattern corresponding to that of
t1 = t ′ = t . Finally, the Chern number vanishes completely
at the semi-Dirac limit, that is, t1 = t ′ = 2t . In this limit, for
any nonzero value of �, there is always a gap in the band
structure, however |C| remains zero. If the values of t1 and t ′
increases beyond 2t , the spectral gap remains trivial (C = 0)
for all values of �.

The phase diagrams corresponding to the conduction bands
are presented in Figs. 4(e)–4(h). It is evident that they are
similar to that of the valence band except that the Chern
insulating regions move away symmetrically from φ = 0 with
these having opposite signs for the Chern number, C. In
Figs. 4(i)–4(l), the phase diagrams corresponding to the flat
band are depicted. It is obvious that the topological regions
are away from φ = π/2 and both C = +2 and C = −2 are
observed in the π > |φ| > 0 regime. Further the combined
phase diagrams for the conduction, middle and the valence
bands totally fill up the region under the sinusoidal curves that
correspond to the band deformed two-band Haldane model
[61]. Hence the total Chern number summed over all bands
vanishes. Also we get higher Chern numbers, namely, |C| = 2

instead of |C| = 1, along with each of the Chern lobes no
longer being symmetric (and sinusoidal).

The scenario changes for case II, when we retain t ′ = t and
selectively vary t1 as shown in Fig. 5. In this case, the Chern
insulating phases are denoted by different colours, namely,
cyan for C = 2 and red for C = −2 phases. It can be no-
ticed that the Chern insulating regions are shifted away from
φ = 0 corresponding to the valence band [Figs. 5(a)–5(d)],
while it gets shifted away from |φ| = π corresponding to the
conduction band [Figs. 5(e)–5(h)]. It should be noted that
when t1 �= t , the Chern number corresponding to the valence
band becomes zero for |φ| �= 0 along the � = 0 line, since the
valence band touches the dispersive flat band at these values
of φ. As a result, the topological lobes for φ > 0 and φ < 0
regions are separated by a trivial region in the vicinity of
φ = 0. Also the separation increases with increase in the value
of t1. A similar scenario occurs for the conduction band, but
the Chern lobes are separated by a trivial region in the vicinity
of φ = ±π .

Further, the Chern lobes are sinusoidal in shape and thus
are distinct from those in case I. However as earlier, the
Chern insulating regions gradually shrink with increase in
t1 and it eventually vanishes completely at the gap closing
point t1 = 1.67t . For any nonzero value of �, the spectral
gap is always trivial for t1 = 1.67t . For t1 > 1.67t , the gap
reopens for � = 0, however the Chern number vanishes. Thus
we observe a topological phase transition at the gap closing
point t1 = 1.67t . This is analogous to the semi-Dirac limit
for case II, which now occurs for lower values of t1. Further,
the nontrivial regions corresponding to the middle band have
values both +2 and −2 for π > |φ| > 0 [Figs. 5(i)–5(l)]. The
combined phase diagrams corresponding to the conduction,
middle and the valence bands again account for the total Chern
number to be vanishing and is similar to the previous case.

There is a subtle issue regarding the nontrivial phases of the
system which needs to be mentioned in some details (we have
made a brief mention of it in Sec. III). For the well known
Haldane model, the topological phase of the system does not
depend upon the value of the NNN hopping amplitude t2, that
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FIG. 5. The phase diagrams are shown for t1 = 1.2t in (a), (e), and (i), t1 = 1.3t in (b), (f), and (j), t1 = 1.4t in (c), (g) and (k), t1 = 1.55t
in (d), (h), and (l). These phase diagrams are presented corresponding to the valence, conduction and the middle bands in (a)–(d), (e)–(h), and
(i)–(l), respectively. The value of t ′ and t2 are taken as t and 0.1t respectively. The nonzero Chern numbers corresponding to cyan and red
regions have values +2 and −2, respectively (indicated above the figures), while the white regions represent vanishing Chern number.

is, it only requires an infinitesimal t2 to break the time-reversal
invariance, which yields a nonzero Chern number. However,
in case of a band deformed dice lattice, the nontrivial topology
depends on the value of t2. For example, let us fix t1, say at
t1 = 1.4t and vary t2. At t2 = 0.05t , we observe vanishing
of the Chern number regardless of the values of φ and �.
However, when t2 = 0.1t we obtain the C = |2| phase for
certain range of values for φ and �. This implies that at
a particular value of t1, the Chern insulating regions in the
�-φ phase diagram gradually increases with increase in the
value of t2. However, such a variation with t2 occurs for all
values of t1, such that t1 > t (except for t1 = t). In Fig. 6, we
have plotted the Chern number as a function of the hopping
strength t1 for various representative values of t2 indicated in
the figure. As can be seen, with increase in the value of t2, the
Chern number vanishes at higher values of t1. For example,
when t2 = 0.02t , the phase transition occurs at t1 � 1.16t .
Whereas, for t2 = 0.1t , the transition occurs at t1 � 1.67t .
We quote a few other pair of values of t1 and t2 for which

FIG. 6. The variation of Chern number as a function of the NN
hopping amplitude t1/t is shown for various values of t2, which are
indicated in panel above the curves.

the Chern number vanishes, such as, (t1, t2) � (1.37t, 0.05t ),
(1.56t, 0.08t ), (1.77t, 0.12t ), and (1.84t, 0.14t ) and so on.

B. Edge states

In order to visualize the nature of the band gap, that is,
whether it is topological or trivial, we look for the crossings
of the edge modes with the Fermi energy. To obtain such edge
modes in our calculation, we consider a semi-finite ribbon of
the system which breaks the periodicity along one direction,
while the translational symmetry remains intact along the
perpendicular direction. We take the ribbon [74,75] to be finite
along the y direction and infinite along the x-direction with
armchair edges. Further, the sites along the y direction are
labeled as A1, B1, C1, A2, B2, C2,..., AN , BN , CN , etc. Now
we Fourier transform the operators along the x direction (kx

being a good quantum number). This yields following sets
of three coupled eigenvalue equations for the wave function
amplitudes:

Ekak,n = [t{bk,n+1 + bk,n−1} + t1bk,ne−iη1k] + �ak,n

+ t2[e+iφ{an−2 + an+1(1 + ei(−1)n+1k )}
+ e−iφ{an+2 + an−1(1 + ei(−1)n+1k )}], (9)

Ekbk,n = [t{ak,n+1 + ak,n−1} + t1ak,ne+iη1k]

+ [tck,n+1 + tck,n−1 + t ′ck,ne−iη2k], (10)

Ekck,n = [tbk,n+1 + tbk,n−1 + t ′bk,ne+iη2k] − �ck,n

+ t2[e+iφ{cn+2 + cn−1(1 + ei(−1)n+1k )}
+ e−iφ{cn+1 + cn−2(1 + ei(−1)n+1k )}], (11)

where ak,n, bk,n, and ck,n are the coefficients of the wave func-
tion corresponding to the sublattices A, B, and C, respectively,
and n is the site index which takes integer values between
[1 : N], with N being the total number of unit cells along
the y direction. In Eqs. (9)–(11), η1 and η2 are written as
η1 = {1 + (−1)n}/2 and η2 = {1 + (−1)n+1}/2 respectively.
Further, the momentum k is the scaled kx variable and is
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FIG. 7. The band structure of the semi-infinite ribbon is shown
for (a) t1 = t , (b) t1 = 1.2t , (c) t1 = 1.3t , (d) t1 = 1.4t , (e) t1 = 1.5t ,
and (f) t1 = 1.8t . The Fermi level is shown via the red dashed line
which intersects the edge modes at four distinct points (shown by
the green dots). Corresponding to those intersecting points, the edge
currents are shown by the red arrows in the yellow panel at the
bottom of each figure. The values of t ′, t2, φ, and � are taken as
t , 0.1t , π/2, and zero, respectively.

defined by k = √
3a0kx, such that it is rendered dimensionless.

The width of the ribbon is related N via D(N ) =
√

3a0
2 (N − 1).

In our calculation we have taken N = 80, which gives the
width D(N ) = 79

√
3a0/2.

By solving Eqs. (9)–(11), we have computed the band
structure of the semi-infinite ribbon (armchair) corresponding
to case II, that is, for t ′ = t , t2 = 0.1t , φ = π/2 and � = 0
which is presented in Fig. 7. As can be seen, a pair of edge
modes from the valence bands crosses over to the middle
bands (they are bunched together around the zero energy) and
another pair crosses over in the opposite direction. A simi-
lar scenario happens corresponding to the modes connecting
the conduction bands and the middle bands. Because of these
edge modes, the Hall conductivity remains finite, provided
the Fermi energy lies in the bulk gap. The Fermi energy in
each figure is shown via the red dashed line, which intersects
the edge modes at four points (shown by green dots). The edge
currents corresponding to those green dots, are shown by the

red arrows in the yellow panels in Figs. 7(a)–7(e). The yellow
panels represent a part of the semi-infinite ribbon. Therefore,
there are a pair of edge currents along either edges of the
ribbon. Since the velocity of the electron is proportional to the
slope of the bands, that is, ∂E/∂k, the edge currents along a
particular edge move in the same direction, however, along the
other edge, each pair moves in the opposite direction. These
modes are chiral (and not helical).

Owing to the presence of a pair of edge modes, there will
be a quantized Hall conductivity occurring at a value 2e2/h,
with the factor ‘2’ in front denoting the number of edge modes
[76]. This result is consistent with the corresponding Chern
numbers of the system as presented in Fig. 5. For example,
the nonzero edge currents are observed for t1 < 1.67t [see
Fig. 7(a)–7(e)] and in this range the Chern number is found
to be |C| = 2. For t1 > 1.67t , say at t1 = 1.8t , we observe
a vanishing Chern number and as well as the edge currents
disappear [see Fig. 7(f)]. The behavior of the edge states
corresponding to case I, that is, when t1 and t ′ are varied
simultaneously, are not shown since they are similar to what
we observe in Fig. 7, with the critical value of t1 being the
only difference, that is, the edge modes exist till both t1 and t ′
remain just below 2t (as opposed to 1.67t).

C. Hall conductivity

In this section, we discuss the Hall conductivity of the
system. In order to calculate it, first the Berry curvature needs
to be obtained using Eq. (8) and then the following formula
can be used [77,78]:

σxy = σ0

2π

∑
λ

∫
dkxdky

(2π )2
f
(
Eλ

kx,ky

)
�(kx, ky), (12)

where Eλ(kx, ky) is the energy dispersion with λ being +1, 0
and −1 corresponds the conduction, middle and valence bands
respectively. f (E ) = [1 + e(E−EF )/KBT ]−1 signifies the Fermi-
Dirac distribution function with EF and T being the Fermi
energy and absolute temperature, respectively. The constant
term σ0 = e2/h sets the scale for σxy. Now, the Hall conduc-
tivity can be obtained numerically at the zero temperature as
a function of the Fermi energy EF as shown in Figs. 8 and 9.

First we discuss the spectrum for the variation of both
t1 and t ′ (case I) which is presented in Fig. 8. It can be
noticed that a plateau quantized at 2e2/h exists as long as
EF remains in the bulk gap of the dispersion spectrum. The
value of σxy starts to decrease when EF leaves the bulk gap and
goes inside the band (either conduction or the valence bands).
This results in diminishing of the plateau width with increase
in value of t1 and t ′, since the gap between the conduction
and valence bands shrinks. The Hall conductivity vanishes
completely when both t1 and t ′ become larger than 2t . Thus
we observe plateau at |C|e2/h as long as the system remains a
nontrivial insulator, which vanishes at the gap closing point at
t1 = t ′ = 2t .

In Fig. 9, we have presented the Hall conductivity as a
function of EF for case II where only t1 is tuned, while t ′ is
fixed at t . In this case, the middle band plays an important
role in the behavior of the Hall conductivity as it acquires a
dispersive nature. For example, let us fix the value of t1 at
1.1t , for which the variation of σxy is shown in Fig. 9 via
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FIG. 8. The Hall conductivity is depicted for various values of
t1 and t ′ shown in the inset. The other parameters are taken as, t2 =
0.1t , φ = π/2, and � = 0.

FIG. 9. The Hall conductivity for a fixed t ′ is depicted for various
values of t1 shown in the panel above. In the inset, a broader view of
the regions near zero Fermi energy are shown. The dips in the Hall
conductivity are clearly visible. The values of t ′, t2, φ, and � are
fixed at t , 0.1t , π/2, and zero, respectively.

FIG. 10. The Berry curvature corresponding to the middle band
is presented for (a) t1 = 1.1t , (b) t1 = 1.3t , (c) t1 = 1.5t , and (d) t1 =
1.6t . The values of t ′, t2, φ, and � are again taken as t , 0.1t , π/2, and
zero, respectively.

a purple colored curve. It shows that there is no longer a
smooth plateau in the Hall conductivity, instead, σxy acquires
a dip in the vicinity of zero bias along with a spike occurring
at EF � 0. The spike gets more and more prominent with
increase in the value of t1. Further, the dips widen with the
increase of t1 resulting in a diminishing width of the plateau
region around the zero Fermi energy. Let us denote the width
of the dip as Wd . Notably Wd becomes very large for t1 = 1.6t .
Finally, the plateau and hence the Hall conductivity vanish
completely for t1 � 1.67t .

The reason of getting a dip in the Hall conductivity can
be inferred from the fact that the dispersive middle band has
nonzero Berry curvature � (see Fig. 10) which would other-
wise be zero for the flat band. Let us say, we set EF in such a
way that some of the states corresponding to the middle band
lies above EF and some lie below it. So, when we compute
the integral of � over the occupied states corresponding to
the middle band, we get a nonzero value. However, when it is
included in the contributions from that of the valence band,
the result yields lesser values than 2σ0 (σ0 = e2/h) for the
Hall conductivity. On the other hand, when EF lies between
the gap of the middle and the conduction bands, the integral
of � corresponding to the middle band completely vanishes.
This is consistent with the corresponding value of the Chern
number, which is zero for the middle band at φ = π/2. There-
fore, we observe a plateau at 2σ0 when EF lies in the band
gap.

In Fig. 11, we have compared the width of the dip (Wd )
in the Hall conductivity with the bandwidth of the middle
band. The figure clarifies that Wd scales with the band-
width of the middle band. Wd becomes zero for t1 = t . It
increases with increase of t1, and Wd is maximum below t1 =
1.67t , where the middle band touches both the valence and
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FIG. 11. A comparison between the dips in the plateau width
(Wd ) and the bandwidths of the middle band for different values of
t1 are shown. The Hall conductivities are plotted in (a) along the
x direction, while the middle bands are depicted in (b). Different
colours signify different values of t1. Wd for various values of t1 are
mentioned above the figures.

conduction bands. Beyond t1 = 1.67t , the Hall conductivity
vanishes completely.

V. CONCLUSION

We have presented two schemes through which hopping
anisotropies are introduced that induce a band deformation
of a Haldane model on dice lattice. In case I, both t1 (A-B
hopping) and t ′ (B-C hopping) are varied where the band
extrema from the K and K′ points are shifted. Along with
that the band gap diminishes which finally vanishes in the
semi-Dirac limit, namely, at t1 = t ′ = 2t . In contrast, case II
refers to a situation where only t1 is varied, and the spectrum
shows dispersive flat bands. Unlike case I, the band extremum
located at one of the Dirac points is displaced slightly and
the spectral gap closes at t1 = 1.67t in case II. In both, the
cases we observe the Chern numbers ±2 till their respective
gap closing transition occurs. However, the shape of the topo-
logical lobes in the phase diagrams are distinct in these two
cases. Further, a pair of chiral edge modes at each edge are
obtained in a nanoribbon geometry which confirms the values
of the Chern numbers obtained in these two cases. We have
also calculated the anomalous Hall conductivity, which shows
plateaus quantized at 2e2/h as long as t1 and t ′ remain less
than 2t corresponding to case I. While in case II, because of
the finite Berry curvature of the middle band, a dip in the
plateau appears for t1 �= t close to zero Fermi energy. Such
dip widens (or the plateau width decreases) with increasing of

t1. The Hall conductivity vanishes for t1 � 1.67t which is in
agreement of the vanishing Chern numbers at such values of
t1. Thus our models of band deformed dice lattice present a
topological phase transition from a Chern insulating phase to
a trivial insulator across a gap closing point for the hopping
amplitude values given by (t1, t ′) = (2t, 2t ) in case I and
(t1, t ′) = (1.67t, t ) in case II.

APPENDIX: ANALYTIC FORM
OF THE BAND STRUCTURE

Here we show analytic calculations for the energy spec-
trum corresponding to the Hamiltonian in Eq. (2). We
diagonalize the matrix which yields an eigenvalue equation of
the form,

E3 − (h+
z + h−

z )E2 + (h+
z h−

z − | fxy|2 − |gxy|2)E

+ (h+
z |gxy|2 + h−

z | fxy|2) = 0, (A1)

where fxy = hx(k, t1) − ihy(k, t1) and gxy = hx(k, t ′) −
ihy(k, t ′). Thus one gets a cubical equation, such as

ξ3E3 + ξ2E2 + ξ1E + ξ0 = 0 (A2)

with the coefficients ξi defined via

ξ0 = (h+
z |gxy|2 + h−

z | fxy|2), ξ1 = (h+
z h−

z − | fxy|2 − |gxy|2),

ξ2 = −(h+
z + h−

z ), and ξ3 = 1.

Transformation of Eq. (A2) into a depressed cubic equation by
substituting E = Ē − ξ2

3ξ3
will aid in its solution, and is given

by

Ē3 + ζ1Ē + ζ0 = 0, (A3)

where

ζ1 = 3ξ3ξ1 − ξ 2
2

3ξ 2
3

, and ζ0 = 2ξ 3
2 + 27ξ 2

3 ξ0 − 9ξ3ξ2ξ1

27ξ 3
3

.

For all values of k, ζ1 < 0. Further, since all the roots of
Eq. (A3) are real, the solutions are of the trigonometric form
and can be written as

Ēl = 2

√
−ζ1

3
cos

{
1

3
cos−1

(
3ζ0

2ζ1

√
−3

ζ1

)
− 2π l

3

}
(A4)

with l = 0, 1, and 2 are the indices corresponding to the con-
duction, middle and the valence bands respectively. Finally,
the energy spectrum for different values of l are given by

El = Ēl − ξ2

3ξ3
. (A5)
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