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Time evolution of Majorana corner modes in a Floquet second-order topological superconductor
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We propose a practically feasible time-periodic sinusoidal drive protocol in an on-site mass term to generate
the two-dimensional (2D) Floquet second-order topological superconductor, hosting both the regular 0- and
anomalous π -Majorana corner modes (MCMs) while starting from a static 2D topological insulator/d-wave
superconductor heterostructure setup. We theoretically study the local density spectra and the time dynamics
of MCMs in the presence of such drive. The dynamical MCMs are topologically characterized by employing
the average quadrupolar motion. Furthermore, we employ the Floquet perturbation theory (FPT) in the strong
driving amplitude limit to provide analytical insight into the problem. We compare our exact (numerical) and
the FPT results in terms of the eigenvalue spectra and the time dynamics of the MCMs. We emphasize that the
agreement between the exact numerical and the FPT results is more prominent in the higher-frequency regime
for close to the zero-quasienergy mode.

DOI: 10.1103/PhysRevB.107.035419

I. INTRODUCTION

The quest for first-order topological superconductors
(TSCs) has been engaging substantial attention among the
quantum condensed-matter physics community for the past
two decades. These TSCs have become the breeding ground
for realizing the Majorana zero modes (MZMs) [1–3]. These
MZMs are predicted to be associated with a one-dimensional
(1D) spinless p-wave superconductor, as proposed by Kitaev
[1]. From the practical perspective, they can also be perceived
in a heterostructure setup consisting of a 1D Rashba nanowire
with strong spin-orbit coupling (SOC) and proximity cou-
pled to an s-wave superconductor [4–6]. Interestingly, such
MZMs follow non-Abelian statistics, owing to their nonlocal
properties, and can be the building blocks for fault-tolerant
quantum computers [7–10]. The hunt for the MZMs is not
limited to the theoretical proposals only and there have been
a few experimental advancements [11–18] in this direction.
However, a distinct signature of the MZMs is yet to be
discovered. Moving our attention towards the paradigm of
higher-order topological insulators (HOTIs) [19–33] and their
superconducting counterparts, i.e., higher-order topological
superconductors (HOTSCs) [34–62], they are characterized
by the presence of (d − n)-dimensional electronic (Majorana)
boundary modes, with d the dimension of the system and n
(d � n � 2) the order of the topological system. There have
been a few concurrent experimental developments to real-
ize the HOTI phase in solid-state systems [63,64], phononic
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crystals [65], acoustic systems [66–68], electric-circuit setups
[69], photonic lattice [70,71], etc.

On the other hand, the realm of nonequilibrium systems
involving Floquet generation of topological bands provides us
with the on-demand control of the topological properties of a
system [72–83]. Floquet engineering enables one to achieve
a topological phase from a topologically trivial system. In
a driven system, one can realize the regular zero mode as
well as the so-called anomalous π modes, which do not have
any static analog. The latter have been proposed to exist in
the first-order Floquet topological systems [74–76,78,79]. A
few experimental proposals also come up with brisk theo-
retical developments [84–89]. Very recently, the concept of
Floquet engineering has been extended to generate the Floquet
HOTI (FHOTI) [90–109] and the Floquet HOTSC (FHOTSC)
[110–116]. The FHOTI has been experimentally contextual-
ized in a metamaterial platform, specifically in the acoustic
system in Ref. [117]. However, a real material-based exper-
iment to realize the FHOTI/FHOTSC phase has not been
reported so far, to the best of our knowledge.

In the current literature, there exist a few proposals
that rely on the periodic kick or step-drive protocol to re-
alize the FHOTI and FHOTSC phases hosting only the
zero modes [91,93,99,101,113,114], as well as both the
regular zero mode and anomalous π modes [90,94,96,97,
103–106,116]. A handful of schemes exists to generate the
FHOTI or FHOTSC phase using a periodic sinusoidal (har-
monic) driving protocol [92,102,110,112,115] and periodic
laser irradiation [95,100,109]. The previous studies empha-
sized the generation of both the regular zero mode and
anomalous π modes in the FHOTI/FHOTSC phase that are
primarily based on sinusoidal temporal variation of the hop-
pings [92,102,112,115]. In Ref. [110], an oscillating magnetic
field is considered to capture the FHOTI phase; however, the
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FIG. 1. We depict the schematic representation of our setup,
which consists of a two-dimensional (2D) topological insulator (TI)
in proximity to a d-wave superconductor while an external time-
dependent periodic potential is harmonically driving the system to
realize the 0 and π -Floquet Majorana corner modes (MCMs).

anomalous π mode has not been investigated in this model.
On the other hand, the periodic sinusoidal/laser irradiation-
mediated FHOTI/FHOTSC phase, hosting both the zero and
π modes, is technically not as straightforward as the periodic
step/kick drive. Due to the continuous time-sequence nature
of the above protocols, one cannot obtain the Floquet operator
in a closed analytical form. Finding the parameter space where
one can realize the anomalous modes is thus cumbersome. In
recent times, a few reports have been put forward where a
perturbative scheme based on the Floquet perturbation theory
(FPT) has been employed to study a driven system in the
strong driving limit [118–120]. Following this background,
we pose the following intriguing questions: (1) How can
one engineer the two-dimensional (2D) Floquet second-order
topological superconductor (FSOTSC) hosting both 0- and
π -Majorana corner modes (MCMs) employing a periodically
varying on-site mass term that can be practically more fea-
sible? (2) How do these MCMs evolve with time? (3) How
can one topologically characterize these modes using a proper
dynamical invariant? (4) Can the numerical results, in the
strong driving limit, be understood using the analytical FPT
approach? Here, we intend to investigate these interesting
questions that have been unanswered so far.

In this article, we begin with a 2D topological insulator (TI)
and d-wave superconductor heterostructure to generate the 2D
FSOTSC hosting 0- and π -MCMs using a harmonic drive in
the on-site mass term (see Fig. 1). The signature of the MCMs
is demonstrated in the local density of states (LDOS) behavior
(see Fig. 2). Furthermore, the time evolution of the MCMs is
investigated where the zero and π modes emerge even before
the full time period (see Fig. 3). We topologically characterize
the dynamical system using the average quadrupolar motion
(see Fig. 4). Afterward, we make use of the FPT to derive an
effective Hamiltonian picture for the system in the strong driv-
ing amplitude limit (see Fig. 5). We study the time dynamics
of the 0-MCMs for the exact and perturbative time-evolution
operator and present a comparison between those two results
in the strong driving amplitude limit (see Fig. 6).

The remainder of the article is arranged as follows. We in-
troduce our model Hamiltonian, the driving protocol, and the

formalism in Sec. II. The numerical results obtained using the
Floquet operator are discussed in Sec. III. We topologically
characterize the dynamical 0- and π -MCMs in Sec. IV with an
appropriate topological invariant. Section V is devoted to the
discussion of the analytical results obtained from the FPT and
its comparison with the exact (numerical) results. In Sec. VI,
we discuss some relevant points related to our results with
their outlooks. Finally, we summarize and conclude our article
in Sec. VII.

II. MODEL AND METHOD

In this section, we introduce our model Hamiltonian,
driving protocol, and the formalism used to deal with the
dynamical problem.

A. Model Hamiltonian

We consider a system consisting of a 2D TI in proximity
to a d-wave superconductor (see Fig. 1 for a schematic rep-
resentation). The system can be described via the following
Hamiltonian, written in the Bogoliubov–de Gennes (BdG)
form as [37,114]

H (k) = 2λ sin kx�1 + 2λ sin ky�2 + ε(k)�3

+�(cos kx − cos ky)�4, (1)

where ε(k) = (m0 − 4γ + 2γ cos kx + 2γ cos ky), the hop-
ping (SOC) strength is denoted by γ (λ), and m0 and �

stand for the on-site crystal field splitting and d-wave su-
perconducting pairing amplitude (assumed to be induced via
the proximity effect), respectively. For static systems, such
mean-field d-wave pairing has been theoretically considered
before in Refs. [36,37] assuming the proximity effect. The 8 ×
8 � matrices are given by �1 = τzσzsx, �2 = τzσ0sy, �3 =
τzσzs0, and �4 = τxσ0s0. The Pauli matrices τ, σ, and s operate
on particle-hole (e, h), orbital (α̃, β̃), and spin (↑,↓) degrees
of freedom, respectively. The Hamiltonian [Eq. (1)] is invari-
ant under time-reversal symmetry, T −1H (k)T = H (−k), and
particle-hole symmetry, C−1H (k)C = −H (−k), where T =
iτ0σ0syK and C = τyσ0syK, with K representing the complex-
conjugation operator. Apart from these discrete symmetries,
H (k) also respect the following spatial symmetries: mirror
symmetry along x with Mx = τxσxs0: MxH (kx, ky)M−1

x =
H (−kx, ky ), mirror symmetry along y with My = τxσys0:
MyH (kx, ky)M−1

y = H (kx,−ky), fourfold rotation with C4 =
τze− iπ

4 σzsz : C4H (kx, ky)C−1
4 = H (−ky, kx ), mirror rotation-

I with Mxy = C4My: MxyH (kx, ky)M−1
xy = H (ky, kx ), and

mirror rotation-II with Mxȳ = C4Mx: MxȳH (kx, ky)M−1
xȳ =

H (−ky,−kx ) [62]. These symmetries play a pivotal role in
the generation of FHOTSC, a phase which we discuss later
in Sec. VI B. The static Hamiltonian H (k) manifests the
second-order TSC phase hosting two MZMs per corner when
0 < m0 < 8γ and � �= 0 [37,114].

B. Driving protocol and formalism

We consider the following time-dependent harmonic drive
[121] (see Fig. 1) in the on-site mass term on top of the static
Hamiltonian H (k) [Eq. (1)] to realize the 2D FSOTSC as
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follows:

V (t ) = V cos(�t )�3, (2)

where V represents the strength of the drive and � = (2π/T )
is the frequency (time period) of the drive. It is evident that
V (t ) satisfies V (t + T ) = V (t ). Hence, the full Hamiltonian
H(k, t ) = H (k) + V (t ) is also time periodic, i.e., H(k, t +

T ) = H(k, t ). The Fourier components of H(k, t ) read as

Hα =
∫ T

0

dt

T
H(k, t ) eiα�t . (3)

Exploiting the frequency-zone scheme, one can construct the
infinite-dimensional time-independent Floquet Hamiltonian
as [77]

H∞
F (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
... . .

.

H−2 H−1 H (k) − 2� H1 H2

H−2 H−1 H (k) − � H1 H2

H−2 H−1 H (k) H1 H2

H−2 H−1 H (k) + � H1 H2

H−2 H−1 H (k) + 2� H1 H2

. .
. ...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

However, the Fourier components Hα having |α| > 1 vanish
akin to the mathematical form of the drive. Here, the size
of the Hamiltonian H∞

F (k) acts as the bottleneck in the nu-
merical studies, especially when either the frequency of the
drive is comparable to (or less than) the bandwidth of the
system or the drive encompasses higher harmonics of the
sinusoidal function in Eq. (2). In such cases, we need to in-
corporate more Fourier components Hα , which in turn enlarge
the size of H∞

F (k). To circumvent this issue, we employ the
time-domain formalism and use the time-evolution operator
U (k; t, 0) defined in terms of a time-ordered (TO) notation as
follows:

U (k; t, 0) = TO exp

[
−i

∫ t

0
dt ′H(k, t ′)

]

=
N−1∏
j=0

U (k; t j + δt, t j ), (5)

where U (k; t j + δt, t j ) = e−iH(k,t j )δt , with δt = t
N and t j =

jδt . However, U (k; t j + δt, t j ) can be calculated more effi-
ciently using the second-order Trotter-Suzuki formalism as
follows [122–125]:

U (k; t j + δt, t j ) = e−i δt
2 V (t j+ δt

2 )e−iδtH (k)e−i δt
2 V (t j+ δt

2 ). (6)

Note that we need to calculate e−iδtH (k) only once due
to its time-independent nature. We choose the time in-
crement δt in such a way that U (k; t, 0) always remains
unitary. Following Eq. (5), we can construct the Floquet
operator U (k; T, 0) by replacing t → T , which in turn al-
lows us to calculate the eigenvalue spectra and the LDOS
therein. This U (k; t, 0) also facilitate the calculation of
topological invariants, which we discuss in the forthcoming
section. Following this periodic driving protocol [Eq. (2)],
one can generate the 0- and π -MCMs depending upon the
choice of the parameter space, which we present in the next
section.

III. GENERATION OF ANOMALOUS MCMs AND THEIR
TIME DYNAMICS

In this section, we provide all the numerical results ob-
tained using the Floquet operator and the time-evolution
operator discussed before.

A. Generation of anomalous MCMs

As discussed earlier, we can obtain the Floquet operator
U (k; T, 0) adopting Eq. (5). We diagonalize the Floquet op-
erator employing open boundary conditions (OBCs) in both
directions to acquire the eigenvalue spectra and signature
of the localized boundary modes, i.e., the MCMs therein.
First, we consider that the system lies in the nontopologi-
cal regime (m0 = −1) and then we harmonically drive the
system to achieve the anomalous π -MCMs. We demonstrate
the quasienergy spectra as a function of the state index m in
Fig. 2(a), and the presence of the π -MCMs can be distinctly
identified from the inset. The corresponding LDOS is shown
in Fig. 2(c). Thus, it is evident that the π -MCMs are located at
the corners of the system. However, one can also presume the
static system to be in the topological regime (m0 = 1), hosting
the static MZMs, and the effect of the harmonic drive can
be investigated there. We depict the quasienergy spectra for
one such scenario in Fig. 2(b). The driven system allows the
realization of both the regular 0-MCMs and the anomalous
π -MCMs; the latter does not have any static analog and can
only be realized in a dynamical system. From the insets,
one can identify the presence of both of these modes. The
LDOS distribution for the 0- and π -MCMs is qualitatively the
same as shown in Fig. 2(c). It is worth mentioning that the
generation of the 0- and π -MCMs is not limited to the specific
choices of parameter sets and sustains for a considerable range
in the parameter space. Nevertheless, we discuss the recipe to
generate the FSOTSC in Sec. VI.

B. Time dynamics of the MCMs

While exploring the time evolution of the Floquet modes,
we observe that the MCMs are not generated only after the
full-time period T ; rather, they start appearing after a cer-
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FIG. 2. We depict the quasienergy spectra as function of the state index m for the driven system starting from the (a) nontopological regime
(m0 = −1.0) and (b) topological regime (m0 = 1.0). The 0- and π -Majorana corner modes (MCMs) are highlighted by dark-green and red
dots, respectively. (c) The local density of states is illustrated for 0− and π -MCMs, which are sharply localized at the corners of the system.
The other model parameters are chosen as γ = λ = � = 0.2, V = 1.0, and frequency � = 3.0 and 1.5 for (a) and (b), respectively.

tain intermediate time. We can track the trails of the MCMs
throughout the drive by analyzing the total density of states
(TDOS) of the MCMs present in the zero and π gap. The
TDOS at quasienergy ε can be computed as a function of t
as

Dε (t ) =
∑

m

δ[ε − Em(t )]. (7)

FIG. 3. (a) We demonstrate the time-dependent eigenvalue spec-
tra E (t ) of the time-evolution operator U (t, 0) as a function of
time t during the driving period. The normalized total density of
states at E (t ) = 0 and E (t ) = π are shown with respect to time t
in (b) and (c), respectively. We depict the local density of states
(LDOS) at quasienergy 0 corresponding to the points marked in
(b) as 1© (t = 0.84), 2© (t = 1.25), and 3© (t = 3.0), in (d), (e), and
(f), respectively. In (f)–(i), we repeat (d) and (e) at quasienergy π

corresponding to the designated points in (c) as 1© (t = 0.84), 2©
(t = 3.8), and 3© (t = 4.0), respectively. Here, we choose the time
period T = 2π/� ∼ 4.2 when � = 1.5.

One can find Em(t ) from the eigenvalues of U (k; t, 0). We
illustrate E (t ) as a function of t in Fig. 3(a). The appearance of
in-gap zero and π modes can be observed with respect to time
from the eigenvalue spectra. The time evolution highlights
that both the zero and π modes emerge when t < T and
remain there at t = T . However, for better identification, we
show the time-dependent TDOS corresponding to quasienergy
0 and π in Figs. 3(b) and 3(c), respectively. By analyzing
Figs. 3(b) and 3(c), we can reckon that both the regular 0-
and π -MCMs emerge at a time t < T and prevail throughout
the driving period T . One can also investigate the localization
properties of the 0- and π -MCMs, specifically when they
start to appear. We choose three time points associated with
[Figs. 3(b) and 3(c)]: 1© with no 0-MCMs [π -MCMs], 2© the
transition point, when 0-MCMs [π -MCMs] start to appear,
and 3© after generation of the 0-MCMs [π -MCMs]. We depict
the LDOS at quasienergy 0 [π ] corresponding to the points 1©,
2©, and 3© in Figs. 3(d), 3(e) and 3(f), respectively [Figs. 3(g),

3(h) and 3(i), respectively]. From Figs. 3(d) and 3(g), one
can observe that no boundary modes exist when t 
 T , i.e.,
no 0-/π -MCMs are generated. At the transition point [see
Figs. 3(e) and 3(h)], the zero and π modes start to populate
near the corners of the system. However, we observe sharp
localization near the corners of the system for zero and π

modes in Figs. 3(f) and 3(g), respectively. Therefore, one can
infer a connection between the time evolution of the MCMs
(shown via the total density of states) to the eigenvalues of the
time-evolution operator at time t as depicted via the LDOS.

IV. TOPOLOGICAL CHARACTERIZATION OF THE MCMs

We topologically characterize the regular 0- and anoma-
lous π -MCMs employing the dynamical nested Wilson loop
technique. The detailed discussions regarding this method can
be found in Refs. [97,116]. Thus, we do not repeat the same
here. To construct the dynamical second-order nested Wilson
loop operator, we need the notion of a gap in which the MCMs
appear. We incorporate the same via the periodized evolution
operator, defined as [74,97,116]

Uε (k; t, 0) = U (k; t, 0)[U (k; T, 0)]−t/T
ε . (8)
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FIG. 4. We show the dynamical first-order branches νx,ε in the
ky − t plane for (a) zero gap and (b) π gap, corresponding to
Fig. 2(a). (c) The resulting average quadrupolar motion 〈ν+νx,ε

y,ε,μ′ 〉(t )
is depicted as a function of t . The first-order branches are always
gapped during the time interval t ∈ [0, T ]. Since only π -Majorana
corner modes (MCMs) are present in this case, 〈ν+νx,ε

y,ε,μ′ 〉(t ) crosses
the 0.5 line for the π gap only. We show the dynamical first-order
branches and the average quadrupolar motion, similar to (a)–(c),
corresponding to the case of Fig. 2(b), in (d)–(f). Since both the 0-
and π -MCMs are present in this case, 〈ν+νx,ε

y,ε,μ′ 〉(t ) crosses the 0.5 line
for both of the gaps.

Here, the subscript ε represents the zero and π gap. We
can construct Uε (k; t, 0) in a straightforward manner using
Eq. (5). Afterward, we construct the dynamical first-order
Wilson loop operator for the ε gap as [97,116]

Wx,ε,k(t ) = Qx,ε,k+(Lx−1)�xex (t ) · · · Qx,ε,k+�xex (t )Qx,ε,k(t ),

(9)

where Qx,ε,k(t ) = I+U †
ε (k+�xex ;t,0)Uε (k;t,0)

2 , with �x = 2π/Lx

and ex representing the unit vector along the x direction. The
eigenvalue equation for Wx,ε,k(t ) can be written in the form

Wx,ε,k(t ) |νx,ε,μ(k, t )〉 = e−2π iνx,ε,μ (ky,t ) |νx,ε,μ(k, t )〉 . (10)

Here, νx,ε,μ(ky, t ) represents the dynamical first-order
branches. We illustrate νx,ε,μ(ky, t ) in Figs. 4(a), 4(b) and 4(d),
4(e). In the former case, the system exhibits only π -MCMs,
whereas the latter case supports both the 0- and π -MCMs. In-
terestingly, in both cases, νx,ε,μ(ky, t ) exhibit a gap throughout
the driving period T and the variation of crystal momentum ky.
It therefore yields an ideal platform to construct the dynamical
second-order (or nested) Wilson loop operator [97,116]. Ow-
ing to the gapped nature of the νx,ε,μ(ky, t ), one can configure
two sets out of the eight νx,ε such that νx,ε,μ ∈ ±νx,ε . We
construct the dynamical nested Wilson loop operator in the
subspace of ±νx,ε as

W ±νx,ε

y,ε,k (t ) = Q±νx,ε

y,ε,k+(Ly−1)�yey
(t ) · · · Q±νx,ε

y,ε,k+�yey
(t ) Q±νx,ε

y,ε,k (t ),

(11)

with [Q±νx,ε

y,ε,k (t )]μ1μ2 = ∑
mn[νx,ε,μ1 (k + �yey, t )]∗m

[Qy,ε,k(t )]mn[νx,ε,μ2 (k, t )]n, where Qy,ε,k(t ) =
I+U †

ε (k+�yey;t,0)Uε (k;t,0)
2 , �y = 2π/Ly, and ey is the unit

vector along the y direction. We can write the eigenvalue

equation for W ±νx,ε

y,ε,k (t ) as

W ±νx,ε

y,ε,k (t )
∣∣ν±νx,ε

y,ε,μ′ (k, t )
〉 = e−2π iν

±νx,ε
y,ε,μ′ (kx,t ) ∣∣ν±νx,ε

y,ε,μ′ (k, t )
〉
, (12)

where ν
±νx,ε

y,ε,μ′ (kx, t ) represents the dynamical second-order

branches. Here, the kx dependence of the ν
±νx,ε

y,ε,μ′ (kx, t ) origi-
nates from the fact that the eigenfunctions of the dynamical
first-order Wilson loop operator explicitly depend on the
choice of the base point. However, its eigenvalues are inde-
pendent of the specific choice of the base point. We define the
average quadrupolar motion as [97,116]

〈
ν

+νx,ε

y,ε,μ′
〉
(t ) = 1

Lx

∑
kx

ν
+νx,ε

y,ε,μ′ (kx, t ). (13)

Note that the particles complete a round trip during the time
interval t ∈ [0, T ] since Uε (k; 0, 0) = Uε (k; T, 0) = I. We
hence obtain two fixed points: 〈ν+νx,ε

y,ε,μ′ 〉(t = 0) = 〈ν+νx,ε

y,ε,μ′ 〉(t =
T
2 ) = 0 (mod 1). For a topologically trivial system, 〈ν+νx,ε

y,ε,μ′ 〉(t )
starts from 0 (mod 1) and evolves back to 0 (mod 1) during
t ∈ [0, T ] and their motion can be adiabatically connected
to zero when boundary is imposed [see Fig. 4(c) for zero
gap]. However, if there is any obstruction due to the pres-
ence of in-gap states, i.e., the MCMs, the quadrupolar motion
〈ν+νx,ε

y,ε,μ′ 〉(t → 0) = 0 (1) ends up at 〈ν+νx,ε

y,ε,μ′ 〉(t → T ) = 1 (0)
and the two branches cross each other at 0.5 (mod 1) [see
Fig. 4(c) for π gap and Fig. 4(f) for both zero and π gaps].
Such kind of motion cannot be connected to zero and thus
can be utilized to distinguish between the topological and
nontopological phases, in the dynamical case [97,116].

V. ANALYTICAL APPROACH: FLOQUET
PERTURBATION THEORY

After investigating our setup numerically, we combine with
the FPT [118–120] to achieve some analytical insights into
the problem. Within the analytic scheme, we assume the
amplitude of the drive V to be much larger than the hop-
ping amplitude γ . We treat V (t ) [Eq. (2)] exactly and H (k)
[Eq. (1)] as a perturbation. The time-evolution operator for

FIG. 5. We depict the quasienergy spectra (employing open
boundary condition) corresponding to the exact Floquet operator
U (T, 0) (blue dots) and compare it with that of the perturbative
Floquet operator UP(T, 0) (red dots) for the few low-lying states
for (a) � = 1.5 and (b) � = 5.0. We show the corresponding full
quasienergy spectra in the insets of the figures. We choose V = 10.0
and m0 = 0.2, while all the other model parameters are chosen to be
of the same value as in Fig. 2.
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V (t ) reads as

U0(t, 0)=exp

[
− i

∫ t

0
dt ′V (t ′)

]
= exp

[
− iV

�
sin(�t ) �3

]
.

(14)

We employ the interaction picture to obtain the full
time-evolution operator. Following the perturbation theory
[118–120], the latter can be written in the form

UP(k; t, 0) = U0(t, 0) UI(k; t, 0), (15)

where the time-evolution operator in the interaction picture
UI(k; t, 0) can be written in the form of a power series as

[118–120]

UI(k; t, 0) = I + (−i)
∫ t

0
dt ′HI(k, t ′)

+ (−i)2
∫ t

0
dt1HI(k, t1)

∫ t1

0
dt2HI(k, t2) + · · ·

= I + U (1)
I (k; t, 0) + U (2)

I (k; t, 0) + · · · , (16)

where HI(k, t ) = U0(0, t )H (k)U0(t, 0). Within our analysis,
we truncate the series after the first-order term in UI(k; t, 0)
as the higher-order terms become messy large expressions
with smaller magnitude. Following the periodic cosine drive
[Eq. (2)], we obtain the first-order term UI(t, 0) in the pertur-
bation series [Eq. (16)] as

U (1)
I (k; t, 0) = − i

2

[{
t + tJ0(φ) + 2

∞∑
n=1

J2n(φ)
sin 2n�t

2n�

}
H (k) + 2i

∞∑
n=1

J2n−1(φ)

(2n − 1)�
{1 − cos[(2n − 1)�t]}[�3, H (k)]

+
{

t − tJ0(φ) + 2
∞∑

n=1

J2n(φ)
sin 2n�t

2n�

}
�3H (k)�3

]
, (17)

where φ = 2V
�

and Jn is the Bessel function of the first kind.
However, UP(k; t, 0) does not satisfy the unitarity condition.
It is possible to recast the same at t = T by exponentiating
UI(k; t, 0) and exploiting U0(t, 0) = I. Due to the loss of
unitarity condition, UP(k; t, 0) does not facilitate the calcula-
tion of the average quadrupolar motion [Eq. (13)]. Following
the first-order term in UI(k; t, 0) [Eq. (17)] and combining
this with U0(t, 0), the effective Hamiltonian can be com-
puted at t = T from UP(k; T, 0) [Eq. (15)]. The effective
Hamiltonian can be obtained from the relation UP(k; T, 0) =
exp[−iHeff (k)T ] as

Heff (k) = J0(φ)[H (k) − ε(k)] + ε(k)�3. (18)

It is evident from the Heff (k) that only the SOC and the
d-wave pairing term get modulated by the drive, whereas
the hopping, as well as the crystal field splitting term m0,
is unaffected by the application of the drive. The bulk gap
�G(T ), obtained from Heff (k), at k = (0, 0) and (π, π ) re-
mains unaltered as compared to the static band gap obtained
from H (k). However, the instantaneous bulk gap �G(t ) as a
function of time t ( �= T ) can be modulated with respect to the
static band gap due to the presence of other time-dependent
nonvanishing terms in Eq. (17) [see Figs. 6(a)–6(d)].

In Fig. 5, we depict the quasienergy spectra (under OBCs)
for the Floquet operator constructed using Eq. (15) by sub-
stituting t = T . This is represented by red dots in Fig. 5.
We further compare the same with that of the exact Floquet
operator U (T, 0) (indicated by blue dots in Fig. 5). For a
fixed value of V (�γ ), we consider two cases for the driving
frequency � = 1.5 and � = 5.0 as demonstrated in Figs. 5(a)
and 5(b), respectively. The quasienergy spectra of the UP(T, 0)
(obtained from FPT) match well with the low-lying eigenval-
ues Em → 0 of the exact Floquet operator U (T, 0). However,
from the insets of Figs. 5(a) and 5(b), one can notice that the
full eigenvalue spectra of UP(T, 0) do not fully match with
that of U (T, 0). Nevertheless, it is evident from Fig. 5(b)

that the overlap between the exact quasienergy (numerical)
and the perturbative quasienergy (analytical) becomes more
prominent as � = 5.0. The same is not true in Fig. 5(a)

FIG. 6. We depict the bulk gap �G(t ) as a function of t at
k = (0, 0) obtained from the exact Floquet operator U (k; t, 0) (solid
blue line) and the perturbative Floquet operator UP(k; t, 0) (dashed
red line) for (a) � = 1.5 and (c) � = 5.0. We show the same at
k = (π, π ) in (b) and (d), respectively. We illustrate the total den-
sity of states D0(t ) as function of t corresponding to � = 1.5 and
� = 5.0 in (e) and (f), respectively. Here, blue and red lines represent
the total density of states D0(t ) computed from U (t, 0) and UP(t, 0),
respectively. We choose V = 10.0 and m0 = 0.2, while all other
model parameters take the same value as in Fig. 2.
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as � = 1.5 is comparable with the bandwidth. Interestingly,
UP(T, 0) can capture the 0-MCMs accurately in its eigenvalue
spectra. However, UP(T, 0) fails to encapsulate the anomalous
π modes.

Having investigated the quasienergy spectra, obtained em-
ploying OBCs and depicted in Fig. 5, we tend towards the
time dynamics of the MCMs within the FPT scheme. First, we
compare the bulk gap �G(t ) corresponding to the quasienergy
bands as a function of t around the momentum k = (0, 0)
and k = (π, π ), evaluated from UP(k; t, 0) and U (k; t, 0), in
Figs. 6(a) and 6(b), respectively, for � = 1.5. The same has
been depicted in Figs. 6(c) and 6(d) choosing high frequency
� = 5.0. The bulk-gap closing points (in the time axis) at
k = (0, 0) obtained from UP(0, 0; t, 0) qualitatively coincide
with that of U (0, 0; t, 0) [see Figs. 6(a) and 6(c)]. However,
at k = (π, π ), we notice that there is a little mismatch be-
tween the gap closing points (in the time axis) obtained from
UP(π, π ; t, 0) and U (π, π ; t, 0), i.e., the analytical and the
numerical approaches. At higher frequency, the agreement
between these two becomes more prominent up to the time
period T , as shown in Figs. 6(b) and 6(d). Although, as we
increase the time above the time period T (t > T ), we observe
that there is a clear mismatch between the numerical and
the analytical approaches even for � = 5.0 [see Fig. 6(d)].
This mismatch remains as we increase the frequency � = 8.0
(not shown). We believe that this mismatch occurs due to the
truncation of the evolution operator UI(t, 0) to the first-order
term in the perturbation series [Eq. (16)]. By investigating the
bulk-gap closing between two time intervals, we can predict
the appearance or disappearance of the MCMs in the finite-
size system at that said interval.

Nevertheless, we obtain a clearer picture of the time evolu-
tion of the MCMs from the investigation of the TDOS D0(t )
[Eq. (7)]. We show D0(t ) as a function of time t for a finite-
size system in Figs. 6(e) and 6(f) for � = 1.5 and � = 5.0,
respectively. The blue and red lines represent D0(t ) calculated
from U (t, 0) and UP(t, 0), respectively. For � = 1.5, D0(t )
calculated from UP(t, 0) overlaps with that of U (t, 0) only
for a limited range of time. Nonetheless, both the exact and
perturbative calculations suggest that the MCMs survive not
only at t = T , but at a later time also. In the case of � = 5.0,
the D0(t ) calculated using the exact and perturbative Floquet
operator match substantially over the entire time window t ∈
[0, 2T ]. The small mismatch accounts for the nonoverlapping
of their bulk-gap closing points between U (π, π ; t, 0) and
UP(π, π ; t, 0). Another important point to note, for � = 1.5,
is that the frequent fluctuations in the TDOS [see Fig. 6(e)]
appear since the instantaneous bulk gap �G(t ) vanishes many
times in the same interval [see Figs. 6(a) and 6(b)]. However,
for � = 5.0, the number of bulk-gap vanishing points (in
the time axis) is less [see Figs. 6(c) and 6(d)]. Hence, the
TDOS obtained for this case is smoother in nature compared
to � = 1.5 [see Fig. 6(f)].

VI. DISCUSSIONS AND OUTLOOK

In this section, we discuss various aspects of the harmonic
drive protocol and compare our FPT with the Brillouin-
Wigner (BW) perturbation theory [126] that is valid in the
high-frequency regime.

A. Different driving protocols

The formalism we introduced in Sec. II is not limited to
the specific form of the drive [Eq. (2)]. One can introduce
more sinusoidal functions in Eq. (2) and study the effect of
such drives. In this regard, we propose the following driving
protocols:

V1(t ) = V sin(�t )�3, (19a)

V2(t ) = V [cos(�t ) + sin(�t )]�3, (19b)

V3(t ) = V [cos(�t ) + cos(2�t ) + cos(3�t )]�3. (19c)

Following the drive protocols mentioned in Eq. (19a)–
(19c), we show the quasienergy spectra for a finite-size system
in Figs. 7(a)–7(c), respectively. In all three cases, the qualita-
tive behavior of the quasienergy spectra appears to be similar,
as discussed before. The regular zero and anomalous π modes
appear in all such drive protocols.

B. Recipe for generating the FSOTSC

The time-periodic harmonic drive, that we introduce in
Eq. (2), cannot provide us with the 0- and/or π -MCMs for any
arbitrary choices of the parameters in the Hamiltonian H (k)
[Eq. (1)]. To elaborate further, we first consider � = 0. In this
limit, one can generate the Floquet first-order TI (FFOTI),
hosting zero- and π -edge modes at E (k) = 0 and ±π , re-
spectively, while examining the quasienergy spectra [82]. We
depict the schematic representation of these edge modes in
Figs. 8(a) and 8(c) corresponding to two cases. In case I, the
counterpropagating zero- and π -edge modes intersect with
each other at k = 0, π [see Fig. 8(a)], whereas in case II,
these edge modes intersect at other arbitrary momenta except
k = 0, π [see Fig. 8(c)] (here we use k to represent the quasi-
momentum in the slab geometry). These counterpropagating
edge modes directly indicate the topological nature of the
bulk gap at that quasimomentum. Therefore, the generation
of the FFOTI only demands a bulk topological gap at the
Floquet zone center E (k) = 0 and/or Floquet zone boundary
E (k) = ±π , irrespective of the value of the quasimomentum
k at which the topological gap is opened. We refer to this gap
as the FFOTI gap. Afterward, when we consider the harmonic
drive on the underlying model with a nonzero value of �,
these edge modes are gapped out in both of the cases I and
II [see Figs. 8(b) and 8(d)]. However, only in case I, one can
observe that the MCMs appear when investigated employing
OBCs in both directions. By contrast, case II does not exhibit
the MCMs within that bulk quasienergy gap even with � �= 0.
The above observation signals the fact that the FFOTI gap
at k̄ = (0, 0) and k̄ = (π, π ) can cause the FSOTSC phase
to eventually appear. On the other hand, one cannot achieve
the FSOTSC phase once the FFOTI gap appears away from
k̄ = (0, 0) and k̄ = (π, π ). These special momentum modes
are intimately related to the details of the underlying static
model. The static Hamiltonian H (k) respects the spatial sym-
metries S = {Mx,My,C4,Mxy,Mxȳ} and the corner modes
are also protected by these spatial symmetries. However,
only at k̄(= −k̄ mod 2π ) does H (k) satisfy the commuta-
tion relation: [H (k̄), S] = 0. Thus, only the gap closing at
k̄ = (0, 0) and k̄ = (π, π ) gives rise to MCMs. Furthermore,
the d-wave nature of the superconducting gap that vanishes
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FIG. 7. In (a)–(c), we illustrate the quasienergy spectra as a function of the state index m following the drive protocols as introduced in
Eqs. (19a)–(19c), respectively. We choose � = 1.5, while all other model parameters take the same value as in Fig. 2.

at k̄ = (0, 0) and k̄ = (π, π ) is also very crucial for gener-
ating the FSOTSC phase hosting 0- and π -MCMs. In short,
the nature of the gap at k̄ = (0, 0) and k̄ = (π, π ) in the
quasienergy spectra for the FFOTI essentially determines the
emergence of the FSOTSC phase, i.e., whether or not it will
be observed.

Interestingly, in the step- or kick-drive protocol, one
can analytically derive the Floquet operator [96,97,106,116].
Thus, a closed form of the gap closing conditions at E (k) =

FIG. 8. We depict the schematic representation of the bulk bands
and the edge modes, at k = 0, ±π (case I) and k �= 0, ±π (case
II) around E (k) = 0 and E (k) = ±π for a driven system consid-
ering slab geometry. (a) and (c) indicate that the system exhibits
gapless edge states (both 0 and π ) in the absence of the d-wave
superconducting gap (� = 0). These edge modes are gapped out in
the presence of the superconducting term (� �= 0) and are shown in
(b) and (d). One obtains the 0- and π -MCMs in the finite geometry
under OBCs for (b), while the counterpropagating edge modes in
FFOTI intersect at k = 0, ±π . However, no 0- and π -MCMs appear
for (d), while the counterpropagating edge modes in FFOTI intersect
at k �= 0,±π .

0, π for k = (0, 0)/(π, π ) can be obtained in terms of the
driving parameters. However, for a periodic sinusoidal/laser
irradiation, the Floquet operator U (k; T, 0) [Eq. (5)] cannot
be cast in a closed form. Hence, the generation of 0- and
π -MCMs is relatively cumbersome in the presence of such
driving protocols. In particular, in case of laser irradiation
drive [A(t ) = A(cos �t, sin �t )], the quasimomenta are re-
placed by k → k − A(t ). Thus, finding a suitable parameter
space for engineering the FSOTSC can be a formidable task
and will be presented elsewhere.

C. Comment on comparison between the FPT and BW
perturbation theory

In the BW perturbation theory [126], one can obtain the
effective Floquet Hamiltonian for a periodically driven system
assuming the high-frequency limit (� � γ ). The BW effec-
tive Hamiltonian can be cast in the form [95,126]

HBW
eff (k) = H0 +

∑
m �=0

H−mHm

m�
+ O

(
1

�2

)
, (20)

where Hm’s are defined in Eq. (3). In Sec. V, we study the
driven system using the FPT that assumes the strength of the
drive is strong, although there is no limit on the frequency
of the drive in said theory. On the other hand, the BW per-
turbation theory contains a series of terms of the order of
1/�, and the higher-order terms in the series can be neglected
in the high-frequency regime. However, with the increase in
the driving amplitude, the contributions from the higher-order
terms may also become more important, and curtailing the
series only after the first-order term (1/� term) is not justified.
Thus, to obtain a coherent picture from both the FPT and the
BW perturbation theory, one needs to consider the higher-
order terms in Eq. (20). Nevertheless, the BW perturbation
theory cannot capture the anomalous π modes [126]. Hence,
we do not provide the repeating results already investigated in
the previous studies [95].

VII. SUMMARY AND CONCLUSIONS

To summarize, in this article, we consider a time-periodic
harmonic drive protocol to generate the 2D FSOTSC anchor-
ing both 0- and π -MCMs. We demonstrate our results for two
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cases. In the first case, we start from a static model which is
topologically trivial, and the driven system hosts only the π -
MCMs [see Fig. 2(a)]. In the second case, the starting model
is topologically nontrivial and the driven system hosts both
the regular 0- and anomalous π -MCMs [see Fig. 2(b)]. From
the LDOS behavior, one can infer that the Majorana modes are
localized at the corner of the system [see Fig. 2(c)]. Further,
we study the time dynamics of the MCMs in terms of their
TDOS and show that the MCMs emerge at t < T and remain
at t = T (see Fig. 3). Also, the time dynamics of the LDOS
indicates sharp localization near the corners of the system
for 0- and π -MCMs when t ∼ T . We generalize the time-
dependent dynamical nested Wilson loop technique for our
case following Refs. [97,116] where this has been developed
for the step-drive protocol. The topological characterization
of the bulk zero and π gaps is carried out with the help
of the average quadrupolar motion (see Fig. 4). Moreover,
we consider the strong driving amplitude limit and use the
FPT to provide some analytical insights to our problem. We
approximate the first-order term in the perturbation series

and compare the FPT results with the exact numerical ones
(see Fig. 5). The time evolution of the MCMs via the TDOS
and the time-dependent quasienergy gap structure (within
t � T ) comparison indicate that the FPT yields better results
in the higher-frequency regime with that of the exact ones
(see Fig. 6), as far as 0-MCMs are concerned. However,
the FPT is unable to capture the TDOS associated with the
dynamical π -MCMs, which we leave for future studies. The
disorder analog of the present problem can also lead to in-
teresting outcomes about the stability of these modes. Also,
the driving protocol and the formalism that we use in this
article can be generalized to realize the three-dimensional
(3D) FSOTSC hosting 1D gapless 0 − /π -Majorana hinge
modes and 3D Floquet third-order TSC anchoring localized
0 − /π -MCMs.
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[27] D. Călugăru, V. Juričić, and B. Roy, Higher-order topological
phases: A general principle of construction, Phys. Rev. B 99,
041301(R) (2019).

[28] L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-
Boundary Correspondence for Topological Crystalline Phases,
Phys. Rev. X 9, 011012 (2019).

[29] E. Khalaf, Higher-order topological insulators and supercon-
ductors protected by inversion symmetry, Phys. Rev. B 97,
205136 (2018).

[30] P. Szumniak, D. Loss, and J. Klinovaja, Hinge modes and
surface states in second-order topological three-dimensional
quantum hall systems induced by charge density modulation,
Phys. Rev. B 102, 125126 (2020).

[31] X. Ni, M. Li, M. Weiner, A. Alù, and A. B. Khanikaev,
Demonstration of a quantized acoustic octupole topological
insulator, Nat. Commun. 11, 2108 (2020).

[32] B. Xie, H. Wang, X. Zhang, P. Zhan, J. Jiang, M. Lu, and
Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3, 520
(2021).

[33] L. Trifunovic and P. W. Brouwer, Higher-order topological
band structures, Phys. Status Solidi B 258, 2000090 (2021).

[34] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors with
an order-two crystalline symmetry, Phys. Rev. B 97, 205135
(2018).

[35] X. Zhu, Tunable Majorana corner states in a two-dimensional
second-order topological superconductor induced by magnetic
fields, Phys. Rev. B 97, 205134 (2018).

[36] T. Liu, J. J. He, and F. Nori, Majorana corner states in a
two-dimensional magnetic topological insulator on a high-
temperature superconductor, Phys. Rev. B 98, 245413 (2018).

[37] Z. Yan, F. Song, and Z. Wang, Majorana Corner Modes in
a High-Temperature Platform, Phys. Rev. Lett. 121, 096803
(2018).

[38] Y. Wang, M. Lin, and T. L. Hughes, Weak-pairing higher order
topological superconductors, Phys. Rev. B 98, 165144 (2018).

[39] C. Zeng, T. D. Stanescu, C. Zhang, V. W. Scarola, and S.
Tewari, Majorana Corner Modes with Solitons in an Attractive

Hubbard-Hofstadter Model of Cold Atom Optical Lattices,
Phys. Rev. Lett. 123, 060402 (2019).

[40] R.-X. Zhang, W. S. Cole, and S. Das Sarma, Helical Hinge
Majorana Modes in Iron-Based Superconductors, Phys. Rev.
Lett. 122, 187001 (2019).

[41] R.-X. Zhang, W. S. Cole, X. Wu, and S. Das Sarma, Higher-
Order Topology and Nodal Topological Superconductivity
in Fe(Se,Te) Heterostructures, Phys. Rev. Lett. 123, 167001
(2019).

[42] Y. Volpez, D. Loss, and J. Klinovaja, Second-Order Topo-
logical Superconductivity in π -Junction Rashba Layers, Phys.
Rev. Lett. 122, 126402 (2019).

[43] Z. Yan, Majorana corner and hinge modes in second-order
topological insulator/superconductor heterostructures, Phys.
Rev. B 100, 205406 (2019).

[44] S. A. A. Ghorashi, X. Hu, T. L. Hughes, and E. Rossi,
Second-order Dirac superconductors and magnetic field in-
duced Majorana hinge modes, Phys. Rev. B 100, 020509(R)
(2019).

[45] Sayed Ali Akbar Ghorashi, T. L. Hughes, and E. Rossi, Vortex
and Surface Phase Transitions in Superconducting Higher-
order Topological Insulators, Phys. Rev. Lett. 125, 037001
(2020).

[46] Y.-J. Wu, J. Hou, Y.-M. Li, X.-W. Luo, X. Shi, and C. Zhang,
In-Plane Zeeman-Field-Induced Majorana Corner and Hinge
Modes in an s-Wave Superconductor Heterostructure, Phys.
Rev. Lett. 124, 227001 (2020).

[47] K. Laubscher, D. Chughtai, D. Loss, and J. Klinovaja, Kramers
pairs of Majorana corner states in a topological insulator bi-
layer, Phys. Rev. B 102, 195401 (2020).

[48] B. Roy, Higher-order topological superconductors in P-, T -
odd quadrupolar Dirac materials, Phys. Rev. B 101, 220506(R)
(2020).

[49] S.-B. Zhang and B. Trauzettel, Detection of second-order
topological superconductors by Josephson junctions, Phys.
Rev. Res. 2, 012018 (2020).

[50] S.-B. Zhang, W. B. Rui, A. Calzona, S.-J. Choi,
A. P. Schnyder, and B. Trauzettel, Topological and
holonomic quantum computation based on second-order
topological superconductors, Phys. Rev. Res. 2, 043025
(2020).

[51] S.-B. Zhang, A. Calzona, and B. Trauzettel, All-electrically
tunable networks of Majorana bound states, Phys. Rev. B 102,
100503(R) (2020).

[52] M. Kheirkhah, Z. Yan, and F. Marsiglio, Vortex-line
topology in iron-based superconductors with and with-
out second-order topology, Phys. Rev. B 103, L140502
(2021).

[53] K. Plekhanov, N. Müller, Y. Volpez, D. M. Kennes, H.
Schoeller, D. Loss, and J. Klinovaja, Quadrupole spin
polarization as signature of second-order topological super-
conductors, Phys. Rev. B 103, L041401 (2021).

[54] A. Tiwari, A. Jahin, and Y. Wang, Chiral Dirac superconduc-
tors: Second-order and boundary-obstructed topology, Phys.
Rev. Res. 2, 043300 (2020).

[55] Z. Yan, Higher-Order Topological Odd-Parity Superconduc-
tors, Phys. Rev. Lett. 123, 177001 (2019).

[56] J. Ahn and B.-J. Yang, Higher-order topological superconduc-
tivity of spin-polarized fermions, Phys. Rev. Res. 2, 012060(R)
(2020).

035419-10

https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevLett.123.186401
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevX.9.011012
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.102.125126
https://doi.org/10.1038/s41467-020-15705-y
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1002/pssb.202000090
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205134
https://doi.org/10.1103/PhysRevB.98.245413
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevB.98.165144
https://doi.org/10.1103/PhysRevLett.123.060402
https://doi.org/10.1103/PhysRevLett.122.187001
https://doi.org/10.1103/PhysRevLett.123.167001
https://doi.org/10.1103/PhysRevLett.122.126402
https://doi.org/10.1103/PhysRevB.100.205406
https://doi.org/10.1103/PhysRevB.100.020509
https://doi.org/10.1103/PhysRevLett.125.037001
https://doi.org/10.1103/PhysRevLett.124.227001
https://doi.org/10.1103/PhysRevB.102.195401
https://doi.org/10.1103/PhysRevB.101.220506
https://doi.org/10.1103/PhysRevResearch.2.012018
https://doi.org/10.1103/PhysRevResearch.2.043025
https://doi.org/10.1103/PhysRevB.102.100503
https://doi.org/10.1103/PhysRevB.103.L140502
https://doi.org/10.1103/PhysRevB.103.L041401
https://doi.org/10.1103/PhysRevResearch.2.043300
https://doi.org/10.1103/PhysRevLett.123.177001
https://doi.org/10.1103/PhysRevResearch.2.012060


TIME EVOLUTION OF MAJORANA CORNER MODES IN A … PHYSICAL REVIEW B 107, 035419 (2023)

[57] X.-J. Luo, X.-H. Pan, and X. Liu, Higher-order topological
superconductors based on weak topological insulators, Phys.
Rev. B 104, 104510 (2021).

[58] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, High-
Temperature Majorana Corner States, Phys. Rev. Lett. 121,
186801 (2018).

[59] A. K. Ghosh, T. Nag, and A. Saha, Hierarchy of higher-order
topological superconductors in three dimensions, Phys. Rev. B
104, 134508 (2021).
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