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Spin-orbit enhancement in Si/SiGe heterostructures with oscillating Ge concentration
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We show that Ge concentration oscillations within the quantum well region of a Si/SiGe heterostructure
can significantly enhance the spin-orbit coupling of the low-energy conduction-band valleys. Specifically, we
find that for Ge oscillation wavelengths near λ = 1.57 nm with an average Ge concentration of n̄Ge = 5% in
the quantum well region, a Dresselhaus spin-orbit coupling is induced, at all physically relevant electric field
strengths, which is over an order of magnitude larger than what is found in conventional Si/SiGe heterostruc-
tures without Ge concentration oscillations. This enhancement is caused by the Ge concentration oscillations
producing wave-function satellite peaks a distance 2π/λ away in momentum space from each valley, which then
couple to the opposite valley through Dresselhaus spin-orbit coupling. Our results indicate that the enhanced
spin-orbit coupling can enable fast spin manipulation within Si quantum dots using electric dipole spin resonance
in the absence of micromagnets. Indeed, our calculations yield a Rabi frequency �Rabi/B > 500 MHz/T near the
optimal Ge oscillation wavelength λ = 1.57 nm.
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I. INTRODUCTION

Following the seminal work of Loss and DiVincenzo [1],
quantum dots in semiconductors have emerged as a leading
candidate platform for quantum computation [2–5]. Gate-
defined quantum dots in silicon [6,7] are particularly attractive
due to their compatibility with the microelectronics fabrica-
tion industry. Moreover, in contrast with GaAs, for which
coherence times are limited by unavoidable hyperfine interac-
tions with nuclear spins [8], isotropic enrichment dramatically
suppresses these interactions in Si, enabling long coherence
times [9].

While recent progress in Si quantum dots has been quite
promising, many of the leading qubit architectures rely
on synthetic spin-orbit coupling arising from micromagnets
[10–13], leading to challenges for scaling up to systems
with many dots. An alternative approach is to use intrin-
sic spin-orbit coupling for qubit manipulation, for example,
through the electric dipole spin resonance (EDSR) mech-
anism [14,15]. While this possibility has been considered
for Ge and Si hole-spin qubits, where the degeneracy of
the p-orbital-dominated valence band leads to strong spin-
orbit coupling [16,17], the weak spin-orbit coupling of the
Si conduction band appears unfavorable for electron-spin
qubits.

In this work, we show how the spin-orbit coupling in
Si/SiGe quantum well heterostructures can be enhanced by
more than an order of magnitude by incorporating Ge con-
centration oscillations inside the quantum well, leading to
the possibility of exploiting intrinsic spin-orbit coupling in
Si quantum dots for fast gate operations. Figure 1(a) shows
a schematic of the system which consists of a Si-dominated
quantum well region sandwiched between Si0.7Ge0.3 barrier
regions, where the growth direction is taken along the [001]
crystallographic axis. In contrast to “conventional” Si/SiGe

quantum wells, the quantum well region contains a small
amount of Ge with concentration oscillations of wavelength
λ, as shown in Fig. 1(b). For comparison, Fig. 1(c) shows the
Ge concentration profile of a conventional Si/SiGe quantum
well. Previous works [18,19] have studied such a structure,
which has been named the wiggle well, and found that the
periodic Ge concentration leads to an enhancement of the val-
ley splitting. Here, we develop a theory of spin-orbit coupling
within such structures and show that the periodic nature of the
device, along with the underlying diamond crystal structure
and degeneracy of the Si z valleys, also gives rise to an
enhancement in spin-orbit coupling. Importantly, we find that
the wavelength λ must satisfy a resonance condition to give
rise to this spin-orbit coupling enhancement. As discussed
in detail in Sec. IV, this involves a two-step process that
can be summarized as follows. First, the periodic potential
produced by the Ge concentration oscillations produces wave-
function satellites a distance 2π/λ away in momentum space
from each valley. Then, a satellite of a given valley couples
strongly to the opposite valley through Dresselhaus spin-orbit
coupling, provided that the satellite-valley separation distance
in momentum space is 4π/a, corresponding to the condition
λ = 1.57 nm.

From the outset, it is important to remark that the spin-orbit
coupling introduced by the Ge concentration oscillations is
fundamentally distinct from the spin-orbit coupling of con-
ventional Si/SiGe quantum wells. For a given subband of a
conventional Si/SiGe quantum well immersed in a vertical
electric field, the C2v point-group symmetry of the system al-
lows for both Rashba and “Dresselhaus-type” linear-k‖ terms
of the form [20,21]

HSO = α(kyσ̄x − kxσ̄y) + β(kxσ̄x − kyσ̄y), (1)
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FIG. 1. (a) Schematic of the Si/SiGe heterostructure considered
here, consisting of a Si-dominated quantum well sandwiched be-
tween Si0.7Ge0.3 barrier regions. Note that the growth direction is
along the [001] crystallographic axis. (b) Ge concentration profile
along the growth (z) direction of a wiggle well. Ge concentration
oscillations of wavelength λ inside of the quantum well region lead
to spin-orbit coupling enhancement for a proper choice of λ. (c) Ge
concentration profile of a “conventional” Si/SiGe quantum well, for
comparison.

where σ̄ j are the Pauli matrices acting in (pseudo)spin space
and α and β are the Rashba and Dresselhaus coefficients,
respectively, of the subband. The presence of Rasbha spin-
orbit coupling is unsurprising due to the structural asymmetry
provided by the electric field [22], while the presence of
the Dresselhaus-type term is initially surprising since the
diamond lattice of Si/SiGe quantum wells possesses bulk
inversion symmetry [23]. However, these systems still support
a Dresselhaus-type term of the same form β(kxσ̄x − kyσ̄y),
due to the broken inversion symmetry caused by the quantum
well interfaces [20,21,24,25]. This is in stark contrast to the
true Dresselhaus spin-orbit coupling in III-V semiconductors,
where the asymmetry of the anion and cation in the unit cell
leads to bulk inversion asymmetry [23]. Importantly, we find
in Sec. III B that the spin-orbit coupling of the wiggle well
does not rely upon the presence of an interface. Rather, it is
an intrinsic property of a bulk system with Ge concentration
oscillations. In this sense, the spin-orbit coupling investigated
here is more akin to the true Dresselhaus spin-orbit coupling
of III-V semiconductors than the Dresselhaus-type spin-orbit
coupling of conventional Si/SiGe quantum wells brought
about by interfaces. Indeed, the only requirement for linear-
k‖ Dresselhaus spin-orbit coupling in a wiggle well with an
appropriate λ is confinement in the growth direction (even
symmetric confinement), to allow for the formation of sub-
bands. For simplicity in the remainder of this work, we simply
refer to this form of spin-orbit coupling as Dresselhaus.

The rest of this paper is organized as follows. In Sec. II
we describe our model used to study the quantum well het-
erostructure. Section III then presents our numerical results
for the spin-orbit coefficients. This also includes the calcula-
tion of the EDSR Rabi frequency and studies the impact of
alloy disorder on the spin-orbit coefficients. In Sec. IV we
provide an extensive explanation of the mechanism behind
the spin-orbit coupling enhancement. Finally, we conclude in
Sec. V.

II. MODEL

In this section, we outline the model used to study our
Si/SiGe heterostructure along with the methods used to cal-
culate the spin-orbit coefficients. In Sec. II A, we describe
the tight-binding model used to model generic SiGe alloy
systems. Next, in Sec. II B we employ a virtual crystal ap-
proximation to impart translation invariance in the plane of
the quantum well, allowing us to reduce the problem to an
effective one-dimensional (1D) Hamiltonian parametrized by
in-plane momentum k‖. In Sec. II C, we expand the model
around k‖ = 0 to separate out the Hamiltonian components
that give rise to Rashba and Dresselhaus spin-orbit coupling,
respectively, and we explain the important differences be-
tween the two components. Finally, in Sec. II D, we transform
the Hamiltonian into the subband basis, which allows us to
obtain expressions for the Rashba and Dresselhaus spin-orbit
coefficients in each subband.

A. Model of SiGe alloys

To study the spin-orbit physics of our system we use the
empirical tight-binding method [26], where the electronic
wave function is written as a linear combination of atomic
orbitals:

|ψ〉 =
∑

n, j,ν,σ

|n jνσ 〉 ψn jνσ . (2)

Here, 〈r|n jνσ 〉 = φν (r − Rn, j ) |σ 〉 is an atomic orbital cen-
tered at position Rn, j , corresponding to atom j of atomic layer
n along the growth direction [001], ν is a spatial orbital index,
and |σ 〉 is a two-component spinor with σ =↑,↓ indicating
the spin of the orbital. We use an sp3d5s∗ basis set with 20
orbitals per atom, onsite spin-orbit coupling, nearest-neighbor
hopping, and strain. Note that nearest-neighbor sp3d5s∗ tight-
binding models are well established for accurately describing
the electronic structure of semiconductor materials over a
wide energy range [27]. Explicitly, ν is a spatial orbital
index from the set including s, s∗, pi (i = x, y, z), and di

(i = xy, yz, zx, z2, x2 − y2) orbitals, which are meant to model
the outer-shell orbitals of individual Si and Ge atoms that
participate in chemical bonding. Additionally, these orbitals
possess certain spatial symmetries that, combined with the
diamond crystal structure of the SiGe alloy, dictate the forms
of the nearest-neighbor couplings, as first explained in the
work of Slater and Koster [26]. The free parameters of
the tight-binding model (including onsite orbital energies,
nearest-neighbor hopping energies, strain parameters, etc.) are
then chosen such that the band structure of the system agrees
as well as possible with experimental and/or ab initio data. In
this work, we use the tight-binding model and parameters of
Ref. [28], which allows for the modeling of strained, random
SiGe alloys with any Ge concentration profile.

The Hamiltonian of an arbitrary SiGe alloy takes the form

Hmi,n j
μσ,νσ = δ

n j
mi

[
δνσ ′
μσ

(
ε(n j)
ν + Vn

) + δσ ′
σ C(n j)

μν + S(n j)
μσ,νσ ′

]
+ δσ ′

σ

(
δn+1

m T (n)
iμ, jν + δn−1

m T (m)†
iμ, jν

)
, (3)

where Hmi,n j
μσ,νσ ′ = 〈miμσ |H |n jνσ ′〉 and δ equals 1 if its sub-

scripts match its superscripts and 0 otherwise. The first line in
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Eq. (3) contains intra-atomic terms, where ε
(n j)
ν is the onsite

energy of orbital ν, for atom j in atomic layer n, Vn is the po-
tential energy due to the vertical electric field, C(n j)

μν accounts
for onsite energy shifts and couplings caused by strain, and
S(n j)

μσ,νσ ′ accounts for spin-orbit coupling. The matrix C(n j)
μν is

determined by the deformation of the lattice due to strain as
detailed in Ref. [28] and arises from changes in the onsite po-
tential of the atom due to the displacement of its neighbors. In
addition, spin-orbit coupling S(n j) is an intra-atomic coupling
between p orbitals [29] and is the only term in Eq. (3) that
does not conserve spin σ . (See Appendix B for the explicit
form of S(n j).) Note that the superscripts (n j), which index the
atoms, are needed here because the intra-atomic terms depend
on whether an atom is Si or Ge, as well as the local strain envi-
ronment. The second line in Eq. (3) contains interatomic terms
describing the hopping between atoms on adjacent atomic
layers, where T (n) is the hopping matrix from atomic layer n to
atomic layer n + 1. Nearly all elements of T (n) are zero, with
nonzero hoppings occurring only between nearest-neighbor
atoms. A nonzero hopping matrix element T (n)

iμ, jν then depends
on three things: (1) the orbital indices μ and ν, (2) the types
of atoms involved, and (3) the direction and magnitude of the
vector Rn+1,i − Rn, j connecting the atoms. We then use the
Slater-Koster table in Ref. [26] along with the parameters of
Ref. [28] to calculate T (n)

iμ, jν . We note that strain affects the
hopping elements by altering the direction and length of the
nearest-neighbor vectors (i.e., the crystalline bonds) [28,30].

In this work, we let the Ge concentration vary between
layers, as shown in Figs. 1(b) and 1(c), but assume it to be
uniform within a given layer. Note that the large difference in
Ge concentration between the barrier and well regions results
in a large conduction-band offset that traps electrons inside
the quantum well. This occurs naturally in the tight-binding
model of Eq. (3) because ε(n j), C(n j), and T (n)

i j are different for
Si and Ge atoms. Finally, we point the reader to Appendix A
for a description of the lattice constant dependence on strain.

B. Virtual crystal approximation
and pseudospin transformation

While the Hamiltonian in Eq. (3) provides an accurate
description of SiGe alloys, it lacks translation invariance when
alloy disorder is present. This makes the model computation-
ally expensive to solve, and it obscures the physics of the
spin-orbit enhancement coming from the averaged effects of
the inhomogeneous Ge concentration profile. We therefore
employ a virtual crystal approximation where the Hamiltonian
matrix elements are replaced by their value averaged over
all alloy realizations. Specifically, we define a virtual crys-
tal Hamiltonian HVC with elements (HVC)mi,n j

μσ,νσ ′ = 〈Hmi,n j
μσ,νσ ′ 〉,

where 〈. . . 〉 indicates an average over all possible alloy real-
izations. The Hamiltonian is then translation invariant within
the plane of the quantum well. In addition, it is useful to
move beyond the original orbital basis, where the spin is well
defined, to a pseudospin basis defined by

|n jν̄σ̄ 〉 =
∑
νσ

|n jνσ 〉U (n)
νσ,ν̄σ̄ , (4)

where ν̄ are the hybridized orbital states, σ̄ =⇑,⇓ are the
pseudospins, and U (n) is the transformation matrix for layer

(a) z (b)

T̃
(0)
+ k‖

)
T̃

(1)
− k‖

)
T̃

(2)
+ k‖

)
T̃

(3)
− k‖

)
za) z

FIG. 2. (a) Diamond crystal structure of silicon. The dashed lines
outline the conventional unit cell of the face-centered-cubic lattice.
Both red and blue atoms are silicon but belong to different sublat-
tices. Notice that the vectors connecting an atom to its four nearest
neighbors are fundamentally different for the red and blue atoms,
giving rise to the alternating hopping structure shown in (b). (b) Ef-
fective 1D tight-binding chain, with hopping matrix terms alternating
between T̃ (n)

+ (k‖) and T̃ (n)
− (k‖). Note that each site has 20 orbitals,

and only the forward hopping terms are shown. Onsite and backward
hopping terms are not shown. For a SiGe alloy in the virtual crystal
approximation, the two-sublattice structure is retained, but the atoms
are replaced by virtual atoms, with averaged properties consistent
with the Ge concentration of a given layer.

n. Full details of this basis transformation can be found in
Appendix B. Here, we mention three important features of
Eq. (4). First, the basis transformation diagonalizes the on-
site spin-orbit coupling, making the spin-orbit physics more
transparent. Second, the pseudospin states represent linear
combinations of orbitals including both spin ↑ and spin ↓.
Third, the transformation matrix U (n) can be shown to satisfy

U (n) =
{

U (0), n ∈ Zeven

U (1), n ∈ Zodd.
(5)

This alternating structure for the transformation matrix is cru-
cial to the results that follow, and results from the presence
of two sublattices in the diamond crystal structure of Si, as
shown in Fig. 2(a).

Making use of the virtual crystal approximation, we now
convert our three-dimensional (3D) Hamiltonian into an effec-
tive 1D Hamiltonian. To begin, we note that the virtual crystal
Hamiltonian takes the simplified form

(HVC)mi,n j
μ̄σ̄ ,ν̄σ̄ ′ = δ

n jσ̄ ′
miσ̄

[
δν̄
μ̄

(
ε̄

(n)
ν̄ + Vn

) + C̄(n)
μ̄ν̄

]
+ δn+1

m T̄ (n)
iμ̄σ̄ , jν̄σ̄ ′ + δn−1

m T̄ (m)†
iμ̄σ̄ , jν̄σ̄ ′, (6)

where (HVC)mi,n j
μ̄σ̄ ,ν̄σ̄ ′ = 〈miμ̄σ̄ |HVC|n jν̄σ̄ ′〉, ε̄

(n)
ν̄ is the onsite

energy of pseudospin orbital ν̄, and C̄(n) and T̄ (n) are the
onsite strain and hopping matrices, respectively, transformed
into the pseudospin basis and averaged over alloy realizations.
Note that ε̄(n) includes contributions from diagonalizing the
onsite spin-orbit coupling. Importantly, ε̄(n) and C̄(n) maintain
a dependence on the layer index n due to the nonuniform
Ge concentration profile. In contrast, the dependence of
intra-atomic terms on the intralayer atom index j has van-
ished due to the virtual crystal approximation. Moreover, the
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translation invariance of the virtual crystal approximation
implies that hopping matrix elements between any two lay-
ers only depend upon the relative position of atoms, i.e.,
T̄ (n)

iμ̄σ̄ , jν̄σ̄ ′ = T̄ (n)
μ̄σ̄ ,ν̄σ̄ ′ (Rn+1,i − Rn, j ). We therefore introduce in-

plane momentum k‖ as a good quantum number and Fourier
transform our Hamiltonian. To do so, we define the basis state

|k‖nν̄σ̄ 〉 = 1√
N‖

∑
j

eik‖·Rn j |n jν̄σ̄ 〉 , (7)

where k‖ = (kx, ky) and N‖ is the number of atoms within each
layer. The Hamiltonian has matrix elements

H̃mn
μ̄σ̄ ,ν̄σ̄ ′ (k‖) = δnσ̄ ′

mσ̄

[
δν̄
μ̄

(
ε̄

(n)
ν̄ + Vn

) + C̄(n)
μ̄ν̄

]
+ δn+1

m T̃ (n)
μ̄σ̄ ,ν̄σ̄ ′ (k‖) + δn−1

m T̃ (m)†
μ̄σ̄ ,ν̄σ̄ ′ (k‖), (8)

where H̃mn
μ̄σ̄ ,ν̄σ̄ ′ (k‖) = 〈k‖mμ̄σ̄ |HVC|k‖nν̄σ̄ ′〉, and T̃ (n)

μ̄σ̄ ,ν̄σ̄ ′ (k‖)
is the Fourier-transformed hopping matrix given by

T̃ (n)
μ̄σ̄ ,ν̄σ̄ ′ (k‖) =

2∑
l=1

e−ik‖·r(n)
l T̄ (n)

μ̄σ̄ ,ν̄σ̄ ′
(
r(n)

l

)
, (9)

where r(n)
l is a nearest-neighbor vector from a reference atom

in layer n to one of its nearest neighbors in layer n + 1. For
a diamond lattice, each atom has only has two such bonds,
as indicated in Fig. 2(a). Note that the Hamiltonian matrix
elements vanish between states with different momenta due
to translational invariance. Hence, we obtain an effective 1D
Hamiltonian as a function of k‖.

An important feature of the Fourier-transformed hopping
matrix T̃ (n)(k‖) is that it depends on the layer index n for
two reasons. First, the inhomogeneous Ge concentration along
the growth axis causes the hopping parameters to change
slightly from layer to layer. Second, and more importantly,
the diamond crystal structure is composed of two interleaving
face-centered-cubic sublattices which each contribute an in-
equivalent atom to the primitive unit cell. This is illustrated in
Fig. 2(a) where the atoms belonging to the two sublattices are
colored red and blue, respectively. Indeed, the atoms for n ∈
Zeven and n ∈ Zodd belong to sublattice 1 and 2, respectively,
and have different nearest-neighbor vectors. It is therefore
useful to define

T̃ (n)(k‖) =
{

T̃ (n)
+ (k‖), n ∈ Zeven

T̃ (n)
− (k‖), n ∈ Zodd

(10)

as the hopping matrices for the two sublattices. We stress that
the dependence of T̃ (n)

+ (k‖) and T̃ (n)
− (k‖) on the layer index

n is due to the inhomogeneous Ge concentration profile, and
that T̃ (n)

+ (k‖) and T̃ (n)
− (k‖) differ due to the diamond crystal

structure having two inequivalent atoms in its primitive unit
cell. We can therefore visualize the system, for any given
k‖, as a 1D, multiorbital tight-binding chain, as shown in
Fig. 2(b), where the hopping terms alternate in successive
layers.

C. Expansion around k‖ = 0

Our goal is to understand the spin-orbit physics of low-
energy conduction band states near the Fermi level. In strained
Si/SiGe quantum wells, these derive from the two degenerate
valleys near the Z point of the strained Brillouin zone [31].

Therefore, the low-energy states have small |k‖|, and we can
understand the spin-orbit physics by expanding the Fourier-
transformed hopping matrices T̃ (n)

± (k‖) to linear order. We find
that

T̃ (n)
± (k‖) = T̃ (n)

0 + T̃ (n)
R (k‖) ± T̃ (n)

D (k‖) + O(k2
‖ ), (11)

where T̃ (n)
0 is the hopping matrix for k‖ = 0, and T̃ (n)

R and
T̃ (n)

D contain the linear k‖ corrections. These hopping matrix
components are found to be

T̃ (n)
0 = �(n)σ̄0, (12)

T̃ (n)
R (k‖) = (n)(kyσ̄x − kxσ̄y), (13)

T̃ (n)
D (k‖) = (n)(kxσ̄x − kyσ̄y), (14)

where �(n) and (n) are real-valued 10 × 10 matrices, and σ̄ j

are the Pauli matrices acting on pseudospin space, with j =
0, x, y, z.

There are several features to remark on in Eqs. (12)–(14).
First, the momentum-spin structure of T̃ (n)

R and T̃ (n)
D have the

familiar forms of Rasbha and Dresselhaus spin-orbit coupling;
hence, we apply the subscript labels R and D. Second, the
hopping matrices for the two sublattices T̃ (n)

+ and T̃ (n)
− differ

by the sign in front of T̃ (n)
D , while the sign of T̃ (n)

R is sublattice
independent. As noted above, this alternating sign is a con-
sequence of the two sublattices of the diamond crystal being
inequivalent. As we shall show in Sec. IV C, this alternating
hopping structure of T̃ (n)

D is key to explaining the mechanism
behind the enhanced spin-orbit coupling. In Appendix C, we
also provide a symmetry argument for why the system has
this particular alternating hopping structure for the Rashba
and Dresselhaus terms. Third, for the special case of k‖ = 0,
the two sublattices become equivalent (i.e., there is no even
or odd structure due to the vanishing of T̃ (n)

R and T̃ (n)
D at

k‖ = 0). Furthermore, the pseudospin sectors are uncoupled
and equivalent at k‖ = 0, which implies that all eigenstates
of our Hamiltonian are doubly degenerate at k‖ = 0 as is
expected since the system has time-reversal symmetry. Fourth,
the dependence of �(n) and (n) on the layer index n arises
only from the inhomogeneous Ge concentration profile. How-
ever, note that neither matrix vanishes if the Ge concentration
is uniform. For interested readers, we provide expressions
for �(n) and (n) in Appendix D, for the case of a pure Si
structure. Finally, we note that the diagonal elements of (n)

all vanish.
To linear order in k‖, the Hamiltonian then takes the com-

pact form

H = H (z)
0 σ̄0 + H (z)

R (kyσ̄x − kxσ̄y)

+ H (z)
D (kxσ̄x − kyσ̄y) + O(k2

‖ ), (15)

where H (z)
0 (which we call the subband Hamiltonian) de-

scribes the physics at k‖ = 0, and H (z)
R and H (z)

D describe the
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linear k‖ perturbations arising from T̃ (n)
R and T̃ (n)

D , respec-
tively. These take the form

〈mμ̄|H (z)
0 |nν̄〉 = δn

m

[
δν̄
μ̄

(
ε̄

(n)
ν̄ + Vn

) + C̄(n)
μ̄ν̄

]
+ δn+1

m �
(n)
μ̄ν̄ + δn−1

m �
(m)T
μ̄ν̄ , (16)

〈mμ̄|H (z)
R |nν̄〉 = δn+1

m 
(n)
μ̄ν̄ + δn−1

m 
(m)T
μ̄ν̄ , (17)

〈mμ̄|H (z)
D |nν̄〉 = (−1)n

(
δn+1

m 
(n)
μ̄ν̄ − δn−1

m 
(m)T
μ̄ν̄

)
, (18)

where the superscript z indicates that only the orbital degrees
of freedom in the z direction (i.e., the growth direction) are
acted upon. Hence, the momentum k‖ and pseudospin σ̄ in-
dices are both dropped in Eqs. (16)–(18). Also note that the
alternating ± factor in front of T̃ (n)

D in Eq. (11) is reflected in
the (−1)n factor in Eq. (18).

D. Transformation to the subband basis

The largest term in Hamiltonian (15) (by far) is the subband
Hamiltonian H (z)

0 . The eigenstates of H (z)
0 are referred to as the

orbital subbands of the quantum well, including two distinct
valley states per subband. The subband and valley states, in
turn, serve as a natural basis for representing the Hamiltonian
since the lateral confinement associated with a quantum dot
barely perturbs this subband designation, although disorder
may cause hybridization of the valley states. It is therefore the
properties of the individual subbands that largely determine
the properties of quantum dot states, including their spin-orbit
behavior.

To perform a subband basis transformation, we define |ϕ�〉
as the �th eigenstate of H (z)

0 with energy E�. (Here, for con-
venience, we include both subband and valley states in the set
{�}.) Generically we can write

|ϕ�〉 =
∑
nν̄

|nν̄〉 Qnν̄,�, (19)

where Q is an orthogonal matrix, defined such that

H (z)
0 |ϕ�〉 = E� |ϕ�〉 (20)

for each �. Using these eigenstates as a basis, the Hamiltonian
can then be expressed as

H = �̄σ0 + ᾱ(kyσ̄x − kxσ̄y)

+ β̄(kxσ̄x − kyσ̄y) + O(k2
‖ ), (21)

where �̄, ᾱ, and β̄ are real-symmetric matrices acting in
subband space with elements

�̄��′ = δ��′E�, (22)

ᾱ��′ =〈ϕ�|H (z)
R |ϕ�′ 〉, (23)

β̄��′ =〈ϕ�|H (z)
D |ϕ�′ 〉. (24)

The matrix elements ᾱ��′ and β̄��′ are referred to as the Rashba
and Dresselhaus spin-orbit coupling coefficients, respectively
[16]. The diagonal elements are of particular importance since
they determine the linear dispersion of a given subband near
k‖ = 0. Indeed, the diagonal elements ᾱ�� and β̄�� themselves

are often referred to in the literature as the Rasbha and Dres-
selhaus spin-orbit coupling coefficients, respectively, and are
typically denoted simply as α and β. Furthermore, we focus
on the diagonal elements of the ground (� = 0) and excited
(� = 1) valley states corresponding to the lowest orbital sub-
band, which we henceforth refer to as simply the ground
and excited valley states. These represent the lowest-energy
conduction subbands, which are nearly degenerate due to the
wide separation of the two degenerate z valleys within the
Brillouin zone of Si [32], thus playing a dominating role in
the physics of Si spin qubits. In some cases, we may also
be interested in the spin-orbit coupling between the ground
and excited valleys, often referred to as spin-valley coupling,
since the valley states are much closer in energy than the
orbitally excited subbands. We note that confinement in the
growth direction is a crucial ingredient for obtaining nonzero
values of ᾱ�� and β̄��. While this latter fact is not obvious
from the structure of the Hamiltonian, it can be shown to be
true, using the fact that (n) has vanishing diagonal elements
and the structure of the �(n) and (n) matrices described in
Appendix D. Finally, we also mention that one can arrive at
an effective 2D theory, similar to previous SU(2) × SU(2)
approaches to spin-valley physics in Si [33], by projecting
the Hamiltonian in Eq. (21) onto the subspace containing the
ground (� = 0) and excited (� = 1) valleys.

E. Summary of calculation procedure

To conclude this section, we present a brief summary of
the procedure used in a typical calculation, like those reported
in Sec. III. First, we specify a Ge concentration profile as a
function of layer index n. Second, we construct the subband
Hamiltonian H (z)

0 using Eq. (16). Third, we diagonalize the
subband Hamiltonian to obtain a set of eigenstates {|ϕ�〉}.
Finally, we construct the H (z)

R and H (z)
D matrices in Eqs. (17)

and (18) and calculate the matrix elements in Eqs. (23) and
(24), which yields the spin-orbit coupling coefficients.

III. NUMERICAL RESULTS

In this section, we present our numerical results. We first
present in Sec. III A spin-orbit coupling results for a “conven-
tional” Si/SiGe quantum well system without Ge oscillations
included in the quantum well region. These results serve as a
baseline for comparison. Next, we provide spin-orbit coupling
results in Sec. III B for the Si/SiGe quantum well system with
Ge oscillations included in the quantum well region, namely,
a wiggle well. In this case, we observe significant enhance-
ment of the Dresselhaus spin-orbit coupling for appropriate
Ge concentration oscillation wavelengths λ. In Sec. III C, we
show that the enhanced spin-orbit coupling allows for fast
Rabi oscillations using EDSR. Finally, we study in Sec. III D
the impact of alloy disorder on the spin-orbit coupling.

A. Spin-orbit coupling in Si/SiGe quantum wells without Ge
concentration oscillations

We first calculate spin-orbit coupling for the conventional
Si/SiGe quantum well shown in Fig. 1(c). We assume barrier
regions with a uniform Ge concentration of nGe,bar = 30%
and a quantum well width of Lz ≈ 20 nm, consisting of an
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FIG. 3. Diagonal Dresselhaus β̄�� (a) and Rashba ᾱ�� (b) spin-
orbit coupling coefficients as a function of vertical electric field Fz,
for the ground (solid blue, β̄00 and ᾱ00) and excited (dashed red, β̄11

and ᾱ11) valleys of the “conventional” Si/SiGe quantum well shown
in Fig. 1(c). Notice that the Dresselhaus coefficients β̄�� are ∼7 times
larger in magnitude than the Rashba coefficients ᾱ��.

even number of atomic layers; the latter value was chosen
to ensure that the wave functions have negligible weight at
the bottom barrier except in the limit of very weak electric
fields. In addition, the interfaces are given a nonzero width of
Lint ≈ 0.95 nm (7 atomic layers), in which the Ge concentra-
tion linearly interpolates between values appropriate for the
barrier and well regions. Such finite-width interfaces occur
in realistic devices, and are known to significantly impact
important properties of the quantum well such as the valley
splitting [34].

The diagonal Dresselhaus and Rashba spin-orbit coupling
coefficients are calculated for the ground (solid blue, β̄00 and
ᾱ00) and excited (dashed red, β̄11 and ᾱ11) valley states, and
are plotted in Figs. 3(a) and 3(b) as a function of vertical
electric field Fz. At zero field Fz = 0, the diagonal spin-orbit
coupling coefficients in Fig. 3 all vanish, as consistent with
the system being inversion symmetric [20,21]. By turning on
the electric field we break the structural inversion symmetry,
and the resulting spin-orbit coefficients vary linearly over the
entire field range considered here. Note again that Dresselhaus
spin-orbit coupling in SiGe requires the presence of a broken
structural inversion symmetry [20,21,24,25], in contrast with
GaAs, which requires a broken bulk inversion symmetry [23].
As consistent with previous studies [20,35–37], the Dressel-
haus coefficients of the ground and excited valleys are found
to be approximately opposite in sign, with the Dresselhaus
coefficient of the excited valley being slightly smaller in mag-
nitude. Additionally, the diagonal Rashba matrix elements
are seen to be much smaller in magnitude than the Dres-
selhaus elements. Here, we find that |β̄��| ≈ 7|ᾱ��| for both
low-energy valleys (� = 0, 1). In addition, the magnitudes of
the spin-orbit elements are found to quantitatively agree with
Ref. [20], in the large electric field regime. (The system stud-
ied in Ref. [20] assumed a narrower quantum well, resulting
in different behavior at low electric fields.) We note, however,
that the Rashba coefficients of the ground and excited valley
states were found to have opposite signs in Ref. [20], while
we find them to have the same sign here. This difference in
our results occurs because we have used a softened interface
where the Ge concentration interpolates between the barrier
and well regions over a finite width, whereas Ref. [20] used

a completely sharp interface. We have numerically confirmed
our results for the diagonal spin-orbit matrix elements using
the computational scheme of Ref. [20], which is unrelated to
our scheme, summarized in Eqs. (23) and (24).

B. Spin-orbit coupling in Si/SiGe quantum wells with Ge
concentration oscillations

We now calculate spin-orbit coefficients for the wiggle well
geometry shown in Fig. 1(b), with a sinusoidally varying Ge
concentration ranging from nGe = 0% to a maximum ampli-
tude of nGe = 10%, and an oscillation wavelength of λ. These
parameters were chosen to match those of an experimental
device reported in Ref. [18]. Here, the system parameters
nGe,bar, Lz, and Lint are the same as before, and we apply an
electric field of Fz = 10 mV/nm.

The resulting diagonal Dresselhaus β̄�� and Rashba ᾱ��

spin-orbit coefficients for the ground (solid blue, β̄00 and
ᾱ00) and excited (dashed red, β̄11 and ᾱ11) valley states
are shown in Figs. 4(a) and 4(b) as a function of the Ge
oscillation wavelength λ. We find that the spin-orbit co-
efficients vary nontrivially with the choice of oscillation
wavelength λ, exhibiting bumps where the coefficients are sig-
nificantly enhanced. In particular, we observe a broad bump in
Fig. 4(a), centered at λ ≈ 1.57 nm, in which the Dresselhaus
spin-orbit coefficient reaches the values |β̄00| ≈ 365 µeV nm
for the ground valley and |β̄11| ≈ 357 µeV nm for the ex-
cited valley. Note that this peak location corresponds to the
same wavelength as the long-period wiggle well predicted
in Refs. [18,19] to enhance the valley splitting. (Note that a
slightly different λ value was predicted in Refs. [18,19], due to
the valley minima residing at slightly different momenta ±k0

compared to our model.) Similar to the conventional Si/SiGe
quantum well shown in Fig. 4, the ground and excited valleys
have approximately opposite Dresselhaus coefficients for the
range of λ values considered here, except at very small λ.
At the peak of the bump, however, the diagonal Dresselhaus
coefficients β̄�� for the wiggle well are ∼15 times larger
than those of the conventional system at the same electric
field strength. [See Fig. 3(a) at Fz = 10 mV/nm.] Moreover,
the region of enhancement appears very broad, with a full-
width at half-maximum of �λ = 0.55 nm. In contrast to the
diagonal Dresselhaus coefficients β̄��, the diagonal Rashba
coefficients ᾱ�� show no enhancement features except at small
wavelengths. Indeed, for λ � 0.5 nm, the Rashba coefficients
are essentially independent of λ with ᾱ00 ≈ −3.7 µeV nm
and ᾱ11 ≈ −3.3 µeV nm for the ground and excited valleys,
respectively. Comparing this to the results of the conven-
tional system in Fig. 3(b) for the same electric field, we
see that the Rashba elements are nearly identical in the
two cases. Evidently, the Rashba coefficients are unaffected
by the Ge concentration oscillations for all but the shortest
λ values.

We also plot the off-diagonal spin-orbit coupling elements
(β̄01 and ᾱ01) as purple dashed-dotted lines in Figs. 4(a) and
4(b). Note that these quantitites are often referred to as spin-
valley coupling. Interestingly, the off-diagonal Dresselhaus
coefficient β̄01 vanishes at the center of the λ ≈ 1.57 nm fea-
ture. Except at this particular wavelength for the Dresselhaus
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FIG. 4. Dresselhaus β̄��′ (a) and Rashba ᾱ��′ (b) spin-orbit ma-
trix elements as a function of Ge oscillation wavelength λ for an
electric field of strength Fz = 10 mV/nm. Coefficients for the ground
and excited valleys are shown in blue (solid, β̄00 and ᾱ00) and red
(dashed, β̄11 and ᾱ11), respectively. The off-diagonal elements (β̄01

and ᾱ01), often referred to as the spin-valley coefficients, are shown
as purple dashed-dotted lines. A wide bump centered at λ ≈ 1.57 nm
occurs in (a), corresponding to a dramatically enhanced Dresselhaus
spin-orbit coupling. At the center of the bump, |β̄��| is ∼15 times
larger than the “conventional” Si/SiGe system at the same electric
field [see Fig. 3(a)]. Narrow bumps for the diagonal Dresselhaus
and Rashba coefficients at small λ values are shown in (c) and (d).
The corresponding Ge concentration profile is shown in Fig. 1(b),
where the average Ge concentration in the quantum well region is
n̄Ge = 5%.

spin-orbit coupling, the off-diagonal spin-orbit coefficients
are comparable in size to the diagonal coefficients.

To illustrate the features at small wavelengths, we plot the
diagonal Dresselhaus and Rashba coefficients over selected,
narrow ranges of λ in Figs. 4(c) and 4(d). Here we observe
an enhancement in the Dresselhaus coefficient β̄�� centered
at λ = a/2 ≈ 0.27 nm, where a is the size of the cubic unit
cell in Fig. 2(a) with an amplitude about twice that of the
λ = 1.57 nm peak. This λ value corresponds to having a Ge
concentration profile that alternates on every other atomic
layer, essentially transforming the diamond lattice of Si into
a zinc-blende lattice. In this case, the system can be thought
of as a III-V semiconductor with the cation and anion corre-
sponding to different concentrations of Ge. Interestingly, we
find that the ground and excited valleys have the same sign of
β̄�� here, in contrast to the bump centered at λ ≈ 1.57 nm. We
also observe a enhancement in the Rashba coefficient ᾱ�� near
λ = 0.46 nm as shown in Fig. 4(d). However, note that the
magnitude of this peak is still more than an order of magnitude
smaller than the β̄�� peaks. Indeed, the magnitude of this peak
is even smaller than the Dresselhaus coefficients β̄�� shown
in Fig. 3(a) for the conventional Si/SiGe system at the same
electric field strength. Finally, we note that these small-λ
bumps have a much narrower width than the β̄�� bump at
λ = 1.57 nm, which has important consequences for practical
applications.

To study the tunability of the spin-orbit physics, we also
calculate the spin-orbit coefficients of a wiggle well for a

FIG. 5. Same as Fig. 4 except with an electric field strength of
Fz = 2 mV/nm. Notice that the magnitude of β̄�� at the peaks of the
bumps are nearly the same as in Fig. 4, but that the features are
narrower than in Fig. 4.

weaker vertical electric field. These results are shown in
Fig. 5, which is the same system as Fig. 4, except with
Fz = 2 mV/nm. The results are qualitatively similar to the
stronger electric field case. However, there exists an important
quantitative similarity and difference between the two cases,
which we address in the following two paragraphs.

The remarkable similarity is that the Dresselhaus coeffi-
cients β̄�� at the peaks of the bumps are nearly identical in
the two cases. Note that this is true for both the λ = 1.57
and 0.27 nm bumps. Evidently, at the center of the bumps,
the electric field plays a minor role. This is in stark contrast
with the Dresselhaus coefficients for the conventional system,
where the diagonal Dresselhaus coefficients are proportional
to Fz as shown in Fig. 3(a). This highlights the important
difference first discussed in the Introduction between spin-
orbit coupling in conventional Si/SiGe quantum wells and
wiggle wells, namely, that the conventional system requires
the presence of an interface and structural asymmetry, while
the wiggle well fundamentally does not. In the latter case, the
spin-orbit coupling is an intrinsic property of the bulk system.
Indeed, we have checked that the Dresselhaus spin-orbit cou-
pling persists in a wiggle well of wavelength λ = 1.57 nm, in
the absence of an interface, by calculating the spin-orbit coef-
ficients for a system without barriers, but instead immersed in
a harmonic potential, Vn = V0z2

n, obtaining similar results.
The main difference between the two cases is that the

features are narrower in λ space for the weak electric field
of Fig. 5, compared to the strong electric field of Fig. 4. This
represents an important advantage of strong electric fields for
the wiggle well system since it can be challenging to grow
heterostructures with perfect oscillation periods. We conclude
that stronger electric fields provide more reliable access to the
enhanced spin-orbit coupling provided by Ge concentration
oscillations since the control of λ does not need to be as
precise during the growth process. The reason for narrower
features in weaker electric field will be explained in Sec. IV C.
Finally, we note that stronger electric fields also provide larger
valley splittings [38].
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FIG. 6. Electric dipole spin resonance (EDSR) Rabi frequency
�Rabi as a function of magnetic field B and Ge concentration os-
cillation wavelength λ for a quantum dot with confinement energy
h̄ω = 1 meV and an in-plane AC electric field amplitude Fx =
10−2 mV/nm. The vertical electric field is Fz = 10 mV/nm.

C. Electric dipole spin resonance

Aside from being of interest from a purely scientific stand-
point, the presence of spin-orbit coupling can be exploited to
perform gate operations within a quantum computation con-
text. In particular, electric dipole spin resonance (EDSR) is a
powerful technique to manipulate individual spins through all-
electrical means [14,15]. Here, we calculate the EDSR Rabi
frequency for a single electron in a quantum dot embedded
in a wiggle well. As shown in Ref. [15], applying an AC, in-
plane electric field of amplitude Fx with frequency ωd across a
quantum dot with spin-orbit coupling leads to an effective AC
in-plane magnetic field. For valley �, the magnitude of this
effective AC magnetic field is given by

Beff(t ) = 2eFx

h̄ω

(ωd

ω

)√
β̄2

�� + ᾱ2
��

gμB
sin (ωdt ), (25)

where h̄ω is the level spacing characteristic of the dot’s har-
monic confinement potential, g is the g factor, and μB is
the Bohr magneton. Note that for |β̄��| � |ᾱ��|, as is the
case for Si/SiGe systems, the effective AC magnetic field is
parallel to the in-plane electric field Fx. Applying a static,
out-of-plane magnetic field B, the effective Hamiltonian for
the quantum dot restricted to the orbital ground state is then
Heff(t ) = 1

2 gμB[Bσz + Beff(t )σx]. For a system initialized in
the spin-↑ ground valley state and driven at the resonance fre-
quency ωd = gμBB/h̄ set by the external magnetic field, the
probability of finding the electron in the spin-↓ state is given
by P↓(t ) = sin2(�Rabit/2) [39], where the Rabi frequency is
found to be

�Rabi =
eFxgμB

√
β̄2

�� + ᾱ2
��

h̄(h̄ω)2
B. (26)

The EDSR Rabi frequency �Rabi of a quantum dot in a
wiggle well is plotted in Fig. 6 as a function of magnetic
field and Ge oscillation wavelength λ for the realistic pa-
rameters of h̄ω = 1 meV and Fx = 10−2 mV/nm. We see that
for oscillation wavelengths near the peak of the spin-orbit
enhancement at λ ≈ 1.57 nm, we can obtain Rabi frequen-
cies of 100′s of MHz for moderate magnetic field strengths.
Indeed, a Rabi frequency of �Rabi = 1 GHz is achieved at the
peak of the spin-orbit enhancement for a magnetic field B ≈
1.5 T. We therefore conclude that including Ge concentration

oscillations in Si/SiGe quantum wells enables a dramatic
speedup of single-qubit gates using EDSR.

D. Impact of alloy disorder

SiGe is a random alloy, and the resulting alloy disorder is
known to have an effect on quantum well properties such as
valley splitting, both for conventional quantum wells [34] and
wiggle wells [18,19]. It is therefore important to explore the
effects of alloy disorder on spin-orbit coupling. Recall from
Sec. II B that we have employed a virtual crystal approxi-
mation in our model, which averages over all possible alloy
realizations. While providing tractability to our calculations,
this approximation ignores the fluctuations arising from the
random nature of the Ge atom arrangements in the SiGe alloy.
In this section, we explain how Ge concentration fluctuations
can be reintroduced into our model, to explore the effects of
alloy disorder.

A full 3D calculation including alloy disorder is compu-
tationally expensive due to the loss of translation invariance,
and is beyond the scope of this work. We can still, however,
include the effects of alloy disorder approximately within our
1D effective model by allowing for fluctuations in the Ge con-
centration in each atomic layer. This is accomplished using the
procedure described in Ref. [34], which can be summarized as
follows. First, we assume a dot of radius adot = √

h̄/m‖ω =
20 nm in the plane of the quantum well, where m‖ = 0.19me

is the in-plane effective mass and h̄ω = 1 meV is the orbital
excitation energy characterizing the parabolic confinement of
the dot. We then calculate the effective Ge concentration neff

Ge,n
in layer n of our disordered system by counting the number
of Ge atoms within our dot. Here, the probability of any given
atom in layer n being a Ge atom is nGe,n, where nGe,n is the
average germanium concentration throughout the entire layer
n, and the number of atoms in our dot is Neff = 4πa2

dot/a2 ≈
17 100, where a = 0.543 nm is the cubic lattice constant of
Si. The effective Ge concentration neff

Ge,n in layer n can then be
drawn from the distribution neff

Ge,n = N−1
eff Binom(Neff, nGe,n),

where Binom(n, p) is the binomial distribution with n trials
and probability of success p. In the limit of Neff → ∞, the
resulting, randomized effective Ge concentration neff

Ge,n ap-
proaches the ideal Ge concentration nGe,n, but for smaller dots,
fluctuations from this ideal limit become more pronounced.
We then calculate the spin-orbit coefficients for our effective
1D model as in previous sections but with the Ge concen-
tration profile given by neff

Ge,n instead of nGe,n. Note that this
method of including alloy disorder in the 1D effective model
was shown in Ref. [34] to yield valley-splitting distributions
in good agreement with 3D calculations.

We now calculate the diagonal Dresselhaus coefficients
β̄�� for the same Si/SiGe system as Fig. 4, with Ge con-
centration oscillations of wavelength λ = 1.57 nm, but now
with Ge concentration fluctuations included. Note that this λ

value corresponds to the peak of the main spin-orbit enhance-
ment bump in Fig. 4(a). The distribution of the spin-orbit
coefficients is plotted in Fig. 7(a) for 1000 random-alloy re-
alizations, for the ground (blue, β̄00) and excited (red, β̄11)
valleys. Unsurprisingly, we see that the alloy fluctuations
affect the spin-orbit coefficients, with the ground valley co-
efficient spanning the range −377 < β̄00 < 355 µeV nm. The

035418-8



SPIN-ORBIT ENHANCEMENT IN Si/SiGe … PHYSICAL REVIEW B 107, 035418 (2023)

FIG. 7. (a) Distribution of the diagonal Dresselhaus coefficients
β̄�� of the wiggle well when including alloy disorder as described
in the main text. System parameters are λ = 1.57 nm and Fz =
10 mV/nm. The data include 1000 alloy realizations. We see that
the spin-orbit coupling enhancement is robust against alloy fluctu-
ations with 86% of alloy realizations having |β̄00| > 200 µeV nm.
(b) Scatter plot of the diagonal [β̄00 (blue) and β̄11 (red)] and off-
diagonal (β̄01) spin-orbit coefficients of all alloy realizations. This
result indicates that the main effect of the alloy disorder is to mix the
ground and excited valley states.

distributions are highly peaked, however, near the bare values
β̄00 = −365 µeV nm and β̄11 = 357 µeV nm of the disorder-
free system (see Fig. 4). Indeed, we find that 86% of the alloy
realizations have |β̄00| > 200 µeV nm. We therefore conclude
that the spin-orbit enhancement arising from the Ge concen-
tration oscillations within wiggle wells is robust against alloy
fluctuations.

We gain further insight into the effects of the alloy fluc-
tuations by studying the intervalley spin-orbit coefficient β̄01.
Figure 7(b) presents a scatter plot showing both the diago-
nal (β̄00 and β̄11) and off-diagonal (β̄01) coefficients of all
1000 alloy realizations. Interestingly, all realizations yield
coefficients that land in a narrow semicircular region of pa-
rameter space. This is an indication that the alloy disorder
is essentially mixing the original ground and excited valley
states of the system without disorder. Note that perturbations
arising from higher orbital subbands are insignificant, except
for inducing a small width to the distribution. This is not
unexpected since the energy difference between the ground
and excited valley states is <1 meV, while the lowest orbital
excitation energy is �20 meV.

For completeness, we also calculate the distribution of
Dresselhaus spin-orbit coefficients in conventional Si/SiGe
quantum wells that include alloy fluctuations. These results
are shown in Fig. 8(a) for a system with no Ge in the well
region and electric field Fz = 10 mV/nm. Here, the Ge con-
centration profile is shown in the inset. Again, we obtain β̄��

distributions centered at the same values as the disorder-free
system. (See Fig. 3, with Fz = 10 mV/nm.) Here, however,
the spread is significantly narrower than the wiggle well re-
sults shown in Fig. 7(a), with the full-width at half-maximum
being ∼10 µeV nm. This is because no alloy fluctuations
occur in the well region where the majority of the wave
function resides. We also consider a system with nGe = 5%
distributed uniformly throughout the well region, taking into
account the effects of random alloy fluctuations. [Here, we

FIG. 8. (a) Distribution of the diagonal Dresselhaus coefficients
β̄�� of a conventional Si/SiGe system with a pure Si quantum well
when including alloy disorder as described in the main text. The elec-
tric field is Fz = 10 mV/nm. (b) Same as (a) except that nGe,n = 5%
throughout the well region. Insets show the nGe,n profiles. We see that
inclusion of Ge inside of the well region widens the distribution of
β̄�� but does not on average increase its magnitude.

do not include intentional Ge concentration oscillations; the
resulting Ge concentration profile is shown in the inset of
Fig. 8(b).] Note that this system contains the same amount
of Ge in the well region as the wiggle well system shown in
Fig. 7. Unsurprisingly, we find that the distribution of the β̄��

coefficients spreads considerably, compared to the results in
Fig. 8(a), due to the presence of alloy fluctuations inside of
the well. Importantly, however, a uniform Ge concentration
in the well region does not on average increase the spin-orbit
coupling, in contrast to the effect on valley splitting. Indeed,
we find that 〈|β̄00|〉 = 26 µeV nm for the data in Fig. 8(a),
while 〈|β̄00|〉 = 22 µeV nm for the data in Fig. 8(b). This high-
lights that fact that in order to enhance spin-orbit coupling,
it is not enough to simply include Ge in the well region, but
rather the Ge concentration must oscillate with the appropriate
wavelength λ. We note that this result is consistent with the ex-
perimental observation that the g factor measured in uniform
Si1−xGex alloys is only slightly altered by changing the Ge
concentration [40,41].

IV. MECHANISM BEHIND THE SPIN-ORBIT
ENHANCEMENT

Having shown through simulations that the inclusion of
Ge concentration oscillations of an appropriate wavelength
can significantly enhance the spin-orbit coupling, the natural
question is what mechanism leads to this enhancement? In
this section, we provide an explanation of this mechanism.
To begin, we describe in Sec. IV A a simplified version of our
model that allows for easier understanding of the spin-orbit
enhancement mechanism. Next, we study in Sec. IV B the
real-space representation of the ground valley wave function
in the absence and presence of Ge concentration oscillations.
We find that a real-space picture is inadequate in explaining
the spin-orbit enhancement. We therefore study in Sec. IV C
the structure of the wave function in momentum space. We
show how the combination of the oscillating potential pro-
duced by the Ge concentration oscillations and the selection
rules of Dresselhaus spin-orbit coupling leads to the spin-orbit
coupling enhancement.
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A. Simplified model

To focus on the essential physics for the spin-orbit coupling
enhancement, we use in this section a model for SiGe alloys
that is slightly simplified compared to the model presented
in Sec. II and used in our numerical calculations in Sec. III.
In this model, Ge atoms are assumed to be identical to Si
atoms, except for their orbitals being shifted up in energy by
a constant, i.e., ε̄

(Ge)
ν̄ = ε̄

(Si)
ν̄ + EGe where EGe = 0.8 eV is the

extra energy of every Ge orbital. This is meant to capture at
the simplest level that inclusion of Ge increases the energy of
the conduction band minima. In particular, the chosen value
produces a band offset of 0.24 eV between a pure Si region
and a barrier region with a nominal 30% Ge concentration.
Note, however, that the precise value is not important since
we are only using this simplified model to understand the spin-
orbit enhancement mechanism, leaving quantitative questions
to the more accurate model of Sec. II. In addition, we also
neglect the effects of strain, such that C̄(n) → 0, since they
are not crucial in understanding the spin-orbit enhancement
mechanism. With these simplifications, the addition of Ge
is equivalent to adding a term to the potential energy V of
a pure Si system. For simplicity, we define a new potential
Vn = eFzzn + EGenGe,n, that includes both the electric field Fz

and the energy shift from the Ge concentration nGe,n of the
layer, and we let all orbital energies take values appropriate
for Si: ε̄

(n)
ν̄ → ε̄

(Si)
ν̄ . Here, zn = na/4 is the z coordinate of

atomic layer n, and a = 0.543 nm is the cubic lattice constant
of Si. Importantly, in this simplified model, the onsite orbital
energies and hopping matrices all lose their dependence on the
layer index n, {ε̄(n)

ν̄ , T̃ (n)
0 , T̃ (n)

R (k‖), T̃ (n)
D (k‖),�(n),(n)} →

{ε̄(Si)
ν̄ , T̃0, T̃R(k‖), T̃D(k‖),�,}. The Hamiltonian compo-

nents then take the simplified forms

〈mμ̄|H (z)
0 |nν̄〉 = δnν̄

mμ̄

(
ε̄

(Si)
ν̄ + Vn

)
+ δn+1

m �μ̄ν̄ + δn−1
m �T

μ̄ν̄ , (27)

〈mμ̄|H (z)
R |nν̄〉 = δn+1

m μ̄ν̄ + δn−1
m T

μ̄ν̄ , (28)

〈mμ̄|H (z)
D |nν̄〉 = (−1)n

(
δn+1

m μ̄ν̄ − δn−1
m T

μ̄ν̄

)
. (29)

Note that the numerical values of the � and  matrices used
in the above equations are specified in Appendix D.

B. Real-space wave functions

Let us now study the effects of the Ge concentration os-
cillations on the wave functions of the subband Hamiltonian
H (z)

0 . To do so, we first calculate the ground valley wave
function of a conventional Si/SiGe quantum well that has the
Ge concentration profile shown as the blue line in Fig. 9(a).
The ground valley wave function |ψ |2 of the subband Hamil-
tonian H (z)

0 is shown in red in Fig. 9(a), where the state is
pushed up against the barrier-well interface by an electric
field of strength Fz = 5 mV/nm. The wave function also ex-
hibits fast oscillations characteristic of the superposition of the
two-valley minima [32]. We next consider the same system,
except with Ge concentration oscillations of wavelength λ =
1.62 nm included in the well region, as shown by the blue line
in Fig. 9(b). Comparing the two cases, we see that the wave
function is suppressed in regions of high Ge concentration,

FIG. 9. Comparison of the ground valley wave function for a
“conventional” Si/SiGe system with a pure Si well region (a) and
a wiggle well (b) with oscillation wavelength λ = 1.62 nm. Blue
lines show the Ge concentration profiles while red filled in curves are
the wave functions |ψ |2. Note that we sum over orbital indices. The
electric field is Fz = 5 mV/nm in both (a) and (b). We see in (b) that
the wave function is suppressed in regions of high Ge concentration,
consistent with the fact that the conduction-band minima are higher
in energy in those regions.

as consistent with the fact that the conduction-band minima
(and thus the local potential energies) are higher in energy in
those regions. However, these qualitative observations do not
directly explain the enhancement of Dresselhaus spin-orbit
coupling observed in Figs. 4 and 5.

C. Momentum-space wave functions

We gain a clearer understanding of the effects of the Ge
concentration oscillations by studying the momentum-space
representation of the ground valley. To begin, let us first inves-
tigate the band structure of Si at k‖ = 0, which is shown as the
orange dashed lines in Fig. 10. A central feature of the band
structure is the presence of two degenerate valleys near zero
energy that give rise to the ground and excited valley states
in a quantum well. In addition, the valley minima are located
only a short distance of 0.17(2π/a) away from the Brillouin
zone edge at kz = ±2π/a. Interestingly, we notice that at kz =
±2π/a, there are no band anticrossings (only crossings). This

FIG. 10. The band structure of Si for k‖ = 0. The band structure
for the conventional Brillouin zone extending to kz = ±2π/a is
shown by dashed orange lines. The presence of band crossings at
the zone edge kz = ±2π/a indicates that the Brillouin zone can be
enlarged. Indeed, the equivalence of the two sublattices of Si for
k‖ = 0 allows us to extend the Brillouin zone to kz = ±4π/a. The
band structure for the extended zone is shown as solid black lines.
See the main text for details on the green, blue, and red points.
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is an indication that the Brillouin zone can be enlarged for
k‖ = 0. Indeed, for the special case of k‖ = 0, the two sublat-
tice hopping matrices become equal, T̃+(0) = T̃−(0), and the
primitive unit cell of the 1D chain shown in Fig. 2(b) reduces
from two sites to one. The Brillouin zone should therefore
extend to kz = ±4π/a instead of kz = ±2π/a. Here, we will
refer to the Brillouin zone that extends to kz = ±4π/a as the
extended zone, while the zone extending only to kz = ±2π/a
as the conventional zone.

To calculate the band structure in the extended zone, we
define a plane-wave basis state with momentum kz as

|kzν̄〉 = 1√
Nz

∑
n

eikzzn |nν̄〉 , (30)

where Nz is the number of sites in the 1D chain and −4π/a <

kz � 4π/a, where kz = 8πn/(Nza). The subband Hamilto-
nian H (z)

0 then has matrix elements

〈kzμ̄|H (z)
0 |k′

zν̄〉 = δ
k′

z

kz

(
δν̄
μ̄ε̄

(Si)
ν̄ + e−ikz

a
4 �μ̄ν̄ + eikz

a
4 �T

μ̄ν̄

)
+ δν̄

μ̄ Ṽ (kz − k′
z ), (31)

where Ṽ (kz − k′
z ) is the Fourier transform of the potential V

and is given by Ṽ (qz ) = N−1
z

∑
n exp(−iqzzn)Vn. Notice that

in the absence of the potential [Ṽ (qz ) → 0], kz is a good
quantum number for H (z)

0 , and Eq. (31) represents a Bloch
Hamiltonian. The spectrum of H (z)

0 for Ṽ (qz ) = 0 is shown
as the solid black lines in Fig. 10, which we refer to as the
extended band structure. Within the conventional zone, we
see that the extended band structure aligns perfectly with half
of the conventional (orange) bands, while the other half of
the bands have been removed from the conventional zone
and instead reside in the regions between kz = |2π/a| and
|4π/a|. Furthermore, we observe that the conventional bands
that do not match with the extended band structure can be
made to match by shifting them by a reciprocal lattice vector
Gz = ±4π/a of the lattice containing two sites. For example,
the green point at kz = −π/a in Fig. 10 gets shifted to the
blue point at kz = 3π/a, which coincides with a band of the
extended band structure. This is expected since the points
kz and kz + Gz are equivalent from the point of view of the
conventional zone [42].

We stress that the extended band structure contains more
information than the conventional band structure. Indeed, the
extended scheme clarifies which states can be coupled by a
given Fourier component qz of the potential Ṽ (qz ). For exam-
ple, let us consider what Fourier component of the potential
could couple the states of the conventional band structure
marked by the green and red points at kz = −π/a and
−1.3π/a, respectively, in Fig. 10. Looking at the conventional
band structure, one may initially believe the Ṽ (−0.3π/a)
Fourier component could couple the states. Looking at these
states in the extended band structure (red and blue points in
Fig. 10), however, we immediately see that these states are
instead coupled by the Ṽ (3.7π/a) Fourier component. This
additional information will be crucial in understanding the
enhanced spin-orbit coupling mechanism below.

Returning to our comparison of the systems with and with-
out Ge concentration oscillations, we now plot the ground
valley wave functions in the plane-wave representation. These

FIG. 11. Wave-function profiles of the ground valley in the
plane-wave representation. (a), (b) Correspond to Ge profiles (a) and
(b) in Fig. 9, respectively. Both states show main peaks centered
at the valley minima kz ≈ ±0.83(2π/a), as shown in Fig. 10. As
shown in (b), however, the Ge concentration oscillations produce
wave-function satellites a distance 2π/λ away from the main peaks.
The wave vector from a main peak to the opposite outer satellite
is 4π/a for this choice of λ. Since Dresselhaus spin-orbit coupling
connects locations in reciprocal space separated by 4π/a, spin-orbit
enhancement occurs when a satellite peak is separated from a main
peak by 4π/a.

are shown in Figs. 11(a) and 11(b) and correspond to the
real-space wave functions shown in Figs. 9(a) and 9(b), re-
spectively. That is, we plot (

∑
ν̄ | 〈kzν̄| |ϕ�〉 |2)1/2 as a function

of kz where |ϕ�〉 is the ground valley wave function. As shown
in Fig. 11(a), the ground valley wave function of the conven-
tional Si/SiGe heterostructure consists of two peaks centered
at kz ≈ ±0.83(2π/a). These coincide with the conduction-
band minima in Fig. 10(a) as expected. Note that the positions
of these minima in the band structure of Si depend on the exact
tight-binding parameters used, and differ slightly from other
models in the literature. As shown in Fig. 11(b), the ground
valley wave function in the presence of the Ge oscillations
still has its main peaks but also includes surrounding satellite
features. The location of these satellites with respect to the
central peaks is determined by the wavelength of the Ge os-
cillations, with a peak-satellite separation of 2π/λ, as shown
in Fig. 11(b).

The second step in explaining the enhanced spin-orbit cou-
pling requires a mechanism for coupling different regions of
the Brillouin zone. We first express the matrix elements of the
Rashba H (z)

R and Dresselhaus H (z)
D Hamiltonian components

in the plane-wave basis, giving

〈kzμ̄|H (z)
R |k′

zν̄〉 = δ
k′

z

kz

(
e−ikz

a
4 μ̄ν̄ + eikz

a
4 T

μ̄ν̄

)
, (32)

〈kzμ̄|H (z)
D |k′

zν̄〉 = δ
4π/a
|kz−k′

z |
(
e−ikz

a
4 μ̄ν̄ − eikz

a
4 T

μ̄ν̄

)
. (33)

The key features to notice here are the selection rules between
kz and k′

z: while H (z)
R conserves kz, H (z)

D couples states with
momenta differing by 4π/a. The latter result is obtained by
Fourier transforming the (−1)n factor in Eq. (29), which itself
is a manifestation of the alternating sign in front of T̃ (n)

D in
Eq. (11). To our knowledge, these selection rules and their
relation to Rashba and Dresselhaus spin-orbit couplings have
not been noticed previously, although we speculate that they
could be deduced from group-theory methods, such as the
method of invariants [16,43]. We emphasize, however, that the
extended zone scheme is key to obtaining such results since in
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the conventional zone scheme, kz values differing by 4π/a are
equivalent, and cannot yield a selection rule like Eq. (33). We
also note that Eqs. (32) and (33) apply to any system with a
diamond crystal structure.

The Dresselhaus momentum selection rule in Eq. (33) in-
dicates that the spin-orbit coupling will be enhanced when
wave-function peaks associated with two different valleys are
separated by 4π/a. In Fig. 11(b), we see that this can only
occur for coupling between a central valley peak and the
outer satellite associated with the opposite valley. Since the
central valley peaks are located at kz ≈ ±0.83(2π/a), we see
that the resonance condition for the oscillation wavelength
to enhance the Dresselhaus spin orbit is given by λres =
2.94a = 1.59 nm. Uncoincidentally, this wavelength value is
very close to the peak of the bump centered at λ ≈ 1.57 nm
of our numerical result in Fig. 4(a) where the Dresselhaus
spin-orbit coupling is significantly enhanced. Note that similar
considerations apply to the excited valley.

Our understanding of the spin-orbit enhancement mecha-
nism also explains the narrower features observed in Fig. 5
for a weak vertical electric field Fz = 2 mV/nm, as com-
pared to the wider features observed in Fig. 4 for a strong
electric field Fz = 10 mV/nm. Essentially, a weaker electric
field produces wave functions with narrower features in the
plane-wave representation than those from a strong electric
field. These thinner features make it more difficult to satisfy
the Dresselhaus resonance condition since the narrower peaks
need to be situated more precisely in kz space.

Finally, we comment that the spin-orbit enhancement
mechanism relies fundamentally on the degeneracy of the two
z valleys in the band structure of strained Si. Such a situation
could not occur if, for example, Si was a direct band-gap
semiconductor with a single nondegenerate valley at the �

point since the key coupling in Fig. 11(b) occurs between the
central peak of one valley and the outer satellite of the oppo-
site valley. Interestingly, in this case the valley degeneracy of
Si can be considered as beneficial, while in other scenarios it is
often considered to be problematic. In addition, the spin-orbit
enhancement mechanism has similarities to holes in semicon-
ductors, for which the enhancement arises due to degeneracy
at the valence-band edge. In contrast to the valence-band case,
however, which has degenerate bands at the same momentum,
the degenerate z valleys in Si require a periodic potential in the
form of Ge concentration oscillations to enhance the coupling
strength.

V. CONCLUSIONS

We have shown that the inclusion of periodic Ge concentra-
tion oscillations within the quantum well region of a Si/SiGe
heterostructure leads to enhanced spin-orbit coupling when
the oscillation wavelength λ is properly chosen. Specifically,
we find that the Dresselhaus spin-orbit coupling coefficient is
enhanced by over an order of magnitude when λ ≈ 1.57 nm,
as shown in Figs. 4 and 5. We have provided a detailed ex-
planation for this behavior: the Ge concentration oscillations
produce wave function satellites in momentum space which
can couple strongly to the valley minima through Dresselhaus
spin-orbit coupling provided that the satellite-valley separa-
tion is approximately 4π/a in the extended Brillouin zone
as shown in Fig. 11. Importantly, the region of enhancement

in Fig. 4 is quite wide in λ space, which has the important
implication that the wiggle well structure should allow for
rather large growth errors in the Ge concentration profile
while maintaining the enhanced spin-orbit effect. Addition-
ally, our results indicate that the spin-orbit enhancement is
robust against alloy disorder, as shown in Fig. 7.

Enhancement of both the Dresselhaus and Rashba coeffi-
cients at smaller λ values have also been found in Figs. 4(c)
and 4(d), although these bumps are much narrower in width
than the λ ≈ 1.57 nm bump, making such structures more
challenging to fabricate. Assuming that the wiggle well with
λ ≈ 0.27 nm can be practically realized, however, this period
is quite attractive as it could provide the enhanced Dresselhaus
spin-orbit coupling studied here along with a huge determin-
istic valley splitting [18,19].

With regards to possible applications, the enhanced spin-
orbit coupling of the wiggle well indicates that EDSR can be
used for fast, electrically driven manipulations of single-spin,
Loss-DiVincenzo qubits without the use of micromagnets.
Indeed, a fast, spin-orbit-driven EDSR capability is one of
the main attractive features of hole-spin qubits [17,44–47],
and has recently also attracted interest in Si electron-spin
qubits [48]. This possibility is supported by our calculations
in Sec. III, where it was shown that an EDSR Rabi frequency
of �Rabi/B > 500 MHz/T can be obtained near the optimal
Ge oscillation wavelength λ = 1.57 nm. It is also possible
that the enhanced spin-orbit coupling between the valleys
may be used to drive fast singlet-triplet rotations near the
valley-Zeeman hot spot [49]. Finally, we mention that the
enhanced and spatially varying spin-orbit coupling may have
interesting effects on many-body physics in multielectron
dots [33,50–53].
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APPENDIX A: LATTICE CONSTANTS IN STRAINED
SI/SIGE QUANTUM WELLS

To determine the lattice constants of the strained Si/SiGe
heterostructure, we use pseudomorphic boundary conditions
[31,54], where the in-plane lattice constant a‖ throughout the
system is given by the relaxed lattice constant of the Si0.7Ge0.3

barrier regions. This then also sets the lattice spacing along the
growth direction as described below.

We take the relaxed lattice constant of a Si1−xGex alloy as

ao(x) = (1 − x)aSi + xaGe, (A1)

where aSi = 0.5431 nm and aGe = 0.5657 nm are the relaxed
lattice constants of Si and Ge, respectively. Our structure
therefore has an in-plane lattice constant a‖ = ao(0.3) =
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0.5499 nm throughout the entire system. Atomic layers in
our system with Ge concentration nGe,n �= 0.3 are therefore
strained. Explicitly, the in-plane strain ε‖,n of layer n is

ε‖,n = a‖ − ao(nGe,n)

ao(nGe,n)
. (A2)

For a bulk Si1−x′Gex′ alloy under biaxial stress perpendicular
to the [001], we have strains εxx = εyy = ε‖ and εzz = ε⊥ that
are related by [54]

ε⊥(x′) = −2
C12(x′)
C11(x′)

ε‖, (A3)

where C12 and C11 are elastic constants that depend on the
Ge concentration x′. For pure Si (x = 0), we have C11(0) =
165.8 GPa and C12(0) = 63.9 GPa, while for pure Ge (x = 1),
we have C11(1) = 131.8 GPa and C12(1) = 48.3 GPa [28].
For simplicity, we assume that the elastic constants vary lin-
early with the Ge concentration. For a well region composed
of Si1−x′Gex′ , we would then have the out-of-plane lattice
constant

a⊥(x′) = (1 + ε⊥(x′))ao(x′). (A4)

In our system with its inhomogeneous Ge concentration pro-
file, we take the lattice spacing between layers n and n + 1
with Ge concentrations nGe,n and nGe,n+1, respectively, as
a(n+1,n)

⊥ /4, where

a(n+1,n)
⊥ = 1

2 (a⊥(nGe,n+1) + a⊥(nGe,n)) (A5)

is the average of the out-of-plane lattice constants expected
for strained regions with Ge concentration nGe,n and nGe,n+1,
respectively.

APPENDIX B: PSEUDOSPIN BASIS
TRANSFORMATION DETAILS

In this Appendix, we provide details of the pseudospin
basis introduced in Sec. II B of the main text. The pseudospin
basis is defined as

|k‖nν̄σ̄ 〉 =
∑
νσ

|k‖nνσ 〉U (n)
νσ,ν̄σ̄ , (B1)

where ν̄ and σ̄ label the new orbitals with σ̄ =⇑,⇓ being a
pseudospin label, ν and σ are indices of the original basis with
σ =↑,↓ simply denoting spin, and U (n) is the transformation
matrix of layer n.

Our first requirement of the new basis is that it diago-
nalizes the onsite spin-orbit coupling. Following Chadi [29],
spin-orbit coupling is taken to be an intra-atomic (onsite)
coupling between p orbitals and enters into the Hamilto-
nian as the matrix S. The explicit form of the S matrix
of atom j in atomic layer n in the p-orbital subspace
{|pz ↑〉 , |px ↓〉 , |py ↓〉 , |pz ↓〉 , |px ↑〉 , |py ↑〉} is

S(n j) = �
(n j)
SO

3

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 i 0 0 0
−1 0 i 0 0 0
−i −i 0 0 0 0

0 0 0 0 1 i
0 0 0 1 0 −i
0 0 0 −i i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B2)

where �
(n j)
SO is the spin-orbit energy. All matrix elements in-

volving s, s∗, and d orbitals are set to zero in S and are not
shown. Note that spin-orbit coupling, in principle, does exist
between d orbitals, but is much smaller than the p-orbital
couplings and is typically neglected [27]. Also note that the
spin-orbit energy depends on if the atom is Si or Ge, but
the form of the spin-orbit coupling matrix is independent of
atom type. It turns out that the S matrix is diagonalized by
the eigenstates of total angular momentum [16]. Within the
p-orbital subspace, these states are given by

|p1 ⇑〉 = i√
2

(|px ↓〉 − i|py ↓〉), (B3)

|p2 ⇑〉 = 1√
6

(2|pz ↑〉 − |px ↓〉 − i|py ↓〉), (B4)

|p3 ⇑〉 = 1√
3

(|pz ↑〉 + |px ↓〉 + i|py ↓〉), (B5)

|p1 ⇓〉 = i√
2

(|px ↑〉 + i|py ↑〉), (B6)

|p2 ⇓〉 = 1√
6

(2|pz ↓〉 + |px ↑〉 − i|py ↑〉), (B7)

|p3 ⇓〉 = 1√
3

(|pz ↓〉 − |px ↑〉 + i|py ↑〉), (B8)

where ⇑,⇓ are pseudospin labels. We find |p1σ̄ 〉 and |p2σ̄ 〉
both have an S-matrix eigenvalue of �

(n j)
SO /3, while |p3σ̄ 〉 has

an eigenvalue of −2�
(n j)
SO /3. We also define pseudospin s and

s∗ orbitals as

|s ⇑〉 = |s ↑〉 , (B9)

|s∗ ⇑〉 = |s∗ ↑〉 , (B10)

|s ⇓〉 = |s ↓〉 , (B11)

|s∗ ⇓〉 = |s∗ ↓〉 , (B12)

and pseudospin d orbitals as

|d1 ⇑〉 = i√
2

(|dzx ↓〉 − i|dyz ↓〉), (B13)

|d2 ⇑〉 = 1√
6

(2|dz2 ↑〉 − |dzx ↓〉 − i|dyz ↓〉), (B14)

|d3 ⇑〉 = 1√
3

(|dz2 ↑〉 + |dzx ↓〉 + i|dyz ↓〉), (B15)

|d4 ⇑〉 = |dxy ↑〉 , (B16)

|d5 ⇑〉 = |dx2−y2 ↑〉 , (B17)

|d1 ⇓〉 = i√
2

(|dzx ↑〉 + i|dyz ↑〉), (B18)

|d2 ⇓〉 = 1√
6

(2|dz2 ↓〉 + |dzx ↑〉 − i|dyz ↑〉), (B19)

|d3 ⇓〉 = 1√
3

(|dz2 ↓〉 − |dzx ↑〉 + i|dyz ↑〉), (B20)

|d4 ⇓〉 = |dxy ↓〉 , (B21)

|d5 ⇓〉 = |dx2−y2 ↓〉 . (B22)
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Note that all pseudospin s, s∗, and d orbitals are trivially
eigenstates of the spin-orbit matrix S with eigenvalue 0. In
addition, note that for j = 1, 2, 3, |dj ⇑〉 and |d j ⇓〉 are found
from |p j ⇑〉 and |p j ⇓〉, respectively, by letting px, py, pz →
dzx, dyz, dz2 . The other pseudospin d orbitals and s orbitals are
trivially related to the original basis. Note that we adopt these
altered d-orbital pseudospin states even though they possess
no spin-orbit coupling such that we obtain the pseudospin
structure of the hopping matrices in Eqs. (12)–(14) of the main
text. Failure to adopt these d-orbital pseudospin states would
result in coupling between the pseudospin sectors for k‖ = 0.

Second, we require the pseudospin basis to transform the
Hamiltonian in such a way that the minimum unit cell (in the
absence of an inhomogeneous potential Vn) decreases from
two sites to one site for k‖ = 0. In other words, the Fourier-
transformed hopping matrix, which is introduced in Eq. (9)
of the main text, must become site independent for k‖ = 0.
Naively adopting the orbitals defined in Eqs. (B3)–(B22) for
every site does not fulfill this requirement. However, this
requirement is fulfilled if we adopt the orbitals defined in
Eqs. (B3)–(B22) if the |p1 ⇑〉, |p1 ⇓〉, |d1 ⇑〉, |d1 ⇓〉, |d4 ⇑〉,
and |d4 ⇓〉 orbitals are multiplied by (−1)n, where n is the
site index in the 1D chain. In other words, we flip the sign of
these select orbitals on every other site. As stated in the main
text, this alternating structure for the transformation matrix is

due to the presence of two sublattices in the diamond crystal
structure of Si as shown in Fig. 2(a).

For clarity, we now provide the explicit form of U (n). We
write U (n) as

U (n) =
⎛
⎝U (n)

s 0 0
0 U (n)

p 0
0 0 U (n)

d

⎞
⎠, (B23)

where U (n)
s , U (n)

p , and U (n)
d are matrix blocks which describe

how the s, p, and d orbitals transform, respectively. Here,
U (n)

s = I4×4 is just identity. The p block is given by

U (n)
p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2√
6

1√
3

0 0 0

0 0 0 i(−1)n√
2

1√
6

−1√
3

0 0 0 (−1)n+1√
2

−i√
6

i√
3

0 0 0 0 2√
6

1√
3

i(−1)n√
2

−1√
6

1√
3

0 0 0
(−1)n√

2
−i√

6
i√
3

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B24)

where the columns correspond to the pseudospin orbitals
in the order {p1 ⇑, p2 ⇑, p3 ⇑, p1 ⇓, p2 ⇓, p3 ⇓}, and the
rows correspond to the “standard” orbitals in the order
{pz↑, px↑, py↑, pz↓, px↓, py↓}. Finally, the d block is

U (n)
d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2√
6

1√
3

0 0 0 0 0 0 0

0 0 0 0 0 i(−1)n√
2

1√
6

−1√
3

0 0

0 0 0 0 0 (−1)n+1√
2

−i√
6

i√
3

0 0
0 0 0 (−1)n 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 2√

6
1√
3

0 0
i(−1)n√

2
−1√

6
1√
3

0 0 0 0 0 0 0
(−1)n√

2
−i√

6
i√
3

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 (−1)n 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B25)

where the columns correspond to the pseudospin orbitals
in the order {d1 ⇑, d2 ⇑, d3⇑, d4⇑, d5⇑, d1⇓, d2⇓, d3⇓,

d4⇓, d5⇓}, and the rows correspond to the “standard” orbitals
in the order {dz2 ↑, dzx ↑, dyz ↑, dxy ↑, dx2−y2 ↑, dz2 ↓, dzx ↓,

dyz ↓, dxy ↓, dx2−y2 ↓}. Notice the (−1)n factors that flip
the signs of the |p1 ⇑〉, |p1 ⇓〉, |d1 ⇑〉, |d1 ⇓〉, |d4 ⇑〉, and
|d4 ⇓〉 orbitals on every odd site. This allows for a unit cell
containing only one site for k‖ = 0 as described above.

APPENDIX C: SYMMETRY ARGUMENT
FOR THE HOPPING STRUCTURE OF THE RASHBA

AND DRESSELHAUS HAMILTONIAN COMPONENTS

In Sec. II C of the main text, we found the Fourier-
transformed hopping matrix T̃ (n)

± (k‖) to have the form

T̃ (n)
± (k‖) = T̃ (n)

o + T̃ (n)
R (k‖) ± T̃ (n)

D (k‖) + O(k2
‖ ), (C1)

where T̃ (n)
R (k‖) and T̃ (n)

D (k‖) are the Rashba and Dresselhaus
hopping matrices, respectively, and are given by

T̃ (n)
R (k‖) = (n)(kyσx − kxσy), (C2)

T̃ (n)
D (k‖) = (n)(kxσx − kyσy), (C3)

with (n) being a real-valued 10 × 10 matrix with vanish-
ing diagonal elemental. Importantly, the sign in front of the
Rashba hopping matrix T̃ (n)

R is site independent, while the sign
of the Dresselhaus hopping matrix T̃ (n)

D changes sign between
every site, as indicated by the ± in Eq. (C1). This can be
understood as originating from the diamond crystal structure
of the Si by the following symmetry argument; Let us consider
the case of pure Si such that {(n), T̃ (n)

R , T̃ (n)
D } → {, T̃R, T̃D}

all lose their dependence on the layer index. Next, note that
under a C4 rotation about the z axis (growth axis), we have
{kx, ky, σx, σy} → {ky,−kx, σy,−σx}. This leaves invariant the
Rashba term in Eq. (C2) and flips the sign of the Dresselhaus
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term in Eq. (C3). Finally, performing the same C4 rotation
on our diamond crystal structure in Fig. 2(a) transforms red
atoms into blue atoms and vice versa in the sense that the
nearest-neighbor vectors of even and odd atomic layers swap.
In other words, the two sublattices of the Si lattice swap.
This, in turn, swaps T̃+ and T̃− within the tight-binding chain.
Clearly then, the Rashba hopping term T̃R, being invariant
under a C4 rotation, should contain the part common to T̃+
and T̃−. In contrast, the Dresselhaus hopping term T̃D should
contain the part which is different between T̃+ and T̃− since it
flips sign under a C4 rotation. This then explains the ± in front
of T̃ (n)

D in Eq. (C1).

APPENDIX D: � AND � MATRICES

In Sec. II C of the main text, we introduced the 10 × 10
matrices �(n) and (n) as components of the hopping matrices
in Eqs. (12)–(14). These matrices can be further decomposed
into the block forms

�(n) =

⎡
⎢⎢⎣

�
(n)
00 �

(n)
01 0

−�
(n)T
01 �

(n)
11 0

0 0 �
(n)
22

⎤
⎥⎥⎦, (D1)

(n) =

⎡
⎢⎢⎣


(n)
00 

(n)
01 

(n)
02


(n)T
01 

(n)
11 

(n)
12

−
(n)T
02 

(n)T
12 0

⎤
⎥⎥⎦, (D2)

where the shapes of the diagonal blocks are 5 × 5, 4 × 4,
and 1 × 1, respectively, and the diagonal block matrices sat-
isfy �

(n)T
ii = �

(n)
ii and 

(n)T
ii = −

(n)
ii . Note that this implies

that all diagonal elements of (n) are zero. Here, the orbital
ordering used is {s, s∗, p1, d2, d3, p2, p3, d1, d4, d5}. Generi-
cally, these matrices depend on the layer index n due to Ge
concentration changing from layer to layer. In the case of
a uniform Ge concentration, however, this layer dependence

goes away, {�(n),(n)} → {�,}. In the particular case of an
unstrained Si system, the � matrix blocks (in eV) are given by

�00 =

⎛
⎜⎜⎜⎜⎝

−3.73 −2.78 0 0 0
−2.78 −9.03 0 0 0

0 0 −0.73 −1.71 2.42
0 0 −1.71 1.63 2.03
0 0 2.42 2.03 0.19

⎞
⎟⎟⎟⎟⎠, (D3)

�11 =

⎛
⎜⎜⎝

0.73 0 1.71 −2.42
0 0.73 −2.42 −1.71

1.71 −2.42 1.24 0
−2.42 −1.71 0 1.24

⎞
⎟⎟⎠, (D4)

�22 = 3.06, (D5)

�01 =

⎛
⎜⎜⎜⎜⎝

2.74 1.94 0 −2.59
2.89 2.05 0 −0.90
2.15 −3.04 0.19 0

−2.07 −1.60 0.70 −2.92
−1.60 0.94 −0.99 −2.07

⎞
⎟⎟⎟⎟⎠, (D6)

and the  matrix blocks (in eV Å) are given by

00 =

⎛
⎜⎜⎜⎜⎝

0 0 3.23 1.43 −2.03
0 0 3.40 0.50 −0.70

−3.23 −3.40 0 −1.25 −0.89
−1.43 −0.50 1.25 0 1.72
2.03 0.70 0.89 −1.72 0

⎞
⎟⎟⎟⎟⎠, (D7)

11 =

⎛
⎜⎜⎝

0 3.57 −0.15 −0.10
−3.57 0 −0.1 0.15
−0.15 −0.1 0 −1.16
−0.10 −0.15 1.16 0

⎞
⎟⎟⎠, (D8)

02 = (0 0 2.66 1.72 2.43), (D9)

12 = (−1.54 2.17 2.98 0). (D10)

Note that these � and  are precisely the matrices used in the
simplified model of Sec. IV, where Ge atoms are treated as Si
atoms with orbitals shifted up by a constant energy EGe.
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