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Lateral recoil optical forces on nanoparticles near nonreciprocal surfaces
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We investigate lateral recoil forces exerted on nanoparticles located near plasmonic platforms with in-plane
nonreciprocal response. To this purpose, we first develop a comprehensive theoretical framework based on the
Lorentz force within the Rayleigh approximation combined with nonreciprocal Green’s functions and then derive
approximate analytical expressions to model lateral recoil forces, demonstrating their explicit dependence on the
dispersion relation of the system and unveiling the mechanisms that govern them. In particular, a dominant lateral
recoil force component appears due to the momentum imbalance of nonreciprocal surface plasmons supported by
the platform. This force can be orders of magnitude larger than other recoil force components, acts only along or
against the direction of the external bias, and is quasi-independent of the direction, polarization, and wavelength
of the incident plane wave. Lateral recoil forces are explored using drift-biased graphene metasurfaces, a platform
that is also proposed to sort nanoparticles as a function of their size. Nonreciprocal plasmonic systems may
enable new venues to trap, bind, and manipulate nanoparticles and to alleviate some of the challenges of
conventional optical tweezers.
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I. INTRODUCTION

Lateral recoil optical forces over plasmonic structures have
gathered large interest in recent years, as they enable the
trapping [1–6] and manipulation [7–13] of nanoscale objects
and can find important applications in bioengineering and
chemistry [14–21]. Their underlying mechanism relies on the
spin-orbit interaction of light [22]: Upon adequate illumi-
nation, dipolar particles located near a plasmonic structure
scatter quasicircularly polarized (CP) light that couples to the
surface in the form of directional surface plasmon polaritons
(SPPs) [7–11]. To compensate for the momentum imbalance,
the particle experiences a lateral recoil optical force acting
in the direction opposite to the one of the excited plasmons
[7–11] with a strength proportional to the momentum of the
excited plasmons. The properties of the incident laser beam
are critical in this process. For instance, the beam wavelength
must be tuned to the system plasmon resonance to generate
significant forces [11], whereas its polarization state influ-
ences the polarization acquired by the particle and determines
the properties of the scattered light [10]. When these scattered
evanescent waves are linearly polarized (LP), the excited SPPs
propagate symmetrically within the surface and lateral recoil
forces vanish. Potential approaches to achieve directional SPP
excitation with LP light rely on the use of magnetodielectric
particles, such as Janus and Huygens dipoles [23], chiral
objects [24], and high-index particles [25–28] that exploit
combined effects of electric and magnetic dipole moments
[29–31]. Unfortunately, these complex particles are not com-
monly found in chemical and biological applications.

An alternative route to overcome these challenges is us-
ing nonreciprocal plasmonic surfaces, for instance using

magneto-optic materials biased with a magnetic field [31–36].
When the applied external bias is perpendicular to the sur-
face, the polarization symmetry of the supported plasmons is
broken. There, a LP nanoparticle can experience lateral recoil
forces [31] because the scattered light undergoes a polariza-
tion conversion that excites directional SPPs. The strength
of this recoil force is similar to the one found in reciprocal
plasmonic systems [7], whereas its direction depends on the
incident angle of the laser beam. When the applied exter-
nal magnetic bias is parallel to the surface, the supported
modes exhibit a broken symmetry in both amplitude and po-
larization [37–48]. Such structures have been shown to exert
fluctuation-induced recoil forces on polarized atoms located
nearby [49–52], in which the main emission channel is as-
sociated with the excitation of unidirectional SPPs supported
at the material interface. Even though this platform allows
to control the strength and direction of the induced forces
with the external bias and the atomic transition frequency,
fluctuation-induced forces are usually weak and thus inca-
pable of manipulating nanoparticles in practice.

Here, we investigate lateral optical recoil forces exerted
on nanoparticles located near nonreciprocal interfaces illumi-
nated with a plane wave. We focus on plasmonic platforms
with an in-plane nonreciprocity that appears by applying an
external bias parallel to the surface, and that manifests it-
self by a broken symmetry of the amplitude and polarization
profile of the supported plasmons, as happens in the case
of drift-biased graphene [37–42] and thin metals [43] or ex-
ternally biased magneto-optic materials [33,44,46,47]. This
general class of linear, homogeneous, anisotropic, plasmonic,
and nonreciprocal metasurfaces possesses negligible out-of-
plane electric-field responses and can be characterized using

2469-9950/2023/107(3)/035417(13) 035417-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.035417&domain=pdf&date_stamp=2023-01-18
https://doi.org/10.1103/PhysRevB.107.035417


NAYAN K. PAUL AND J. SEBASTIAN GOMEZ-DIAZ PHYSICAL REVIEW B 107, 035417 (2023)

FIG. 1. Lateral recoil optical forces acting on a nanoparticle
located over a nonreciprocal plasmonic platform. (a) Schematic of
the configuration. Lateral optical forces (magenta) are exerted on
a Rayleigh particle (orange) located over a drift-biased graphene
transferred over hexagonal boron nitride upon illumination with a
plane wave (cyan). (b) Isofrequency contour of the states supported
by graphene at λ0 = 14 μm for two velocities of drifting electrons.
k+

y and k−
y denote the supported states along and against the applied

drift. (c), (d) Momentum of the states supported by the platform vs
the velocity of drifting electrons flowing along the graphene sheet
and wavelength, respectively. Graphene’s chemical potential and re-
laxation time are set to μc = 0.1 eV and τ = 0.3 ps.

an effective nonlocal conductivity tensor with a broken sym-
metry in the momentum k space, i.e., σ̄(ω, k) �= σ̄(ω, − k)
[37–40]. Alternatively, a nonlocal electrical permittivity ten-
sor can also be employed. The electromagnetic behavior of
these structures is distinct from the one obtained in electri-
cal metasurfaces characterized with a local, fully populated
conductivity tensor which may support hybrid surface plas-
mons with nonreciprocal responses in phase [31,48] but are
unable to provide the full range of recoil forces discussed
here. For the sake of simplicity, and without loss of generality,
we focus here on plasmonic metasurfaces characterized by a
conductivity tensor σ̄(ω, k) = [σxx (ω, k) 0

0 σyy (ω, k)] and that are
externally biased within the plane. As a case study, we con-
sider a platform composed of a graphene layer longitudinally
biased to generate drifting electrons with velocity vd = vd ŷ
along the surface, as illustrated in Fig. 1. The graphene sheet is
transferred onto a dielectric substrate with relative permittivity
ε2 and a nanoparticle is suspended in free space above the sur-
face. This broadband nonreciprocal plasmonic platform has
been recently experimentally demonstrated [41,42] and sup-
ports plasmons with unique features in the infrared band of the
spectrum [37–40]. The isofrequency contour of the supported
modes is illustrated in Fig. 1(b). The applied bias breaks the
rotational symmetry of SPPs in the momentum space and
originates a nonreciprocal plasmonic response. Specifically,
modes propagating against drifting electrons possess larger
momentum than the ones in the opposite direction. Figure 1(c)

shows that the system broken symmetry in the momentum
space increases with the velocity of drifting electrons. This
platform permits to engineer nonreciprocal responses over a
broadband frequency ranging from terahertz to midinfrared
frequencies, as shown in Fig. 1(d). In case that the bias is ap-
plied along any other direction within the plane, this response
can be captured by applying an adequate coordinate rotation.
Even though we use drift-biased graphene as a platform to
derive our theoretical framework, it should be stressed that
our approach is general in the sense that it can readily be
applied to describe any plasmonic surface with an in-plane
nonreciprocal response.

In the following, we develop a theoretical formalism based
on the Lorentz force combined with the dyadic Green’s func-
tions of nonreciprocal surfaces to calculate the optical forces
induced on nanoparticles located nearby. Then, we derive
analytical expressions for all recoil force components by
solving the dyadic Green’s functions using the integration
through the imaginary axis technique [49] combined with the
residue theorem [50]. Our approach reveals that the disper-
sion relation of a plasmonic system suffices to analytically
calculate all recoil force components, shedding light onto
the underlying mechanisms that enable them and facilitat-
ing the easy and accurate design of platforms capable of
manipulating nanoparticles. Additionally, we show that the
momentum imbalance of nonreciprocal SPPs leads to a dom-
inant lateral recoil force component that acts along/against
the applied bias and is mostly independent of the properties
of the incoming laser beam. We study these forces over the
drift-biased graphene platform described in Fig. 1, exploring
the strength and direction of recoil forces versus the velocity
of electrons flowing on graphene, the polarization, frequency,
and direction of the incoming light, and the particle position
over the platform. We also investigate the capability of this
platform to sort nanoparticles as a function of their size. The
exciting properties of lateral recoil forces over nonreciprocal
plasmonic surfaces are very promising for trapping, binding,
and manipulating nanoparticles using low-power laser beams.

II. LATERAL RECOIL FORCES NEAR
NONRECIPROCAL SURFACES

In this section, we derive a theoretical framework to com-
pute lateral recoil optical forces acting on dipolar Rayleigh
particles (radius a < λ0/20, where λ0 is wavelength) located
near nonreciprocal plasmonic metasurfaces when illuminated
by a laser beam. The system nonreciprocity is obtained by ap-
plying an external momentum bias parallel to its surface that
can be designed in practice by using magnetic bias [32–34],
moving metasurfaces [51], or drift-current bias [37–43]. Our
proposed theory leads to compact expressions of the force
components that depend on the Green’s functions of the plas-
monic surface, and is general in the sense that no assumptions
regarding the type of plasmonic metasurface, surrounding me-
dia, operation frequency, or material of the Rayleigh particle
are made.

Assuming a monochromatic incoming wave, the time-
averaged total optical force exerted on a spherical dipolar
Rayleigh particle in an arbitrary system can be computed
as F = 1

2 Re{p∗ · ∇Eloc(r0, r0)} [52]. Here, “Re” is the real
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part of a complex number; “∗” is the complex conjugate; ∇
is the vector gradient; Eloc is the total electric field at the
particle position r0; and p is the effective dipole moment
acquired by the particle. When the particle is located above
a plasmonic medium and is illuminated with light, the total
electric field Eloc at the particle position is composed of two
terms [7–11]: the incident electric field together with the one
reflected from the surface, and the evanescent field scattered
by the particle that might couple to the surface in the form of
SPPs. Calculating the dyadic Green’s functions of the system,
as described in Appendix A, permits to obtain the scattered
fields and to determine the effective dipole moment p acquired
by the particle (Appendix B).

Let us now consider that a plasmonic surface is subjected
to an external momentum bias parallel to its surface, and
that, as a result, it exhibits a nonreciprocal response. The
total optical forces induced on a nanoparticle located above
such surface can be decomposed as F = F0 + Frec, where
F0 is the conservative force component and Frec gathers all
nonconservative recoil forces. The conservative force arises
from the gradient of the electric-field intensity of the standing
wave formed above the surface due to the superposition of
incident field and the reflected one, whereas nonconservative
forces depend on the properties of the evanescent fields scat-
tered by the particle that couple to the surface in the form
of SPPs. In the near field of the surface, conservative forces
are usually orders of magnitude smaller than recoil forces
[7–10], and their contribution to the net lateral optical forces
can be safely neglected. Therefore, we focus here on the study
of nonconservative lateral recoil forces. For completeness,
we provide expressions to calculate the conservative optical
forces component in Appendix C.

Nonconservative recoil optical forces can be computed
from the gradient of the scattered electric field as

Frec = 1
2 Re{p∗ · ∇Es}. (1)

Here, Es = ω2μ0ḠS · p is the electric field of the ex-
cited SPPs at the dipole position r0 = x0x̂ + y0ŷ + z0ẑ, ω =
2π f is the radial frequency, f is the operation frequency,
μ0 is the free-space permeability, and ḠS is the scattered
dyadic Green’s functions of the plasmonic system. Taking
into account the nonzero derivatives of ḠS (see Appendix
A), the identities d

dx Gs
xy = d

dx Gs
yx, d

dx Gs
xz = − d

dx Gs
zx, d

dy Gs
yz =

− d
dy Gs

zy, and d
dz Gs

yz = − d
dz Gs

zy at the dipole position, and ap-
plying the approach detailed in Refs. [7,10], the lateral recoil
force components from Eq. (1) can be expressed as

F rec
x = k2

0

ε0

[
Re{p∗

x py} Re

{
d

dx
Gs

xy

}]

− k2
0

ε0
Im{p∗

x pz} Im

{
d

dx
Gs

xz

}
, (2a)

Frec
y = k2

0

2ε0

∑
n=x,y,z

|pn|2Re

{
d

dy
Gs

nn

}

− k2
0

ε0
Im[p∗

y pz]Im

{
d

dy
Gs

yz

}
. (2b)

Here, “Im” is the imaginary part of a complex number,
k0 = ω

√
μ0ε0 is the free-space wave number, ω is the ra-

dial frequency of the incoming wave, and ε0 is the electrical
permittivity of free space. Equation (2) can be further decom-
posed as Frec

t = Fnr
t + Fs

t = x̂(F nr−p
x + F s

x ) + ŷ(F nr−a
y + F s

y )
that allows to classify recoil forces into two main groups:
one associated with the broken symmetry of the nonreciprocal
system Fnr

t = x̂Fnr−p
x + ŷF nr−a

y and another associated with
spin-orbit effects, Fs

t = x̂F s
x + ŷF s

y [7–11]. The superscripts
“a” and “p” in Fnr

t refer to the broken symmetry in ampli-
tude and polarization of the SPPs supported by the surface,
respectively.

The lateral recoil forces Fnr
t appearing due to the broken

reciprocity of the system read

F nr−p
x = k2

0

ε0

[
Re{p∗

x py} Re

{
d

dx
Gs

xy

}]
, (3a)

Fnr−a
y = k2

0

2ε0

[
|px|2Re

{
d

dy
Gs

xx

}

+ |py|2Re

{
d

dy
Gs

yy

}
+ |pz|2Re

{
d

dy
Gs

zz

}]
. (3b)

Taking into account the power radiated by the n = {x, y, z}
component of the dipole, Pn

rad = c0k4
0

12πε0
|pn|2 [7,10], Eq. (3) can

be simplified to

F nr−p
x = 6π

c0k2
0

Pxy
radχxyRe

{
d

dx
Gs

xy

}
, (4a)

F nr−a
y = 6π

c0k2
0

∑
n=x,y,z

Pn
radRe

{
d

dy
Gs

nn

}
, (4b)

where Pxy
rad = Px

rad + Py
rad is the power radiated by the xy com-

ponent of the dipole in free space; and χxy = 2 Re{p∗
x py}

|px |2+|py|2 is the

dipole’s in-plane polarization factor [31]. Equation (4) shows
that these recoil forces mainly depend on the extent of the
nonreciprocal response measured through the real part of the
spatial derivative of the Green’s function at the dipole posi-
tion, which is strictly zero in reciprocal systems [7–11]. The
excitation of SPPs with different wave-number (polarization)
profiles within the plane gives rise to a recoil force F nr−a

y

(F nr−p
x ) directed along (orthogonal) to the bias axis. F nr−p

x

is associated with the asymmetric polarization conversion of
evanescent waves, and is zero when the particle acquires a
dipole moment oriented along or orthogonal to the bias direc-
tion and maximum when the dipole is linearly polarized at an
angle 45 ° with respect to the bias axis, a state that favors the
polarization conversion process of the scattered fields [31].

The remaining lateral recoil forces arise from the spin-orbit
effects, and can be expressed as

Fs
t = − x̂

k2
0

ε0
Im{p∗

x pz} Im

{
d

dx
Gs

xz

}

− ŷ
k2

0

ε0
Im[p∗

y pz]Im

{
d

dy
Gs

yz

}
. (5)

Taking into account the power radiated by the dipole,
Eq. (5) can be simplified to

Fs
t = 6π

c0k2
0

[
x̂Pxz

radηyIm

{
d

dx
Gs

xz

}
+ ŷPyz

radηxIm

{
d

dy
Gs

yz

}]
,

(6)
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where Pxz
rad = Px

rad + Pz
rad and Pyz

rad = Py
rad + Pz

rad are the power
radiated by the xz and yz components of the dipole in free

space, respectively; and ηy(x) = −2
Im{p∗

x(y) pz}
|px(y)|2+|pz |2 is the dipole

polarization helicity [7,10]. It is evident from Eq. (6) that Fs
t

is maximum when the dipole acquires a quasicircular polar-
ization state (i.e., η ≈ ±1) and vanishes when it is linearly
polarized (i.e., η → 0) [7–10]. Lateral recoil forces arising
from spin-orbit effects are well known in the literature and
have been extensively investigated in reciprocal plasmonic
systems [7–11].

This approach can easily be extended for the case in which
the external bias is applied along the q̂ axis in plane to the sur-
face, leading to the following general expressions for lateral
recoil forces:

F nr−p
m = 6π

c0k2
0

Pmq
rad χmqRe

{
d

dm
Gs

mq

}
, (7a)

F nr−a
q = 6π

c0k2
0

∑
n=x,y,z

Pn
radRe

{
d

dq
Gs

nn

}
, (7b)

Fs
q = 6π

c0k2
0

Pqz
radηmIm

{
d

dq
Gs

qz

}
, (7c)

where m̂ is orthogonal to q̂ within the surface plane. Even
though the force expressions shown in Eq. (7) are in a com-
pact form, calculating the derivatives of the Green’s functions
associated to a nonreciprocal plasmonic surface is usually a
challenging task that requires dedicated numerical routines as
well as advanced integration techniques in the complex plane.
This restricts our intuitive understanding of recoil optical
forces and how they are associated with the modes supported
by the plasmonic surface.

III. ANALYTICAL MODEL OF LATERAL RECOIL
FORCES NEAR NONRECIPROCAL SURFACES

This section derives approximate and compact analytical
expressions for lateral recoil forces acting on nanoparticles
near nonreciprocal surfaces, establishing a fundamental link
between the force response and the dispersion relation of the
plasmonic system. To this purpose, we first solve the Green’s
functions derivatives of nonreciprocal platforms analytically
by combining the imaginary axis integration technique [49]
with the residue theorem [50]. Then, we employ those solu-
tions in Eq. (7) to develop analytical expressions for recoil
optical forces.

The approach to calculate the Green’s functions of a
nonreciprocal surface at the source position is described in
Appendix A. We begin our analytical treatment by transform-
ing these standard expressions [37] into polar coordinates
(k

′
ρ, k

′
φ) using the identities kx = k

′
ρ cos k

′
φ and ky = k

′
ρ sin k

′
φ ,

yielding

Ḡs(r0, r0) =
∫ 2π

0
N̄(k

′
φ )dk

′
φ, (8a)

N̄(k
′
φ ) =

∫ ∞

0

X̄ s (k
′
ρ, k

′
φ )

M(k ′
ρ, k ′

φ )D(k ′
ρ, k ′

φ )
ei2k

′
z z0 dk

′
ρ, (8b)

FIG. 2. Proposed integration path in the complex plane for
Eq. (8b) using the integration along the imaginary axis technique
[49], considering (a) lossless and (b) lossy plasmonic platforms.
Dominant poles, associated with SPPs, are represented with a
red X.

where k = k
′
ρρ̂ + k

′
φϕ̂ + k

′
zẑ is the wave vector in polar co-

ordinates; X̄s (k
′
ρ, k

′
φ ) is a tensor that includes the reflection

and cross coupling of propagative and evanescent waves;
D(k

′
ρ, k

′
φ ) represents the dispersion relation of the system

and determines the response of the supported SPPs; and
M(k

′
ρ, k

′
φ ) is associated with the medium surrounding the

structure. In reciprocal systems, Eq. (8) exhibits a symmetrical
behavior in both physical and momentum spaces, whereas
such symmetry is broken in case of nonreciprocal platforms
[37–40].

To derive analytical expressions for the lateral recoil
forces, we solve the integral along k

′
ρ shown in Eq. (8b) using

the imaginary axis integration technique [49]. To this purpose,
we assume that the system is low loss and operated in the
nonretarded regime (i.e., kρ 	 k0, where kρ is the wave num-
ber of the supported states). Figure 2 shows the integration
strategy in the complex plane for a fixed k

′
φ , based on using

six different integration paths denoted C1 to C6. First, we
note that the Jordan lemma is satisfied [50] and therefore
the integrals around paths C5 and C6 when k

′
ρ → ∞ are

strictly zero. Second, it can be shown [49] that the integrals
around paths C1 and C2 are identical but with opposite sign,
thus canceling each other. Third, it should be noted that the
dynamic part of the Green’s functions tensor is determined by
the surface modes supported by the platform [49] that appear
in the form of poles in Fig. 2 (red X). Assuming a lossless
platform, the pole response is a real quantity that can be
obtained analytically through the residue theorem [50]. These
poles will dominate the response of lateral recoil forces in the
platform. And fourth, the integral around the paths C3 and C4
leads to a nonzero purely imaginary quantity associated with
the quasistatic response of the Green’s functions. Even though
this integral is not analytical along the imaginary axis of k

′
ρ , it

is well behaved and can be quickly integrated using numerical
routines [53]. It should also be noted the integration contour
has been deformed to avoid the branch cut from −k0 to +k0.
In case of reciprocal platforms, the additional integration over
the azimuthal angle k

′
φ required in Eq. (8a) is simply a 2π

constant. In case of nonreciprocal systems, such integration
becomes angle dependent.
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Applying this approach, the lateral recoil forces due to the
system nonreciprocity can be approximated as

F nr−a
y = π

16εrc0k4
0

∫ 2π

0

k6
ρsin3k

′
φcos2k

′
φ (Ax + Byz )

(3 cos k ′
φ + 3 sin k ′

φ − 2
√

2)

× e−2z0

√
k2
ρ−k2

0 dk
′
φ, (9a)

F nr−p
x = 3πPyx

radχyx

16εrc0k4
0

∫ 2π

0
k4
ρ cos k

′
φ sin(2k

′
φ ) e−2z0

√
k2
ρ−k2

0 dk
′
φ,

(9b)

where εr = 1+ε2
2 is the average of the relative per-

mittivity of the media above (ε1 = 1) and below (ε2)
the metasurface; the kρ−k

′
φ relationship is given by

the dispersion relation of the system D(k
′
ρ, k

′
φ ); and

the terms Ax = 1
2 Px

radcos2k
′
φ (cos2k

′
φ + sin k

′
φ ) and Byz =

(sin k
′
φ + cos k

′
φ )(Py

radsin2k
′
φ + Pz

rad ) accounts for the power
scattered by the nanoparticle. Equation (9) reveals that lateral
recoil forces strongly depend on the dispersion relation of the
modes supported by the platform. Even though these expres-
sions are relatively complex, they exhibit a smooth variation
versus k

′
φ (see Appendix D) and can easily be integrated using

standard numerical routines [53]. Intuitively, F nr−a
y dominates

over F nr−p
x because it depends on the plasmon wave number

kρ with a power of 6, whereas F nr−p
x shows a ∝ k4

ρ depen-

dence. F nr−p
x may still be relevant in case of magneto-optical

substrates biased with a perpendicular magnetic field in which
F nr−a

y vanishes [31].
Exploiting the dominant response along/against the ex-

ternal bias direction as described in Appendix D, the F nr−a
y

component can be analytically approximated as

F nr−a
y ≈ 3πPyz

rad

8c0εr

⎡
⎣(

k−
y

k0

)4

e−2z0

√
(k−

y )2−k2
0

−
(

k+
y

k0

)4

e−2z0

√
(k+

y )2−k2
0

⎤
⎦, (10)

where k−
y and k+

y are the wave number of the SPPs supported
against/along the bias, as shown in Fig. 1(b). Equation (10)
shows that F nr−a

y depends on the fourth power of k±
y , gets

attenuated as z0 increases, and is quasi-independent of the po-
larization state acquired by the particle. The only dependence
of this force component with the direction, polarization, and
wavelength of the incoming laser appears through the amount
of scattered power, Pyz

rad. Equation (10) reveals that this force
is significantly enhanced as the asymmetry in the k space
along the bias direction increases and that it is zero in case
of reciprocal media (i.e., k+

y = k−
y ). This equation also shows

that nonreciprocity leads to a two-state system governed by
the interplay between the distance z0 and the momentum of
the supported modes. Specifically, the force acts along the
bias direction when the particle is close to the surface and
excites confined SPPs with wave number k−

y that propagate
against the bias. In this situation, the positive term of Eq. (10)
dominates because z0 → 0 and k−

y > k+
y [see Fig. 1(b)]. On

the contrary, the force acts against the bias direction when

the particle is located relatively far away from the surface.
There, the high-k components of the scattered evanescent
waves are filtered out by the free-space — modeled through
the exponential terms in Eq. (10) — and cannot efficiently
excite confined k−

y modes whereas they can still couple to the
less-confined k+

y states. The threshold distance zt at which the
direction of F nr−a

y reverses can be approximated as

zt ≈ 2
ln(k−

y ) − ln(k+
y )

k−
y − k+

y

, (11)

which only depends on the plasmonic modes against/along
the bias. It is important to establish the limits of our analyt-
ical model. Specifically, Eq. (10) holds when the polarization
acquired by the particle along the direction orthogonal to the
external bias is not dominant, and thus the scattered power
fulfills Px

rad � Py
rad and Px

rad � Pz
rad (see Appendix D). Such

conditions are met in most practical scenarios as will be dis-
cussed in the following section. An exception appears when
the nanoparticle is illuminated from the normal direction of
the platform with light polarized in the direction orthogonal
to the bias. There, Eq. (10) underestimates the strength of
the forces as it does not account for the power of the fields
scattered along that direction.

Following a similar procedure, described in Appendix D,
spin-orbit lateral recoil forces can be obtained as

F s
q = Pqz

radηm

8εrc0k4
0

∫ 2π

0
k4
ρ e−2z0

√
k2
ρ−k2

0 dk
′
φ, (12)

and simplified to

F s
y ≈ 3πPyz

radηx

8c0εr

⎡
⎣(

k+
y

k0

)4

e−2z0

√
(k+

y )2−k2
0

+
(

k−
y

k0

)4

e−2z0

√
(k−

y )2−k2
0

⎤
⎦, (13a)

F s
x ≈ 6πPxz

radηy

8c0εr

(
kx

k0

)4

e−2z0

√
k2

x −k2
0 . (13b)

Here, kx is the wave number of the supported SPPs in the
orthogonal lateral direction of the external bias. We stress that
the analytical expressions of spin-orbit recoil forces shown in
Eq. (13) hold for any dipole moment acquired by the particle
in the scattering process. Inspecting Eqs. (10) and (13), it be-
comes apparent that both nonreciprocal and spin-orbit recoil
forces depend on the momentum of the plasmons supported
by the platform. Main differences arise due to the underlying
mechanisms that enable them: spin-orbit recoil forces mostly
depend on the helicity acquired by the dipole (η), whereas
nonreciprocal recoil forces rely on the broken symmetry of
the supported SPPs along and against the external bias.

Finally, we remark that the analytical formalism described
in this section assumes that the plasmonic surface is operated
in the nonretarded regime (i.e., kρ 	 k0). This approximation
implies that the accuracy of the predicted recoil force com-
ponents increases as the SPPs supported by the platform are
more confined, and it holds independently of the position of
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FIG. 3. Normalized strength and direction of the lateral recoil force components acting on a gold nanoparticle with radius a = 15 nm
located over the drift-biased graphene platform described in Fig. 1. Results are calculated vs (a) the drift velocity of the flowing electrons; the
properties of the incoming plane wave in terms of (b) azimuthal and (c) elevation angle of incidence; (d) polarization; (e) wavelength; and (f)
separation distance z0 between the particle and the surface. Solid lines are computed numerically by solving Eq. (7) and markers analytically
with Eqs. (10) and (13). Parameters that are not swept in a panel are kept to z0 = a + 1 [nm], vd = 0.5vF , φi = 0◦, θi = 60◦, and light with
TM polarization.

the particle above the surface. We have numerically verified
that this approximation holds well for kρ � 10k0.

IV. APPLICATION: LATERAL OPTICAL FORCES NEAR
DRIFT-BIASED GRAPHENE

In this section, we investigate lateral recoil forces acting on
a gold Rayleigh particle located near the drift-biased graphene
transferred on hexagonal boron nitride described in Fig. 1. The
goals are threefold: (i) validate the accuracy of our analytical
expressions for recoil forces; (ii) understand the behavior of
optical forces appearing on nonreciprocal surfaces; and (iii)
assess the possibility of sorting nanoparticles as a function of
their size.

Figure 3 shows the strength of lateral recoil forces ver-
sus the electrons’ drift velocity vd , the properties of the
incoming plane wave in terms of the azimuthal (φi ) and el-
evation angles (θi ), polarization, and wavelength, as well as
the particle position z0 over the metasurface. The force is
normalized with respect to the power radiated by the particle’s
acquired dipole moment when it is located in free space,

P0
rad = c0k2

0
12π

(|px|2 + |py|2 + |pz|2) [53]. Figure 3(a) shows the
force components versus vd assuming a transverse magnetic
(TM)-polarized incident light aligned with the x̂ axis [see
Fig. 1(a)]. As expected, F nr−a

y strength increases with the
applied bias and outperforms all other force components by
over an order of magnitude even with moderate drift velocities
(i.e., vd ≈ 0.2vF [54–56], where vF ≈ 106 m/s is graphene’s
Fermi velocity [57]), whereas F nr−p

x is negligible due to the
weak polarization conversion in the system. Results confirm
that the spin-orbit recoil force F s

x does not depend on the

external bias, whereas the orthogonal component F s
y increases

with it, as described by Eq. (13). This is because larger bias
enhances the momentum of the modes supported along the
−y direction, whereas it does not affect the modes supported
on the orthogonal x̂ axis. This analysis holds even when the
linearly polarized light comes from different azimuthal di-
rections φi, as shown in Fig. 3(b). Note that F nr−p

x vanishes
in the case of φi ≈ {0◦, 90◦, 180◦, 270◦} because light polar-
ization conversation does not take place in these cases [i.e.,
χyx → 0 in Eq. (7a)]. F nr−a

y remains dominant in all cases and
exhibits a unidirectional response that does not depend on the
beam direction. However, both the strength and direction of
the spin-orbit force components depend on the laser-particle
alignment due to their dependence on the polarization spin
acquired by the nanoparticle. These forces vanish when the
out-of-plane spin of the particle polarization is negligible [i.e.,
η → 0 in Eq. (7c)]. Figure 3(c) explores the response of the
recoil force components versus the elevation angle θi. Max-
imum force strength is found over a relatively large angular
range, roughly from 15◦ to 80◦ measured from the normal
direction. When the particle is illuminated from the normal di-
rection (θi ≈ 0◦) with a TM-polarized laser beam, it acquires a
dominant x-directed dipole moment. In that scenario, Eq. (10)
underestimates the force F nr−a

y because it does not account
for the power scattered in the direction orthogonal to the bias,
Px

rad. The polarization of the incoming light plays a critical
role in this process, as it determines the spin acquired by the
particle and the total power that it radiates. Figure 3(d) shows
that F nr−a

y dominates when the incoming light is quasilinearly
polarized and reveals that in case of quasi-CP light, spin-
orbit forces acquire a comparable strength due to the strong
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FIG. 4. Normalized strength of the nonreciprocity-induced lat-
eral recoil force F nr−a

y acting on a nanoparticle located on the
drift-biased graphene platform described in Fig. 1. Results are plot-
ted vs (a) the elevation angle θi of the incoming light considering
various azimuthal angles φi = 10◦ (red), φi = 25◦ (blue), φi = 45◦

(magenta), and φi = 90◦ (black); and (b) particle position z0 for
different values of graphene’s chemical potential: μc = 0.05 eV
(black), μc = 0.1 eV (red), and μc = 0.15 eV (blue). Dashed lines
denote the threshold distance zt in which the force direction reverses
predicted by Eq. (11). Solid lines and markers correspond to the
numerical [Eq. (7)] and analytical solutions [Eqs. (10) and (13)],
respectively. Other parameters are as in Fig. 1.

polarization spin (η ∼ ±1) acquired by the particle, as stems
from Eqs. (10) and (13). Therefore, the total recoil optical
force is determined in these cases by the interplay between
F nr−a

y and F s
y , and the net optical forces over the system are

not unidirectional anymore but may change with the laser
angle of incidence. Again, we note that F nr−p

x vanishes for TE-
polarized incoming light due to the absence of polarization
conversion (i.e., χyx → 0), whereas spin-orbit forces vanish
when the incoming light is linearly polarized (i.e., η → 0).
Figure 3(e) shows the recoil forces response versus operation
wavelength. Again, F nr−a

y dominates even for laser beams
oscillating over a wide frequency region in the infrared band.
Such response arises because drift-biased graphene exhibits
a broadband nonreciprocal behavior [see Fig. 1(d)] in stark
contrast with other reciprocal [37,38] and even nonreciprocal
plasmonic systems [31,58,59] that require lasers tuned to their
plasma frequency to provide significant recoil forces. Finally,
Fig. 3(f) studies the system response versus the particle po-
sition z0 over the surface and confirms that F nr−a

y directs the
nanoparticle along or against the applied bias with respect to
the threshold position zt as described in Eq. (11). At exactly
z0 = zt , the energy and momentum of SPPs flowing along and
against the drift are equal, thus yielding to F nr−a

q = 0. It is
important to emphasize that the analytical expressions shown
in Eqs. (10) and (13) — markers in Fig. 3 — capture such
complex responses of the recoil forces and agree very well
with solutions obtained by numerically solving Eq. (7).

Figure 4 further explores the accuracy of the proposed an-
alytical formulation to model nonreciprocity-induced lateral
recoil forces. Specifically, Fig. 4(a) shows the normalized
strength of the F nr−a

y force component versus the elevation
angle θi of the incident TM light for different azimuthal φi

directions (see Fig. 1). As described in Appendix D, Eq. (10)
underestimates the recoil force response when the power ra-
diated by the dipole along the direction orthogonal to the
bias (Px

rad ) dominates over the other components (Py
rad and

Pz
rad), a situation that appears in this platform when φi � 25◦

FIG. 5. Lateral sorting of gold nanoparticles as a function of their
radius a using the platform described in Fig. 1 with drift velocity
vd = 0.5vF . The particles are located at a distance z0 = a + 1[nm]
over a drift-biased graphene and illuminated with a TM-polarized
plane wave at λ0 = 14 μm coming from the elevation angle θi = 600.
(a) Normalized z component of the surface plasmons excited on the
platform for particles with radii 20 nm (top) and 50 nm (bottom).

(b) Normalized total lateral force strength |Ft | =
√

F 2
x + F 2

y (left)

and direction ∠|Ft | = tan−1(Fy/Fx ) (right) vs the particles’ radii and
azimuthal angle φi of the incident plane wave. Other parameters are
as in Fig. 1.

and θi � 25◦. Beyond these range of angles, Px
rad becomes

comparable/weaker than Py
rad and Pz

rad and thus its influence
on the lateral recoil force becomes negligible, enabling the
use of Eq. (10). In case the polarization state of the incoming
light is not TM [see Fig. 3(d)], Px

rad is not dominant and thus
Eq. (10) becomes again a very good approximation of the
nonreciprocity-induced recoil force independently of the di-
rection of the incident light. Figure 4(b) shows the normalized
strength of F nr−a

y versus the particle position above the surface
for three different values of graphene’s chemical potential:
μc = 0.05 eV, μc = 0.1 eV, and μc = 0.15 eV. Results con-
firm that the direction of this optical force component along
the external bias axis can be tuned in real time by adjust-
ing graphene’s gate bias while barely affecting the overall
force strength. It should also be stressed the good agreement
obtain between numerical and analytical calculation (solid
lines/markers) as well as the accuracy of Eq. (11) to predict
the particle position in which the force direction changes its
sign.

This nonreciprocal platform can readily be applied to sort
nanoparticles as a function of their size. Figure 5(a) illustrates
the normalized z component of the electric field associated
with the plasmons excited on the metasurface when it is
biased with vd = 0.5vF ŷ and a gold nanoparticle with ra-
dius a is located at z0 = a + 1[nm] over the system and is
illuminated with a TM plane wave. Top and bottom panels
consider the case of a particle with radius a = 20 nm and
a = 50 nm, respectively. In both cases, the particle scatters
quasi-LP light (i.e., η → 0), thus leading to negligible lateral
spin-orbit forces F s

q . In this scenario, the recoil force F nr−a
y

arising from the broken symmetry of the platform dominates
the optical forces, leading to the two-state system described in
Eq. (10). When the particle is small (top panel), the confined
k−

y plasmon propagating toward −y is efficiently excited and
the recoil force is exerted along the bias direction; however,
when the particle size increases, k−

y states cannot be excited
but the scattered light still couples to the less-confined k+

y
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plasmons traveling toward the +ŷ axis, which result in a recoil
force acting against the bias direction. Figure 5(b) investigates
the total forces acting on gold nanoparticles versus their size
and the azimuthal direction of the incoming beam. As ex-
pected, the strength of the total optical force increases with
the particle size as they scatter a larger amount of power that
effectively couples to the system surface. Results show that
particles with a radius larger than ∼42 nm experience unidi-
rectional forces against the drift, whereas those with a radius
smaller than ∼ 37 nm are dragged along the applied bias.
Such response is preserved independently of the direction
of the incoming laser beam. The threshold between the two
states of the system agrees well with the ∼ 38 nm predicted
by Eq. (11). The particles with radii close to the threshold
experience lateral forces that smoothly change direction with
respect to φi, a response that appears due to the interplay be-
tween spin orbit and nonreciprocal recoil forces. Even though
such changes can be very quick depending on the balance
of the forces, for instance when the beam is coming close
to φi = 150◦, the strength of the resulting total force in this
scenario is insignificant. Finally, it should be noted that this
sorting platform is dynamic in the sense that the particles’
radii threshold to direct them along/against the bias (zt ) can be
manipulated in real time by changing graphene’s Fermi level
through a gate bias, as shown in Fig. 4(b).

V. CONCLUSIONS

In summary, we have explored lateral recoil forces acting
on Rayleigh particles located over plasmonic platforms with
in-plane nonreciprocal response. To this purpose, we have
developed a comprehensive theoretical framework based on
the Lorentz force combined with the Green’s functions that
describe this type of systems. By applying the integration
along the imaginary axis technique combined with the residue
theorem, we solved these Green’s functions analytically. The
resulting approximate expressions establish a fundamental
link between the lateral recoil forces acting on nanoparti-
cles located near nonreciprocal plasmonic surfaces and the
dispersion relation of the system. Additionally, in-plane non-
reciprocity leads to a lateral recoil force component that only
depends on the broken symmetry of the supported plasmons
and the total optical power scattered by the particle, while
being independent of any other property of the incoming light
(wavelength, angle of incidence, polarization). Such force can
be dominant over other recoil force components and cre-
ates a two-state system in which the particles are dragged
along/against the external bias depending on their size and
distance to the platform surface. Moving beyond, we envision
that lateral recoil forces based on nonreciprocal platforms,
including those composed of magneto-optical materials such
as cobalt-silver alloy [31], topological gyrotropic materials
[59], photonic topological insulators [58], or drift-biased 2D
materials [37–42], and thin-metallic layers [43], will find
numerous applications in physics, chemistry and bioengineer-
ing, with emphasis on alleviating some of the challenges of
conventional optical tweezers in terms of photoheating [60],
alignment, operation wavelength, and resolution to manipu-
late the lateral position of nanoparticles.
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APPENDIX A: DYADIC GREEN’S FUNCTIONS OF
PLASMONIC NONRECIPROCAL SURFACES

A useful model to study the electromagnetic response of
linear and homogeneous plasmonic metasurfaces relies on
using the Green’s function formalism [52]. This approach has
been studied in recent years for the case of nonreciprocal
plasmonic systems, including graphene and metals [37–43].
In this appendix, we formulate the scattered dyadic Green’s
function of a nonreciprocal platform in the presence of an
external in-plane momentum bias as a required step to calcu-
late optical forces acting on nanoparticles within the Rayleigh
approximation [52]. For the sake of simplicity, we consider
that an external bias is applied on the system along the ŷ axis
of the reference coordinate system, as shown in Fig. 1. In case
the bias is applied along a different direction, the formalism
detailed below holds by applying a coordinate transformation.

Let us consider an arbitrarily polarized electric dipole lo-
cated at a position r0 = {x0, y0, z0} above a nonreciprocal,
anisotropic, structure. The scattered dyadic Green’s functions
of the system at the dipole position r0 can be expressed
as [52]

Ḡs(r0, r0) = i

8π2

∫∫ ∞

−∞
[RssM̄ss + RpsM̄ps + RspM̄sp

+ RppM̄pp]ei2kzz0 dkxdky, (A1)

where R̄(kx, kx ) = [Rss(kx, kx ) Rsp(kx, kx ); Rps(kx, kx ) Rpp

(kx, kx )] is the reflection coefficient tensor of the
nonreciprocal structure [37–40] that can be calculated by
solving Maxwell’s boundary conditions [52]. Nonlocal
effects are explicitly included and depend on the specific
mechanism employed to bias the surface. M̄ matrices in
Eq. (A1) are evaluated from the vector dyadic products of
polarization unit vectors as described in Ref. [52]. In case of
reciprocal structures, the nondiagonal elements of Ḡs(r0, r0)
are strictly zero due to the symmetric response of the guided
modes supported by the surface [7–11]. However, the applied
bias breaks such symmetry in nonreciprocal systems, leading
to a scattered dyadic Green’s function tensor that is not
diagonal at the particle position. The zero and nonzero
components of Ḡs(r0, r0) in the case of reciprocal (unbiased)
and nonreciprocal (external in-plane momentum bias applied
along the ŷ direction) structures are given in Table I. Note that
the tensor elements fulfill the following identity at the dipole
position: Gs

yz(r0, r0) = −Gs
zy(r0, r0).

To compute the lateral optical forces exerted on the electric
point dipole, one needs to calculate the spatial derivatives of
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TABLE I. Zero and nonzero elements of the scattered dyadic
Green’s function tensor at the dipole position for reciprocal and
nonreciprocal plasmonic surfaces. Nonreciprocity is obtained by ap-
plying an in-plane momentum bias along the ŷ axis of the plasmonic
platform, as shown in Fig. 1.

Reciprocal Nonreciprocal

Ḡs(r0, r0 ) =
⎡
⎣Gs

xx 0 0
0 Gs

yy 0
0 0 Gs

zz

⎤
⎦Ḡs(r0, r0 ) =

⎡
⎣Gs

xx 0 0
0 Gs

yy Gs
yz

0 Gs
zy Gs

zz

⎤
⎦

the Green’s functions [7–11]. Such derivates yield

d

dx
Ḡs(r0, r0) = − 1

8π2

∫∫ ∞

−∞
kx[RssM̄ss + RpsM̄ps

+ RspM̄sp + RppM̄pp]ei2kzz0 dkxdky, (A2a)

d

dy
Ḡs(r0, r0) = − 1

8π2

∫∫ ∞

−∞
ky[RssM̄ss + RpsM̄ps

+ RspM̄sp + RppM̄pp]ei2kzz0 dkxdky. (A2b)

Most components of these tensors are strictly zero for
reciprocal structures [7–11]. However, this situation changes
in case of nonreciprocal systems. Table II compares the zero
and nonzero derivatives of the Green’s functions for reciprocal
and nonreciprocal platforms. In this work, we solve Eqs. (A1)
and (A2) using standard numerical routines that implement
integration in the complex plane.

APPENDIX B: EFFECIVE DIPOLE POLARIZABILITY OF
NANOPARTICLES LOCATED NEAR

NONRECIPROCAL SURFACES

In this section, we develop a formalism to compute the
effective dipole polarizability induced on an isotropic, dipolar,
spherical, and Rayleigh particle located in free space over
a linear and nonreciprocal plasmonic structure that is biased
along the ŷ axis. During the light-scattering process, the elec-
tric field scattered by the dipole at the particle position can be
computed from the dyadic Green’s functions as [52]

Es(r0, r0) = ω2μ0

⎡
⎣ Gs

xx px

Gs
yy py + Gs

yz pz

Gs
zy py + Gs

zz pz

⎤
⎦, (B1)

where p = x̂px + ŷpy + ẑpz is the effective dipole moment
acquired by the particle calculated as [7–11]

p = α0[Ei(r0, r0) + Er (r0, r0) + Es(r0, r0)]. (B2)

Here, α0 is the dynamic polarizability of the particle in
free space [52] and Ei and Er are the electric fields of the
incident plane wave and the one reflected from the surface,
respectively. Substituting Es(r0, r0) into Eq. (B2) yields to the
following set of equations:(

1 − ω2μ0α0Gs
xx

)
px = α0E0

x , (B3a)(
1 − ω2μ0α0Gs

yy

)
py − ω2μ0α0Gs

yz pz = α0E0
y , (B3b)

−ω2μ0α0Gs
zy py + (

1 − ω2μ0α0Gs
zz

)
pz = α0E0

z , (B3c)

where E0 = Ei + Er is the superposition of the incident and
reflected electric fields of the plane wave, and μ0 is the
free-space permeability. The elements of the dipole moment
induced on the particle are then computed solving Eq. (B3),
leading to

px = E0
x α0

1 − ω2μ0α0Gs
xx

, (B4a)

py = E0
y α0

(
1 − ω2μ0α0Gs

zz

) + E0
z ω2μ0α

2
0Gs

yz(
1 − ω2μ0α0Gs

yy

)(
1 − ω2μ0α0Gs

zz

) − ω4μ2
0α

2
0Gs

yzG
s
zy

,

(B4b)

pz = E0
y ω2μ0α

2
0Gs

zy + E0
z α0

(
1 − ω2μ0α0Gs

yy

)
(
1 − ω2μ0α0Gs

yy

)(
1 − ω2μ0α0Gs

zz

) − ω4μ2
0α

2
0Gs

yzG
s
zy

.

(B4c)

Following the identity p = ᾱeff · E0 [7–11], the nonzero
elements of the effective dipole polarizability tensor of the
particle can be expressed as

αeff
xx = α0

1 − ω2μ0α0Gs
xx

, (B5a)

αeff
yy = α0

(
1 − ω2μ0α0Gs

zz

)
(
1 − ω2μ0α0Gs

yy

)(
1 − ω2μ0α0Gs

zz

) − ω4μ2
0α

2
0Gs

yzG
s
zy

,

(B5b)

αeff
zz = α0

(
1 − ω2μ0α0Gs

yy

)
(
1 − ω2μ0α0Gs

yy

)(
1 − ω2μ0α0Gs

zz

) − ω4μ2
0α

2
0Gs

yzG
s
zy

(B5c)

TABLE II. Zero and nonzero elements of the x− and y derivatives of the scattered dyadic Green’s functions tensor at the dipole position
for reciprocal and nonreciprocal plasmonic surfaces. Nonreciprocity is obtained by applying an in-plane momentum bias along the ŷ axis of
the plasmonic platform, as shown in Fig. 1.

Reciprocal Nonreciprocal

d
dx Ḡs(r0, r0 ) =

⎡
⎣ 0 0 d

dx Gs
xz

0 0 0
d
dx Gs

zx 0 0

⎤
⎦ d

dx Ḡs(r0, r0 ) =

⎡
⎢⎣

0 d
dx Gs

xy
d
dx Gs

xz
d
dx Gs

yx 0 0
d
dx Gs

zx 0 0

⎤
⎥⎦

d
dy Ḡs(r0, r0) =

⎡
⎢⎢⎣

0 0 0

0 0 d
dy Gs

yz

0 d
dy Gs

zy 0

⎤
⎥⎥⎦ d

dy Ḡs(r0, r0 ) =

⎡
⎢⎢⎣

d
dy Gs

xx 0 0

0 d
dy Gs

yy
d
dy Gs

yz

0 d
dy Gs

zy
d
dy Gs

zz

⎤
⎥⎥⎦
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TABLE III. Zero and nonzero elements of the effective dipole
polarizability tensor for reciprocal and nonreciprocal plasmonic sur-
faces. Nonreciprocity is obtained by applying an in-plane momentum
bias along the ŷ axis of the plasmonic platform, as shown in Fig. 1.

Reciprocal Nonreciprocal

ᾱeff =
⎡
⎣αeff

xx 0 0
0 αeff

yy 0
0 0 αeff

zz

⎤
⎦ ᾱeff =

⎡
⎣αeff

xx 0 0
0 αeff

yy αeff
yz

0 αeff
zy αeff

zz

⎤
⎦

αeff
yz = ω2μ0α

2
0Gs

yz(
1 − ω2μ0α0Gs

yy

)(
1 − ω2μ0α0Gs

zz

) − ω4μ2
0α

2
0Gs

yzG
s
zy

,

(B5d)

αeff
zy = ω2μ0α

2
0Gs

zy(
1 − ω2μ0α0Gs

yy

)(
1 − ω2μ0α0Gs

zz

) − ω4μ2
0α

2
0Gs

yzG
s
zy

.

(B5e)

Note that the nondiagonal components αeff
yz and αeff

zy com-
pletely vanish for the case of reciprocal platforms [2–6].
Table III compares the zero and nonzero elements of the
effective dipole polarizability tensors for reciprocal and non-
reciprocal structures.

APPENDIX C: CONSERVATIVE OPTICAL FORCES

The lateral radiation pressure acting on the particle can be
computed from the electric field of the incident and reflected
plane waves as [52]

F0 = 1
2 Re{p∗ · ∇E0}. (C1)

Following the procedure detailed in Refs. [7–11], the lat-
eral (q = {x, y}) radiation pressure reads

Fq = 1
2 k0

q

[
Im

{
αeff

xx

}∣∣E0
x

∣∣2 + Im
{
αeff

yy

}∣∣E0
y

∣∣2 + Im
{
αeff

zz

}∣∣E0
z

∣∣2

+ 2Im
{
αeff

yz

}
Im

{
E0

z
∗
E0

y

}]
, (C2)

where k0
q is the lateral wave number of the illuminating light

in free space, and the external bias has been applied along
the ŷ axis. Note that for the case of a reciprocal platform,
the off-diagonal components of the particle polarizability are
strictly zero (i.e., αeff

yz = αeff
zy = 0) and Eq. (C2) simplifies to

the common one found over reciprocal surfaces [7–11].

APPENDIX D: ANALYTICAL APPROXIMATION OF
OPTICAL FORCES NEAR NONRECIPROCAL SURFACES

This appendix derives analytical expressions for the optical
force components described in Eq. (7) by solving the Green’s
function derivatives associated with nonreciprocal surfaces
using the integration along the imaginary axis technique [49]
combined with the residue theorem [50].

1. Lateral recoil forces due to the broken symmetry
of the system in amplitude

Let us consider first the lateral recoil forces that appear
due to the broken symmetry in amplitude of the supported

SPPs and described using Eq. (7b). Assuming that the external
bias is applied along the ŷ axis, this force component can be
expressed as

F nr−a
y = 6π

c0k2
0

[
Px

radRe

{
d

dy
Gs

xx

}
+ Py

radRe

{
d

dy
Gs

yy

}

+Pz
radRe

{
d

dy
Gs

zz

}]
. (D1)

Following the integration path described in Fig. 2, the in-
tegral along k

′
ρ of the Green’s functions’ spatial derivatives at

the particle position can be analytically computed by applying
the residue theorem. In our notation, kρ is the longitudinal
component of the supported surface mode supported at k

′
φ .

The properties of these modes can be obtained by solving the
dispersion relation of the system given by D(k

′
ρ, k

′
φ ) = 0. This

approach leads to analytical expressions for the residues that
are somewhat lengthy and difficult to work with. To further
simplify them and gain physical insight into the problem, we
assume that the platform operates in the nonretarded regime
(kρ 	 k0 [7,11]). This permits to relate the effective conduc-
tivity along x- and y directions with the wave number of the
modes supported therein as σxx ≈ iωε0

2
kx

and σyy ≈ iωε0
2
ky

.
The resulting expressions are

N d
dy Gs

xx
(k

′
φ ) ≈ −i

k6
ρsin3k

′
φcos4k

′
φ (cos2k

′
φ + sin k

′
φ )

192πεrk2
0 (3 cos k ′

φ + 3 sin k ′
φ − 2

√
2)

× e−2z0

√
k2
ρ−k2

0 , (D2a)

N d
dy Gs

yy
(k

′
φ ) ≈ −i

k6
ρsin5k

′
φcos2k

′
φ (sin k

′
φ + cos k

′
φ )

96πεrk2
0 (3 cos k ′

φ + 3 sin k ′
φ − 2

√
2)

× e−2z0

√
k2
ρ−k2

0 , (D2b)

N d
dy Gs

zz
(k

′
φ ) ≈ −i

k6
ρsin3k

′
φcos2k

′
φ (sin k

′
φ + cos k

′
φ )

96πεrk2
0 (3 cos k ′

φ + 3 sin k ′
φ − 2

√
2)

× e−2z0

√
k2
ρ−k2

0 (D2c)

Next, the spatial derivatives of the Green’s functions are
computed at the particle position by performing polar inte-
grals along k

′
φ :

Re

{
d

dy
Gs

xx

}
=

∫ 2π

0

k6
ρsin3k

′
φcos4k

′
φ (cos2k

′
φ + sin k

′
φ )

192εrk2
0 (3 cos k ′

φ + 3 sin k ′
φ − 2

√
2)

× e−2z0

√
k2
ρ−k2

0 dk
′
φ, (D3a)

Re

{
d

dy
Gs

yy

}
=

∫ 2π

0

k6
ρsin5k

′
φcos2k

′
φ (sin k

′
φ + cos k

′
φ )

96εrk2
0 (3 cos k ′

φ + 3 sin k ′
φ − 2

√
2)

× e−2z0

√
k2
ρ−k2

0 dk
′
φ, (D3b)

Re

{
d

dy
Gs

zz

}
=

∫ 2π

0

k6
ρsin3k

′
φcos2k

′
φ (sin k

′
φ + cos k

′
φ )

96εrk2
0 (3 cos k ′

φ + 3 sin k ′
φ − 2

√
2)

× e−2z0

√
k2
ρ−k2

0 dk
′
φ, (D3c)

where again the relationship between kρ and k
′
φ is implicit and

given by the dispersion relation of the system. Note that these
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FIG. 6. Residue of (a) d
dy Gs

xx , (b) d
dy Gs

yy, and (c) d
dy Gs

zz at kρ vs k
′
φ

calculated for a source point located over drift-biased nonreciprocal
graphene. Results are computed using Eq. (D2) keeping vd = 0.5vF .
Other parameters are as in Fig. 1.

expressions are strictly zero in the case of reciprocal devices,
due to the polar symmetry of the platform response. Combin-
ing Eqs. (D1) and (D3) permits to obtain the expression of this
recoil force component as shown in Eq. (9a).

It should be stressed that Eq. (D3) captures the funda-
mental physics of the problem: lateral recoil forces mostly
depend on the dispersion relation of the modes supported by
the platform. Additionally, as shown in Fig. 6 for a specific
example, the integrands of the functions shown in Eq. (D3)
exhibit a smooth, nonsingular behavior versus k

′
φ and thus

can easily be integrated using numerical routines [53]. A
closer look into Eqs. (D2) and (D3) reveals that Re{ d

dy Gs
xx}

is strictly zero along/against the bias direction, whereas
the terms Re{ d

dy Gs
yy} and Re{ d

dy Gs
zz} are minimum/maximum

along/against such direction. The former response is expected,
because in Re{ d

dy Gs
xx} the bias is applied in the direction or-

thogonal to the xx−tensor component of the Green’s functions
and therefore it is exactly zero along the y direction. The latter
response appears because the momentum of the supported
modes along/against the bias is minimum/maximum [37–40].
Additionally, Eq. (D3) shows a dependence ∝ k6

ρ and there-
fore it is expected that modes with larger momentum will
strongly dominate the platform overall response. Rooted on
these arguments, we derive an approximate analytical expres-
sion for Eq. (D1). To this purpose, we consider first that the
power scattered by the particle in the direction orthogonal to
the bias is not dominant, i.e., Px

rad � Py
rad and Px

rad � Pz
rad. That

condition is relatively general and appears in most practical
scenarios. One exception occurs when a plane wave quasiver-
tically illuminates the platform with a polarization aligned
in the direction orthogonal to the bias (x̂ axis in this case).
Assuming that we are not in that specific situation, Eq. (D1)
can be simplified to

F nr−a
y ≈ 6π

c0k2
0

[
Py

radRe

{
d

dy
Gs

yy

}
+ Pz

radRe

{
d

dy
Gs

zz

}]
, (D4)

where we have assumed that Py
radRe{ d

dy Gs
yy} 	 Px

radRe{ d
dy Gs

xx}
and Pz

radRe{ d
dy Gs

zz} 	 Px
radRe{ d

dy Gs
xx}. To calculate the real

part of the spatial derivatives of the Green’s function tensor,
we evaluate Eqs. (D3b) and (D3c) along and against the bias
direction. This approximation assumes a delta function at
these directions and is justified due to the ∝ k6

ρ dependence of
the force on the momentum of the supported states. Since the
momentum of the states along and against the bias are max-
imum in their respective semiplane of the momentum space,

they are expected to dominate the response of the platform.
Following this strategy, the spatial derivatives of the Green’s
functions required in Eq. (D4) can be computed analytically
as

Re

{
d

dy
Gs

yy

}
≈ 1

16εrk2
0

[
(k−

y )4
e−2z0

√
(k−

y )2−k2
0

− (k+
y )4

e−2z0

√
(k+

y )2−k2
0
]
, (D5a)

Re

{
d

dy
Gs

zz

}
≈ 1

16εrk2
0

[
(k−

y )4
e−2z0

√
(k−

y )2−k2
0

− (k+
y )4

e−2z0

√
(k+

y )2−k2
0
]

(D5b)

Substituting the compact form expression of these deriva-
tives into Eq. (D4), the nonreciprocity-induced recoil force
acting along the external bias direction yields the analytical
expression shown in Eq. (10).

2. Lateral recoil forces due to the broken symmetry
of the system in polarization

The other component of the nonreciprocity-induced lateral
recoil force, F nr−p

x , acts along the orthogonal direction with re-
spect to the applied momentum bias [see Eq. (7a)] and appears
due to the broken symmetry in polarization of the supported
nonreciprocal SPPs [31]. To calculate this component, one
needs first to calculate the real part of the Green’s functions’
spatial derivative at the particle position, i.e., Re{ d

dx Gs
xy}. As-

suming the nonretarded regime, and applying the approach
described above, the integral along k

′
ρ of this derivative at the

particle position can be computed as

N d
dx Gs

xy
(k

′
φ ) ≈ −i

k4
ρ cos k

′
φ sin(2k

′
φ )

32πεrk2
0

e−2z0

√
k2
ρ−k2

0 , (D6)

where again the kρ−k
′
φ relationship is determined by the dis-

persion relation of the system. Then, the spatial derivative of
the Green’s functions is computed at the particle position by
performing the polar integral along k

′
φ:

Re

{
d

dx
Gs

xy

}
=

∫ 2π

0

k4
ρ cos k

′
φ sin(2k

′
φ )

32εrk2
0

e−2z0

√
k2
ρ−k2

0 dk
′
φ.

(D7)

The integrand of this function exhibits a smooth behavior
versus k

′
φ and can be integrated using standard numerical rou-

tines [53]. Importantly, Eq. (D7) reveals a dependence ∝ k4
ρ

with the momentum of the supported states, two orders of
magnitude smaller than the one found in Eq. (D3) for recoil
forces arising from the broken symmetry of the system in
amplitude. Combining Eqs. (D7) and (7a) permits to express
this recoil force component as in Eq. (9a).

3. Lateral recoil forces due to spin-orbit effects

The lateral recoil forces Fs in Eq. (7c) appear due to the
spin-orbit effect of light. To compute these force compo-
nents, one needs to compute the spatial derivatives of the
Green’s functions at the particle position, i.e., Im{ d

dx Gs
xz} and

Im{ d
dy Gs

yz}. Following a similar approach as described above,
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and assuming that the platform is operated in the nonretarded
regime, the residues of these derivatives for a specific az-
imuthal direction k

′
φ can be computed as

N d
dx Gs

xz
(k

′
φ ) ≈ −i

1

8εrπ2k2
0

k4
x e−2z0

√
k2

x −k2
0 , (D8a)

N d
dy Gs

yz
(k

′
φ ) ≈ −i

1

8εrπ2k2
0

k4
y e−2z0

√
k2

y −k2
0 (D8b)

Next, the spatial derivatives of the Green’s functions re-
quired are computed at the particle position by performing the
polar integrals along k

′
φ:

Im

{
d

dx
Gs

xz

}
=

∫ 2π

0

1

8εrπk2
0

k4
x e−2z0

√
k2

x −k2
0 dk

′
φ, (D9a)

Im

{
d

dy
Gs

yz

}
=

∫ 2π

0

1

8εrπk2
0

k4
y e−2z0

√
k2

y −k2
0 dk

′
φ. (D9b)

These equations can be easily integrated over k
′
φ , yielding

Im

{
d

dx
Gs

xz

}
≈ 1

16εrk2
0

[
(k−

x )4
e−2z0

√
(k−

x )2−k2
0

+ (k+
x )4

e−2z0

√
(k+

x )2−k2
0
]
, ( D10a)

Im

{
d

dy
Gs

yz

}
≈ 1

16εrk2
0

[
(k−

y )4
e−2z0

√
(k−

y )2−k2
0

+ (k+
y )4

e−2z0

√
(k+

y )2−k2
0
]
, (D10b)

where k−
x and k+

x are the plasmon wave number in the
negative- and positive −kx half spaces, respectively, in the
direction orthogonal to the external bias. Combining Eqs.
(D10) and (7c) permits to analytically express these recoil
force components as in Eq. (13).

It is important to stress that the strength of spin-orbit recoil
forces is usually weak when the particle is illuminated by
a linearly polarized light [10]. This is because the particle
acquires a weak polarization spin due to the lack of spin of
the incident light.
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