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Kondo nanomechanical dissipation in the driven Anderson impurity model
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The cyclic sudden switch of a magnetic impurity from a Kondo to a non-Kondo state and back was recently
proposed to involve an important dissipation of the order of several kBTK per cycle. The possibility to reveal
this and other electronic processes through nanomechanical dissipation by, e.g., ultrasensitive atomic force
microscope (AFM) tools would represent an unusual and interesting form of spectroscopy. Here, we explore
the dependence on the switching time of the expected dissipation, a quantity whose magnitude is physically
expected to drop from maximum to zero between sudden and slow switching, respectively. As an application of
a recently established matrix-product-state-based time-dependent variational algorithm, we study the magnetic-
field-induced Kondo switching in an Anderson model of the magnetic impurity. We find, quite reasonably, that
dissipation requires switching within the Kondo timescale h̄(kBTK )−1 or faster. While such a fast switching seems
problematic for current AFM setups, the challenge remains open for future means to detect this dissipation by
time-dependent magnetic fields, an electrostatic impurity level shift, or hybridization switching. The technical
aspects revealed by this approach will be of interest for future nonequilibrium calculations.

DOI: 10.1103/PhysRevB.107.035415

I. INTRODUCTION

Interest in the Kondo effect, a paradigmatic single-site
many-body phenomenon, has still, 50 years after Anderson’s
theoretical breakthrough [1,2], not abated. Spectroscopically,
zero-bias tunneling anomalies [3] represent the well-known
spectroscopic signal of the Kondo effect in electron con-
ductance through a spin-carrying site. More nonequilibrium
alternatives are, in principle, provided by nanomechanics. A
recent concept is that atomic force microscope (AFM) me-
chanical dissipation can also serve as a spectroscopic tool,
as was shown, for example, with quantum dots [4,5]. The
so-called pendulum AFM enables accurate, noninvasive mea-
surements of dissipation in oscillating tip experiments [6–9].
In every cycle, a fraction of the vibrating tip’s mechanical
energy is dissipated through dynamical processes of all kinds,
electronic and magnetic as well as ionic, going on, out of
contact, in the sample under the tip. The dissipated energy and
its dependence upon parameters such as the strength of inter-
action between the tip and surface-adsorbed impurity, voltage,
temperature, or magnetic field can provide spectroscopic evi-
dence of processes such as the electronic transition in quantum
dots and surface unpaired electron centers [4,5], in addition to
collective phenomena such as normal-superconductor transi-
tions [7] and structural transitions [9]. Recently, some of us
suggested that if the “on-and-off” switching of the Kondo
effect could be operated by the tip itself in the course of
each oscillation cycle, then a corresponding mechanical dis-
sipation of order kBTK , where TK is the Kondo temperature,
might be detectable in pendulum AFM measurements [10].
That mechanical cost must be provided to the vibrating tip
in order to maintain its oscillation. In that study, the Kondo

switching was modeled by instantaneously turning on and
off the hybridization interaction between the impurity and
the free electrons in the metal, an approximation that per-
mits us to express the dissipation in terms of equilibrium
quantities [10]. A finite-frequency modulation of hybridiza-
tion was subsequently discussed in Ref. [11], confirming
that periodic hybridization switching should contribute a
Kondo dissipation per cycle by about kBTK , without much
further ado.

Another possibility to disturb the surface impurity Kondo
effect could be just to shift the electronic impurity level from,
e.g., well below the Fermi level to near or well above the
Fermi level and back again periodically in time. Yet another
Kondo switching maneuver could be to expose the impurity
to an oscillatory magnetic field. In such hypothetical experi-
ments, however, the on-off Kondo switching does not occur
instantaneously—a nonzero mechanical switching time must
be required depending on the parameters, including oscillation
frequencies, amplitudes, interaction, etc. The Kondo dissipa-
tion effect described by Baruselli et al. [10] for infinitely fast
switching therefore needs to be reconsidered and updated to
account for finite switching times, a nonequilibrium calcula-
tion which is entirely nontrivial. Here, we choose this problem
as a demonstrative application of our recently introduced
nonequilibrium approach [12,13]. Our expectation is that a
nonzero nonequilibrium dissipation should reasonably require
a switching time of the order of h̄(kBTK )−1, which is very short
compared with the mechanical times of tip-operated systems.
In spite of that, a calculation of this type is of interest for its
own sake, and we propose it in view of future nonequilibrium
applications.
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We focus on two separate cases, a time-dependent impurity
level shift and a time-dependent magnetic field. For the first,
we calculate the dissipation caused by a time-dependent evo-
lution of the impurity energy level, thus modeling the effect
of electrostatic tip-impurity interaction on the impurity elec-
tronic chemical potential—the mechanism at work in, e.g.,
Ref. [5]. For the second, we will look for the dissipation
effect caused by a time-dependent magnetic field like the
one that could be exerted by the stray field of an oscillating
ferromagnetic tip.

No dissipation is expected to occur for an infinitely slow,
adiabatic, Kondo switching, no matter how the switching is
operated, while a sudden, infinitely fast switching of hy-
bridization like that in Ref. [10] would likely provoke the
maximum possible dissipation under reasonable assumptions
of monotonicity. We should describe how dissipation would
drop when the switching velocity is gradually reduced from
infinity, where it is largest, to lower and lower values as the
switching velocity is reduced.

We address the fundamental quantum mechanical start-
ing point of these questions by simulating the full real-time
dynamics of an externally perturbed Anderson model of a
quantum impurity whose Kondo effect is switched with differ-
ent means and time dependences. All results are obtained by
employing our recently established, state-of-the-art numerical
technique based on matrix product states [12,13].

This paper is organized as follows. Section II summa-
rizes the single-impurity Anderson model, the time-dependent
protocol, and the matrix-product-state techniques employed
to study the full time dependence of the model. Section III
contains the results of our simulations, where dissipation is
calculated for the two mechanisms we have considered: a
switch of the local impurity level and a switch of a local
magnetic field. Finally, Sec. IV contains the final discussion
and draws some conclusions.

II. MODEL, PROTOCOL, AND METHOD

A. Anderson model

We shall calculate the dissipated energy in a cycle during
which the parameters of a Kondo system are forced to evolve
in a time-periodic manner as in an idealized experiment. The
Kondo physics is described by the single-impurity Anderson
model [14] (SIAM), whose Hamiltonian is

ĤSIAM = Ĥloc + Ĥhyb + Ĥcond. (1)

The local term Ĥloc describes the impurity and is given by

Ĥloc =
∑

σ

εd d̂†
σ d̂σ + U n̂↑n̂↓ + B(n̂↑ − n̂↓), (2)

with an energy level εd and on-site Coulomb repulsion U .
Additionally, we include a magnetic field B whose Zeeman
coupling shifts the energy levels of spin up and spin down
in opposite directions. As is well known, the magnetic field
destroys the Kondo effect [15,16] and hence provides a control
parameter that helps us extract the contribution of the Kondo
effect. The impurity couples to conduction electrons through

the hybridization interaction

Ĥhyb =
∑

σ

∑
k

Vk (d̂†
σ ĉkσ

+ ĉ†
kσ

d̂σ ), (3)

with spin-independent hybridization couplings Vk . The con-
duction electrons are, as usual, modeled as a bath of free
fermions:

Ĥcond =
∑

σ

∑
k

εk ĉ†
kσ

ĉkσ
. (4)

Without magnetic field, B = 0, the model is symmetric
under a spin flip and obeys a particle-hole (PH) symmetry
if εd = −U/2,Vk = V−k, εk = −ε−k . The B field breaks both
spin symmetry and PH symmetry, if present. However, at
B �= 0 the model is still invariant under the combined PH and
spin-flip transformation,

ĉk,σ
−→ ĉ†

−k,−σ
, d̂σ −→ −d̂†

−σ , (5)

provided we make the particle-hole-symmetric choice for U ,
Vk , and εk . Throughout this paper we will choose particle-
hole-symmetric hybridization energy dependence with a
semicircular shape, given by V 2(x) = �

√
1 − x2/πW in the

continuum limit, with hybridization coupling �, half band-
width W , and dimensionless energy x = ε/W . Therefore,
whereas at zero field the particle-hole symmetry implies
〈n̂σ 〉 = 1/2 for equilibrium states, in the presence of B we
have the lower symmetry 〈n̂↑ + n̂↓〉 = 1 for the impurity
population.

B. Cyclic dissipation protocol

We consider a time-periodic modulation of the Hamil-
tonian, to be specified case by case, controlled by a
time-dependent control parameter λ, which we assume to
follow the time dependence sketched in Fig. 1(a). Hence, a
full cycle consists of the following four steps:

(1) The initial Hamiltonian with control parameter λ(t ) =
λ0 is kept constant until the system has reached its equilibrium
state. This stage describes the tip far away from the impurity.

(2) The control parameter is raised (or lowered) linearly
from λ0 to λ1 within a time τ , modeling the transient during
which the tip approaches and disturbs the impurity.

(3) We let the system relax to its new equilibrium state.
That is justified by a relaxation time in this problem expected
to be of the order of h̄(kBTK )−1, typically much shorter than
the time τ = (a/A)(2πν)−1 during which the tip sweeps near
the impurity (h is Planck’s constant, a is the impurity lateral
size, A is the tip swing amplitude, and ν is the horizontal
oscillation frequency).

(4) In the last step, λ turns back to its original value λ0 in
step 1.

In Fig. 1(b) we schematically show the total energy E (t ) of
the system within a single cycle. During equilibration steps 1
and 3, the total energy is constant, as the Hamiltonian is time
independent. In steps 2 and 4, owing to the time dependence of
λ = λ(t ), energy is forced to change, and some can be pumped
into the system via the impurity—energy can flow from the
impurity to or from the bath due to the hybridization coupling.
The energy dissipation per cycle Ediss is defined as the net
energy pumped into the system. It can be calculated as the
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(a)

(b)

FIG. 1. (a) Time dependence of the driven Hamiltonian param-
eter λ during a single cycle. In steps 1 and 3 the Hamiltonian is
kept constant, and the system equilibrates. In step 2, λ(t ) changes
from λ(t0) ≡ λ0 to λ(t0 + τ ) = λ1 in a time τ , with linear time
dependence. In the last step, step 4, λ(t ) is brought back from λ1

to its original value λ0. (b) Schematic time evolution of the total
energy of the system. The dissipation Ediss is given by the energy
difference at the beginning and the end of the cycle and is absorbed
by the macroscopic bath.

difference between E0 = E (t = t0) and E f = E (t = t1 + τ )
at the beginning and at the end of the cycle:

Ediss = E f − E0. (6)

One might ask where the energy goes and how a closed
system can continuously absorb energy. The answer lies in
the macroscopic (infinite) size of the conduction electron
bath, which is able to absorb single-site energy without
ever heating up. This is particularly easy to exemplify if
the bath is represented as a tight-binding chain, with en-
ergy being pumped into the impurity and out of it into
the bath. Once in the bath, energy can flow away along
the chain. Since the chain is infinitely long in the thermo-
dynamic limit, energy never comes back; hence, it is lost
forever [17].

Some more practical aspects of the simulation protocol
are as follows. In steps 1 and 3, one should theoretically
evolve the system until it reaches equilibrium. Because the
equilibrium state does not depend on the preceding dy-
namics, we can carry out steps 1 and 2 and steps 3 and
4 in separate simulations with equilibrium states at times
t0 and t1 being prepared as the ground states of the cor-
responding Hamiltonians with control parameters λ(t = t0)
and λ(t = t1), respectively. The dissipation is then calculated
as

Ediss = [E (t0 + τ ) − E0] + [E f − E (t1)], (7)

which simply adds up the energy gains of the system in
steps 2 and 4. This is a special formulation of the general

formula in Eq. (6) for the protocol considered in this paper,
considering that the system equilibrates in step 3. Notice that
this formula reduces to the original definition in Eq. (6) if
E (t0 + τ ) = E (t1), as is the case when all steps are done in
a single run.

C. Quantum evolution method

We compute the dissipation by simulating the full quan-
tum dynamics of the time-dependent Anderson model at zero
temperature. In this section, we briefly discuss the mathe-
matical transformations and the technical details to carry out
the simulations via matrix product states (MPSs). For more
details and the extension to finite temperatures via the so-
called thermofield transformation [18–21] we refer the reader
to Refs. [12,13] and references therein.

The conduction electron bath can be represented in es-
sentially two geometries: (i) The star geometry mimics the
geometry of the interactions [see Eq. (3)], where any con-
duction electron mode interacts with the impurity. In MPS
simulations, this geometry requires dealing with long-range
interactions but benefits from very low entanglement [22].
The second possible geometry is the chain geometry, where
the conduction electrons are mapped into a nearest-neighbor
chain [23,24]. This geometry is suitable for tensor network
methods because the interactions are only of nearest-neighbor
distance, but it suffers from larger entanglement. In this paper,
we employ an improved chain mapping of the conduction
electrons with both short-range interactions and low entangle-
ment [12]. The essential idea of the technique is a separation
of electron modes above and below the bath chemical poten-
tial, followed by an independent chain mapping. In this way,
we avoid the detrimental mixing of filled and empty modes,
and we preserve the product state property of the conduction
bath’s ground state. Mathematically, we define two fermionic
operators

â1,0,σ = J−1
1,0

∑
k,εk>μ

Vk ĉk,σ
, (8)

â2,0,σ = J−1
2,0

∑
k,εk�μ

Vk ĉk,σ
, (9)

where Jc,0 (c = 1, 2) ensures correct normalization
{âc,0,σ , â†

c′,0,σ ′ } = δc,c′δσ,σ ′ . The hybridization term then
becomes

Ĥhyb =
∑

σ

2∑
c=1

Jc,0(d̂†
σ âc,0,σ + â†

c,0,σ d̂σ ). (10)

Like in the original chain mapping [23,24], we can apply
Lanczos’s algorithm independently to â1,0,σ and â2,0,σ to ob-
tain two noninteracting chains with fermionic operators âc,n,σ .

In the electron bath ground state, modes with energy
above (below) the chemical potential μ are empty (filled).
Since â1,n,σ and â2,n,σ are linear combinations of modes that
are empty (filled) in the ground state, they are completely
empty (filled) as well, and hence, the conduction electron bath
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ground state is a simple product state, which, as demonstrated
in Refs. [12,13], is highly beneficial for the simulations. The

final Hamiltonian to simulate consists of two Wilson’s chains
and the impurity interacting with the first site of both chains:

ĤSIAM(t ) = Ĥloc(t ) +
∑

σ

2∑
c=1

{
Jc,0(d̂†

σ âc,0,σ + H.c.) +
∑
n=0

[Ec,n â†
c,n,σ âc,n,σ + (Jc,n+1â†

c,n+1,σ âc,n,σ + H.c.)]

}
. (11)

Here, the chain coefficients Ec,n and Jc,n are obtained from
the chain mapping. The one-dimensional structure of ĤSIAM

together with the short-range nature of interactions allows
us to carry out simulations efficiently using matrix product
states [25,26]. For equilibrium simulations we employ the
density matrix renormalization group (DMRG) algorithm to
find ground states [27]. The real-time dynamics of the sys-
tem with a time-dependent Hamiltonian is computed using
the recently developed time-dependent variational principle
algorithm in its two-site variant [28], where two neighboring
tensors of the MPSs are evolved in time together in each step.
This algorithm has proven to deliver very accurate results at
low computational costs [29].

At zero temperature, there is one more simplification pos-
sible. Instead of calculating the equilibrium state through a
preliminary real-time annealing evolution [12], we can simply
use the DMRG algorithm to calculate the ground state of the
system variationally. Even if finite-temperature simulations
are possible as well [12], here, we will, for simplicity, restrict
ourselves to zero temperature, where the study of switching-
time dependence is more directly addressed.

III. RESULTS

This section describes our results for the dissipation cal-
culated at zero temperature during a cycle where the forcing
perturbation varies as in Fig. 1. They should tell us whether or
not the dissipation shows signatures of the forced switching
of the Kondo effect with two different types of time-periodic
cyclic forcing. As anticipated, one consists of a variation of
the SIAM impurity energy level periodically up and down
across the Fermi level. The second involves the application of

a cyclic magnetic field, varying from zero to a value sufficient
to destroy the Kondo effect and back.

A. Time-dependent impurity energy level εd

Here, we consider (without or with a static magnetic field
B) a time-dependent on-site energy level, taking λ(t ) = εd (t ).

With the protocol discussed above, the impurity energy
level is periodically driven between ε0 and ε1, where we
choose the particle-hole-symmetric situation ε0 = −U/2 for
the initial state and ε1 = −U/2 + 0.7� for intermediate step
3. The Kondo temperature for U = 2.5π� with PH symmetry
is kBTK = 0.07� [12], and hence, the energy level is shifted
by �ε = ε1 − ε0 = 0.7� = 10kBTK .

We start by considering the noninteracting case, U = 0.
Here, the impurity spectral function has just a single peak
(a Friedel resonance), corresponding to the local level of the
impurity, broadened due to the hybridization coupling [see
Fig. 3(a)]. For a sudden quench (τ = 0) and zero magnetic
field (B = 0), we find the dissipation Ediss = 0.29� to be
on the order of the level shift �ε = 0.7�. The dissipation
decreases monotonically with increasing magnetic field [see
Fig. 2(a)], presumably due to the opposite and compensating
effect of the field on the spin-up and spin-down impurity
levels. Furthermore, dissipation is reduced by slowing down
the time-dependent cycle, as expected, since dissipation must
vanish in the limit of an adiabatic evolution.

Let us move next to the interacting case with U = 2.5π�

and corresponding Kondo temperature kBTK = 0.07�. Again,
the impurity level energy is lifted by �ε = 0.07� = 10kBTK .
The dissipation turns out to be significantly lower than in the

(a) (b)

FIG. 2. Dissipation per cycle in (a) the noninteracting case with U = 0 and (b) the interacting case with U = 2.5π� at zero temperature
for different ramp times τ as a function of the static magnetic field. The impurity level is driven between the particle-hole-symmetric value
ε0 = −U/2 and ε1 = ε0 + �ε, with �ε = 0.7� = 10kBTK , where the Kondo temperature in the interacting case is kBTK = 0.07�. Dissipation
is given in units of � (left scale) and in units of the Kondo temperature (right scale).
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(a) (b)

FIG. 3. Zero-temperature equilibrium spectral function in (a) the noninteracting case with U = 0 and (b) the interacting case with U =
2.5π�, where the latter has Kondo temperature kBTK = 0.07�. Two different choices of the impurity energy level εd = −U/2 + �ε are
considered: the particle-hole-symmetric choice �ε = 0 and an asymmetric one with �ε = 0.7�.

noninteracting case, by about one order of magnitude even for
the sudden quench (see Fig. 2).

As an incidental note, the magnetic field dependence of
the dissipation at τ = 0 follows the (inverse) behavior of the
impurity population at ε1: The occupation is field independent
at particle-hole symmetry εd = ε0, while dissipation is given
by the difference in equilibrium occupations at ε0 and ε1,
which follows immediately from Eq. (7) for a sudden quench
of the impurity energy level εd . The drop in dissipation with
increasing ramp time turns out to be very rapid. In fact, the
timescale on which dissipation disappears is clearly smaller
than the Kondo timescale h̄/kBTK , in contrast to what one
would expect for the case of dissipation emerging from the
Kondo effect. This issue will be discussed in the next section.

To get a better understanding of the mechanisms leading to
the observed dissipation, let us analyze the equilibrium impu-
rity spectral function A(ω), obtained from MPS calculations,
as discussed in more detail in Ref. [12]. The noninteracting
U = 0 spectral function has a single peak due to the local
impurity level [see Fig. 3(a)]. The interacting spectral function
for U = 2.5π� [see Fig. 3(b)], instead, shows two peaks
corresponding to the local impurity levels at h̄ω = εd and
h̄ω = εd + U and a Kondo peak at the conduction electron
Fermi energy, here set to EF = 0. By shifting the impurity
energy level from �ε = 0 to �ε = 10kBTK the two side peaks
move accordingly. However, the Kondo peak is barely af-
fected by this impurity level shift. The overall change in the
spectral function upon moving the impurity level is much
more significant in the noninteracting case, which is clearly
the cause of the much larger dissipation but is not of Kondo
origin. Summing up this warm-up exercise, a time-dependent
chemical potential oscillation shifting the impurity level will
not give rise to Kondo dissipation. The physical reason for
this, as shown in Fig. 3(b), is that the Kondo peak is barely
affected by the perturbation.

In order to cause the Kondo switching electrostatically, the
impurity level should be switched in a rather drastic manner,
say, from well below EF − U (doubly occupied impurity, no
Kondo effect) to near EF − U/2 (a singly occupied impu-
rity, Kondo regime) or from the latter to well above EF + U
(empty impurity, no Kondo effect). Another perturbation that
will lead to Kondo dissipation is, as implemented in Ref. [10],

a periodic on-off switching of impurity-bath hybridization.
However, such extreme perturbations will, in real life, be
accompanied by an unpredictably large amount of subsidiary
dissipation of non-Kondo origin. Therefore, instead of analyz-
ing these cases further, we move directly to the—presumably
less dramatic—magnetic switching.

B. Time-dependent magnetic field

We just saw that a gentle electron impurity level switch-
ing fails to produce Kondo dissipation because it leaves the
narrow Kondo resonance unchanged. On the other hand, an
external magnetic field is well known to quench and split the
Kondo peak [16,30].

We study the symmetric SIAM (εd = −U/2) with a time-
dependent magnetic field B(t ), where B changes between
B0 = B(t = t0) = 0 and B1 = B(t0 + τ ) = 5kBTK . Let us con-
sider in detail the (spin-averaged) spectral function in the
presence of a static magnetic field. As shown in Fig. 4, the
Kondo peak is essentially gone already at B = 5kBTK , making

FIG. 4. Spectral function of the SIAM in the absence of a mag-
netic field, B = 0, and for B = 5kBTK . The model is particle-hole
symmetric with U = 2.5π�, corresponding to a Kondo temperature
of kBTK = 0.07�. The spectral function was calculated with the
method presented in Ref. [12] and averaged over spin up and spin
down (see, e.g., Refs. [30,31]).
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FIG. 5. Dissipation per cycle for the protocol where the magnetic
field is linearly changed between B0 = 0 and B1 = 5kBTK . The dis-
sipation is on the order of the Kondo temperature and decays on a
timescale t ∝ h̄(kBTK )−1.

the protocol with magnetic field increasing up to B1 = 5kBTK

a promising candidate to observe Kondo-related dissipation.
Importantly, the local peaks are barely modified by the mag-
netic field, and hence, we expect only a minor contribution to
the dissipation.

Once we make the field B time dependent with the stan-
dard on-off protocol in Fig. 1, the dissipation associated with
sudden switching of B is, indeed, significantly larger, on the
order of Ediss = 4kBTK , compared to the small dissipation for
a time-dependent on-site energy level εd . Moreover, as shown
by the final result in Fig. 5, the dissipation decays rapidly
once the ramp time τ is progressively increased from zero.
In fact, the dissipation decays on the timescale of the inverse
Kondo temperature, h̄(kBTK )−1. A clear rationale is that field
variations on larger timescales are felt as essentially adiabatic,
causing negligible dissipation. We expect that the very same
behavior applies to asymmetric switches of the impurity level
energy and to the switching of the hybridization energy con-
sidered, in only the sudden limit, by Baruselli et al. [10].

IV. DISCUSSION AND CONCLUSIONS

We have confirmed with explicit nonequilibrium calcu-
lations that suppression of the Kondo effect by a properly
switched magnetic will cause the expected dissipation. A large
dissipation, on the order of Ediss = 4kBTK per cycle, equal
to that originally predicted by Baruselli et al. [10], is found
when the Kondo switch-off time is sufficiently short, typi-
cally h̄(kBTK )−1 or shorter. On the contrary, a much smaller
dissipation—mostly related to non-Kondo sideband effects
in the spectral density—is seen when the impurity level oc-
cupation is shifted by similarly large values of the order of
�ε ∼ 10kBTK . It is expected that extremely large energy level
oscillations, which we did not try, would present more dissi-
pation through complete destruction of the Kondo effect, but
still, it would be hard to discriminate the pure Kondo con-
tribution from others, including the large sideband electronic
effects. We instead implemented a time-dependent magnetic
field oscillation as a demonstration tool.

FIG. 6. The dissipation per cycle, as in Fig. 5, versus the ramp
time τ in a log-log scale (top) and log-linear scale (bottom). The
data are compatible with both a τ−0.89 power law and an exponential
decay exp(−0.2τkBT/h̄).

Technically, this work represents a nontrivial application
of a matrix-product-state-based, time-dependent variational
algorithm established by some of us [12,13].

Our result is, as anticipated, that Kondo dissipation drops
very quickly with switching time. As Fig. 5 shows, the
dissipation drops to about 1/4 of its value once the switch-
ing time grows from zero—the sudden switch limit of
Ref. [10]—dropping to about 2.5h̄(kBTK )−1. The simulation
times realized are still too short to reveal the asymptotic decay
of dissipation as a function of increasing switching times, a
decay one should expect to be a power law, controlled by
the low-energy behavior and width of the spectral function
in Fig. 4. Owing to computational demands, that limit cannot
yet be reached, and we must stop at intermediate times. The
data in Fig. 6 indicate that the intermediate time decay is
compatible with either a τ−0.89 power law or an exponential
decay, exp(−0.2τkBT/h̄).

The physically short decay times illustrated in Figs. 5
and 6 deny the possibility that the Kondo switching dissipa-
tion could be experimentally observed by, e.g., a noncontact
pendulum AFM. Consider a tip flying above the surface-
deposited Kondo impurity of size a with frequency ν, usually
no larger than tens of kilohertz, and large amplitude A,
larger than the atomic impurity size a ∼ 0.2 nm but or-
dinarily below 10 nm. In the most optimistic case, the
tip sway time a/(Aν) over the impurity, during which the
Kondo effect could be switched off and on, could be shrunk
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down to perhaps a microsecond, still orders of magnitude
longer than h̄(kBTK )−1, a time lasting, at most, tens of
picoseconds.

In summary, cyclic switching of a magnetic impurity from
a Kondo to a non-Kondo state is predicted to involve a very
important dissipation on the order of several kBTK per cy-
cle. That dissipation critically depends on a sufficiently fast
switching time, typically the Kondo time h̄(kBTK )−1 or faster.
Experimentally, such a fast switching seems problematic for
standard AFM setups, but the challenge remains open for
other possible means to detect this dissipation by a time-
dependent magnetic field, an electrostatic impurity level shift,
or hybridization switching. Demonstrating this kind of effect

has represented a nontrivial application of a nonequilibrium
quantum evolution method that was recently proposed.
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