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Effective Landé factors of electrons and holes in lead chalcogenide nanocrystals
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The Landé or g factors of charge carriers in solid state systems provide invaluable information about the re-
sponse of quantum states to external magnetic fields and are key ingredients in the description of spin-dependent
phenomena in nanostructures. We report on a comprehensive theoretical analysis of electron and hole g factors
in lead chalcogenide nanocrystals. By combining symmetry analysis, atomistic calculations, and extended k · p
theory, we relate calculated linear-in-magnetic field energy splittings of confined electron states in nanocrystals
to the intravalley g factors of the multivalley bulk materials, renormalized due to the quantum confinement. We
demonstrate that this renormalization is correctly reproduced by analytical expressions derived in the framework
of the extended k · p model.
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I. INTRODUCTION

Lead salt nanocrystals (NCs) are enjoying many practical
applications in optoelectronics and photovoltaics [1–5]. New
devices built on NCs are predicted to enter the market in the
very near future [5–8]. All these devices are based on the
emission or absorption of light by spatially confined electron-
hole pairs.

Applications of NCs in the rapidly developing fields of
spintronics and quantum computing [9–12] would be impos-
sible without control over the spin state of localized carriers.
Therefore, knowledge about carrier spin relaxation and dy-
namics as well as their Landé g factors becomes critically
important. These properties have been widely studied for
CdSe NCs. The exciton fine-structure relaxation dynamics
was investigated in Refs. [13–15], electron and exciton g
factors were measured, respectively, by time-resolved Faraday
rotation [16–18] and single-dot magnetophotoluminescence
spectroscopy [19,20], and carrier g factors were calculated
within the tight-binding [21–23] and effective mass [24]
methods.

In the meantime, analogous studies for lead salt NCs re-
main very scarce. Ultrafast exciton fine-structure relaxation
dynamics was studied by Johnson et al. [25]. Turyanska et al.
deduced exciton g factors of PbS NCs from magnetic field
dependences of the photoluminescence circular polarization
degree [26]. Schaller et al. measured the averaged exciton
g factor in an ensemble of PbSe NCs in magnetic-circular
dichroism experiments [27] and extracted small (compared
to the bulk) values of exciton g factors changing from 5 to
2 with decreasing NC size. They also observed traces of fine-
structure splitting which they were not able to resolve. They
commented that the extraction of g factors from polarization
measurements is impossible without detailed knowledge of
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this fine structure. Single-NC spectroscopy in external mag-
netic fields was performed by Kim et al. [28].

Yet, an interpretation of these results is complicated by the
multivalley band structure of lead salt compounds. Bulk lead
salts have extrema of the conduction and valence bands at the
four inequivalent L points of the Brillouin zone. The widely
used k · p theory [29] treats these L valleys independently.
An external magnetic field leads to the Zeeman splittings of
the electron and hole states characterized by certain magnetic
quantum numbers intimately related to the spin degrees of
freedom. Then the main effects of the quantum confinement
are the renormalization of the Zeeman splittings and their
sensitivity to the orientation of the magnetic field, which result
in the renormalization and anisotropy of the carriers’ g factors
[30]. This kind of narrative is typical for nanostructures of
II-VI and III-V compound semiconductors with band extrema
at the � point of the Brillouin zone, and is adopted by the
conventional, or independent-valley, k · p theory developed
for lead salt nanostructures [29]. This theory is formulated in
terms of the longitudinal and transverse single-valley g factors
[Fig. 1(a)].

However, in lead salt nanostructures, due to the interval-
ley scattering on the surface, the zero-field electron or hole
states represent combinations of the states originating from
different L valleys. Thus, all atomistic band-structure calcu-
lations, based on the symmetries of the underlying crystal
lattice and overall structure, automatically take into account
this alignment of the valley degrees of freedom [31,32]. The
resulting zero-field states are classified with respect to irre-
ducible representations of the symmetry group. Application
of the external magnetic field further affects the spin degrees
of freedom, but this narrative implies a completely different
meaning and definition of the magnetic quantum numbers as
compared to the single-valley case. Since, at weak magnetic
fields, states characterized by different irreducible represen-
tations do not mix, the atomistic theories operate with the g
factors associated with the corresponding irreducible repre-
sentations [Fig. 1(c)].
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(a) (b) (c)

FIG. 1. (a) Conduction and valence band extrema in bulk lead chalcogenide compounds occur at four inequivalent L points of the Brillouin
zone. Energy isosurfaces near these points form anisotropic valleys (red “cigars”). For the valley states of charge carriers, Zeeman splittings
depend on the orientation of the magnetic field with respect to the valley main axes. One can distinguish longitudinal (Bl ) and transverse (Bt )
components of the magnetic field in a given valley which define the longitudinal (gl ) and transverse (gt ) g factors. (b) Within the k · p theory,
projections of the total angular momentum Fz = ±1/2 (blue arrows) are defined in the valley coordinate frames adjacent to the valley wave
vectors kν (red arrows). These vectors form an irreducible star {k0} of some representation of the crystal space group [33]. One can analyze their
transformation properties [34] and form combinations of valley states transforming under irreducible representations of the NC point group.
This allows one to establish a relationship between the single-valley states described by the k · p theory and the multivalley combinations of
states in atomistic calculations, enforced by the microscopic symmetry of the NCs. (c) Zero-field states of charge carriers in NCs represent
combinations of valley states transforming under certain irreducible representations of the NC point group. The ground electron (or hole)
confinement level in a NC with no inversion center splits into two doublets and a quadruplet transforming under �6, �7, and �8 irreducible
representations of the group Td . At low magnetic fields, the Zeeman splittings are isotropic and determined by four effective g factors g6, g7,
g8, and g′

8.

In this paper, we show that a solution to this ambiguity
comes from a symmetry-based construction of a transfor-
mation relating the basis of independent valley states and
the basis of valley combinations associated with certain ir-
reducible representations of the point group, as illustrated in
Fig. 1. This allows one to relate both kinds of g factors and
use a fusion of the two approaches to get insight about the
confinement effect on the carriers’ g factors in lead salt NCs.

II. RESULTS AND DISCUSSION

In PbX (X = S, Se) NCs with cubic symmetry (point group
Td or Oh) the ground state of the confined electron or hole
splits into two doublets, transforming under irreducible rep-
resentations �6, �7 (�±

6,7) of group Td (Oh), and a quadruplet
�8 (�±

8 ) separated by several meV as a result of valley mixing
[31,32,35,36]. In the subspace of these states, the interaction
with a weak magnetic field B is described by the following
effective Hamiltonian, written as a block-diagonal matrix,

Hη

1 (B) = μBB

⎛
⎝ 1

2 gη

6σ 0 0
0 1

2 gη

7σ 0
0 0 gη

8J + g′η
8J′

⎞
⎠, (1)

where η = c(v) for the conduction- (valence-) band states;
gη

6 and gη

7 are, respectively, the effective g factors of the �6

and �7 doublets; gη

8 and g′η
8 are the two constants describing

Zeeman splitting of the quadruplet �8; σ = (σx, σy, σz ) are the
Pauli matrices; J = (Jx, Jy, Jz ) are the matrices of the angular
momentum j = 3/2 [34], μB is the Bohr magneton, and the
matrices J′ are defined as [37]

J ′
γ = 5

3
J3
γ − 41

12
Jγ (2)

(γ = x, y, z).

In a strong magnetic field, when μBB is compatible with
the valley splittings |E�7 − E�8 | and |E�8 − E�6 |, two addi-
tional nondiagonal linear-in-B terms should be taken into
account. They describe the interaction of the quadruplet
�8 with the doublets �6 and �7 and are discussed in the
Supplemental Material [34].

A. Tight-binding calculations

We follow the procedure described in Refs. [32,35,36] and
use the extended tight-binding model [38] to compute the
energies and wave functions of electron states in the con-
duction and valence bands for NCs of various shapes and
classify them in accordance with irreducible representations
of the point group Td [36] (we restrict our consideration to
stoichiometric NCs with no inversion center). We use the
tight-binding parametrization from Ref. [32] which accurately
reproduces the ab initio band structure from Ref. [39] cor-
rected for experimental masses. The effect of the magnetic
field is taken into account using the standard procedure of
Ref. [40].

From the energy splittings induced by the external
magnetic field we extract the constants in the effective Hamil-
tonian (1). They are shown in Fig. 2 for quasispherical PbS
and PbSe NCs (see Supplemental Material [34] for a definition
of quasispherical NCs). The actual shapes of colloidal NCs
can vary from a cube to a truncated cube to a cuboctahedron
to a truncated octahedron to an octahedron, depending on
the synthesis conditions [41,42]. Tight-binding calculations
performed for NCs of cubic, cuboctahedral, and octahedral
shapes show that the g factors are almost shape independent,
in contrast to the zero-field splittings of electron and hole lev-
els exhibiting strong dependencies on the NC shape [36] (see
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FIG. 2. Calculated g factors g6, g7, g8, and g′
8 (1) in conduction

(top panel) and valence (second panel) bands of quasispherical PbS
NCs (solid red, blue, cyan, and open purple circles, respectively).
The results are stable with respect to NC shape variation, (see
Supplemental Material [34]). Solid (dashed) lines show outcomes of
the anisotropic (isotropic) k · p model. The two lower panels show
results for PbSe NCs.

Supplemental Material [34] for energies of the �6, �7, and �8

levels in PbSe NCs; those for PbS NCs are given in Ref. [36]).
By dashed (solid) lines in Fig. 2 we show the results of the
isotropic (anisotropic) k · p model to be discussed later.

B. Landé factors in valleys

Before proceeding to the results of the k · p model, we first
discuss the origin of the parameters entering Eq. (1) in terms
of anisotropic g factors describing the linear magnetic field
dependence of the phenomenological single-valley effective
Hamiltonians. We represent the Hamiltonian of the confined
conduction- or valence-band ground state as a summation of
the single-valley Hamiltonians over the valley index ν,

Ĥη = μB

2

∑
ν

[
gη

t (σxBx,ν + σyBy,ν ) + gη

l σzBz,ν
]
, (3)

where the Pauli matrices σγ (γ = x, y, z) are defined in the
coordinate frames of the corresponding valleys (with the z axis
aligned along the valley C3 axis) and B = (Bx,ν , By,ν , Bz,ν ) is

the magnetic field written in the same “local” basis. In partic-
ular, for the L0 valley, we choose the local basis as follows:

nx,0 ‖ [11̄0], ny,0 ‖ [112̄], nz,0 ‖ [111]. (4)

The bases of the other valleys (ν = 1, 2, 3) are related via C2

rotations around the crystallographic axes of the “laboratory”
frame (x ‖ [100], y ‖ [010], z ‖ [001]): 0 → 1 via C2z, 0 → 2
via C2x, and 0 → 3 via C2y [cf. Fig. 1(b)].

The Hamiltonian (3) can be transformed into the basis
of irreducible representations using an appropriate transfor-
mation matrix [34]. From a comparison of the transformed
Hamiltonian with Eq. (1) we obtain the following set of g
factors for the confined conduction- and valence-band states:

gc
6 = gc

l − 2gc
t

3
, gc

7 = gc
l + 2gc

t

3
, (5a)

gc
8 = gc

l + 4gc
t

15
, g′c

8 = 2
gc

l − gc
t

15
, (5b)

gv
6 = gv

l + 2gv
t

3
, gv

7 = gv
l − 2gv

t

3
, (5c)

gv
8 = gv

l − 4gv
t

15
, g′v

8 = 2
gv

l + gv
t

15
. (5d)

Equations (5) can be inverted to extract the values of gη

l (t )
from the g factors of the quantum-confined states in a NC. We
will use this procedure to obtain the effective g factors gc(v)

l (t )
from the tight-binding results presented in Fig. 2. One may
notice that there are four independent constants for each band
in the effective Hamiltonian (1) but only two independent
constants entering (3). Therefore, we have some freedom in
the choice of the extraction procedure. In the present study,
we will determine the longitudinal and transverse g factors as

gη

l = 3gη

8 + 6g′η
8 , (6a)

gc
t = 3gc

8 − 3

2
g′c

8 , gv
t = −3gv

8 + 3

2
g′v

8 . (6b)

The longitudinal and transverse g factors obtained in this
manner from the tight-binding calculations are presented in
Fig. 3. Also shown in Fig. 3 are results of the single-valley
k · p model.

As the numbers of independent constants in Eqs. (1) and
(3) are different, the above procedure introduces some error.
In order to estimate it, in the Supplemental Material [34] we
compare the difference between gη

6 and gη

7 calculated directly
in the tight-binding with the results of Eqs. (5a) and (5c). The
differences are correlated with the valley splittings and do not
exceed 10% of the values of the g factors in the bulk.

C. k · p model

It is well known [30] that quantum confinement renor-
malizes the electron g factor in semiconductor nanostructures
with respect to its bulk counterpart. We will demonstrate the
results of such a renormalization using the single-valley k · p
model of Ref. [29] (see also Refs. [43,44]). In the isotropic
approximation, the effective Hamiltonian of this model can
be written as

Hiso =
((Eg

2 − αc�
) − ih̄P

m0
(σ∇)

− ih̄P
m0

(σ∇) −(Eg

2 − αv�
)
)

, (7)
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FIG. 3. The values of transverse (red circles) and longitudinal
(blue circles) L-valley g factors in the conduction (positive for large
D) and valence (negative for large D) bands in PbS (upper panel) and
PbSe (lower panel) NCs extracted from the tight-binding calculations
using Eq. (6). Red and blue lines show, respectively, longitudinal and
transverse g factors computed within anisotropic (solid lines) and
isotropic (dashed lines) k · p theory with parameters extracted from
the tight-binding model (Table I).

where Eg is the band gap, P is the interband momentum
matrix element, m0 is the free-electron mass, the coefficients
αc(v) stem from the contributions of the remote bands to the
conduction- and valence-band energy dispersion, and � is the
three-dimensional Laplace operator.

Within the isotropic model, the electron states can be char-
acterized by the value of the total angular momentum F and
an additional quantum number p related to the parity of the
states. The dispersion equation for these states is given in the
Supplemental Material [34]. The ground electron states are
characterized by the angular momentum F = 1/2 and p = +1
(odd parity), and the ground hole states have F = 1/2 and
p = −1 (even parity). All the confined states are (2F + 1)-
fold degenerate with respect to the projection Fz of the total
angular momentum. Their wave functions written in bispinor
form are

|F, p, n, Fz〉 =
⎛
⎝ fF− p

2 ,p

(
r
R

)
	̂

F− p
2

F,Fz

i p gF+ p
2 ,p

(
r
R

)
	̂

F+ p
2

F,Fz

⎞
⎠, (8)

where 	̂

F,Fz

are the spherical spinors [45] and f
p, g
p are the
normalized radial functions [34].

To compute the g factors we follow Ref. [30] and add to
the Hamiltonian (7) the following term,

δH = e

2c
(Av + vA)

= eB
2c

(− 2iαcm0

h̄2 r × ∇ P
h̄ (r × σ )

P
h̄ (r × σ ) 2iαvm0

h̄2 r × ∇

)
, (9)

where v is the velocity operator [44]. We used the symmetric
gauge A = B×r

2 for the vector potential A along with the
additional electron and hole effective g-factor tensors with the
nonzero components gη

0 xx = gη

0 yy = gη

0t , gη

0 zz = gη

0l , responsi-
ble for the contributions of remote bands, to yield

Hiso(B) = μBB

(
1
2 ĝc

0σ + 2m0

h̄2 αcL P
h̄ (r × σ)

P
h̄ (r × σ) 1

2 ĝv
0σ − 2m0

h̄2 αvL

)
, (10)

where L = −ir × ∇ and Bĝη

0σ = ∑
α,β Bαgη

0 αβσβ =∑
α Bαgη

0 αασα .
We use the variables gη

0t , gη

0l as adjustable parameters to
reproduce the g factors of the bulk PbS and PbSe, calculated in
the tight-binding model (see, e.g., the Supplemental Material
of Ref. [46]), from the following relations,

gη

l (t ),bulk = gη

0l (t ) ± 4P2

Egm0
, (11)

where the sign of the second term is positive for η = c and
negative for η = v. The values gη

l (t ),bulk and P are given in
Table I. One can see that the tight-binding model gives very
good agreement with the experimental values of the bulk g
factors in PbS and PbSe. Note that, in Ref. [47], the contri-
butions of remote bands to the g factors were omitted, as the
second term in Eqs. (11) (13.1 for PbS and 33.4 for PbSe, by
the absolute value) prevails in determining the bulk g factors.
However, in NCs, the g factors are renormalized (in the first
order, as a result of the quantum confinement energy being
added to the band gap) and the contributions of remote bands
become important.

TABLE I. Experimental and calculated (tight-binding, this work)
bulk PbS and PbSe g factors, band gaps, and parameters of the
isotropic k · p model. Signs of experimental g factors have been
corrected according to Ref. [48].

PbS PbSe

TB Expt. TB Expt.

gv
t −9.624 −24.197 −16.1 ± 1.7a

gv
l −9.995 −13 ± 3b −31.453 −32 ± 7a

gc
t 10.136 25.992 16.6 ± 1a

gc
l 11.053 12 ± 3b 31.265 27 ± 7a

Eg (4.2 K), eV 0.294 0.286c 0.213 0.165c

Eg (300 K), eV 0.37–0.40c 0.26–0.29c

αvm0/h̄2 2.635 2.674
αcm0/h̄2 2.472 2.320
2P2/m0, eV 1.926 3.555

aReference [49].
bReference [50].
cReference [51].
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The matrix elements of the Hamiltonian (10) between
conduction- (valence-) band states |c, Fz〉 ≡ | 1

2 ,+1, 0; Fz〉
(|v, Fz〉 ≡ | 1

2 ,−1, 0; Fz〉), Eq. (8), can be calculated explicitly.
They are reduced to one-dimensional integrals containing the
radial functions [34]. Linear-in-B terms give the values of the
renormalized g factor in the conduction band

gc
t,l =

∫ R

0
drr2

(
gc

0t,l f 2
0+(r) − 8P

3h̄
r f0+(r)g1+(r)

−
[

gv
0t,l

3
+ 8αvm0

3h̄2

]
g2

0+(r)

)
, (12)

and in the valence band

gv
t,l =

∫ R

0
drr2

(
gv

0t,l g
2
0−(r) − 8P

3h̄
r f1−(r)g0−(r)

−
[

gc
0t,l

3
− 8αcm0

3h̄2

]
f 2
1−(r)

)
. (13)

In Fig. 3 the results of the calculations within the k · p
model according to Eqs. (12) and (13) are shown in dashed
lines. The k · p parameters used in calculations are given in
Table I. The agreement with the tight-binding results is within
the accuracy of the definition of the g factors extracted from
the atomistic calculations. When NC shapes are varied [34],
then the g factors obtained from the k · p model overlap with
the distribution of g factors in NCs of different shape, caused
by shape-sensitive valley mixing [36]. However, the shape
sensitivity of the valley mixing has relatively little effect on
the values of the g factors. In Fig. 3 we also present the
results of the anisotropic k · p model described in detail in
the Supplemental Material [34]. The only significant outcome
of the anisotropic model is the nonvanishing difference in
renormalizations of the longitudinal and transverse g factors.

However, this difference is small compared to the renormal-
izations themselves.

III. CONCLUSIONS

To conclude, in this paper we have approached the cal-
culation of g factors for the carriers confined in PbS and
PbSe NCs from two different standpoints. On one hand, we
utilized the empirical tight-binding method to obtain g factors
of carrier states split at zero magnetic field by valley mixing
and classified with respect to irreducible representations of
the NC point group. On the other hand, we derived analytical
equations for renormalizations of bulk carrier g factors due
to the effect of quantum confinement in a NC using a single-
valley effective k · p Hamiltonian. We compared the outcomes
of the two calculations by mapping the tight-binding results
onto a single valley. This allowed us to express g factors of
the carrier states, split by valley mixing and classified with
respect to irreducible representations of the NC point group, in
terms of the single-valley longitudinal and transverse g factors
and to conclude that the sensitivity of valley mixing to the NC
shape, while significant for zero-field splittings, has relatively
little effect on carrier g factors.
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