PHYSICAL REVIEW B 107, 035413 (2023)
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Resonant structures in modern nanophotonics are non-Hermitian (leaky and lossy), and support quasinormal
modes. Moreover, contemporary cavities frequently include two-dimensional (2D) materials to exploit and reso-
nantly enhance their nonlinear properties or provide tunability. Such materials add further modeling complexity
due to their infinitesimally thin nature and strong dispersion. Here, a formalism for efficiently analyzing third
harmonic generation (THG) in nanoparticles and metasurfaces incorporating 2D materials is proposed. It is based
on numerically calculating the quasinormal modes in the nanostructure, it is general, and does not make any prior
assumptions regarding the number of resonances involved in the conversion process, in contrast to conventional
coupled-mode theory approaches in the literature. The capabilities of the framework are showcased via two
selected examples: a single scatterer and a periodic metasurface incorporating graphene for its high third-order
nonlinearity. In both cases, excellent agreement with full-wave nonlinear simulations is obtained. The proposed
framework may constitute an invaluable tool for gaining physical insight into the frequency generation process
in nano-optic structures and providing guidelines for achieving drastically enhanced THG efficiency.
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I. INTRODUCTION

Nonlinear light-matter interactions are an indispensable in-
gredient in contemporary optical systems since they allow for
advanced functionalities [1,2], well beyond the reach of linear
phenomena. Harmonic generation, parametric amplification,
frequency mixing, multiphoton and saturable absorption, self-
and cross-phase modulation are only some of the most notable
nonlinear effects [3]. Nonlinear optics first flourished in bulk
crystals and optical fibers where long interaction lengths are
available. The recent shift towards compact nanophotonic sys-
tems and ultrathin metasurfaces limits the interaction length or
volume between the optical field and the nonlinear material,
necessitating different physical approaches in order to achieve
strong nonlinear effects. More specifically, these include (i)
the exploitation of resonant structures with high quality fac-
tors to confine energy temporally [4] and small mode volume
to confine energy spatially producing enhanced local fields
[51, and (ii) the utilization of highly nonlinear materials, be it
bulk (nonlinear polymers, chalcogenide glasses, etc.) or, more
recently, the emerging category of sheet, two-dimensional
(2D) materials [6,7]. Sheet materials [graphene, transition
metal dichalcogenides (TMDs), black phosphorus, MXenes,
etc.] have illustrated great potential for photonic and opto-
electronic applications [8—10]. However, they also introduce
complexity when incorporated in a nanophotonic system, both
in terms of its practical realization, as well as its efficient
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analysis and design, e.g., their atomic thickness and strong
dispersion needs to be handled carefully.

Here, we focus on how the two-dimensional nature as
well as the lossy and dispersive properties of 2D materials
should be handled rigorously in the context of modal analysis
tools for open (leaky) resonant third-order nonlinear sys-
tems. Note that practically all modern nanophotonic systems,
including dielectric and plasmonic particles, periodic metasur-
faces, photonic crystal membranes, and compact guided-wave
resonators, exhibit significant radiation leakage. Such con-
temporary systems can be efficiently studied using modal
techniques, a research direction which has gathered signifi-
cant interest recently [11-15]. Initially, researchers focused
on developing a linear framework capable of handling non-
Hermitian resonant structures (leaky and lossy) comprised
of bulk materials. The supported quasinormal eigenmodes
(QNMs) diverge in space away from the resonator and their
correct normalization became the subject of numerous studies
[5,16-19]. Building upon this normalization, a number of
techniques to reconstruct the full spectrum of a system using
the supported QNMs were presented [20-26]. Other important
aspects have been discussed as well, such as completeness
and orthogonality of the expansion [12,14,15], and the im-
portance of including static modes on the expansion [27,28].
Furthermore, related classical theoretical tools of Hermitian
analysis, such as perturbation theory [29-32] and temporal
coupled-mode theory (CMT) [32-35], were modified to be-
come applicable to QNMs and non-Hermitian systems.

Despite the progress concerning linear systems, very lim-
ited focus has been directed to the wider class of nonlinear
non-Hermitian systems [32,36]. In this work, we contribute
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towards this important direction by developing a QNM-based,
multimode third-order nonlinear framework which allows
to include 2D photonic materials with loss and dispersion
within the resonant structure. It builds on Ref. [36], which
discusses bulk materials and second-order nonlinearity. Our
contribution is twofold: (i) it introduces 2D materials in a
linear QNM framework, naturally incorporating their unique
infinitesimally thin nature and dispersive properties, and (ii)
it contributes into the exploitation of their third-order non-
linear properties for efficient frequency generation, under the
same QNM perspective. The developed framework can aid
in efficiently analyzing and designing general resonant sys-
tems comprising bulk and sheet materials, as well as gaining
valuable physical insight into the resonances mediating the
conversion process and developing design directives for ob-
taining efficient performance.

II. THIRD HARMONIC GENERATION FRAMEWORK FOR
PHOTONIC SCATTERERS INCLUDING 2D MATERIALS

The proposed nonlinear framework is based on the abil-
ity to calculate the response of a resonant system upon a
prescribed excitation by using a finite set of QNMs [11,15].
The first step towards this goal is to correctly calculate and
normalize the supported QNMs, a nontrivial task in non-
Hermitian systems [5,16-19] due to the fact that the mode
profile outside a resonant cavity diverges [4]. To computa-
tionally calculate and normalize the supported QNMs, we
build upon Refs. [21,37], extending the methodology in or-
der to tackle contemporary photonic structures including 2D
and bulk materials with lossy and dispersive electomagnetic
properties.

For brevity, below we present the derivation concerning
the 2D material inclusions; the complete case can be found
in Appendix A. Henceforth, a 2D material with a Drude-
type complex surface conductivity (measured in S) of the
form &,(w) = —j&o/(w — jy) is assumed. It is convenient to
express the source-free curl Maxwell’s equations using the
compact notation £W,, = &,,%,,, where ¥,, = [H,, E,, J,,]”
is a supervector containing the involved electromagnetic
fields, m is a general index of the QNM order, £ is a curl
operator (in matrix notation)
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3. = —60/(@m — jy)E,8, is a surface auxiliary field that is
used to introduce the dispersive nature of the 2D material,
and §; = &,(r) is a surface Dirac function used to capture the
presence of the 2D material. Note that J,, does not correspond
to the (surface) current density I, = ESE&Y of the Maxwell’s
equations (they differ by a prefactor j). The tilde in the
fields denotes modal quantities. Similarly, @,, is the respective
complex eigenvalue of the mth-order QNM; the imaginary
part carries information regarding the linewidth of the mode.
The second-rank tensor &y is introduced to encapsulate the
2D nature of the involved material in the sense that the field
interacts with the sheet material only through its tangential
field components. Finally, y describes damping due to Ohmic
loss.

It has been shown that due to the orthonormality of QNMs
[21], scattered field of a resonator can be expanded into
an infinite sum of the form Wy (w) = Zm am(a))\ilm, where
the expansion coefficients a,,(w) are calculated through (see
Appendix A)

1 -
an(@) = —— / T EncdV, ®)
m 14

where E;,. is the incident field that excites the resonant
scatterer at the real frequency w and must include possible re-
flections from the background [19]. Equation (2) applies only
when a (surface) conductivity term is present; for the more
general case of bulk and sheet materials, see Appendix A.
Although the completeness of the expansion is not strictly
ensured for any arbitrary geometry, it is widely accepted that
the expansion is complete inside and in the vicinity of the
resonant cavity [14,15]. In Eq. (2), all the involved modes are
normalized such that

. . . .35,
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Equations (2) and (3) are key ingredients in the descrip-
tion of linear resonant systems incorporating dispersive 2D
materials with the QNM framework. The last term on the
left-hand side of Eq. (3) is an important and necessary addi-
tion, providing the correct normalization of the QNMs when
the nanophotonic resonator includes 2D materials; recently,
we have revealed a similar contribution in the normalization
for Hermitian (or quasi-Hermitian) systems [38]. Omitting
this term introduces large errors [38], especially when dis-
persion is strong [see spectral derivative in Eq. (3) and the
Supplemental Material [39], Sec. Sl.iii for a comparison].
Note that in order to correctly evaluate Eq. (3) one has to
terminate the computational domain with perfectly matched
layers (PMLs) and perform the integration inside the artificial
domains as well [5]. Alternatively, an appropriate surface term
should be added to truncate the infinite space into a finite
computational domain [16]. In this case, the applicability is
limited to systems with a uniform background material [14].
A similar approach can be followed to describe nonlinear
effects, as shown in Ref. [36] for the case of bulk materials and
second-order nonlinearity. In this work, we allow for the in-
clusion of 2D materials and focus on third-order nonlinearities
and third harmonic generation (THG) in particular. Note that
coupled-mode theory frameworks involving a single mode in
each of the fundamental and the third harmonic frequencies
exist in the literature [40,41]. However, they fail to capture the
correct physical picture when more resonances are involved
in the conversion process. In sharp contrast, the proposed
multimode framework allows for interaction between all the
supported QNMs without making any prior assumptions re-
garding which modes mediate the conversion process. We
start by writing the scattered fields at the fundamental and
third harmonic frequencies as
LU = w0 + S (4a)

sct g’

LUG) = 30w + S5 (4b)

sct mnc
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where Si(r‘l“c) =[0 0 6yEin8s]7 is the direct excitation at w

Bw) _

(e.g., an appropriately polarized plane wave) and S; ' =

[0 —je'J525, 01" is the induced nonlinear source at
3w (no direct external excitation at 3w takes place). The in-

duced nonlinear surface current at 3w JS&"{ = (03 /4)(E(“’) .

Al
Efj‘ﬁ))Et(f‘l’l), acting as the source at the third harmonic fre-
quency, 1s determined from the nonlinear interaction between
the total tangential electric field components at the funda-
mental frequency, i.e., the sum of the incident, reflected from

the background, and scattered fields (E;"’) =E@ + E@ +

mnc

EY) = E” + E'%)). The nonlinear surface conductivity o3 is
the only independent element of the respective, fourth-order
nonlinear tensor [38]. By substituting the QNM expansion
at the fundamental frequency in Eq. (4a) and following a
procedure similar to Ref. [21], we can retrieve Eq. (2) (see also
Appendix A). In a completely analogous manner, we substi-
tute the respective expansion at the third harmonic frequency
Yoo — Yom an(3w)W,, in Eq. (4b) and arrive at

sct

anGw) = — / £, 30 5.dv. (5)
\%4

Oy — 3w
Equation (5) constitutes the second and most important result
of this work. It allows to calculate the expansion coefficients
and, thus, the nonlinear response of a resonant system with
third-order nonlinear sheet materials. To do so, one first needs

to specify the nonlinear current J?ﬁﬂ using the scattered Eg‘c‘i)

and the background E{*’ = E{*) + E fields at the funda-

mental frequency. E\ is reconstructed from the eigenmodes

and their respective amplitudes a,,(w) while E;}w) is calculated
either analytically or numerically in the absence of the res-
onant cavity. We shall highlight that when E{*’ # E{ (i.e.,
in the presence of a substrate), the former should replace the
latter even when a,,(w) are calculated. Then, the scattered
field at the third harmonic EZ® can be reconstructed using
the same eigenmodes but weighted with the new amplitudes
a,(3w) [Eq. (5)] (now the QNMs in the neighborhood of 3w
are expected to mainly contribute). Note that this strategy can-
not take into account neither the power lost from the field at
the fundamental frequency nor the back-conversion from the
third harmonic to the fundamental frequency. It is termed the
undepleted pump approximation and is accurate for moderate

conversion efficiencies, as discussed below [42].

III. EVALUATION OF NONLINEAR FRAMEWORK IN
GRAPHENE-COMPRISING RESONANT SYSTEMS

To highlight the capabilities of the developed nonlinear
framework, we analyze two resonant structures comprising
graphene, the most prominent representative of the 2D ma-
terials family. We choose THz frequencies where graphene
supports tightly confined surface plasmons (GSPs) [43]. The
two structures under study are depicted in Fig. 1. The first is
a single scatterer: a graphene strip lying on a glass substrate
[Fig. 1(a)]. The second is a periodic system derived from the
first one, i.e., a metasurface made of periodically arranged
graphene strips on a metal-backed substrate to operate in
reflection [Fig. 1(b)]. Transverse-magnetic (TM) polarized
incidence in the xy plane is considered in order to excite

[] glass substrate [l gold reflector @ graphene

FIG. 1. Schematic illustration of the two graphene-based res-
onant systems under study. (a) Single scatterer: a graphene strip
of length L resides on a glass substrate. (b) Periodic system: a
metasurface comprised of graphene strips with pitch A on top of
a metal-backed substrate to operate in reflection. The metasurface
is designed to act as a perfect absorber for a specific QNM. TM-
polarized incidence inside the xy-plane is considered (H = H,Z) in
order to excite graphene surface plasmons propagating along the x
axis. The bottom panels depict the considered two-dimensional com-
putational domains along with the perfectly matched layers (PMLs)
used for window truncation. In order to correctly evaluate Eq. (3),
one has to perform the integration inside the PMLs as well.

graphene surface plasmons propagating along the x axis. In
what follows, the response of both systems around the third
harmonic frequency is studied using the developed QNM
framework and validated through nonlinear full-wave simu-
lations [42].

A. Graphene-strip single scatterer on a glass substrate

We first consider a single graphene strip of length L =
5 um, lying on a glass substrate with n = 1.45 [Fig. 1(a)].
Graphene conductivity in the THz frequency band has a
strongly dispersive Drude-type behavior; as is the case with
metals below the plasma frequency, this allows for supporting
strongly confined plasmons [43]. Here, we adopt the param-
eters y = 1/40 Trad/s, op = e*ue/mh?, and u. = 0.3 eV for
its linear properties [44] and o3 = +;1.2 x 107'8 S(m/V)?
to describe the third-order nonlinear response [45]. Using
the commercial finite element method software COMSOL
MULTIPHYSICS®, we are able to calculate the QNMs of this
leaky and dispersive system, building on the auxiliary-fields
approach presented in Refs. [21,37] and appropriately extend-
ing it to include sheet materials with Drude dispersion such
as graphene. A relatively small set of the eigenmode solutions
returned by the solver of COMSOL is depicted in Fig. 2. All
QNDMs are clearly marked with a red “X” indicator and have a
relatively small imaginary part which results in quality factors
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FIG. 2. Spectrum of QNMs and spurious modes for the examined graphene-strip scatterer. Red “X” markers designate the QNMs. They
all have small imaginary parts indicating high quality factors. They are unevenly spaced along the real axis due to graphene dispersion. The
mode profiles (E, component) are included as insets for the three lowest-order modes and one higher-order (m = 25) mode, lying closest to the
third harmonic frequency of the m = 3 mode, which will be exploited for the excitation at the fundamental frequency. Green triangle markers
highlight a few spurious modes, which are also included in the expansions to obtain better accuracy.

ranging from a few 10’s/100’s (low-order modes) to a few
1000’s (higher-order modes). They correspond to standing
waves of GSPs propagating along the x axis and getting
reflected at the edges of the finite strip, satisfying a Fabry-
Pérot—type resonant condition of the form 2k>PL +2¢, =
n2mw, where ¢, & —3m /4 is the reflection phase at the strip
termination [46], which is almost dispersionless as we have
numerically verified and differs from the expected —n reflec-
tion phase of, e.g., plasmons in metals. Note that the integer
n does not coincide with the mode index m, which measures
the number of half-wavelengths along the graphene strip. The
reflection phase ¢, and the phase accumulated as the GSP
propagates (kaPL) are of opposite signs and the resonance
condition of, e.g., the m = 3 QNM is fulfilled at a total accu-
mulated phase of 4, i.e., n = m — 1 here. The Fabry-Pérot
nature of the modes is also verified by the equidistant spacing
when momentarily considering a nondispersive (unphysical
case) graphene strip (see the Supplemental Material, Fig. S2
[39]). The field profiles of a few QNMs are included as in-
sets, showing the three lowest-order modes and a higher-order
one (m = 25). The m = 25 mode is the closest to the third
harmonic frequency of the m = 3 order mode (wyes3/2m =
7.46 THz and wres 25/2m = 22.49 THz), which is chosen to
act as the fundamental mode, i.e., to accommodate the exci-
tation at the fundamental frequency. This is justified by the
fact that m = 3 is the first symmetric (bright) mode with a
high quality factor (exceeding 100), thus providing strong
resonant enhancement to boost the conversion process. Note
that antisymmetric modes cannot be excited with a normally
incident plane wave (see Supplemental Material, Sec. S2.i,
for a relevant discussion [39]). Despite being of Fabry-Pérot
type, the QNMs are unevenly spaced, a direct consequence
of the highly dispersive conductivity of graphene and, to a
much lesser extent, of the dispersion of the reflection phase ¢,
experienced by the propagating GSP at the edges of the strip
[46] (see Supplemental Material, Sec. S1.i, for the pole struc-
ture of the system when material dispersion is momentarily
ignored [39]). Thus, we do not find a QNM at exactly 3wes 3
but rather one lying in its vicinity, and the respective mode
order is m = 25 instead of m = 9.

Spurious modes are also returned by the COMSOL eigen-
solver and are marked with green triangles in Fig. 2 (see
also the Supplemental Material, Fig. S1, for a more expanded
spectrum [39]). These modes, mainly located either inside
the PML (PML modes) or spanning the entire computational
domain, should be included in the calculations to ensure the
best possible accuracy [21,36]. For a more in-depth discussion
of the PML modes and the accuracy of the linear framework,
the reader is referred to Ref. [11].

As a first evidence of the capabilities of the proposed
framework, in Fig. 3 we plot the absorption and scattering
cross sections of the graphene-strip scatterer (solid lines) at
the vicinity of the third harmonic frequency after illumination
with a TM-polarized, normally incident plane wave towards
the —§ direction of the form Ei,. = Eyexp {+jkoy}X with
Ey = 1 kV/cm here (harmonic time convention: exp {+ jwt}).
The cross sections are calculated through the equations in
Sec. Sl.ii of the Supplemental Material [39] (see also [47])
by using the scattered field at 3w, ESE" ), obtained through the
QNM expansion utilizing the a,,(3w) coefficients [Eq. (5)] as
the weights of the sum. Note that each point on the graph
corresponds to a different illumination frequency w. A di-
rect comparison with the respective results obtained using
full-wave nonlinear simulations (blue circles) reveals the very
high accuracy of the developed QNM framework. Due to the
continuous wave (cw) nature of the excitation, the nonlinear
full-wave simulation can be decomposed in two independent
linear simulations. First, a linear scattering problem is solved
at the fundamental frequency w to retrieve Eg'c”t) Then, the
total field El(‘”, i.e., the summation of the analytically known
background field and the calculated scattered field, is used
to calculate the nonlinear surface current Jgffﬂ. This induced
nonlinear surface current acts as a source for a second linear
(radiation) problem at the third harmonic frequency 3w. From
the solution of the second linear problem, we can specify ng" )
and, consequently, we are able to calculate the respective cross
sections included in Fig. 3 with markers. The above process
is repeated for each frequency point of Fig. 3, i.e., for N
frequency points one has to solve 2N linear problems (N at
w and N at 3w).
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FIG. 3. Third harmonic generation with a graphene-strip scatterer on a semi-infinite glass substrate. Evaluation of the proposed nonlinear
framework by comparing with full-wave simulations when Ey = 1 kV/cm. (a) Absorption cross section at the third harmonic frequency in
units of graphene strip length. Insets: E,-field distribution as obtained from full-wave simulations at the two absorption peaks with the second
lying exactly at the resonance frequency of the m = 25 QNM. (b) Scattering cross section at the third harmonic frequency in units of graphene
strip length. Inset: zoomed-in plot around 22.49 THz where the second peak lies. Even weak spectral features are accurately resolved, testifying

for the high accuracy of the proposed framework.

Interestingly, two distinct peaks appear in the absorption
cross section [Fig. 3(a)]. As mentioned, due to graphene
dispersion a higher-order resonance is not found at exactly
3wyes,3. The simultaneous presence of resonances at exactly
w and 3w is frequently termed double-resonant enhancement
[40,48] and would correspond to conditions for optimum con-
version efficiency. Here, this is not exactly the case, leading
to two distinct peaks. The first peak emerges precisely at the
third harmonic of the fundamental mode, i.e., at 3wyes 3/2m =
22.38 THz. The second peak lies at the resonance frequency
of the m = 25 order mode, i.e., at 22.49 THz. The fact that
the enhanced conversion process at 22.49 THz is mediated
by the m = 25 order mode is further corroborated by the
distribution of the E, component observed in the full-wave
simulations (radiation by nonlinear current on graphene) [see
inset in Fig. 3(a)]; it features exactly the same distribution as
the pure m = 25 QNM extracted from the eigenmode anal-
ysis (cf. Fig. 2). On the contrary, since no QNM is found
at exactly 22.38 THz, a hybrid field distribution is seen in
the corresponding inset. The observation of the second peak
is a consequence of the low quality factor of the fundamen-
tal (m = 3) mode. Given that Q;3; = 486.4, the frequency
22.49/3 = 7.4967 THz still lies under the Lorentzian of the
fundamental mode and, thus, a non-negligible amount of light
interacts with graphene and is up-converted. The second peak
exhibits approximately half the amplitude of the first one
due to the suboptimal coupling of the respective fundamental
frequency (note that the field distributions in the insets have an
order of magnitude difference). Finally, a secondary peak ap-
pears in the scattering cross section as well [inset of Fig. 3(b)],
but with a much lower amplitude. This is attributed to the

corresponding resistive and radiative quality factors, which
equal QOres 25 = 5656.7 and Qr,q.25 = 89 766, respectively, and
to the fact that ogps o 1o/ (1 + rg)* while oger o< 1/(1 + 1),
with rg = Orad/ Ores [4,49].

We stress that single-mode frameworks such as the classi-
cal form of the CMT [42,50-52], are not able to capture such
a complex spectral behavior. On the contrary, the presented
multimode framework captures the actual physical picture
with multiple resonances being involved in the conversion
process. Finally, note that if we want to shift the resonance
positions and place a higher-order resonance exactly at the
third harmonic of the fundamental frequency to enhance the
conversion efficiency, we can do so by resorting to a finite-
width scatterer and tuning the dimension along the z axis.
This way, the underlying waveguide becomes of finite width
introducing waveguide dispersion and providing an additional
degree of freedom in shaping the total dispersion of the prop-
agating GSP and, thus, the positions of the resonances [53].

B. Graphene-strip metasurface on a metal-backed
glass substrate

For the second example, we switch to a periodic system,
i.e., we expand the single graphene strip of the previous sec-
tion into a metasurface, which is backed by a gold reflector to
operate in reflection mode [Fig. 1(b)]. Metasurfaces and other
periodic structures (gratings, photonic crystal membranes, fre-
quency selective surfaces) are very important components in
photonics. In order to be able to tackle the metasurface under
study with the proposed framework, we will need to make
several modifications; they are detailed in what follows.
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FIG. 4. Eigenmodes of the reflective graphene-strip metasurface:
dependence of a few, low-order QNMs on the angle of incidence .
The length of the graphene strip is L = 5 um, while the pitch of the
metasurface is A = 10 um and the substrate height is 7 = 19.5 um.
For details on how the imaginary and real parts of the resonance
frequencies vary, see the main text and Fig. S5 of the Supplemental
Material [39]. Insets: E,-field distribution of a few QNMs for ¢ =
20°.

The length of the graphene strip remains the same, while
the periodicity (lattice constant) is chosen as A = 10 um (fill-
ing factor f = 50%) and the height of the substrate as h =
19.5 um. These two parameters were fine tuned to achieve
perfect absorption for normal incidence with the m = 3 order
QNM, eliminating any reflections and boosting conversion
efficiency [53]. In terms of the corresponding quality fac-
tors, this is achieved when Qs = QOrag, frequently termed
the critical coupling condition [54]. Furthermore, due to the
small wavelength (large parallel wave vector) of propagating
plasmons, the metasurface lattice constant is deeply sub-
wavelength. It remains subwavelength even at the vicinity of
the third harmonic frequency (A3, ~ 13.4 um at 22.4 THz),
meaning that only the zeroth diffraction order contributes to
the reflection at normal incidence. The first diffraction order
in reflection will start becoming propagating for § > 20°, as
A /A3, > 1/(sin ¥ + 1), but even for higher angles (e.g., 40°)
considered in the simulations included here, we have found
that it carries only a very small portion of the reflected power.

A small set of the supported QNMs around the funda-
mental frequency are shown in Fig. 4, considering different
incidence angles (¢ = 0°, 20°, and 40°). They have been
calculated assuming the phase advance conditions that would
be imposed between the side-periodic boundary conditions
[planes x = —A /2 and +A/2 in Fig. 1(b)] in excitation sce-
narios with obliquely incident plane waves. Note that the
eigenvalue calculations are performed using a formulation
involving the periodic envelope of the electric field [55,56]
(Bloch-Floquet theorem); the information regarding the phase
difference |kp|A between periodic planes, which contains
the unknown resonant frequency through kg, is included
within the modified wave equation instead of an appropriate
boundary condition [19]. See Appendix B for the emerging
equation and a brief discussion.

Observing Fig. 4, the complex eigenfrequency of each
mode changes depending on the angle of incidence. Both
real and imaginary parts are affected (modifications to the
real part are not practically observable due to scaling but
are included in the Supplemental Material, Fig. S5 [39]).
Interestingly, symmetric (m is odd) and antisymmetric (m is
even) modes are affected differently (the symmetry of the
modes is considered with respect to the x = 0 plane). Sym-
metric modes exhibit pronounced differences in the quality
factor, which can either increase or decrease depending on
the relation between the resonance wavelength and the height
of the substrate. This is verified by considering the case
of a transmissive metasurface without a backplane (infinite
substrate); in this case, the quality factors obtained from
the eigenvalue problem monotonically increase with increas-
ing angle as radiation is suppressed (see the Supplemental
Material, Sec. S2.ii [39]). Antisymmetric modes retain a prac-
tically constant quality factor, determined by the resistive
component Q.s, which remains practically unchanged with
¥ due to the strong confinement of the field and the fact that
QOraq attains very high values. The only exception is the lowest-
order, m = 2, mode which can become quite radiative as the
incidence angle increases. A more comprehensive discussion
regarding the dependence of the QNM eigenvalues on ¥ is
included in the Supplemental Material, Sec. S2.i [39].

Subsequently, we use the obtained QNMs, as well as the
accompanying spurious modes, to calculate the absorption
and reflection at the third harmonic frequency. To do so, we
have to modify the framework of Sec. II to correctly take into
account the envelope formulation used to obtain the respective
QNMs. To this end, we use the Bloch envelope ¥, (lower-
case), rather than the full field \ilm, for obtaining the expansion
coefficients [19]. Using W,,(r) = {”m(l‘) exp{—jKp, - T} =
%m(r) exp{—jko .1 - r} where kg ,, = ko, is the Bloch wave
vector, the curl Maxwell’s equations are transformed into
EAJ/m = &),,,M;ﬁm and the matrix operator

A 1 —(cow)™'gx 0
M= | (coe) gx 1 0 6)
0 0 1

is introduced to include the information of the incident wave
direction through 5. For example, in a metasurface with pe-
riodicity along the x axis and under illumination with an
incident angle @, § = n; sin ¥X and n; is the refractive index
of the superstrate. Ultimately, the expansion coefficients take
the form

am(w) = —
o — @

‘/\jfm : eincdvv (7)
14

and the normalization condition acquires an additional term
related with 5, now becoming

- . a6,
/ |:ém : Sém - h7m . /‘Lhm - éfm : ] 7 (w)éis
Vv

I - .
—n-—_, x&,+€_, x hm)]dV =1 ®)
€o

Note that in Egs. (7) and (8) the notation 17/_m implies
the use of the left eigenvectors [19,57]. In periodic sys-
tems comprising reciprocal materials they are found through
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W_,(r) = ¥_,(r)exp{+jkon - r} while _,,(r) can be ob-
tained from fﬁm(r) through simple transformations [57]. In
general, when nonreciprocal materials are involved or if struc-
tural asymmetries exist, left eigenvectors need to be calculated
separately in order to construct the orthonormal basis that is
required to obtain the expansion in QNMs [12,18,33,58]. We
highlight again here that E;,. should be replaced with E,, in the
presence of a substrate, as is the case considered here. Finally,
the expansion coefficients at the third harmonic frequency are
calculated through

an(30) = —

Wy — 30)

~ :Bw (s @
X /V |:em 'JSNﬂ& - C()—g(hfm X JE?Nﬂgs)}dV’
©))

and involve an additional term compared to Eq. (5) which
depends on 5. Note that the nonlinear surface current density
at 3w is defined as jOx; = (03/4)(e - €())e.), i.e., by using
the spatial envelope e, extracted from the total field E, by
removing the appropriate phase term exp{— jkon - r}.

Next, the structure is excited with a TM-polarized plane
wave inside the xy plane (H;,. = H,Z) and the obtained results
(reflected and absorbed power) are depicted in Fig. 5 for
an input power (per period) of 100 W/m and an angle of
incidence ¢ = 20°. Note that this input power level corre-
sponds to an electric field of |Ei(n“é)| = 0.86 kV/cm. This value
is within current experimental capabilities. For example, in
Ref. [59] an experiment was conducted at 0.3 THz with a
peak electric field (pulsed operation) of |Ei(n(‘c’)| ~ 80 kV/cm
to reveal up to seventh harmonic generation in graphene.
For the chosen input power level though, only THG is
practically significant. Once again, excellent agreement with
full-wave nonlinear simulations is attained. The main peak
appears at 22.404 THz, exactly at 3wy 3, while a second
peak appears in this example as well, lying at wres 25/2m =
22.489 THz, which is the resonance frequency of the respec-
tive m =25 QNM. In contrast to Fig. 3(a), the amplitude
of this secondary peak is significantly suppressed since the
fundamental frequency 22.489/3 = 7.496 THz is not well
accommodated under the respective Lorentzian, which is cen-
tered at wyes3/2m = 7.468 THz and possesses Q; 3 = 769.3.
Nevertheless, the proposed framework succeeds in accurately
capturing the amplitude and line shape of these weaker peaks
as well (see insets of Fig. 5).

Finally, in Fig. 6 we keep the incident wave frequency con-
stant at 7.468 THz, vary the power it carries, and examine the
conversion efficiency from the fundamental to the third har-
monic frequency [calculated as CE = 10 ln(Pr(:;) ) /Pinc)]. The
conversion efficiency increases with incident power as antici-
pated and exceeds —20 dB (1%); this efficient up-conversion
is a result of the strong nonlinearity of graphene and the rela-
tively high quality factor of the supported resonances. Clearly,
the proposed framework and the nonlinear full-wave simu-
lations are in excellent agreement over a wide range of Py
values. We note again that the developed framework and the
full-wave simulations are performed for the undepleted-pump
scenario. This scenario is applicable under two main assump-
tions: First, the back-conversion from the third harmonic to

<
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FIG. 5. Third harmonic generation with reflective graphene-strip
metasurface. Comparison between the proposed multimode nonlin-
ear framework and full-wave nonlinear simulations. (a) Absorption
and (b) reflection at the third harmonic frequency. The incident field
is a TM-polarized plane wave (Hj,. = H,Z) at an incidence angle
¥ = 20°. Insets: zoom-in around 22.49 THz where the second peak
lies. The capabilities of the framework in reproducing the full-wave
results are evident, even when weak and non-Lorentzian features are
involved.

the fundamental frequency is negligible and, second, only a
negligibly small portion of the pump power is depleted and
converted to the third harmonic frequency. Both assumptions
imply that the amplitude of the field at the fundamental fre-
quency is only slightly changed by the conversion process.
These assumptions are very reasonable for CEs up to —20 dB
(1%) [42].

IV. CONCLUSION

We have proposed a modal formalism for studying third
harmonic generation in non-Hermitian open resonant systems
comprising 2D materials. It is constructed by expressing the
scattered fields at the fundamental and third harmonic fre-
quencies as expansions in a set of supported quasinormal
modes. The infinitesimally thin and dispersive nature of 2D
materials has been rigorously taken into account. A graphene-
strip single scatterer and a periodic metasurface were selected
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FIG. 6. Conversion efficiency of the graphene-strip metasurface
versus incident power. The results obtained using the proposed QNM
framework are in excellent agreement with nonlinear full-wave simu-
lations over a wide range of P,;,. values. The conversion efficiency can
exceed —20 dB (1%) for realistic input intensities (see main text);
this efficient up-conversion is a result of the strong nonlinearity of
graphene and the high quality factor of the supported resonances.

as examples for demonstrating the framework capabilities.
In both cases, excellent agreement with full-wave nonlinear
simulations has been obtained. By providing insight into the
full range of quasinormal modes supported by the structures,
we were able to explain the spectral features of the non-
linear response arising due to the different resonant modes
involved in the conversion process. In the reflective meta-
surface, the conversion efficiency can exceed —20 dB (1%)
for realistic input intensities, highlighting the practical poten-
tial of graphene and 2D materials in general for nonlinear
nanophotonics. The proposed framework combines compu-
tational efficiency along with the ability to acquire physical
insight into the frequency generation process and provide
guidelines for boosting the conversion by engineering the
mode spectrum.
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APPENDIX A: MULTIMODE QUASINORMAL-MODE
FRAMEWORK FOR PHOTONIC SCATTERERS
INCORPORATING BULK AND SHEET THIRD-ORDER
NONLINEAR MATERIALS

In this Appendix, we present the complete derivation of
our developed framework, which includes the general case
of cavities with lossy, dispersive, and anisotropic materials.
Furthermore, the resonant cavity can include both bulk and
sheet-type materials. Although any combination is allowed,
for the sake of the presentation we will assume a cavity con-
sisting of a bulk material with a single Drude-Lorentz pole
and a sheet material with a single Drude pole, i.e., described
by the equations

2
“r ) (Ala)

2 2
W™ — Wy — JWYp

g(w) = 80500(1 —

5o

0 (A1b)
w—=JVs

o(w) = —j

The parameters w),, wo, and y, are, respectively, the plasma
frequency, resonance frequency, and damping factor of the
bulk material. Additionally, & is the relative permittivity of
the material at infinite frequency, which can be anisotropic.
For the sheet material, y; is the damping factor and 6o/ y; is the
(anisotropic) conductivity at w = 0. Note that both & and &
are spatially dependent, so that, e.g., 5,(r) = 0 outside the 2D
material. For bulk materials without dispersion, as for exam-
ple is commonly the case with the background permittivity &,
of a photonic scatterer £(r) = goe,l3 (I is the 3 x 3 identity
matrix).

To include both the bulk and sheet dispersive material in
the framework, three auxiliary fields are needed, two for the
Drude-Lorentz pole of the bulk material and one for the Drude
pole of the 2D material [21,37]. More generally, a Drude-
Lorentz pole requires always two auxiliary fields and a Drude
pole only one. In our case, we define the auxiliary fields

w2
Pb = —80?‘00 217 N E, (Aza)
w? — wf — joy,
Jp = joPy, (A2Db)
J,=——2 s, (A20)

to accompany the electric E and magnetic H fields in the Maxwell’s equations. Following the notation of the paper, the source-

free curl Maxwell’s equations are expressed in the compact notation E\Ilm = Wy \Ilm, where now \Ilm = [Hm

and
0 juVx
_j(80§oo)_lvx 0
L= 0 0
0 —j(Eoéoo)w,Z,
0 —000s

m Pb m Jhm Js m]

0 0 0

0 1(80500)_1 _(50?300)_1

0 —j 0 (A3)
Jjog JVb 0

0 0 JVs
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To find the expansion coefficients a,,(w), one has to begin
from the scattering formulation at the fundamental frequency.
Then, the curl Maxwell’s equations take the compact form
LW = W@ + 8 where

sct nc ?

0
(1 — sz‘gol)a)Einc
()
sw=| 0 (Ad)
J(€0E )a)pEinc
&OEinCBS

showing that the incident field interacts both with the bulk and
sheet material. Using Eq. (A4) and the Lorentz reciprocity
theorem, it is easy to show that the expansion coefficients
a,(w) are given by the general expression [21]

1 f, ¥IDS@av
am(w) = — == ) (A5)

with D = diag(—p, 0o, W5 (@7E0800) !, —(@re0fe0) ™!,
oy ') being a diagonal matrix, suitable to apply the
unconjugated Lorentz reciprocity theorem [37]. The
denominator of Eq. (A5) is actually the QNM normalization
factor, which can be cast in the expanded form

/ (Em- HoE@)|
Vv Jw W=
- ~ ~ 06 ~
_H, - pfl, — 22 Emsx)dv =1, (A6)
w W=y,

and includes the dispersive properties of both bulk and sheet-
type materials through the spectral derivatives d{w&(w)}/dw
and 95 (w)/dw, respectively. Henceforth, we assume that
all the QNMs are appropriately normalized according to
Eq. (A6). With this in mind, the expansion coefficients of
Eq. (AS) take the more useful form

am(w) =
Oom —

1 ~ _
o / |:Em - we(Ece — €p)Einc
Vv

+ Em . (Z)mg()(gr(&)m) - g‘oo)Einc

L_Emcax}dv. (A7)

K, -

@Om = JVs

It is easy to see how Eq. (A7) expands the framework of
Ref. [21] since it now includes the contribution of both bulk
and sheet-type dispersive materials. One can also see that
Eq. (2) is a simplified version of Eq. (A7). Note that in
Eq. (A7), we have used the notation &,(@,,) = &(&n)/&o. Fur-
thermore, we shall highlight again that in the presence of a
reflected wave, the incident field E;,. should be replaced with
the background field E;, throughout the calculations.

At the third harmonic frequency, a similar approach can
be followed to retrieve the respective coefficients. We allow
for the general case where both the bulk and sheet-type mate-
rials exhibit nonlinearities of the same form, induced using
the nonlinear counterpart of the auxiliary fields P, and Jj,

respectively, i.e.,
Pfﬁi = (X3/4)(Et(‘”) 'Et(w))E;(w)’
J?ﬁﬁ = (03/4)(E\) - EL)E

Al Y Y e

(A8a)
(A8b)

with the subscript “¢”” denoting the total field as the sum of the
incident, reflected from the background and scattered fields.
The use of these auxiliary fields which actually coincide
with the respective nonlinear polarization and surface current
quantities is a natural selection when electronic nonlineari-
ties are described [42]. The scattered field formulation at 3w
acquires the compact form £W? = 30w + 8P where
the source term is given by

0
—j(80800) T [ B)Pp L + s N85 ]
s = ; ,
0
0

(A9)

i.e., it only contributes as a right-hand-side term in the
Ampere-Maxwell equation. Using Si(gé") in Eq. (AS), the ex-
pansion coefficients for the third harmonic frequency can be

calculated through

m3 =
@ (3) Om — 3w

X f Bk, - Poel — jE, - I¢8)dV. (A10)
Vv

Equation (A10) is a generalized version of Eq. (5) to include
the more general case of cavities with both bulk and sheet-type
third-order nonlinear materials. This equation is presented in
the context of multimode non-Hermitian systems. In our re-
cent works, the simpler case of single-mode quasi-Hermitian
systems has been addressed [38,42].

As a final remark, we note that materials with multiple
Drude-Lorentz poles can be introduced in the formulation
simply by using an appropriate number of auxiliary fields to
represent the respective poles. Examples of such a scenario
are noble metals with interband transitions above the plasma
frequency or dielectric materials described by a Sellmeier
equation of the general form

3 2
BiA
2 2
n“(A) =ny+ E - =
— A —Cp

Equation (A11) introduces three poles in the system, thus six
auxiliary fields are needed for its correct representation. It is
more convenient to express Eq. (All) as a function of the
angular frequency instead of the wavelength and to use the
permittivity instead of the refractive index, i.e.,

(Al1)

3 2

e(w) = 80800(1 —

where w, x = 27w coy/Bi/(noCy)? and wox = 2mcy,/1/C} are
the plasma frequency and the resonance frequency of each
pole while e, = n3; typically, no losses are included in the
Sellmeier equation since it is used to describe dielectric ma-
terials and thus y, ; = 0. The expansion of the framework to
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resonant structures consisting of multiple bulk and/or sheet
materials with multiple poles each is trivial following the
above description.

APPENDIX B: e-FIELD ENVELOPE FORMULATION
FOR PERIODIC STRUCTURES

In this second Appendix, we will present the periodic en-
velope formulation (e-field envelope formulation), which is
used in order to correctly calculate the QNMs of any resonant
metasurface under oblique incidence. This stems from the im-
plementation of the Bloch-Floquet periodic condition where
the periodicity vector ky needs to be specified. However, |kg|
depends on the unknown resonant frequency. This complica-
tion can be lifted by expressing the full field E(r) using the
Bloch-Floquet theorem, which states that

E(r) = e(r)exp{—jkr - r} = e(r)exp{—jkon - r}, (BI)

where ky = w/c is now scalar and the vector n carries the
information of the incident wave direction and the electro-
magnetic properties of the semi-infinite space on the side
of incidence; for instance, in a metasurface with periodicity
along the x axis and under illumination with an incident
angle ¢, § = n; sin ¥X. This notation allows the inclusion of
the term w/c within the modified wave equation and not as
a surface contribution in the respective periodic condition.
More specifically, we start from the source-free Helmholtz
equation for the full field in an eigenvector notation

Vxu'VxE, —akek, —o,J,=0. (B2

We then introduce the Bloch-Floquet theorem through
Eq. (B1) (and a respective equation for the current term J =
j exp{—Jjkon - r}) and after some trivial algebra arrive at the
respective equation for the envelope e(r) [55,56]

Vx u 'V x§,

o - ~ KoM 1 ~
—J =V xpuT(mx&,)—j—nxu VxE,
Co €o
5)2

m —1 ~ ~2 o~ ~ %
_CT"X“ N x&, —®,e¢, — dujn =0.
0

(B3)

Equation (B3) is the modified wave equation for the en-
velope; all the required information about the direction of
the incident wave and the periodicity is included within the
equation through 5. Since the envelope is a spatially periodic
quantity and thus continuous in the boundaries of the unit cell,
no Bloch-Floquet periodic boundary conditions are required;
rather, a simple continuity condition is applied. In the context
of this work, Eq. (B3) should be accompanied by the auxil-
iary field equation for graphene, which emerges from, e.g.,
Eq. (A2c) under the transformation introduced with Eq. (B1),

(@n = J¥)im + G0Bnds = 0. (B4)
Equations (B3) and (B4) can be solved by the generic FEM

eigensolver of COMSOL to get the correct QNMs for the con-
sidered system.
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