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Quantum transport in driven systems with vibrations: Floquet nonequilibrium
Green’s functions and the self-consistent Born approximation
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We investigate the effects of alternating voltage on nonequilibrium quantum systems with localized phonon
modes. Nonequilibrium Green’s functions are utilized, with electron-phonon coupling being considered with the
GD approximation (self-consistent Born approximation). Using a Floquet approach, we assume periodicity of
the dynamics. This approach allows us to investigate the influence of the driven electronic component on the
nonequilibrium occupation of the vibrations. It was found that signatures of inelastic transport gained photon-
assisted peaks. A simplistic model was proposed and found to be in good agreement with the full model in
certain parameter ranges. Moreover, it was found that driving the alternating current at resonance with vibrational
frequencies caused an increase in phonon occupation.
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I. INTRODUCTION

The transport properties of quantum dots, especially
molecular junctions, can be significantly altered by vibrations
coupled to the central region, causing an array of interesting
phenomena [1]. Of particular importance is how vibrations,
often in conjunction with other phenomena, inhibit device
functionality and stability.

Investigations that cast vibrations as localized phonons
have been extensively studied under various parameter ranges.
When coupling between electronic and vibrational compo-
nents is sufficiently small, differential conductance through
a junction has been found to vary due to changes in bias
voltage, with electrons inelastically interacting with central
phonons [1–3], explaining the experimental phenomena ob-
served in inelastic electron tunneling spectroscopy and point
contact spectroscopy experiments [4–6]. For sufficiently large
coupling between electrons and phonons, transport through
the system is suppressed due to the Franck-Condon blockade
[1,7]. With semiclassical approaches to mechanical change
within a junction, electron-friction and nonadiabatic effects
with general potentials can be studied [8–13].

In steady state, vibrations within a molecular junction have
been investigated with a variety of methods [14]. Nonequi-
librium Green’s functions approaches have been used to
model vibrations within self-consistent perturbation theory
[2,3,15,16], polaron and dressed tunneling approximations
[17,18], equation-of-motion methods [19], and many more.
Vibrations can also be studied with master equation ap-
proaches, like the Redfield master equations [20], or more
involved methods like hierarchical quantum master equa-
tions [21]. Vibrations often contribute significantly to junction
failure. With the current lifetime of many molecular junctions
being, at best, only seconds long [22], tackling the problem a
junction instability stands as a significant hurdle for the field
[8,23].

The further addition of time dependence in the form of
varying voltages and electric fields is frequent within the
theory and experiment surrounding molecular electronics, al-
lowing for the probing and control of dynamics within the
junction. A prime example is recent work that has seen
molecular junctions probed on picosecond time frames with a
laser pulse-pair scheme [24]. Time-dependent potentials also
allow for the realization of novel functionalities, including
time-dependent molecular rectifiers [25,26] and molecular
pumps [27]. Beyond static driving, molecular junctions are
often studied within time-dependent settings, like transience
[28,29], periodic driving of lead energies [30], couplings [31],
or by laser pulses [32,33], when the central junction is subject
to monochromatic electric fields [34], or within the limit of
slow drivings [35,36].

Given the importance of vibrations, understanding their
dynamics under various time-dependent scenarios will be
essentials for molecular junction designs that seek to capital-
ize on time-dependent effects. Recently, exploration into the
effects of time-dependent driving upon vibrations has been
growing: transient dynamics of vibrationally active molec-
ular junctions have been investigated theoretically with the
self-consistent perturbation theory [37] and dressed tunneling
approximation [38]; harmonic driving of gate voltages was
used to increase current within the Franck-Condon blockade
region [39]; vibrations with perturbatively slow driving have
been investigated with mean field in a nonequilibrium Green’s
functions setting [35] and with hierarchical master equa-
tions [36]; and nonequilibrium Green’s functions and linear
response theory have been utilized to investigate conduc-
tance profiles and properties of phonons under small drivings
[40–42].

Of particular interest is whether time-dependent driving
can be used to reduce vibrations while still allowing for cur-
rent flow comparable to the equivalent static case. This has
been predicted with a master equation approach [20] and for
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vibrations modeled semiclassically with a Langevin approach
[43].

Within this paper we use a Floquet nonequilibrium Green’s
function approach to investigate the effects of time-periodic
driving on a single-level electronic molecule coupled to a
single phonon mode, making use of the self-consistent pertur-
bation theory in the form of the GD approximation [29,37,44].

It was found that changes in conductance, indicative of
inelastic electron transport spectroscopy, gain photon-assisted
side peaks. Following intuition from photon-assisted trans-
port and inelastic electron transport spectroscopy, a simplistic
form for the current and phonon occupation is hypothesized
and found to be a good match in limiting cases. It was also
observed that resonances between the vibrational and driving
frequencies resulted in increases to phonon occupation, with
two different contributing mechanisms.

This paper is organized as follows: Section II covers the
theory. In Sec. III, the method is applied to a single electronic
level coupled with a phonon. In Sec. IV, the results of the
paper are summarized. Atomic units are used throughout the
paper.

II. THEORY

To describe electrons moving through a junction while
interacting with central phonons, we make use of a nonequi-
librium Green’s functions approach, considering the electron-
vibration coupling within the GD approximation, also known
as the self-consistent Born approximation [44–46].

A. Hamiltonian

The system is modeled with the following Hamiltonian:

H (t ) = Hel (t ) + Hvib + He−v. (1)

The electronic components are given by

Hel (t ) = Hcentral + Hleads(t ) + Hcoupling, (2)

Hcentral (t ) =
∑

i j

εi jd
†
i d j, (3)

Hleads(t ) =
∑

k,α=L,R

εkα (t )c†
kα

ckα, (4)

Hcoupling(t ) =
∑

ikα=L,R

tkαi c†
kα

di + H.c., (5)

and the Hamiltonian for the vibrations is given as

Hvibratons =
∑

α

ωαa†
αaα, (6)

and the coupling between the electronic and vibrational com-
ponents is given by

He−v =
∑
i j,α

λα
i, jQαd†

i d j . (7)

Here, di (d†
i ) and ckα (c†

kα
) are annihilation (creation) op-

erators for site i in the central region and kα in the leads,
respectively. For the phonons, the quantum operator for the
position is given by Qα = 1√

2
(aα + a†

α ) and the momentum

given by Pα = 1√
2i

(aα − a†
α ), where aα (a†

α ) is the annihilation
(creation) operator for the phonon α. Within the investigation,
only the energies of the leads are considered to be time de-
pendent. It is a simple extension to consider time dependence
within the central energy levels εi j and couplings tkα,i.

B. Nonequilibrium Green’s functions

To capture the dynamics of the system out of equilibrium,
we make use of a nonequilibrium Green’s function approach
[45,47,48]. On the Keldysh contour, we have the electronic
contour Green’s function:

Gi j (τ, τ
′) = −i〈Tc(di(τ )d†

j (τ ′))〉. (8)

Similarly, we have the phononic Green’s functions,

Dαβ (τ, τ ′) = −i〈Tc(�Qα (τ )�Qβ (τ ′))〉
= −i[〈Tc(Qα (τ )Qβ (τ ′))〉 − 〈Qα (τ )〉〈Qβ (τ ′)〉]

(9)

and

DPP
αβ (τ, τ ′) = −i〈Tc(�Pα (τ )�Pβ (τ ′))〉

= −i[〈Tc(Pα (τ )Pβ (τ ′))〉 − 〈Pα (τ )〉〈Pβ (τ ′)〉],
(10)

where �Qα (τ ) = Qα (τ ) − 〈Qα (τ )〉 and �Pα (τ ) = Pα (τ ) −
〈Pα (τ )〉. The corresponding noninteracting Green’s functions
are denoted with lowercase lettering.

The current from the left or right lead is given by

Iα (t ) = 2 Re

{ ∫ ∞

−∞
dt1Tr[G<(t, t1)	A

α (t1, t )

+ GR(t, t1)	<
α (t1, t )]

}
, (11)

and the occupation of the electrons within the central region
is given by

nel
i (t ) = −iG<

ii (t, t ). (12)

For the phonons, we are principally interested in the phonon
occupation:

nph
α (t ) = 〈a†

α (t )aα (t )〉 = 1

2
[〈Pα (t )2〉 + 〈Qα (t )2〉] − 1

2

= 1

2
[iD<

αα (t, t ) + 〈Qα (t )〉2 + iD<,PP
αα (t, t ) + 〈Pα (t )〉2]

− 1

2
. (13)

C. Equations of motion

To calculate the electronic and phononic nonequilibrium
Green’s functions, we use the Kadanoff-Baym equations:

i
∂

∂τ
Gi j (τ, τ

′) −
∑

k

εikGk j (τ, τ
′)

−
∑

k

∫
c

dτ1	ik (τ, τ1)Gk j (τ1, τ
′) = δi jδc(τ − τ ′) (14)
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and

−1

ωα

(
d2

dτ 2
+ ω2

α

)
Dαβ (τ, τ ′)

= δc(τ − τ ′)δαβ +
∑

γ

∫
dτ1αγ (τ, τ1)Dγ β (τ1, τ

′). (15)

Here the external influences on the central electrons and
phonons is captured in 	i j (τ, τ ′) and αβ (τ, τ ′), respectively.
The collective influence on the central regions electrons can
be separated into that due to the phonons and the leads,

	(τ, τ ′) = 	int (τ, τ
′) + 	leads(τ, τ

′), (16)

and, similarly for the phonons,

(τ, τ ′) = int (τ, τ
′) + bath(τ, τ ′). (17)

Calculating the electronic lead self-energies follows the
standard procedure:

	<,>,R,A
α,i j (t, t ′) =

∑
k,k′

t∗
kα,i(t ) g<,>,R,A

kα,k′α (t, t ′)tk′α, j (t
′), (18)

where the noninteracting lead self-energies follow the stan-
dard definitions,

g<
kα,k′α′ (t, t ′) = i fkαe−i

∫ t
t ′ dt1εkα (t1 )δk,k′ , (19)

g>
kα,k′α (t, t ′) = −i(1 − fkα )e−i

∫ t
t ′ dt1εkα (t1 )δk,k′ , (20)

gR
ka,k′a(t, t ′) = −i�(t − t ′)e−i

∫ t
t ′ dt1εkα (t1 )δk,k′ , (21)

gA
ka,k′a(t, t ′) = i�(t ′ − t )e−i

∫ t
t ′ dt1εkα (t1 )δk,k′ . (22)

The time dependence takes the form εkα (t ) = εkα + φα (t ),
which allows us to separate out the phase induced by the
varying energies of the leads from rest of the self-energy:

	α,i j (t, t ′) = 	′
α,i j (t − t ′)e−i

∫ t
t ′ dt1φα (t1 )

= e−i�α (t )	′
α,i j (t − t ′)ei�α (t ′ ), (23)

where �α (t ) is the antiderivative of φα (t ), and 	′
α,i j (t − t ′) is

the self-energy of the equivalent static case, which is taken in
the wide-band approximation:

	
A/R
α,i j (ω) = ± i

2
�α,i j, (24)

	<
α,i j (ω) = i fα (ω)�α,i j, (25)

and

	>
α,i j (ω) = −i(1 − fα (ω))�α,i j, (26)

where the Fermi-Dirac occupation is given by

fkα = 1

1 + e(εkα−μα )/Tα
. (27)

Within the investigation, the lead energies were driven
sinusoidally,

φα (t ) = �α cos(�αt ), (28)

which gives �(t ) = (�α/�α ) sin(�αt ), which can be
expressed as a Fourier series with the Jacobi-Anger

expansion:

ei �α
�α

sin(�αt ) =
n=∞∑

n=−∞
Jn

(
�α

�α

)
ein�αt , (29)

where Jn(x) are Bessel functions of the first kind.
For the noninteracting phonons, we have the following

phonon Green’s functions:

dR
αβ (ω) =

[
1
2

ω − ωα + iηα

−
1
2

ω + ωα + iηα

]
δαβ, (30)

dA
αβ (ω) =

[
1
2

ω − ωα − iηα

−
1
2

ω + ωα − iηα

]
δαβ, (31)

d<
αβ (ω) = −π i[ fB(ωα )δ(ω − ωα )

+ (1 + fB(ωα ))δ(ω + ωα )]δαβ, (32)

d>
αβ (ω) = −π i[ fB(ωα )δ(ω + ωα )

+ (1 + fB(ωα ))δ(ω − ωα )]δαβ. (33)

Instead of letting ηα be infinitesimals, we take them as finite
so as to capture the influence of a phonon bath on central
phonons. Making use of fluctuation-dissipation relations, we
can introduce ηα into the lesser and greater phonon Green’s
functions:

d<
α (ω) = (

dR
α (ω) − dA

α (ω)
)

fB(ω)

=
(

− iηα

(ω − ωα )2 + η2
α

+ iηα

(ω + ωα )2 + η2
α

)
fB(ω)

(34)

and

d>
α (ω) = (

dR
α (ω) − dA

α (ω)
)
(1 + fB(ω))

=
(

− iηα

(ω − ωα )2 + η2
α

+ iηα

(ω + ωα )2 + η2
α

)
× (1 + fB(ω)), (35)

where taking the limit of η,

lim
η→0+

[
η

(ω − ω0)2 + η2

]
→ πδ(ω − ω0), (36)

and substituting for f 0
B (−ω) = −( f 0

B (ω) + 1) gives us back
Eqs. (32) and (33).

For the lesser and greater phonon Green’s functions, we
can use the fluctuation-dissipation rules to cast the effects due
to the infinitesimals as self-energies. Equating Eqs. (32) and
(33) with the associated Keldysh equations gives us

</>
α (ω) = ∓4iηα

(
ω

ωα

)
fB(±ω). (37)

This phonon self-energy is used to incorporate the effects
of the infinitesimal into self-consistent calculations [see
Eq. (17)].

In addition to the above Green’s functions, we need to
calculate 〈Qα (τ )〉, 〈Pα (τ )〉, and DPP

α,α′ (τ, τ ′), allowing for the
calculation of the phonon occupation. The equation of motion
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for the average position is given as [45]

−1

ωα

(
d2

dτ 2
+ ω2

α

)
〈Qα (τ )〉

=
∑

i j

−iλα
i jG ji(τ, τ

+)

+
∫

dτ1
bath
α (τ, τ1)〈Qα (τ1)〉. (38)

For the terms with momentum operators, we make use of

d

dτ
Qα (τ ) = ωαPα (τ ), (39)

which gives us the equations of motions,

d

dτ
〈Qα (τ )〉 = ωα〈Pα (τ )〉 (40)

and

d

dτdτ ′ Dαβ (τ, τ ′) = ωαδαβδ(τ, τ ′) + DPP
αβ (τ, τ ′)ωαωβ. (41)

These objects allow us to calculate occupation:

nph
α (τ ) = 〈Tc(aα (τ )a†

α (τ+))〉 = 1

2

[〈
Tc

(
Q2

α (τ )
)〉

+ 〈
Tc

(
P2

α (τ )
)〉] − 1

2

= 1

2
[iDαα (τ, τ+) + 〈Qα (τ )〉2 + iDPP

αα (τ, τ+)

+〈Pα (τ )t〉2] − 1

2
. (42)

The interaction between electrons and phonons can be ap-
proximated within the GD approximation [44,46]:

�int
i j (τ, τ ′) = �har

i j (τ, τ ′) + �XC
i j (τ, τ ′), (43)

where

�har
i j (τ, τ ′) = −iδ(τ, τ ′)

∑
β

λ
β
i j

∫
c

dτ1dβ (τ, τ1)

×
∑
ml

λ
β

mlGlm(τ1, τ
+
1 ), (44)

�XC
i j (τ, τ ′) = i

∑
μν,ml

Dμν (τ, τ ′)λμ
imGml (τ, τ

′)λν
l j, (45)

and

int
αβ (τ, τ ′) = −i

∑
mlkp

λα
mlGlk (τ, τ ′)λβ

kpGpm(τ ′, τ ). (46)

D. Floquet theory

Moving the equations of motion from the contour to real
time with the greater, lesser, retarded, and advanced projec-
tions [47,49], we can solve the equations of motion with a
Floquet approach [30,50], where we assume that the system is
time periodic around the central time T = t+t ′

2 and complete a
Fourier transform with respect to the relative time, τ = t − t ′:

A(t, t ′) = A(T, τ ) =
∞∑

n=−∞
A(τ, n)e�inT (47)

and

A(ω, n) = 1

P

∫ P

0
dT e−i�nT

∫ ∞

−∞
dτeiωτ A(T, τ ). (48)

For solving the convolutions of the form

C(t, t ′) =
∫

dt1A(t, t1)B(t1, t ′), (49)

we recast the Fourier coefficients into a Floquet matrix,

Ā(ω, m, n) = A

(
ω + �

2
(m + n), n − m

)
, (50)

which allows us to express the convolution as a matrix multi-
plication,

C̄(ω, m, n) =
∞∑

r=−∞
Ā(ω, m, r)B̄(ω, r, n), (51)

allowing for the Kadanoff-Baym equations to be written as a
matrix equation:

(ω + �m)ḠR/A
i j (ω, m, n) −

∑
k

εikḠR/A
k j (ω, m, n)

= δi jδmn +
∑
k,r

	̄
R/A
ik (ω, m, r)ḠR/A

k j (ω, r, n), (52)

Ḡ<
i j (ω, m, n) =

∑
kw,rs

ḠR
ik (ω, m, r)	̄<

kw(ω, r, s)

× ḠA
w j (ω, s, n), (53)

−1

ωα

(
ω2

α − (ω + �m)2
)
D̄R

αβ (ω, m, n)

= δαβδmn +
∑
γ ,r

̄αγ (ω, m, r)D̄γ β (ω, r, n), (54)

D̄<
αβ (ω, m, n)

=
∑
νγ ,rs

D̄R
αν (ω, m, r)̄<

νγ (ω, r, s)D̄A
γ β (ω, s, n). (55)

Other important objects transform in a similar manner. The
lead self-energies, Eq. (23), making use of Eqs. (29) and (51),
transform to

	̄α,i j (ω, m, n) =
∑
pq,lk

S̄α (m, p)	̄′
α,lk (ω, p, q)S̄α (n, q), (56)

where S̄α (m, n) = Jm−n(�α/�α ). The Fourier coefficients of
the current and occupation can be taken from the Floquet
matrices derived from Eqs. (11) and (12):

Iα (n − m) = Īα (m, n)

= 2
∫ ∞

−∞

dω

2π

∑
r,i j

[
ḠR

i j (ω, m, r)	̄<
ji (ω, r, n)

+ Ḡ<
i j (ω, m, r)	̄R

ji(ω, r, n)
]

(57)

and

nel
j (n − m) = n̄el

j (m, n) = −i
∫ ∞

−∞

dω

2π
Ḡ<

j j (ω, m, n). (58)
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The time-resolved observables can then be found with
Eq. (47), where t → t ′, and by taking only the real part, as
per Eqs. (12) and (11).

Unfortunately, the interaction self-energies cannot be
brought to such an amenable form and must be calculated
from the Fourier coefficients. The interaction self-energies
follow the forms

CXC (t, t ′) = A(t, t ′)B(t, t ′), (59)

CPOL(t, t ′) = A(t, t ′)B(t ′, t ), (60)

CHAR(t, t ′) = δ(t − t ′)
∫ ∞

−∞
dt1A(t, t1)B(t1, t1). (61)

Applying the Floquet transformation to the above gives

CXC (ω, n) =
∞∑

m=−∞

∫
dω′

2π
A(ω′, m)B(ω − ω′, n − m), (62)

CPOL(ω, n) =
∞∑

m=−∞

∫
dω′

2π
A(ω′, m)B(ω′ − ω, n − m),

(63)

and

CHAR(ω, n) =
∞∑

m=−∞
A

(
−�

2
(n + m), n − m

)
B′(n). (64)

The CHAR(ω, n) simplifies when A(t, t ′) = A(t − t ′), giving us

CHAR(ω, n) =
∞∑

m=−∞
δm,nA

(
− �

2
(m + n), 0

)
B(n)

= A(−�n, 0)B(n). (65)

The above allow us to cast the interaction self-energies in
terms of their Fourier coefficients:

	R
har,i j (ω, r) = −i

∑
β

λ
β
i jd

R
β (ω = −�r)

∫
dω

2π

×
∑
kw

λ
β

kw
G<

wk (ω, r) (66)

	R
XC,i j (ω, r) =

∫
dω′

2π

∞∑
n=−∞

∑
μν,ml

× iD<
μν (ω′, n)λμ

imGR
ml (ω − ω′, r − n)λν

l j

+ iDR
μν (ω′, n)λμ

imG<
ml (ω − ω′, r − n)λν

l j

+ iDR
μν (ω′, n)λμ

imGR
ml (ω − ω′, r − n)λν

l j

(67)

	<
XC,i j (ω, r) =

∫
dω′

2π

∞∑
n=−∞

∑
μν,ml

× iD<
μν (ω′, n)λμ

imG<
ml (ω − ω′, r − n)λν

l j

(68)

	>
XC,i j (ω, r) =

∫
dω′

2π

∞∑
n=−∞

∑
μν,ml

× iD>
μν (ω′, n)λμ

imG>
ml (ω − ω′, r − n)λν

l j (69)

R
αβ (ω, r) =

∫
dω′

2π

∞∑
n=−∞

∑
mlkp

− iλα
mlG

<
lk (ω′, n)λβ

kpGA
pm(ω′ − ω, r − n)

− iλα
mlG

R
lk (ω′, n)λβ

kpG<
pm(ω′ − ω, r − n) (70)

<
αβ (ω, r) =

∫
dω′

2π

∞∑
n=−∞

∑
mlkp

− iλα
mlG

<
lk (ω′, n)λβ

kpG>
pm(ω′ − ω, r − n)

(71)

>
αβ (ω, r) =

∫
dω′

2π

∞∑
n=−∞

∑
mlkp

− iλα
mlG

>
lk (ω′, n)λβ

kpG<
pm(ω′ − ω, r − n).

(72)

Solving Eq. (38), we can cast the average phonon positions,
and the subsequent average phonon momenta, in terms of
Fourier coefficients

〈Qα〉(r) = −idR
α (ω = −�r)

∫
dω

2π

∑
ml

λα
mlG

<
lm(ω, r), (73)

〈Pα〉(r) = ir�

ω0
〈Qα〉(r). (74)

We can complete a similar process for the phonon momentum
Green’s functions, allowing us to calculate variance of the
momentum operators:

〈(�Pα )2〉(r) = iDPP,<
αα (r)

= i

ω0
2

∫
dω

2π

[
ω2 −

(
r�

2

)2]
D<

αα (ω, r). (75)

E. Implementation

Solving for the Green’s functions, the dimensions of the
Floquet matrices and the corresponding Fourier series need
to be truncated. The addition of more Fourier coefficients
leads to more accurate results, converging on the exact re-
sult. Calculating the integrand of the Fourier coefficients was
completed with an equidistant grid of points. Completing this
procedure for the noninteracting case, the Floquet matrices
were unraveled to Fourier coefficients using Eq. (50). The
terms where n + m = 0,−1 of Ā(ω, m, n) were taken for
calculating the Fourier coefficients. These were then used
to calculate the interaction self-energies before being re-
assembled into the Floquet matrices. The process was then
completed iteratively, with convergence given by the Fourier
coefficients of the phonon and electron occupations:∑

m

∣∣nk+1
m − nk

m

∣∣∑
m

∣∣nk
m

∣∣ � δ, (76)

where nk
m is the kth iteration of the mth Fourier coefficient of

the occupation in question, with δ as the convergence.
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FIG. 1. The changes in d2I/dV 2 and d2nph/dV 2 as voltage increases, given different driving energies �L . The other parameters are �L =
�R = 0.015, εc = 0.1, ηc = 3 × 10−5, � = 0.004, ωc = 0.01, λc = 0.015, and T = 1.5 × 10−4. The bounds of the integrand were taken at
−0.3 and 0.3. Fourier coefficients ranging from–8 to 8 were used in the calculation. The uniform grid spacing was 2 × 10−5. The convergence
was below 10−6 for both the electronic and phonon occupation.

III. RESULTS

For simplicity, we focus on a single electronic level cou-
pled to a single phonon mode, with driving within the left
lead:

H (t ) = εcd†d +
∑

ikα=L,R

tkαi c†
kα

d + t∗
kαi d†ckα

+
∑

k

(εkL + �L cos(�t ))c†
kLckL

+ εkRc†
kRckR + ωca†a + λcQd†d. (77)

The parameters for the model consist of εc, the energy of the
central level ωc, the vibrational frequency of the phonon mode
�, the driving frequency of the left lead �L, the magnitude of
the driving in the left lead �L/R, the couplings to the leads λc,
the coupling strength between the central level and phonon ηc,
the coupling of the phonon to its bath, and the temperature of
both leads T . Within the calculations, the driving frequency
of the left lead is used as the frequency for the system’s
periodicity.

For the time-averaged picture of this model, we have two
important limiting cases in the static, interacting case and
the noninteracting case. The static case is well understood
and extensively studied [1–3,14]. In this context, the phonon
mode causes elastic corrections and facilitates new, inelastic
channels of transport through the junction by means of ab-
sorption or emission of phonons. The latter only occurs when
the voltage window widens to accommodate electrons that
enter the junction before absorbing (emitting) a phonon of
energy. The addition of extra channels through junction can
be seen in subtle changes to the current, captured as peaks in
the derivative of the differential conductance with respect to
voltage.

The noninteracting case has also been extensively stud-
ied and can be explained with the notion of photon-assisted
transport [47,51,52]. The periodic driving of the system
(environment) results in contributions to the time-averaged
observables from the equivalent static cases, with the driven
energies shifted by integer multiples of the driving fre-
quency of the time dependence. This can be interpreted as a

proportion of the electrons emitting or absorbing quanta of the
energy, and hence the name photon-assisted transport. For the
driving used in this paper, see Eq. (28), limited to the left lead
we have

1

P

∫ P

0
Iα (t )dt =

n=∞∑
n=−∞

[
Jn

(
�α

�α

)]2

IDC
α (μL + n�,μR),

(78)

where Iα (t ) is the AC-driven current through lead α and IDC
a

is the static case, where no driving is present.
Within certain parameter regimes, combining the reasoning

from both limiting cases explains the features observed in
the full model. In Fig. 1(a) we see the primary peak within
dI2/dV 2, indicative of inelastic collisions, gain additional
satellite peaks due to absorption (emission) of quanta of
energy by the electrons, prior to entering the junction, per
photon-assisted tunneling. A similar effect is observed within
Fig. 1(b), with d2nph/dV 2 gaining photon-assisted side peaks,
suggesting that the photon-assisted side peaks of the left lead
contribute to the occupation of the phonon independently of
each other.

The above insights suggest a simplistic model where
Eq. (78) is augmented, with the static components being cal-
culated with the addition of electron-phonon interactions. This
method was often found to successfully predict the inelastic
features of the full model. See Fig. 2 for an example, where the
contributions given by Eq. (78) are plotted alongside the full
and simplistic methods. The convergence for the simplistic
model was calculated by using the average occupation as if
it were static.

The simplistic model can be motivated for situations where
the timescales for interaction between the electronic and
phononic components, tλ ∼ 1/λc, is far longer than the traver-
sal time for the electrons within the junction [1]:

1

λc
� 1√

�2 + �E2
, (79)

where � = �L + �R, and �E , the injection energy, is the
distance of the energy level from resonance, usually taken as
the difference between the energy level and closest chemical
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FIG. 2. The changes in d2I/dV 2 and d2nph/dV 2 as voltage increases. Here the full method is plotted alongside the simplistic method and
contributions from n = −1, 0, 1 of Eq. (78). The other parameters are �L = �R = 0.015, εc = 0.1, ηc = 3 × 10−5, � = 0.004, ωc = 0.01,
λc = 0.015, �L = 0.005, and T = 1.5 × 10−4. The bounds of the integrands were taken at −0.3 and 0.3. Fourier coefficients ranging from–8
to 8 were used in the calculation. The uniform grid spacing was 2 × 10−5. The convergence was below 10−6 for both the electronic and phonon
occupations.

potential. In the regime specified by the above assumption,
the phonon mode will see the time dependence of the elec-
tronic component averaged over the long interaction time,
hence the ability of the simplistic model to capture the dy-
namics. This insight is similar to that used to investigate the
effects of AC driving with master equations [20,53], where
weak coupling between the central region and leads results
in the central region seeing an average picture of the leads’
dynamics.

Within the model in question, it was found that resonance
driving at � ≈ ωc resulted in significant variations for several
parameter ranges (see Figs. 3 and 4). This is mostly due to the
sensitivity of the average position to resonant driving, which
in turn influences the other observables. This can be seen in
Fig. 3(c). This sensitivity to resonance comes from Eq. (73),
for which the single-level case simplifies to

〈Q〉(m) = λc dR(−�m)nel (m). (80)

Focusing on the bare, retarded phonon Green’s function,
we can separate out the real and imaginary parts:

dR(ω) = i

2

( −ηc

(ω − ωc)2 + η2
c

+ ηc

(ω + ωc)2 + η2
c

)

+ 1

2

(
ω − ωc

(ω − ωc)2 + η2
c

+ ωc + ω

(ωc + ω)2 + η2
c

)
. (81)

The real and imaginary components of above are maximized
around ±�n ≈ ωc, especially when ηc  ωc. This results
in the average phonon position being sensitive to periodic
variation in the electronic occupation, resulting in the primary
resonance peak, seen in Figs. 3(g), 3(h), and 4(b), around
� ≈ ωc. Additionally, smaller subharmonic resonances can
also be observed, see Figs. 3(g) and 4(a), which indicates the
existence of higher-order Fourier coefficients in the electronic
site’s occupation.

In addition to the resonance at � ≈ ωc, a higher, smaller
resonance was observed at � ≈ 2ωc, see Figs. 3(e), 3(f), 3(g),
and 3(h). In contrast to resonance at � ≈ ωc, the resonance at
� ≈ 2ωc is due to increases in the variance of the phonon’s

position and momentum, which is calculated with the phonon
lesser GF. This can be seen in Fig. 3(h), where the contribu-
tions from Eq. (13) are separated into the contributions from
the mean position and momenta, 〈Qα (t )〉2 + 〈Pα (t )〉2, and the
variance terms, iD<

αα (t, t ) + iD<,PP
αα (t, t ).

Within the parameter ranges investigated, the time-
resolved observables were found be explained primarily
by the first- and second-order Fourier coefficients. For
the resonances at � ≈ ωc and � ≈ 2ωc, the first-order
Fourier coefficient was the prominent contributor to the
time-resolved dynamics. For the subharmonic resonance at
2� ≈ ωc, the second-order Fourier component was found
to contribute significantly. This is expected, given that
this resonance is sensitive to the second-order Fourier
components within the electronic occupation, as seen in
Eqs. (80) and (81).

Figure 4 also shows how the simplistic model fails to
capture the resonance effects while still capturing the general
trend of the phonon occupation. This is understandable, given
the simplistic model disregards the driving’s effects on the
central system’s dynamics.

IV. CONCLUSION

In this work we have investigated the periodic driving of
a quantum dot with a Floquet nonequilibrium Green’s func-
tion approach and GD approximation. Specifically, the case
of sinusoidal driving of the left lead was investigated for a
single-level and phonon system.

Particularly interesting for the stability of such driven sys-
tems, it was found that driving the lead energies in resonance
with the vibrational frequency resulted in increased varia-
tions in average position, average momentum, and occupation
of the phonon mode. Moreover, while the time-averaged
phonon occupation shows an increase in occupation when
resonance occurs [see Figs. 3(h) and 4], the time-resolved
result [Fig. 3(g)] reveals more pronounced increases in occu-
pation over the period of driving, reflecting the need to analyze
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FIG. 3. Figures (a)–(g) plot objects of interest over time, while figure (h) plots the time-averaged contributions to the phonon occupation,
as given by Eq. (13). The physical parameters are �L = �R = 0.015, εc = 0.1, T = 1.5 × 10−4, ωc = 0.01, ηc = 6 × 10−5, �L = 0.0015, and
λc = 0.01. Fourier coefficients ranging from–14 to 14 were used in the calculation, with an integrand discretization of 2.5 × 10−5 with bounds
of −1 and 1. The convergence was below 10−4 for both the electronic and phonon occupation.

time-resolved results when dealing with periodically driven
systems.

Also discussed was a simple phenomenological model that
was found to replicate the time-averaged observables rather
well in regimes away from resonance, particularly when the

driving frequency was smaller than the vibrational frequency,
see Fig. 2.

The method presented can be extended to many levels, with
the addition of extra sites allowing for investigation of models
where phonon modes may couple to many electronic sites or
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FIG. 4. The time-averaged phonon occupation as driving frequency increases. Here, the driving energies of the left lead, �L , have been
varied. Furthermore, the simplistic method has been plotted in dashed black. The other parameters are �L = �R = 0.015, εc = 0.1, ηc =
6 × 105, ωc = 0.01, λc = 0.01, and T = 1.5 × 10−4. The bounds of the integrands were taken at–1 and 1. Fourier coefficients ranging from–8
to 8 were used in the calculation. The uniform grid spacing was 5 × 10−6 for plots (a) and (b), while plot (c) was calculated with 1 × 10−5.
The convergence was below 10−4 for both the electronic and phonon occupation.

to the coupling between sites [15]. Furthermore, the effects
of different waveforms for the driving could allow for novel
means of probing and controlling junction dynamics.

Adding full-counting statistics to the method could allow
for the investigation of higher cumulants in the current, in-
cluding zero-frequency noise [15,30]. This could help answer
and motivate questions surrounding the noisiness of signals
passed through vibrationally active junctions, an important
line of inquiry for functional devices. Additionally, statistics
surrounding the phononic occupancies may be of importance,
with the average occupations not being enough to evaluate the

risk of device failure, given the possibility of large variances
in occupation.

This study has made use of self-consistent perturbation
theory, allowing small electron-vibrational coupling strengths
relative to what is present in many junction architectures.
Whether the findings of the investigation follow in stronger
settings remains to be seen. However, one can hypothesize
that given an increase in electron-vibrational coupling results
in more pronounced resonance effects in the present work,
the effects of resonance would only become larger in methods
able to handle far stronger couplings.
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