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Fractionally charged excitations play a central role in condensed matter physics, and can be probed in different
ways. If transport occurs via dissipationless supercurrents, they manifest as a fractional Josephson effect, whereas
in dissipative transport they can be revealed by the transport statistics. However, in a regime where supercurrents
and lossy currents coincide, a full understanding of the relationship between these two transport phenomena is
still missing. Moreover, especially for superconducting circuits, the question of how noninteger quasicharges
can be reconciled with charge quantization is still not fully resolved, and plays an important role for the
circuit dynamics. Here, we aim to unify the above concepts by studying the system-detector dynamics in terms
of a Lindbladian capturing both coherent and dissipative transport. Charge quantization is here a conserved
property of the detector basis of the Lindbladian, while charge fractionalization is a topological property of its
complex-valued eigenspectrum. We show that already conventional superconductor-normal metal hybrid circuits
exhibit a variety of topological phases, including an open quantum system version of a fractional Josephson
effect. Surprisingly, quasiparticles, usually considered a detrimental side effect, are here a necessary ingredient
to observe nontrivial transport behavior.
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I. INTRODUCTION

The notion of fractional charges plays an omnipresent
role in condensed matter physics, especially in lower dimen-
sional systems, such as in 1D Luttinger liquids [1–5], or in
the 2D fractional quantum Hall effect [6–10], as well as in
topological superconductors, where the presence of Majorana
or parafermions gives rise to a fractional Josephson effect
[11–14]. While the literature on how to define and detect a
fractional charge e∗ �= e (e being the elementary charge) is of
course much vaster than we could possibly account for in this
small introduction, we can nonetheless identify two main and
seemingly distinct flavours, which we here intend to unify.
As we argue below, this attempt of a unification is deeply
rooted in the understanding that fundamentally charge of any
electronic system must be quantized in integer units of the
elementary charge e, such any charge fractionalization effect
can only be meaningfully defined in terms of the topological
properties of the time evolution of a system coupled to a
transport detector.

In a nonequilibrium transport situation, e∗ may be ex-
tracted from the transport statistics. This idea was pioneered
by Kane and Fisher [8], who showed that the Fano factor
(the noise-to-current ratio) returns e∗/e, provided that the
transport statistics is Poissonian. Very recently, this idea was
generalized to a generic non-Poissonian transport regime,
when considering the topological properties [15] of the en-
tire full-counting statistics (FCS) [16]. This definition hinges
on the time-dependent dynamics of the moment generating
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function m(χ ) =∑N eiχN P(N ), where χ is the so-called
counting field, and P(N ) is the probability of having trans-
ported N electrons. If N is integer, then m is obviously 2π

periodic in χ for all times. Effective quantum field theo-
ries hosting fractionally charged excitations may in principle
predict a moment generating function m with broken period-
icity. However, it was understood already that the elementary
charge being fundamental for any electronic system, this
broken periodicity must be artificial. That is, such effective
field theories must have a limited validity for sufficiently
high cumulants, and the 2π periodicity of m(χ ) must be re-
stored [5,15,17–19]. On the other hand, generic open quantum
systems with a transport detector were shown to undergo dy-
namical phase transitions [20–23] leading to a braiding of the
complex eigenspectrum of the Lindbladian along the counting
field [24,25]. The main nontrivial contribution of [15] is the
realization that the resulting breaking of the 2π periodicity
of the complex eigenspectrum, which governs the time evo-
lution of P(N ), and thus of m(χ ), should be interpreted as
transport carrying fractional charges in the same sense as the
known examples from strongly correlated systems. In short,
fundamental charge quantization is thus a property of the
detector basis, whereas fractional charges are a property of
the open system eigenspectrum. Based on this realization,
Ref. [15] argued that fractional charges are already observable
for standard sequential electron tunneling through a quantum
dot in a purely dissipative transport regime, not requiring any
material-specific properties or interactions.

Fractional charges can also be defined without the explicit
need for nonequilibrium transport (and transport statistics
measurements) by the phase picked up when traveling through
a magnetic field, φ = e∗ ∫ dxA(x)/h̄, where for anyonic
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excitations, e∗ can be directly linked to the nontrivial ex-
change statistics [26–30]. This notion of fractional charges is
at the heart of the fractional Josephson effect due to the pres-
ence of exotic excitations, such as Majorana- or parafermions
[11–14,31]. Here, e∗ defines the periodicity with which the su-
percurrent depends on the superconducting phase bias φ, since
in superconducting transport, the phase enters as e±iφ . For a
pure superconducting regime, it is usually possible to describe
the dissipation-free current in the form of a low-energy Hamil-
tonian H (φ). It may therefore be tempting to just equip H
with the periodicity in φ given by the fractional Josephson ef-
fect. However, also in the context of superconducting circuits,
there is a lingering question about the importance of charge
quantization in various contexts, such as for charge noise
sensitivity of the fluxonium [32–34], when coupling Joseph-
son junctions to an electromagnetic environment [35–38], or
when considering the physics of quantum phase slip junc-
tions [39]. Specifically for topological superconductors, the
presence of Majorana fermions provides a degenerate ground
state with even and odd fermion parity, allowing for coher-
ent transport processes, which transport a single elementary
charge e instead of the Cooper-pair charge 2e in the ordinary
Josephson effect. However, there is a fundamental incom-
patibility between charge stored in the topological part of
the circuit (integer multiples of e) and the charge stored in
the trivial parts of the device (integer multiples of 2e). This
interplay can lead to instabilities of the fractional Josephson
effect for certain circuit configurations [40]. The relevance
of this incompatibility has also been recently studied for
time-dependent driving and capacitive coupling [41], giving
rise to a purely geometric correction term. Generally it was
argued [19] that for superconducting systems, the periodicity
in φ of a Hamiltonian (describing a given circuit element) is
defined by the unit of charge, which a detector, a magnetic
field or another circuit element couples to, whereas frac-
tional Josephson effects, and the associated fractional charges,
are defined in the periodicity of the eigenspectrum. This
argument thus corresponds to a quantum mechanical coun-
terpart to the statement made for purely dissipative systems in
Ref. [15].

The question, which has, to the best of our knowledge, not
yet been addressed, is how exactly the fractional Josephson ef-
fect and fractional charges measured in the transport statistics
are related, and importantly, how to generalize to a situation
where dissipative nonequilibrium currents and equilibrium su-
percurrents coexist. When combining supercurrents and FCS
[42], the counting field χ appears as a shift in φ, suggesting
that the fractional charge in the moment generating function is
directly inherited from the periodicity of the Josephson rela-
tion. However, we show that the picture becomes much more
complex when including nonequilibrium currents, and that in
the most generic situation, charge fractionalization expresses
itself as exceptional points (EP) in the 2D space spanned by
the independent superconducting phase φ and the counting
field χ . Charge fractionalization in the current statistics and
the fractional Josephson effect are thus in general related, but
nonetheless distinct effects. Moreover, and similar in spirit to
Ref. [15], we can show that in a generic open system context,
no exotic materials are required to engineer topological phase
transitions giving rise to fractional charges, and a fractional

Josephson effect. Curiously, we find that poisoning due to
out-of-equilibrium quasiparticles, usually a nuisance for su-
perconducting circuits [12,40,43–50]), is in the particular case
studied here a necessary ingredient driving the topological
transitions.

For concreteness, we consider a minimal heterostruc-
ture model of a single-level quantum dot coupled to two
phase-biased superconductors (S) allowing for a supercur-
rent to flow, and an additional normal metal (N), providing
a nonequilibrium electron source. Quantum dot heterostruc-
tures have been widely studied in the past both theoretically
[51–60] and experimentally [61–63], with a recently revived
interest in connection with a possible probing of the Higgs
mode [64], and observation of transition from normal Joseph-
son junction to a π junction [65]. In particular, the inclusion
of a counting field has been discussed in Ref. [66].

While all of our results have been obtained specifically for
this model, we believe that our findings regarding the con-
nection between the fractional Josephson effect and fractional
charges are generic, so long as the dynamics is described by
a Lindbladian. In particular, we find that the aforementioned
EPs give rise to phase transitions, which can carry a trivial or
fractional charge in χ (along the lines of [15]) for different
values of φ, and at the same time a conventional or fractional
Josephson effect for different values of χ . Our work can thus
be seamlessly embedded in a larger currently ongoing effort
to generalize the notion of topological phase transitions to
open quantum systems [67–80], especially when expressed
via EPs in the open system eigenspectrum [77,81–88], by here
assigning them the explicit role of generators of fractional
charges and a fractional Josephson effect.

Let us take some time here to comment on our choice of
considering the Lindbladian approach for an open quantum
system. In particular, the time-local approximation allows us
to classify the open system dynamics in a formally similar
way as the closed system, by analyzing the topological prop-
erties of the eigenspectrum of the Lindbladian superoperator.
On the one hand we stress that there are a number of examples,
where this approach proved to be very successful to accurately
model real experimental systems, such as time dependently
driven electron pumps [89], or the full-counting statistics in
quantum dots [90], notably even at finite frequency [21]. On
the other hand, it would of course be desirable to not be
restricted to weak coupling, and work towards a classification
scheme of quantum systems strongly coupled to the environ-
ment. Here, the most general way of describing a dissipative
system would be via a time nonlocal kernel that incorporates
memory effects, as in the Nakajima-Zwanzig quantum master
equation [91,92]. It might thus seem that our topological anal-
ysis may be restricted to weak coupling to an environment.
However, we would like to point out a recent important paper
by Nestmann et al. [93], which shows that it is possible
to establish a connection between the above time nonlocal
master equation, and a time-local one (which still captures the
strong coupling to the environment), via a fixed point relation.
It is therefore perceivable that our classification approach is
in principle generalisable to systems with strong coupling to
the environment. However, such an effort is well beyond the
scope of the present paper, and would likely be envisaged as a
future project.
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Finally, we explicitly illuminate the role of transport de-
tectors, for different transport measurement schemes. For
instance, a generic model of a charge meter constantly
entangling with the measured transport processes [94–96]
suppresses all supercurrents, but nonetheless provides a new
type of fractional transport phase, which was not yet pre-
dicted in Ref. [15], consisting of a statistical mix of trivial
and fractional charges. This is contrasted with a complemen-
tary understanding of FCSs, where the cumulant generating
function is reconstituted by measuring individual cumulants
of the current statistics (in the spirit of the FCS as defined
in Ref. [42]), where supercurrents persist, and the afore-
mentioned EP phase transitions are (at least in principle)
measurable. However, because the materials in the here con-
sidered circuit are trivial, the fractional Josephson effect is
only visible at finite counting fields χ , and its unambiguous
observation would thus in principle require the measurement
of cumulants of arbitrarily high order. In order to circumvent
this issue, we study alternatively quantum weak measure-
ments of the supercurrent. While weak measurement of the
current could be envisaged by means of Faraday rotation (ex-
plicitly proposed to weakly measure spins, e.g., in Ref. [97]),
we strive to propose an “all-circuit” realization of weak mea-
surement using SQUID detectors, inspired by Ref. [98]. We
show in particular that a certain postprocessing of the clas-
sical information obtained by the weak measurement allows
to simulate the influence of a finite counting field, and thus
induces the protected fractional Josephson effect. This prin-
ciple can to some extend be understood as a new paradigm
of the information of a weak detector being used to “filter
out” transport processes with integer Cooper pairs in favour
of fractional Cooper-pair processes, importantly, without the
need of real-time feedback [99].

This paper is organized as follows. In Sec. II we set
the stage by reviewing generic features of conventional and
fractional Josephson effects by comparing the quantum dot
circuit with a Majorana-based circuit. In the same section we
define a notion of an open system fractional Josephson ef-
fect in presence of a generic coupling to a bath. This is
followed by Sec. III where we explicitly introduce dissipation
by means of a coupling between normal metal-induced dissi-
pative mechanism for the quantum dot circuit. In Sec. IV two
common versions of full-counting statistics are introduced and
the relevant features with respect to topological transport are
elucidated. In Sec. V we discuss various topological phase
transitions, which arise due to the interplay of dissipation and
transport measurement, and argue how they can be interpreted
as fractional charges and a fractional Josephson effect, respec-
tively. Based on these results, we investigate in Sec. VI how
continuous weak measurement of the current can serve as a
means to reach the part of the phase space with finite counting
field, where the fractional Josephson effect can be observed.
The conclusions are presented in Sec. VII. Finally, several ap-
pendices detail important derivations and intermediate results,
such as the computation of the open system eigenmodes and
their interpretation (Appendix A), the calculation of the posi-
tion of exceptional points (Appendix B), the derivation of how
to extract higher cumulants of all eigenmodes (Appendix C),
and the calculation of the scattering properties of the SQUID
detector used for weak measurement (Appendix D).

FIG. 1. Generalization of integer vs fractional Josephson effect
for open quantum systems. We compare a conventional circuit, such
as the quantum dot proximitized with two superconductors (essen-
tially a Cooper-pair transistor) (a), with a topological circuit, hosting
Majorana fermions (b). Both circuits are subject to the phase bias
φ. For the closed system, the regular and fractional Josephson effect
can be distinguished by either a 2π -periodic (c), or a 4π -periodic
(d) energy spectrum as a function of φ. When including a simple,
generic open system dynamics, see Eq. (7), the purely real spectrum
in [(c),(d)] gets replaced by a complex spectrum λ(φ) [(e),(f)], where
the real part describes dissipation and decoherence, whereas the
imaginary part represents the coherent dynamics. When drawing the
complex spectrum of the open system parametrically with respect to
φ (from 0 to 2π , in the sense indicated by the arrow), we see that
in the regular Josephson effect, the eigenvalues with finite imaginary
part return to their initial values after a progression of φ from 0 to 2π

(e). For the fractional Josephson effect, these two eigenvalues swap
places (f).

II. INTEGER VERSUS FRACTIONAL JOSEPHSON
EFFECT AND OPEN QUANTUM SYSTEM

GENERALIZATION

Consider two superconducting contacts with a phase differ-
ence φ (which may be controlled, e.g., by a magnetic field).
These superconductors may be brought into electrical contact
through various ways, for instance by an insulating barrier
(the SIS junction) [100] or via more general weak links [101].
In this paper, we consider for concreteness weakly tunnel
coupled junctions, which have a single quantum dot level
[102,103] sandwiched in between, see Fig. 1(a). The quantum
dot itself is described by a single level at energy ε, which
can be at most doubly occupied (due to spin degeneracy). The
double occupation comes in addition with the energy cost U
due to Coulomb interactions. The Hamiltonian thus reads

Hdot = εn̂ + U
n̂(̂n − 1)

2
, (1)

the total occupation number on the single level being n̂ =∑
σ d†

σ dσ , where d (†)
σ annihilates (creates) an electron with

spin σ =↑,↓. The eigenstates of Hdot are |0〉, |1〉σ = d†
σ |0〉,
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and |2〉 = d†
↑d†

↓|0〉, where |0〉 is the empty state, dσ |0〉 = 0.
The coupling to the superconductors will in leading order
introduce coherent transitions between the |0〉 and |2〉 states,
such that the transport can be captured in terms of the Hamil-
tonian

H (φ) = Hdot + HJ (φ), (2)

where the exchange of Cooper pairs is described by

HJ (φ) = EJL + EJReiφ

2
d†

↑d†
↓ + H.c. (3)

The origin of this additional pairing term is the proximity
effect, here considered in the limit of large superconducting
gaps � [56,104–107], such that EJα = 
Sα where 
Sα is the
normal state tunneling rate between the quantum dot and the
corresponding contact α = L,R. That is, the relevant correla-
tion time of the superconducting reservoir is �−1. In some
sense, the tunnel coupling to the superconductor reservoirs
already represent an opening of the local quantum system
to a reservoir. However, since supercurrents are mediated en-
tirely without dissipation (at least in this approximation) this
effect can be captured by a low-energy Hamiltonian. Hence,
the dissipation-free circuit constitutes our “closed” quantum
system.

While these individual processes each give rise to single
Cooper-pair tunneling processes (∼e±iφ), the presence of the
quantum dot level modifies the overall transport behaviour.
Namely, the Hamiltonian H (φ) has the even eigenstates |±〉 =

1√
2

√
1 ± δ|0〉 ± 1√

2
eiφJ

√
1 ∓ δ|2〉 with

δ = − 2ε + U√
(2ε + U )2 + |EJL + EJReiφ |2

, (4)

and the corresponding eigenenergies

ε±(φ) = −2ε − U ±
√

(2ε + U )2 + |EJL + EJReiφ |2
2

. (5)

Since the odd parity states |1σ 〉 cannot partake in the Cooper-
pair transport, they remain eigenstates also for the full H ,
with the unchanged eigenenergy ε. The above energies ε±(φ)
are no longer a pure cosine (as for instance for the standard
Josephson effect), but the spectrum remains in general 2π

periodic, see Fig. 1(c), signifying integer multiple Cooper-pair
tunnelings as explained initially in this paragraph.

There is, however, one special point in parameter space,
where the 2π periodicity is broken: for ε = −U/2 and EJL =
EJR ≡ EJ , the minigap closes, such that ε± = ±EJ cos(φ/2),
and the eigenvalues exchange places when progressing φ by
2π , see Fig. 1(d). Here, it seems that the transport can be
described by means of a fractional transport of Cooper pairs,
transferred in half-integer portions.

This is highly reminiscent of topological Josephson junc-
tions based on Majorana fermions, where the fractional
Josephson effect hinges upon the topological contacts having
an even and odd ground state [12]. Here, the Hamiltonian is
commonly given in the form

HM = iEM cos (φ/2)γ1,Lγ2,R, (6)

describing the coupling of Majorana edge states on the left and
right γ1/2,α via a junction, see Fig. 1(b) (see, e.g., Ref. [108]).
This Hamiltonian has the exact same 4π -periodic eigenvalues
ε±(φ) = ±EM cos(φ/2) [see again Fig. 1(d)], which we asso-
ciate to the eigenvectors |±〉 [109]. Note that of course, the
eigenstates |±〉 of the Majorana circuit are different from the
eigenstates |±〉 of the quantum dot circuits. We nonetheless
choose the same notation for simplicity—the reason for this
will become obvious below.

Now, the reader might perhaps be surprised by such seem-
ingly naive (or even slightly brazen) juxtaposition of a regular
quantum dot circuit and a Majorana-based junction. Indeed,
one might for instance argue that no experiment could ever
tune both EJL,JR and ε to such perfection as to make the mini-
gap disappear completely. However, it should be noted that
in Majorana circuits, finite size effects are known to induce
a small gapping, due to a coupling of the Majoranas on the
same chain (i.e., terms of the form ∼γ2,Lγ1,L or ∼γ2,Rγ1,R)
[11,110,111]. A gapping and thus a restoring of a 2π -periodic
spectrum was also predicted when a Majorana junction and a
regular Josephson junction are coupled in parallel to form a
SQUID [40]. As a consequence, the line between fractional
and regular Josephson effect starts to blur, as a minigap may
likely be present for both trivial and topological circuits.

Alternatively, one might have tried to argue that while the
energy spectrum of both systems looks similar, the Hamil-
tonian has a fundamentally different periodicity in φ, with
Eq. (3) being 2π periodic whereas Eq. (6) appears genuinely
4π periodic. Such arguments can, however, likewise be easily
defused. If the phase bias φ is stationary, the periodicity of
the Hamiltonian is a simple gauge choice and not of rele-
vance. For instance, we could have redistributed the phase
drop in Eq. (3) symmetrically over both junctions with a factor
e±iφ/2, thus achieving a 4π -periodic Hamiltonian. However,
this basis choice becomes relevant (i.e., it ceases to be a mere
gauge choice) if φ becomes time-dependent due to driving
with magnetic fields [112,113], or a dynamical quantum op-
erator due to the addition of a capacitor [41], or if nonlocal
correlation measurements are performed [19]. Here, the ap-
propriate rule of thumb [19] is that the relevant charge (and
the corresponding charge unit) is the charge that a magnetic
field, a capacitor, or a detector couple to. For instance, for the
Majorana circuit, Eq. (6), a detector could measure the charge
being transported across the actual Majorana junction, marked
with an arrow in Fig. 1(b). Then, the 4π -periodic basis choice
given in Eq. (6) is correct, since the Majorana wires physically
exchange the charge e. If the same detector would, however,
measure the charge entering one of the s-wave superconductor
bulks, which proximitize the topological nanowire [the green
bulks in Fig. 1(b)], then the correct basis choice must be a
2π -periodic one (e.g., via the unitary transformation proposed
by Ref. [40]), to account for the fact that the trivial, s-wave
part of the circuit can in its ground state only accept integer
Cooper pairs with charge 2e.

The above short review leads us to two conclusions. First,
whether a system provides a fractional or regular Josephson
effect should be best described exclusively by the periodicity
of the eigenspectrum, and not of the Hamiltonian, as the
latter is either a gauge choice (for constant phase bias), or
fixed by external factors. Second, even if a system consists of
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topological superconductors, there are many nontrivial factors
that may lead to an instability of the fractional Josephson
effect, by introducing a minigap, and restoring 2π periodicity.
In the following, we will show with the example of the trivial
quantum dot system that the inclusion of a nonequilibrium
quasiparticle reservoir, and the addition of a transport detector
can as a matter of fact undo the gapping, and restore an open
system version of the fractional Josephson effect, without the
need for fine tuning any system parameters. As already stated
in the introduction, this effort will furthermore shed light on
the intricate relationship between the fractional Josephson ef-
fect and fractional charges, as defined in the transport statistics
[15].

However, before continuing, we need to develop as a next
preparatory step a generalization of the notion of a fractional
Josephson effect for open systems. To this end, we consider
either the quantum dot circuit, Eq. (2), or the Majorana circuit
described in Eq. (6), and add a generic open system dynamics
to it. For this purpose, we take as the basis the two closed
system eigenstates |±〉 with eigenenergies ε±(φ), where ε±
can now either be 2π periodic or 4π periodic, see Figs. 1(c)
and 1(d). In the next section, we discuss a concrete model
for open system dynamics for the quantum dot circuit; here,
on this general, illustrative level, we are merely concerned
with simple generic open system processes, which consists of
stochastic transitions between the |+〉 and |−〉 states. Such
processes can be described by a Lindblad quantum master
equation for the density matrix ρ =∑η,η′=± Pηη′ |η〉〈η′|,

ρ̇ = −i[H (φ), ρ] +
∑
j=±


 j

(
a jρa†

j − 1

2
{a†

j a j, ρ}
)

, (7)

with a± = |±〉〈∓|, such that 
± represents the rate for a
stochastic jump from |∓〉 to |±〉.

While in the closed system, we had the real eigenvalues
ε±(φ), the Lindblad equation gives rise to a set of complex
eigenvalues {λn}, describing both the coherent and dissipa-
tive dynamics, see Figs. 1(e) and 1(f). In addition, while the
closed system could be described by just two eigenvalues,
due to the two degrees of freedom + and −, for the open
system, we have four eigenvalues due to the enlarged structure
of the density matrix. The eigenvalue 0 represents the fact
that there is a unique stationary state, ρst = (
−|−〉〈−| +

+|+〉〈+|)/(
+ + 
−). The eigenvalue −(
+ + 
−) corre-
sponds to the decay of the diagonal density matrix elements
(if the states |±〉 encode a qubit, this would be the T1 time). Fi-
nally, there are the eigenvalues ±i(ε+ − ε−) − (
+ + 
−)/2,
belonging to the eigenoperators |±〉〈∓| which describe the
coherent oscillations, including the decoherence rate (
+ +

−)/2 (T2 time). Only this last pair of eigenvalues depends on
φ, such that the integer and fractional Josephson effects can
be characterized by means of their φ dependence. In order
to represent the (now) complex eigenspectrum, we choose
a parametric plot, where the real and imaginary parts of λ

are shown as two independent axes, and the resulting curves
are parametrized by φ [in Figs. 1(e) and 1(f)]. In the regular
Josephson effect the eigenvalues with finite imaginary part
(coherent dynamics) map onto themselves when running φ

from 0 to 2π , see Fig. 1(e). This is in contrast to the frac-
tional Josephson effect, where the same two eigenvalues swap

FIG. 2. (a) Sketch of the system under consideration. A central
charge island (quantum dot) is connected to a left and right supercon-
ductor, with a phase bias φ. The normal metal pumps quasiparticles
into the system with the rate 
N . A detector with counting field χ

measures current into the right superconductor. (b) The complex
eigenspectrum of the quantum master equation {λ} for χ = 0. The
eigenmodes can be interpreted as follows. There is a stationary state
related to the eigenvalue λ0 = 0. The nonzero eigenvalues can be
associated to the decay of the parity, pseudocharge (see main text),
and spin λp,c,s, respectively, and to the coherent dynamics λ±.

places, see Fig. 1(f). The two resulting open system spectra
are thus still topologically distinct, as one cannot continuously
map from one to the other. This allows for a straightforward
topological classification of the open system dynamics.

III. THE MODEL: SUPERCONDUCTOR-NORMAL
METAL HYBRID CIRCUIT

Let us now introduce a microscopic model for the open
system dynamics of the quantum dot circuit. In addition to
the two superconductors, we include a tunnel coupling to a
third, normal metal reservoir, see Fig. 2(a). This coupling in-
troduces dissipative, stochastic transport events. Since pairing
is absent in the normal metal, it can in lowest order only
introduce processes, which flip the parity within the island.
We here focus on the regime where the chemical potential of
the normal metal is large with respect to the system dynam-
ics (μ  ε,U, EJα). Therefore, for the computation of the
dynamics due to the normal metal (by means of a standard
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sequential tunneling approximation, see Ref. [102]), we may
disregard the internal coherent dynamics. Consequently, the
normal metal will mainly act as a source of quasiparticles,
thus inducing the nonequilibrium stochastic transitions, |0〉 →
|1σ 〉 and |1σ 〉 → |2〉. Including the stochastic processes, the
dynamics of the system is described by the quantum master
equation ρ̇ = Lρ, with

L(φ)· = −i[H (φ), ·] + WN ·, (8)

where H (φ) is the Hamiltonian given in Eq. (2), and the kernel
due to the normal metal processes WN is of the Lindblad form

WN · = 
N

∑
σ

(
d†

σ · dσ − 1

2
{dσ d†

σ , ·}
)

. (9)

We note that strictly speaking, the superconductors them-
selves should likewise contribute to parity switches due to a
finite quasiparticle population. However, even though quasi-
particles are known to occur with a much higher concentration
that what is expected from a thermal equilibrium distribution
[114,115], they are nonetheless dilute (with a concentration of
typically 10−6 ∼ 10−5 with respect to the Cooper-pair density
[116]), such that the normal metal influence may be expected
to be dominant, even when EJ > 
N , especially due to the
large chemical potential.

The processes |0〉 → |1σ 〉 and |1σ 〉 → |2〉 both occur with
the same rate. This is in particular due to μ  U , such that
effectively, the many-body interaction is no longer visible
within the dissipative dynamics. This is why, for the remainder
of this paper, we will set U = 0 without loss of generality. As
another important observation, let us point out that contrary
to the generic open system discussion in the previous section,
the kernel WN here gives rise to relaxation and decoherence in
a basis, which is different from the eigenbasis of the local dy-
namics H . This will render the dynamics much more complex,
especially when including a transport detector, as we show in
what follows.

However, before we continue with transport measure-
ments and transport statistics, let us briefly describe the
system dynamics of ρ. As already introduced in Sec. II
the system dynamics is governed by the set of generally
complex eigenvalues {λn} of the superoperator L, Eq. (8),
with the corresponding eigenoperators. In absence of the
parity drive, 
N = 0, the dynamics of the density matrix
is given by the eigenmodes of −i[H, ·] alone. The eigen-
operators |+〉〈+|, |−〉〈−|, |1σ 〉〈1σ |, all have eigenvalues 0,
meaning that they correspond to the eigenstates of H .
The eigenoperators |±〉〈∓| with the eigenvalues −i(ε± −
ε∓) indicate the coherent dynamics. With finite 
N , the
even and odd subsectors couple. The eigenvalues are now
0,−
N ,−2
N ,−i(ε± − ε∓) − 
N , where −
N is doubly
degenerate, see Fig. 2(b). These eigenvalues can be inter-
preted as the decay of physical quantities as discussed in
Refs. [117–119]. For this purpose, one needs to consider
the structure of the corresponding eigenoperators. While it
is possible to find a closed form for the eigenoperators for
arbitrary system parameters, the expressions are quite cumber-
some and thus not very instructive. We therefore consider the
here relevant limit 
N � |ε+ − ε−|, where we may simplify
the expressions considerably (done explicitly in Appendix A).

Namely, we find that the eigenoperators belonging to λ± =
−i(ε± − ε∓) − 
N are still approximately given by |±〉〈∓|,
which now represent the coherent oscillations damped with
the decoherence rate 
N . The eigenvalue λ0 = 0 corresponds
to the stationary state of the quantum master equation,

ρ̂st ≈ (1 − δ)2

4
|+〉〈+| + 1 − δ2

4

∑
σ

|1σ 〉〈1σ |

+ (1 + δ)2

4
|−〉〈−|. (10)

We observe that even though the parity switching rate is small,
the occupation of the odd state is of the same order as the
even state in ρst. This is simply due to the fact that while
parity switches from even to odd are rare, the same is true
for the reversed process from odd to even. Hence the system
spends an approximately equal amount of time in either parity
sector. The eigenvalue λp = −2
N indicates the decay of the
fermion parity, given by the operator p̂ = eiπ n̂, as discussed
also in Ref. [119]. The doubly degenerate eigenvalue λs,c =
−
N relates to two processes. For one, to the decay of spin,
ŝ =∑σ σ |1σ 〉〈1σ |, and for another, to the decay of what we
refer to as the pseudocharge number ĉ = |+〉〈+| − |−〉〈−|.
We baptize it in this way because in the absence of the prox-
imity effect, EJ → 0, we find ĉ → |2〉〈2| − |0〉〈0| = n̂ − 1.

With respect to the Josephson effect, note that the normal
metal itself merely introduces relaxation and decoherence,
but does not alter the periodicity of the eigenspectrum with
respect to φ: the coherent oscillations still occur with the
frequency ε+ − ε−, which, as discussed above, are usually
2π periodic in φ (unless the system parameters are tuned to
very special values). Hence, in the generic case of a spectrum
with a minigap, the complex open system spectrum has the
same topology as the one shown in Fig. 1(e). This will change
now, when considering the combination of open system dy-
namics and transport measurements. Let us point out though
that while the transport measurement is indispensable, the
presence of a nonequilibrium drive due to the voltage-biased
normal metal is equally important. For a pure equilibrium
drive, the kernel L would satisfy an equivalent of a PT sym-
metry, where braid phase transitions are forbidden even in the
presence of a counting field [15,24].

IV. DIFFERENT FLAVORS OF FULL-COUNTING
STATISTICS

Generally, for a superconducting junction described by a
Hamiltonian H (φ), the operator for the supercurrent across
the junction can be defined as I = 2e∂φH (φ). In Eq. (3),
the phase bias is attached to the right contact, such that the
operation ∂φ actually returns the current to the right,

I ≡ ieEJReiφd†
↑d†

↓ + H.c. = ISR. (11)

By means of a simple unitary transformation, the Josephson
energy could be modified as EJL + EJReiφ → EJLe−iφ + EJR,
such that here, the current at the left interface would be
measured. In accordance with what we stated in the Intro-
duction and in Sec. II, the position of measurement is not
a mere gauge choice, and gives rise to different predictions.
Here, this difference is in particular due to the addition of
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a third (normal metal) contact, which injects an additional
dissipative displacement current. For the remainder of this
paper we will stick for concreteness to the explicit example
where the current is measured at the right contact [see also
Fig. 2(a)]. In order to map these results to the case where the
detector is on the left, one has to mirror the entire device (that
is exchange EJL ↔ EJR). Let us note that yet another phys-
ically distinct scenario would be to distribute the phase bias
across both junctions with a factor ζ , i.e., EJL + EJReiφ →
EJLe−iζφ + EJRei(1−ζ )φ . This would express the situation
when a current detector couples to both currents at the left and
right junction with this prefactor. Our results would certainly
be sensitive to the value of ζ . We disregard this option for
simplicity, assuming that it is physically possible to build a
current detector, which couples only to the right contact.

For starters, let us point out that in the absence of the
normal metal, the even parity eigenstates |±〉 exhibit a dc
Josephson effect,

〈I〉± = 2e∂φε±. (12)

In the odd-parity sector, the system is “poisoned”, and no
supercurrent flows, see also discussion after Eq. (5). For the
current expectation value, the main influence of the normal
metal is a reduction of the supercurrent in the stationary state,
due to the finite occupation of the poisoned state, see Eq. (10).

In the following, we now want to go way beyond the
current expectation value, and describe the entire FCS of the
transport, where the interplay between quasiparticle-induced
dissipation and current measurement will give rise to a
plethora of nontrivial effects. However, before going down
that road, we have to explicitly address the fact that there are
several different ways to define the FCS, which correspond to
different measurement schemes. While these differences do
not play a role for purely dissipative transport, in the presence
of supercurrents, these different “flavours” of FCS give rise
to markedly different results, and in particular to different
interpretations of the observed topological transitions.

A. Averaging time-resolved current measurements

In the context of superconducting transport, a straightfor-
ward access to FCS is due to [42], whereby the quantum
master equation is supplemented with a counting field χ ,

ρ̇(χ ) = L(χ, φ)ρ(χ ), such that

L(χ, φ)· = −i[H (φ − χ ) · − · H (φ + χ )] + WN · . (13)

The cumulant generating function for the transported charges
after a measurement (integration) time τ , c(χ, τ ), is then com-
puted via the moment generating function m(χ, τ ), defined as

m(χ, φ, τ ) = tr[eL(χ,φ)τ ρ0] ≡ eτc(χ,φ,τ ), (14)

where ρ0 is the initial state (which becomes irrelevant for large
measurement times τ ). Derivatives of the cumulant generating
function provide the cumulants Ck . For instance, the average
current is given as

〈I〉 = C1 = −ie∂χc|χ→0, (15)

and the current noise (usually denoted by the letter S) is given
as

S = C2 = (−i)2e2∂2
χc|χ→0, (16)

and so forth. In order to appreciate the difference to the other
important notion of FCS (explained below), we have to go
beyond this formal definition, and recapitulate in detail, how
the current is actually measured in order to obtain the above
cumulants. For this purpose, let us examine the first couple
of statistical moments a little more closely. The first moment
(giving rise to the current expectation value I = C1) returns

−ie∂χm|χ→0=−ietr

[∫ τ

0
dt1eL(φ)(τ−t1 )∂χL(φ)

∣∣∣∣
χ→0

eL(φ)t1ρ0

]
(17)

where

−ie∂χL|χ→0· = e{∂φH (φ), ·} = 1
2 {I, ·}, (18)

with the anticommutator {·, ·}. As we see, the FCS as de-
fined above corresponds to a system evolving freely (that
is, without any detection event) for most of the time, and a
projective current measurement at a precise time step t1, and
subsequently, integrating over all times t1 from 0 to a total
measurement time τ , as schematically represented in Fig. 3(a).
The zero-frequency limit of the FCS is when the measurement
time approaches infinity, τ → ∞. The picture becomes even
more detailed, when going to the next moment, providing the
current-current correlations,

(−i2e)2∂2
χm
∣∣
χ→0 = (−i2e)2tr

[∫ τ

0
dt1eL(φ)(τ−t1 )∂2

χL(φ)

∣∣∣∣
χ→0

eL(φ)t1ρ0

]

+ 2tr

[∫ τ

0
dt1

∫ t1

0
dt2eL(φ)(τ−t1 ){I, ·}eL(φ)(t1−t2 ){I, ·}eL(φ)t2ρ0

]
. (19)

While both the first and second line now indicate two current
measurements, the time difference between these two mea-
surements is of the essence. While the second line accounts for
projective current measurements at times t1 and t2, which are
sufficiently far apart (with an unimpeded system evolution for
the rest of the time interval), the first line describes two cur-
rent measurements that occur within time intervals, which are

short with respect to the superconductor correlation time �−1

(see also previous section). For the interested reader, we refer
to the diagrammatic language for noise, which was first devel-
oped for time-independent systems [120–122], subsequently
generalized to time-dependent systems [123] as well as
finite frequency noise [124]. In this language, measurements
according to the first line are represented by diagrams where
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FIG. 3. Different approaches to FCS. (a) The current at the right
junction may be projectively measured at a given time t , and current
measurements at different times can be correlated and integrated over
time, in order to obtain the cumulants Ck . In between measurements,
the system propagates freely. The cumulant generating function can
then be reconstructed in a Taylor series. In this approach, the count-
ing field χ is a fictitious quantity. (b) An ideal detector may be
coupled at the right contact, such that for each transported Cooper
pair, the detector changes its state |N〉 → |N ± 1〉 where N stands
for the number of transported Cooper pairs. The detector thus con-
tinuously entangles with the system. As a consequence, the counting
field χ is here an actual physical quantity: the detector momentum,
related to N by a Fourier transform (FT). However, after a projective
measurement of the detector state, the information of the dissipation-
free supercurrent is lost.

the two current operators appear within the same irreducible
block.

At any rate, it is interesting to note that if the current
detector fails to measure time-resolved currents on a timescale
smaller than �−1, the first line will be absent altogether. This

can be understood as a high-frequency cut-off for the FCS.
Such a deficient detector would return a different moment
generating function, given as

mcut-off(χ, φ, τ ) = tr[eLcut-off (χ,φ)τ ρ0], (20)

with

Lcut-off(χ, φ) = L(φ) + i
χ

2e
{I, ·}, (21)

which is nothing but a first order in χ approximation of the
full L(φ, χ ). Thus, while the eigenspectrum of Lcut-off(φ, χ )
asymptotically approaches the one for the full L(φ, χ ) for
low values of χ (low cumulants), the global properties (ar-
bitrarily high cumulants) differ decisively. In particular, while
the full L is 2π periodic in χ , L(φ, χ + 2π ) = L(φ, χ ), re-
flecting the fact that the detector measures the supercurrent
in integer portions of Cooper pairs, this information is lost in
Lcut-off. Likewise, we cannot in general hope to see the same
topological phase transitions along χ for the two scenarios.
We conclude that if we are interested in understanding and
measuring the global properties of the FCS with respect to χ

(relevant for fractional charges as defined in [15]) by means
of projective current measurements, a current detector, which
can resolve beyond the timescale �−1 is required.

B. Continuous entanglement with a charge transport detector

There is a different approach to FCS, whereby an ex-
plicit detector is included in the model description of the
system [16,94–96], keeping track of the number of charges
exchanged at a given interface. Hence, the counting field χ

is here not merely an auxiliary mathematical object without
any physical meaning. To the contrary, it has a well-defined
precise interpretation: χ is the detector momentum [94,95].
Because of this, the global properties defined in χ space
are much more tangible compared to the notion described
in the above section, where large χ can only be reached by
measuring a sufficiently high number of cumulants. Here, an
analysis (read-out) of the detector state may directly provide
the moment generating function for finite χ , in contrast to
the previously introduced approach, where m as a function
of χ would have to be reconstructed essentially by analytic
continuation, starting from χ = 0.

Following the lines of [94–96], a detector measuring trans-
port at the interface to the right superconductor can be
modeled by supplementing the proximity Hamiltonian HJ

with the detector degrees of freedom |N〉 indicating the num-
ber N of measured Cooper-pair transport events,

→ HJ = 1

2

(
EJL + EJReiφ

∑
N

|N − 1〉〈N |
)

d†
↑d†

↓ + H.c.

(22)
Thus, the detector state changes as |N〉 → |N ± 1〉, for each
Cooper pair leaving or entering the right contact, see also
Fig. 3(b). Note that the detector itself is ideal in the sense
that it does not have any internal dynamics apart from
this coupling (i.e., the Hamiltonian of the isolated detector
is zero). The quantum system plus detector have a much
larger state space, described by the density matrix ρS+D =∑

N,N ′ ρ(N, N ′) ⊗ |N〉〈N ′|, illustrating the fact that the detec-
tor will be entangled with the system during the measurement.
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Similar to the previous notion of FCS, τ here stands for the
total measurement time. Whereas in Sec. IV A, τ represented
the total time interval over which the current measurements
should be averaged, here τ stands for the total time elapsed
since the coupling to the detector (and thus the build up of
entanglement) started. Also for continuous entanglement, a
related zero-frequency FCS can be defined, by analyzing the
asymptotic behavior for τ → ∞.

The additional detector degree of freedom can be compact-
ified by a double Fourier transform,

ρ(χ, δχ ) =
∑

N

∑
N ′

eiχ (N+N ′ )eiδχ (N−N ′ )ρ(N, N ′), (23)

resulting in the quantum master equation

ρ̇(χ, δχ ) = LCE(χ, δχ, φ)ρ(χ, δχ ). (24)

We note that the Lindbladian describing the continuous en-
tanglement with the detector LCE is related to the above, first
version of FCS, described by L(χ, φ) in Eq. (13), as

LCE(χ, δχ, φ) = L(χ, φ − δχ ). (25)

The variables χ and δχ can be thought of as the classical and
quantum component of the detector momentum. As we see,
the classical detector momentum corresponds to the counting
field introduced in the FCS of Ref. [42].

The quantum part δχ on the other hand simply enters as a
shift in the superconducting phase, and may therefore at first
sight seem innocuous. It is, however, this shift, which makes
all the difference. Namely, for the continuously entangling
detector, the moment generating function is defined as the
Fourier transform of a projective measurement of the detector
state in its eigenbasis |N〉,

mCE(χ, τ ) =
∑

N

ei2Nχ tr[ρ(N, N, τ )]

=
∫ 2π

0

dδχ

2π
tr[ρ(χ, δχ, τ )], (26)

where for the second identity, we used the fact that the in-
tegration over δχ results in the projection onto the diagonal
elements ρ(N, N ′) → ρ(N, N ). Importantly, due to δχ ap-
pearing as a shift in φ, we can relate this moment generating
function to the first one, Eq. (14), as follows:

mCE(χ, τ ) =
∫ 2π

0

dφ

2π
m(χ, φ, τ ). (27)

Overall, we note that since LCE and likewise mCE, Eqs. (25)
and (27), can be constructed from L and m respectively, Equa-
tions (13) and (14), we consider L to be the more fundamental
construction of FCS. Therefore, it will suffice to analyze the
topological properties of L(χ, φ).

However, the above phase shift δχ plays an important role
when it comes to analyzing the topological eigenspectrum of
L, due to the presence of supercurrents. If supercurrents were
absent, there would be no phase dependence of the trans-
port m(χ, φ) = m(χ ), such that m and mCE are equivalent.
However, for supercurrents being present, the two notions of
FCS differ, in that the supercurrents are averaged out in mCE.
One can convince oneself of this fact, simply by means of
the Josephson relations given in Eq. (12), where

∫ 2π

0 dφIS± ∼

ε±(2π ) − ε±(0) must be zero, due to the 2π periodicity of
the eigenspectrum ε± in φ. This cancellation of the super-
current is a consequence of the detector always being ideally
coupled to the interface at which it counts the number of
transported Cooper pairs. It thus entangles with the coherent
transport (and the entanglement continuously increases as the
measurement goes on) such that when projectively reading
out the detector state, the information about the supercurrent
is destroyed. Nonetheless, such a continuously entangled de-
tector may serve for an understanding of the topology of the
dissipative part of transport. Moreover, as we will show below,
such a detector will give rise to a novel transport phase, which
can be interpreted as a statistical mix between a fractional and
a trivial transport.

Let us conclude this section by pointing out the follow-
ing. In this paper, we aim at understanding the topological
properties of the eigenspectrum of L along both the χ and φ

coordinates. While this is endeavor is formally well defined,
thanks to Eq. (13), from a more practical point of view, we
see that both of the above flavours of FCS come with their
advantages and disadvantages. Ultimately we have the choice
between measuring individual cumulants without destroying
the supercurrent information (in accordance with the con-
struction of L), which, however, allows us to only explore the
vicinity of χ ≈ 0 (since the measurement of arbitrarily high
cumulants is experimentally challenging), or, via LCE, explore
the full χ space (since the detector and thus χ are here physi-
cal) but at the expense of losing the supercurrent information,
and thus losing the φ dependence. Moreover, realistically, a
detector measuring the charge that arrived at one of the super-
conducting contacts most likely involves supplementing said
contact with a capacitance, which thus renders the detector
nonideal (its Hamiltonian is no longer zero). This leads us to
consider below a third variation to obtain information about
the transport statistics: continuous weak measurement. How-
ever, this approach is very challenging to cast into a general
form, which is why we first present our results for the topol-
ogy of L, and identify a particularly interesting topological
regime, for which we formulate a specifically tailored version
of weak transport measurement.

V. FRACTIONAL CHARGE VERSUS FRACTIONAL
JOSEPHSON EFFECT

We have so far established a framework to describe the
open system dynamics of a superconductor-normal metal hy-
brid circuit, including the FCS, based on the Lindbladian
L(χ, φ) in Eq. (13). Let us now explore the topological prop-
erties of the eigenspectrum of L(χ, φ), {λn(χ, φ)}. In order to
analyze the topology of the eigenspectrum, keeping track of
the eigenvalue labeling will be important. In Sec. III, we have
already introduced the labeling {λ0, λ±, λp, λs,c}, motivated
by the physical interpretation of the decay processes of the
corresponding eigenmodes. When including the counting field
χ , the eigenspectrum will be modified, λn(φ) → λn(χ, φ).
For finite χ we will still use the same labeling of indices,
which is, however, somewhat tricky because of braid phase
transitions, whereby certain eigenvalues swap places. We
therefore use the convention that the labeling n shall be done
according to Sec. III at the reference point χ = 0.
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As detailed in the previous section, the counting field and
the superconducting phase difference appear per se as inde-
pendent parameters. Similarly to Refs. [15,24,25], it turns out
that the nonequilibrium drive via the normal metal will give
rise to topological transitions in the spectrum λn. However,
in Refs. [15,24,25] only the counting field χ was considered
as a relevant coordinate. Here, we have the 2D space (χ, φ).
In 2D, exceptional points appear, as we will explain in more
detail below. When considering cuts of the complex spectrum
along either χ or φ, these exceptional points generate a braid
phase transition, and a resulting broken periodicity in either
χ or φ. We will interpret phases with a broken periodicity
along χ as a transport with fractional charges (along the lines
of Ref. [15]). Intriguingly, including here the superconducting
phase φ, our theory also predicts braid phase transitions in φ.
There are several nontrivial phases, which can be classified as
a fractional Josephson effect, in the sense of having a spectrum
with broken periodicity in φ. We will refine this statement
in the following. Importantly, since transitions along both
coordinates appear due to exceptional points in the 2D space
(χ, φ), we conclude that the fractional charge defined in the
transport statistics (χ ) and the fractional Josephson effect (φ)
are intimately related, but distinct concepts in a generic open
system context.

A. Braid phase transitions due to exceptional points in (χ, φ)

In order to describe the topological phase transitions in the
spectrum of L(χ, φ), we first have to establish some technical
details regarding braid theory. As already stated, in general,
the eigenspectrum of L(χ, φ), {λn(χ, φ)}, is complex. Con-
sidering the space spanned by (χ, φ), we can think of the
eigenspectrum as a complex band in a 2D Brillouin zone
(where χ and φ are coordinates of the 2D torus). Therefore,
the touching of two complex bands, λn = λm �=n, leads to two
independent conditions, which may be satisfied for particular
values of both χ and φ. That is, a touching of two complex
bands occurs in isolated points on the 2D torus. In Fig. 4(a),
we show the location of exceptional points for a chosen pa-
rameter set. As it turns out, band degeneracy points can occur
for typical system parameters (see caption of Fig. 4). Locally,
at the degeneracy points, the two eigenvalues partaking in
the degeneracy can be described by a complex square root
function ±√

z (where z ∼ χ + iφ). In the literature of topo-
logical transitions in open quantum systems, these touching
points are commonly referred to as exceptional points, see,
e.g., Ref. [86] (and references therein).

When choosing a closed path in (χ, φ) around an ex-
ceptional point, the two eigenvalues, which touch at the
exceptional points, perform a braid. Thus, to each of the
exceptional points, one may assign generators of the braid
group; the braid generator may be considered as a gener-
alization of the notion of a topological charge carried by a
degeneracy point (see, e.g., [15]). Given a certain ordering
of the eigenvalues, the index j of the braid generator σ j [see
Fig. 4(b)] indicates, which two eigenvalues perform a braid.
We here choose the order of the labels as λ0, λ+, λ−, λp, see,
e.g., Fig. 6. For instance, the braid generator σ1 thus braids
λ0 with λ+, σ2 braides λ+ with λ− and finally σ3 braids λ−
with λp. Note that the eigenvalues λs,c are inert, in the sense

FIG. 4. (a) Positions of exceptional points in (χ, φ) space for
EJL = EJR ≡ EJ , ε = 0.1EJ , and 
N = 0.5EJ . To each exceptional
point, one may assign braid generators (similar to a topological
charge), marked with solid and empty circles. Since four eigen-
values partake in braid phase transitions, we need the braid group
for four strands, given in (b). In fact, this braid group is complete
already with the first three generators, σ1, σ2, and σ3. The fourth
braid generator is only added for convenience; it can be expressed
as σ4 = σ−1

1 σ−1
3 σ2σ1σ3. Due to overall “braid charge” conservation,

each exceptional point must have its negative counter part, to which
the inverse braid generator is assigned. Such a pair of exceptional
points is connected via an arrow (solid purple and dashed green).
The braids along a particular axis (either χ or φ, see two examples
marked with red arrows), see subsequent figures, can be constructed
from (a) by the following rule. To know the topology (i.e., the braid
word) of a spectrum along a given path, one needs to assemble all
the generators of the connection lines of two exceptional points, in
the order they are crossed. For instance, the red arrow along χ , gives
rise to the braid word (σ1σ3σ4)2 = (σ2σ1σ3)2, which corresponds to
the topological phase given in Fig. 6(d). The red line along φ [see
inset of (a)], returns the braid word σ1σ3σ4σ

−1
1 σ−1

3 = σ2, and thus
the topological phase from Fig. 8(d).

that they depend neither on χ nor φ, and do not partake in
braiding. This is why we do not have to include them for the
analysis of the topology of the eigenspectrum. While ∂χλs =
0 can be understood by the complete symmetry of the system
with respect to spin, ∂χλn = 0 stems from the effective elim-
ination of the many-body interactions within the dissipative
(quasiparticle-induced) processes, due to μ  U . At any rate,
we only have to consider braid generators with four strands.
For four strands, the set of three braid generators, σ1, σ2, and
σ3, see Fig. 4(b), is complete and describes the whole braid
group. For convenience, we have furthermore introduced a
braid generator to directly braid the first and fourth strand
(λ0 and λp), σ4 = σ−1

1 σ−1
3 σ2σ1σ3. This generator is, however,

nonfundamental in the sense that it can be constructed out of
σ1,2,3.

Due to the 2π periodicity of L in χ and φ, there must be
an overall conservation of the “braid charge” (similar to [15],
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where this was discussed for complex χ ). As a consequence,
to each exceptional point with a given braid generator σ j [see
Fig. 4(b)], there must exist a partner point, with the inverse
braid generator. These two partner points are connected by
a line, see 4(a). In fact, since the exceptional points are lo-
cally described by the square root function, these lines can
be understood as the corresponding branch cuts, with the two
partner points as origin points for the branch cut. When con-
sidering the spectrum along one particular parameter [either
χ or φ, see red arrows in Fig. 4(a)], the braid word for the
spectrum can be constructed as follows. One simply has to
add for each branch cut which is crossed, the corresponding
braid generator in the order it is crossed. In order to know
the chirality of the braid generator (i.e., whether one has to
add a given σ j or σ−1

j ) one may follow a “right hand rule”:
take the cross product of the tangential vector indicating the
path taken [red arrow in Fig. 4(a)] and the tangential vector
of the branch cut, at the given point, where these two lines
cross. The direction of the cross product vector decides the
chirality. In Fig. 4(a), we show two examples of paths (as red
arrows), one along χ for a fixed value of φ, and conversely
one along φ with fixed χ . Along these paths, the topological
phases discussed below emerge (marked with a star and an
inverse star symbol, cf Secs. V B and V C).

At this point, let us comment on the importance of the
fact that the dissipative processes due to WN relax into a
basis different from the eigenbasis of H . If the coupling to
the environment would be such that the dissipative processes
occurred in the basis of H , as is the case, e.g., in Eq. (7), then
the addition of the counting field χ would not give rise to
any interesting topological transitions. Here, the eigenvalues
λ±(φ) = ±i[ε+(φ) − ε−(φ)] − (
+ + 
−)/2 would simply
receive a χ dependence as λ±(χ, φ) = ∓i[ε+(φ + χ ) −
ε−(φ − χ )] − (
+ + 
−)/2. Due to ε± being gapped for the
quantum dot circuit, the complex spectrum eigenspectrum
would here be trivial for all values of (χ, φ). The normal metal
providing an out-of-equilibrium electron source thus plays an
essential role as the driver of topological phase transitions.
We note that usually processes, which change the parity of
superconducting circuits are considered detrimental (referred
to as quasiparticle poisoning, see, e.g., Refs. [12,40,43–50]).
Here, we provide a rare counter example, where they are at
the origin of an interesting effect.

B. Fractional charges

Let us now analyze explicitly the plethora of braid phase
transitions of the eigenspectrum of L(χ, φ) along χ with fixed
φ. While we could in principle use the information of the
exceptional points in (χ, φ) space, as discussed above, we
note that for explicit calculations, there is a mathematically
more efficient approach, which was discussed in Ref. [15]
(and further detailed in Appendix B). Namely, the trick is to
describe braid transitions in L(χ ) (for fixed φ) by generalizing
to complex counting fields eiχ → z ∈ C (and e−iχ → 1/z),
such that the real counting fields are represented on the unit
circle |z| = 1. The exceptional points now do no longer appear
in the 2D space of (χ, φ), but in the complex 2D space of
z. A braid phase transition in the χ space occurs when an
exceptional point traverses the unit circle. Therefore, in order

FIG. 5. Map of the different topological phases of the eigenspec-
trum λn(χ ) (with n = {0,+, −, p}), as a function of the detuning ε,
and the phase bias φ, for different asymmetries of the Josephson en-
ergies, EJL/EJ [(a)–(d)]. In (b) we mark all four possible topological
phases with the symbols of circle, triangle, inverted triangle, and star.
Out of those, only the yellow phase (star) is a topological phase with
fractional charge e∗ = e/2. For asymmetric junctions, EJL/EJ = 0.8
[see panel (c)], this phase is connected for all φ for a certain interval
of ε close to 0.

to keep track of the topological phases, we simply have to
compute the number of exceptional points residing within the
unit circle. Based on the definition for L in Eq. (13), we find
that the positions of the exceptional points can be obtained
analytically by means of the quartic equations,

4∑
i=0

piz
i = 0 and

4∑
i=0

qiz
i = 0, (28)

where the coefficients pi and qi depend on all the system pa-
rameters and φ. Their explicit forms are given in Appendix B.
Note that both equations have to be fulfilled individually, such
that there are two sets of roots for z, one for the first, and one
for the second polynomial equation. As explained above, for
a given root z0, one simply has to test if |z0| ≶ 1 and count the
total number of roots inside the unit circle, which enables us to
draw maps of the topological phases as in Fig. 5 as a function
of all the system parameters and φ. We find overall four
different types of braids for the eigenspectrum along χ , which
are labeled in Fig. 5(b) with the sphere, triangle, upside down
triangle, and star symbols, and explicitly drawn at example
points in parameter space in Fig. 6. In the upper-left corner of
each panel in Fig. 6, we also provide the braid word describing
the topology of the spectrum.

There is a trivial phase, shown in Fig. 6(a) (sphere symbol).
Here, the eigenvalues {λ0, λ+, λp, λ−} do not swap places
within the entire interval χ ∈ [0, 2π ). There are two topo-
logical phases (triangle, and upside-down triangle), shown in
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FIG. 6. The real and imaginary parts of the spectrum λn(χ )
(with n = {0, +, −, p}), drawn parametrically for χ = [0, 2π ), for
the four different topological phases mapped out in Figs. 5(a)–5(d),
and the definitions for the generators of the braid group, σ1,2,3 (e).
The corresponding inverse generators σ−1

1,2,3 can be constructed by
braiding with opposite chirality. There is a trivial phase (a), where all
complex eigenvalues form separate bands. The corresponding braid
word is trivial. In (b) the eigenvalues λ0 and λp braid twice, such
that the total spectrum remains 2π periodic in χ . This spectrum can
be described by the braid word σ4σ4 with σ4 = σ−1

1 σ−1
3 σ2σ3σ1. In

(c) the same double braiding occurs but with the eigenvalues λ+ and
λ−, characterized by the braid word σ2σ2. Finally, in (d) the braid
leads to eigenvalues λ0 and λp, respectively λ+ and λ−, swapping
places. Here, the eigenspectrum is 4π periodic in χ, thus breaking
the 2π periodicity of L(χ ). Here, the transport can be described by
eigenmodes with fractional charge e∗ = e/2.

Figs. 6(b) and 6(c). In Fig. 6(b), the eigenvalues related to the
stationary state λ0 and the parity decay λp perform a braid.
However, this braid does not break the 2π periodicity in χ ,
as they braid twice, as indicated by the braid words σ4σ4 and
σ2σ2.

Finally, there is a topological phase where the 2π periodic-
ity in χ is broken, see Fig. 6(d). After progression of χ by
2π the eigenvalues λ0 and λp, as well as λ+ and λ− have
swapped places, leading to an overall 4π periodicity of the
spectrum. Along the lines of Ref. [15], such a spectrum can
be interpreted as transporting a charge with half the unit as
compared to the 2π periodic phases. For the sake of com-
pleteness, let us reiterate the arguments of Ref. [15]. First of
all, note that as per the two definitions of the FCS, Eqs. (13)
and (25), the charge is counted in units of Cooper pairs, with
charge 2e. The trivial phases with a spectrum 2π periodic
in χ therefore transport charges in units of 2e. The in the
4π -periodic phase, the transported charge is e∗ = 2e/2 = e.
Charge quantization is broken in the sense that physically,
the s-wave superconducting contacts can only accept integer
Cooper pairs (due to the large � limit). The nonequilibrium
drive due to the normal-metal induces the topological phase

of Fig. 6(d), where the contacts seem to accept half-integer
Cooper pairs. In fact, this breaking of charge quantization
seems already to some extent indicative of a fractional Joseph-
son effect, which we will discuss in detail in moment.

According to Ref. [15], there are two important ways
to define fractional charges in χ . Let us first consider the
zero-frequency limit of FCS. As already mentioned above,
the measurement time τ is here to be taken as infinite, τ →
∞. Consequently, in the transport statistics, only the eigen-
value with the least negative real part, λ0 is visible (see also
Refs. [125,126]), as can be seen when considering the defini-
tion of the moment generating function m in Eq. (14). As τ

increases, all higher eigenmodes λn �=0 become exponentially
suppressed. In fact, the cumulant generating function in this
limit can be computed simply as

lim
τ→∞ c(χ, τ ) = λ0(χ ). (29)

That is, for a hypothetical experimenter measuring the true
zero-frequency FCS, the information of the higher modes
would be lost. However, something nontrivial remains. Sup-
pose that we were able to measure a sufficiently large number
of cumulants Ck to reconstruct c(χ ), and thus m(χ ), for finite
values of χ . This would essentially correspond to analyzing
the eigenvalue λ(χ ) first close to χ ≈ 0 and then analytically
continuing to finite χ . If the cumulants Ck are measured up to
a sufficiently high (ideally infinitely high) order k, the cumu-
lants could thus be used to reconstruct the periodicity of λ0

in χ and thus determine unit of the charge being transported.
Curiously, when the zero mode λ0 partakes in a braid phase
transition, the analytic continuation would clearly provide a
4π -periodic moment generating function, indicating transport
in units of e, in spite of the system physically transporting
charges into the superconducting reservoirs in units of 2e.

The interpretation of the broken periodicity as a fractional
charge works also for finite measurement times τ , when the
transport statistics still depend on τ , and the decaying modes
λn �=0 are still detectable. Here, Ref. [15] argues that the spec-
trum consisting of complex bands with broken periodicity in
χ can be exactly mapped to a fictitious open quantum system,
which transports charges in units given by the periodicity in
χ . In the topological phase shown in Fig. 6(d), both λ0 and
λp as well as λ+ and λ− merge into two complex bands, each
with periodicity 4π . Thus, this corresponds to two fictitious
bands transporting charge e instead of 2e.

There is an additional final point to be discussed. Namely,
the spectrum as shown in Fig. 6 can only be measured when
adopting the first version of FCS, outlined in Sec. IV A, i.e.,
when projectively measuring the current at local times, and
correlating them to obtain the transport statistics. If the FCS
is instead measured with a continuously entangling detector,
according to Eq. (27) the moment generating function is in-
tegrated over φ. Since the moment generating function is a
regular expectation value, the integral over φ (including the
normalization prefactor 1/2π ) can be understood effectively
as a statistical average over a homogeneous probability dis-
tribution in φ. It is in this sense that the transport statistics
obtained via mCE are to be understood as a statistical mix of
different topological phases. For instance, in Fig. 5 for a given
ε one can draw a horizontal line along φ, and thus evaluate
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FIG. 7. Map of the different topological phases of the spectrum
λn(φ), as a function of the detuning ε, and the counting field χ , for
different asymmetries of the Josephson energies, EJL/EJ [(a)–(d)].
Apart from the trivial phase, there are here four distinct topological
phases, marked in (b) with the symbols of square, rhombus, pen-
tagon, and inverted star. For each topological phase at a given (ε, χ ),
there is a partner phase at (−ε, χ ), which can be obtained through
complex conjugation of the bands λx → λ∗

x .

how many distinct topological phase regions the line crosses.
In particular, there is thus the possibility to observe a statistical
mix of topological phases with different transported charge
units, either the charge 2e for the phases in Figs. 6(a)–6(c) or
the charge e for Fig. 6(d). Such an effect was not possible in
Ref. [15], where only normal metal contacts were considered,
and thus the FCS was φ independent.

C. Fractional Josephson effect

As we have seen just now, one particular topological phase
along χ [Fig. 6(d)] indicated transport with a charge e instead
of 2e, which would be the default charge of the supercon-
ducting contact. Here, we want to analyze the topological
properties of the eigenspectrum along φ for different values
of χ . To this end, we proceed similarly as above, this time, by
replacing eiφ → z̃ (and e−iφ → 1/̃z) and analyzing the posi-
tions of exceptional points in the space of general, complex z̃.
Also here, this position can be evaluated again by means of a
quartic equation with the same form as in Eq. (28), with z → z̃
and the new coefficients pi, qi → p̃i, q̃i, depending on χ in-
stead of φ. Again, their explicit form is given in Appendix B.

The resulting map of topological phases is shown in Fig. 7.
Here, there are overall five different phases to be observed, a
trivial one, and four topologically nontrivial ones, denoted by
the square, diamond, pentagon, and inverted star symbols [as
indicated in Fig. 7(b)]. Here, all of the nontrivial phases break
2π periodicity along φ. Hence, in this broad sense, all of these

FIG. 8. The real and imaginary parts of the spectrum λn(φ),
drawn parametrically for φ = [0, 2π ), for the four different topo-
logical phases mapped out in Fig. 7(a)–7(d). In all phases, the 2π

periodicity in φ is broken. In (a) and (d), two eigenvalues participate
in a braid, either λ0 and λp in (a), or λ+ and λ− in (d). In (b),
both λ0 and λ+ as well as λp and λ− exchange places during a
2π -sweep of φ. In (c), all eigenvalues interchange, leading to an
8π -periodic phase. The phase depicted in (d) has a mapping to a
closed system fractional Josephson effect including weak dissipation.
The other phases [(a)–(c)] do not have such a correspondence, since
they involve the eigenvalues λ0 and λp (see also main text).

phases may be interpreted as a fractional Josephson effect. In
particular, apart from the 4π -periodic phases in Figs. 8(a) and
8(b) (denoted with the square and diamond symbols), there
is in fact an 8π -periodic phase (pentagon symbol), where all
four noninert eigenvalues partake in a braid. Here, we can
think of the interaction with the magnetic field generating the
phase bias φ in terms of a charge e/2, similar to parafermionic
circuits [13,14]. Note that a fractional charge e/2 could not
be observed in the topological properties along χ discussed
previously. We can therefore see this as a nice example illus-
trating why the topological properties along χ and along φ

should in general be considered distinct effects. Topological
transitions along both parameters are related due to their com-
mon generation by means of the exceptional points in (χ, φ),
as shown in Fig. 4, however, as it turns out, their configuration
may be such that different braid phases occur along the two
parameters.

In addition, there is a topological phase [inverted star
symbol in Fig. 7(b)], which deserves the label of a frac-
tional Josephson effect in a more narrow sense. Namely,
the complex spectrum here [shown in Fig. 8(d)] can be
continuously mapped to the open system spectrum of the
actual Majorana-fermion circuit, shown in Fig. 1(f). That is,
the shape of the eigenvalues in Fig. 8(d) permits the explicit
interpretation of the spectrum as two eigenvalues related to
the coherent (Hamiltonian) dynamics λ±, which have now a
closed minigap, and remaining standard eigenvalues related
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to decay and stationary state, which do not partake in the
braid. Importantly, we note that for a closed system, the gap
in the Josephson spectrum can only be closed when using
at least four superconducting contacts (and thus three phase
differences φ1,2,3) as shown in Ref. [127]. As already pointed
out in Sec. II, for the circuit considered here, with only two
superconducting contacts (and the single phase difference φ),
the closed system cannot stabilize a closing of the minigap:
any deviation from ε = 0 or EJL = EJR opens a gap. Here we
show that a gap closing can be stabilized by means of the inter-
play between a nonequilibrium drive (due to the normal metal)
and a measurement of the transport statistics (nonzero χ ).

Let us conclude this section by summarizing that for a
generic open quantum circuit, the emergence of fractional
charges defined in the FCS (χ ) and a fractional Josephson
effect, indicating the unit of charge with which the magnetic
field interacts (φ) are in so far related, as they are generated
by exceptional points in the 2D space spanned by (χ, φ). They
are, however, also distinct in the sense that these exceptional
points produce different braids when analyzing the spectrum
either along the χ space (where either 2π - or 4π -periodic
spectra emerge) or along the φ space (where we find 2π -,
4π -, and even 8π -periodic spectra). Moreover, we can show
that the fractional Josephson effect, and thus a closing of
the minigap in the Josephson energy (imaginary part of the
complex eigenspectrum) can be stabilized when combining
nonequilibrium and transport measurements, a feature, which
is impossible for a closed (dissipation-free) circuit.

Finally, let us explicitly point out what we have already
indicated at the beginning of Sec. IV. Namely, there is a left-
right asymmetry in the occurrence of topological phases, as
can be seen when swapping EJL ↔ EJR, e.g., when comparing
Figs. 5(a) and 5(c) as well as Figs. 7(a) and 7(c). This is due
to the fact that the current is measured asymmetrically (at the
right contact), as we have discussed when defining the current
operator, Eq. (11). Exact left-right symmetry is only achieved
by mirroring the circuit and the detector placement.

VI. FINITE COUNTING FIELD AS WEAK MEASUREMENT

While we have learned above that a trivial circuit with a
quantum dot coupled to superconducting and normal metal
contacts provide an unexpected wealth of open system topo-
logical phase transitions, there are some important remaining
caveats especially with regard to the nature of the detector. In
particular, the observation of the topological phase transitions
along φ space (see Figs. 8) are in fact virtually impossible,
when adhering to the idealized detection schemes depicted in
Fig. 3. As for the detection scheme with time-local projec-
tive current measurements, Fig. 3(a), the finite χ parameter
regime can only be approached, by measuring an increasing
number of cumulants Ck of the supercurrent (and, in fact,
by including finite measurement times τ in order to extract
all the eigenmodes, see Appendix C) and then analytically
continuing the eigenmodes λn(χ ) starting from the extracted
∂k
χλn(0). It goes without saying that, such a procedure is in

and of itself extremely challenging experimentally. Moreover,
note also that there is no convergence if we aim to go across
a topological phase transition. Let us explicitly illustrated
this fact with the example of the topological spectrum shown

in Fig. 8(d). For χ = 0 (while keeping all other parameters
the same) the spectrum is trivial. The analytically continued
eigenvalues, starting at χ = 0, are defined as

λac
i (χ, φ) = λi(0, φ) + χ∂χλi(χ, φ)|χ=0

+ χ2

2!
∂2
χλi(χ, φ)

∣∣∣∣
χ=0

+ · · · (30)

Now we can compare the analytically continued eigenspec-
trum to the exact one (without expansion around χ = 0) to see
if they still braid in the same way, keeping all other parameters
same. In Fig. 9(a) we compare the parametric plots of the
analytically continued eigenvalues to second order and exact
eigenvalues for finite counting field, and can easily conclude
that analytically continued eigenvalues do not reproduce the
same braid. We find that the 4π -periodic fractional Josephson
effect only emerges when going to arbitrary high-order cu-
mulants, which is an outright prohibitive requirement from an
experimental viewpoint.

This issue could be avoided if χ was a real, physical
parameter, which it is not when utilizing time-local current
correlations [Fig. 3(a)]. It would be, if instead an explicit
physical detector was present [Fig. 3(a)], however, here there
is the aforementioned problem that the continuous entangle-
ment between system and detector destroys the information
of the supercurrent. This prompts us to study alternative mea-
surement schemes, where the transport measurement satisfies
both the requirements of the counting field being physical, and
at the same time preserving information about the supercur-
rent. As it turns out, these requirements can be met by a weak
continuous measurement of the current.

Weak measurement has been studied extensively in several
contexts (for an instructive review, see Ref. [128]). A weak
continuous measurement of the current could for instance be
envisaged along similar lines as in Ref. [97], where it was
proposed to weakly measure spins via an incident polarized
photon beam and exploiting the Faraday effect. Due to the
magnetic field emitted by the supercurrent, it is in principle
perceivable to use a similar setup here to obtain informa-
tion about the transport. However, in the light of massive
experimental advances in the interaction and control of su-
perconducting circuits with transmission lines [129–131], we
deem it informative to briefly sketch an “all-circuit” real-
ization of the weak measurement (i.e., without relying on
polarized photon beams). For this purpose we study coher-
ent scattering in a nearby SQUID inductively coupled to the
circuit, loosely inspired by Ref. [98]. In the following we will
provide a highly simplified model of a SQUID detector and its
interaction with the circuit, as a proof of principle for a weak
measurement of the supercurrent, and show how it can be used
to simulate a counting field. Finally, we will investigate as
an example, how the topological phase from Fig. 8(d) can be
probed with this setup.

A. SQUID detector for weak current measurement

The SQUID detector consists of two superconducting
lines connected via two Josephson junctions (with Josephson
energy EJ,SQUID) in parallel, see Fig. 10. The weak measure-
ment is then implemented by means of the following points.
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FIG. 9. (a) The dashed lines are analytically continued eigen-
values up to second order, while the solid lines are eigenvalues
with a finite counting field [see also Fig. 8(d)]. The analytically
continued eigenvalues match asymptotically only away from φ = π .
Near φ = π , however, they do not perform the same braiding as in
Fig. 8(d), such that the topological phase cannot be observed. (b) The
solid lines are again eigenvalues for ideal detector kernel with finite
counting field [Fig. 8(d)], and the dashed lines are eigenvalues for the
weak measurement kernel. The eigenvalues do not match up exactly
(due to a distortion, see main text), but they exhibit the same braiding.
These plots are for the following parameter values: ε

EJR
= 0.007,

EJL
EJR

= 1.0, 
N
EJR

= 0.2, χ = −0.04, ωmδr
EJR

= 0.02, and ξ = π/2.

(i) The current from the main circuit produces a magnetic field
that can interact with the SQUID. The interaction strength
can be estimated based on Ampère’s law, see, e.g., Ref. [19].
(ii) If we send a signal from one end of the detector it will
be reflected and transmitted at the SQUID. (iii) The reflection
and transmission coefficients are sensitive to the flux enclosed
by the SQUID and therefore depend on the current from the
quantum dot.

As we will develop now, a subsequent evaluation of the
scattered state will provide us with classical information about

FIG. 10. Setup for weak measurement by means of a SQUID
detector. An incoming wave packet will be scattered at the SQUID.
The inductive coupling between the main circuit and the SQUID
shall be tailored such that the outgoing scattered state depends on the
supercurrent entering the superconductor on the right. A subsequent
projective measurement of the scattered state realizes a form of weak
measurement of the supercurrent.

the supercurrent without completely suppressing it. In partic-
ular, we will show that the measurement is weak because of
a highly reflective nature of the SQUID (i.e., full reflection is
the default event, without obtaining any information about the
current), and continuous in the sense that there is a repeated
initiation of incoming waves after a given time interval, the
inverse of which represents the detection frequency.

In order to describe the scattering problem, let us start
by writing down the Hamiltonian for the SQUID detector.
Overall it is composed of three parts, HSQUID = HL + HR + V
describing the left (right) conductor line HL (HR) and the
SQUID part connecting the two, V . Each of these subparts
can be written as

HL = 1

2C0

0∑
j=−∞

q2
j + 1

2L0

−1∑
j=−∞

(
ϕ j+1 − ϕ j

2e

)2

, (31)

HR = 1

2C0

∞∑
j=1

q2
j + 1

2L0

∞∑
j=1

(
ϕ j+1 − ϕ j

2e

)2

, (32)

V = − γ

2e2
cos (ϕ1 − ϕ0) ≈ γ

(
ϕ1 − ϕ0

2e

)2

+ const., (33)

where we chose for convenience a discrete lattice represen-
tation of the conductor lines [132], which are characterized
by the capacitances C0 and the inductances L0. The charge
and phase variables qj and ϕ j on the lattice nodes j satisfy
the commutation relations [q j, ϕ j′ ] = i2eδ j j′ . The interaction
with the circuit is included via the coupling prefactor in V
(which is chosen to have the units of an inverse inductance).
When tuning the externally applied flux to half flux quantum,
we get

γ = 2e2λEJ,SQUIDI, (34)
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where I is the current operator, as defined in Eq. (11). The
coupling constant λ can be estimated from Ampère’s law (as
already mentioned, see Ref. [19]). Note that for simplicity, we
assume that the signals will have low amplitudes in ϕ, such
that we may expand V up to quadratic order, see Eq. (33). The
tuning to half-flux makes the SQUID highly reflective; for I =
0, the SQUID can be considered as a hard wall from the point
of view of an incident wave, and only weakly transmittive for
a finite I since the local inductance of the SQUID is very high.
Strictly speaking, for two disconnected wires (as for I = 0),
the phase difference (ϕ1 − ϕ0) is not in general guaranteed
to remain small. However, one can easily connect the two
transmission lines in a loop, so that even when γ = 0 the
phase difference remains small, at least for a sufficiently small
loop inductance. Also, note that for simplicity, we assumed
the superconductor line to be without resistance. Of course re-
alistically resistance is always present [133–135]. According
to [135] the coupling to continuous modes in the loop leads
to the renormalization of the Josephson energy, but this does
not qualitatively change our idea of using the SQUID detector.
The other more drastic effect the dissipation can have is that
the superconducting loop itself might undergo a superconduc-
tor to insulator phase transition. As predicted in [133,134],
this puts a limitation on the transmission line parameters. To

be precise if the parameter g, where g−1 = 4e2

h̄π

√
L0
C0

, is below

a certain threshold gc then the superconducting loop will act
as a insulator [135]. We further note that the existence of
dissipative quantum phase transitions is currently still subject
to debate [35–37]. Overall, our specific proposal of a circuit
realization of weak current measurement should really only
be considered a proof of concept, and may easily serve as
blueprint for other (more) feasible realizations.

Let us briefly touch on an important point regarding the
spatial resolution of the current measurement. Namely, de-
pending on the circuit geometry and detector placement, the
SQUID could in principle couple to both the left and right
supercurrents (and thus fails to reproduce the topological
phase transitions discussed above, and in general complicate
the discussion). In the most generic case, we would thus
actually have a nonzero ζ parameter, describing this nonideal
coupling, see the discussion in Sec. IV after Eq. (11). In order
to avoid such subtleties, we assume that the SQUID is placed
more towards the right contact than the actual quantum dot.
This is fine, because it is plausible to assume that the Cooper
pairs, once they enter the right contact, are distributed very
fast (according to the group velocity of the Nambu-Goldstone
mode within the superconductor bulk, see, e.g., Ref. [136]).
Hence, the bottleneck current is the tunneling current between
dot and superconducting contact, which can be still observed
deep within the right contact, neglecting the high-frequency
displacement currents inside the bulk.

To continue, we note that the individual Hamiltonians HL,R

each have a linear dispersion relation, for bosonic modes
propagating in 1D, Ek ≈ ω0|k| (valid for |k| � 1), with ω0 =
1/

√
L0C0 and the unitless wave vector k. We then assume that

one creates an incoming signal at a certain energy E with
wave vector kE = E/ω0, carried by the conductor lines, which
can scatter at the SQUID. The transmission amplitude can be

computed by means of the Fisher-Lee formula [137],

tL(E ) = −ivE lim
j→∞, j′→−∞

G+
j j′ (E )e−ikE ( j− j′ ) (35)

where vE = ∂kEk|Ek=E and G+
j j′ (E ) is the retarded single-

particle (here, single-boson) Green’s function. We obtain

tL(E ) = −i
γ L0

kE
. (36)

The explicit calculation is shown in Appendix D. This final
result is valid up to first order in γ (in accordance with the
assumption that tunneling is weak, |t | � 1). Importantly, for
half flux �ext = �0/2, which will be our default parameter
setting from now on, the transmission coefficient is directly
proportional to the current I , see Eq. (34). In particular, it
changes sign if the current changes sign. Due to left-right
symmetry of SQUID detector we can easily deduce that

tL(E ) = tR(E ) = t (E ),

rL(E ) = rR(E ) = r(E ). (37)

Thus, the reflection and transmission coefficients can be cast
into a standard scattering matrix

S =
(

rL tR

tL rR

)
=
(

r t
t r

)
. (38)

Since the scattering matrix is unitary (S†S = I), we can
deduce two equations that give us a relation between the
reflection and transmission coefficients. The first equation is
r∗t + t∗r = 0, which leads us to conclude that the reflection
coefficient must be real since the transmission coefficient
in Eq. (36) is imaginary. The other equation, conservation
of probability |t |2 + |r|2 = 1, lets us calculate the amplitude
of r.

As already stated above the SQUID is weakly transmitting,
therefore most of the signal will be reflected,

r = 1 − δr (39)

with δr � 1. From this, we derive

|t |2 = 2δr (40)

up to first order in δr. These identities will help us now in
constructing the Master equation including the influence of
the SQUID detector.

B. Master equation including weak measurement

Now we are ready to develop the master equation for the
quantum dot system in presence of the SQUID detector and
show how it simulates a counting field. To write down the
master equation we need Kraus operators that describe the
weak measurement process.

For simplicity, we assume that the scattering time of the
wave packet at the SQUID is very short, much shorter than
the dynamics due to the coupling with the superconductors
(defined by the energy scale ∼EJL,JR) and the coupling to
the normal metal (∼
N ). Thus, we are entitled to treat the
different parts of the system dynamics independently, and add
them up for the final master equation.
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Keeping therefore the circuit state constant, let the initial
state of the circuit plus detector (no normal metal) before
scattering at the SQUID be the factorized state

|�in〉 = [C−|I−〉 + C0↑|I0↑〉 + C0↓|I0↓〉
+ C+|I+〉] ⊗ |in,R〉 (41)

where the states |I∓〉, |I0σ 〉 (σ =↑,↓) are the eigenvectors of
the current operator I and C∓,C0σ are complex-valued wave
function amplitudes, satisfying the normalization condition
|C−|2 + |C0↑|2 + |C0↓|2 + |C+|2 = 1. The vector |in, R〉 rep-
resents the normalized state that depicts the incoming signal,
without loss of generality assumed to originate from the right
end of the conductor line. For the sake of completeness, let us
provide the explicit forms of the current operator eigenbasis,
in terms of the quantum dot charge basis, |0〉, |1σ 〉, |2〉, as
introduced below Eq. (1). The eigenstates with nonzero eigen-
values I∓ = ∓eEJR are given as |I∓〉 = (|0〉 ± ieiφ|2〉)/

√
2,

and the degenerate pair of zero eigenvalues I0σ = 0 belong
to the eigenvectors |I0σ 〉 = |1σ 〉.

After scattering, the factorized initial state gets weakly
entangled, resulting in the final state

|�f〉 = [t−C−|I−〉 + t+C+|I+〉] ⊗ |out,L〉 +
[

r−C−|I−〉

+
∑

σ

C0σ |I0σ 〉 + r+C+|I+〉
]

⊗ |out,R〉, (42)

where r± and t± are reflection and transmission coefficients,
respectively, corresponding to eigenvalues I±. We have fur-
thermore made use of the fact that for I0σ = 0, the signal gets
completely reflected (due to the half-flux tuning).

In fact, the above final state shown in Eq. (42) is mean-
ingful, if the experimenter is merely measuring the presence
or absence of a transmitted wave. We note however, that an
additional important piece of information can be extracted
from the scattered state: the aforementioned sensitivity of the
transmission amplitude on the sign of the current, t− = −t+.
In terms of the outgoing signal, this sign change can be under-
stood as a π -phase shift, which could in principle be detected
by an appropriate interference setup. Then, we have three
instead of two detection outcomes, which should therefore be
cast into the final wave function

|� ′
f〉 = t−C−|I−〉 ⊗ |out, L−〉 + t+C+|I+〉 ⊗ |out, L+〉

+
[

r−C−|I−〉 +
∑

σ

C0σ |I0σ 〉 + r+C+|I+〉
]

⊗ |out,R〉,
(43)

where the states |out, L∓〉 represent a measurement of a trans-
mitted wave (outgoing to the left) including a determination of
its relative phase shift with respect to the initial wave, leading
to the extra index ∓.

Depending on the two possible detection scenarios, we
have either two or three possible measurement outcomes for
the ancilla system, denoted by the index q ∈ {0, 1}, or q ∈
{−, 0,+}. The projection onto the different measurement out-

comes is described in the second scenario by the three Kraus
operators

M∓ = t∓|I∓〉〈I∓|, (44)

M0 = r−|I−〉〈I−| +
∑

σ

|I0σ 〉〈I0σ | + r+|I+〉〈I+|. (45)

For the first scenario, the ∓ outcomes are merged into a single
Kraus operator M1 = M− + M+. Independent of the specific
measurement basis, it is easy to check that the requirement∑

q M†
q Mq = 1 is satisfied. We notice, that due to the highly

reflective nature of the SQUID, we may use Eq. (39), to
express the Kraus operator

M0 = 1 + δM0, (46)

where δM0 scales linear in δr, and thus quadratic in t , see
also Eq. (40). The Kraus operators M∓ on the other hand
scale linearly in t . This different scaling behavior is important
now for the derivation of the master equation including weak
measurement

We now assume that there is a repetition of incoming
signals according to a measurement frequency ωm, that is, the
weak entanglement and subsequent projective measurement
occurs on average every time interval ∼1/ωm. The time evo-
lution of the density matrix due to this process (still neglecting
the influence from the superconducting and normal metal
contacts) can then be given as

ρ̇ = ωm

⎛⎝∑
q

MqρM†
q − ρ

⎞⎠. (47)

The right-hand side can be expanded up to second order in t ,
resulting in the master equation

ρ̇ = ωm(K0 + K− + K+)ρ, (48)

with the definitions of the superoperators K∓· = M∓ · M∓ and
K0· = δM0 · + · δM0.

These superoperators can be reexpressed using the quan-
tum dot creation and annihilation operators as follows:

K0· = −2δr(1 + d†
↑d†

↓d↓d↑) · (1 + d†
↑d†

↓d↓d↑),

K−· = A · A − i

2
{δreiφd†

↑d†
↓ − δre−iφd↓d↑, ·}, (49)

K+· = A · A + i

2
{δreiφd†

↑d†
↓ − δre−iφd↓d↑, ·},

where A is a Hermitian operator given by

A =
√

δr(1 + ieiφd†
↑d†

↓ − ie−iφd↓d↑ + d†
↑d†

↓d↓d↑). (50)

In order to derive the above K superoperators, we have used
the property t−1 = −t1, which further implies |t−1|2 = |t1|2 =
|t |2 and δr−1 = δr1 = δr. We notice that K± are actually of the
form K± = A · A ∓ δr/(2eEJR){I, ·} with the current operator
I as defined in Eq. (11). This observation will be of great use
in a moment.

Let us now reintroduce the dynamics due to the su-
perconducting and normal metal contacts, captured by the
Lindbladian L(φ), see Eq. (8). In addition, we keep a register
n, which stores the classical information of the outcome of the
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above described weak continuous measurement, ρ → ρ(n).
The full master equation can be written as

ρ̇(n) = [L(φ) + ωmK0]ρ(n)

+ ωmK+ρ(n ∓ 1) + ωmK−ρ(n + 1). (51)

Note that for the K+ term, we have included both of the above
scenarios of either being able to distinguish the current direc-
tion or not. The resulting information processing protocols are
the following. If the current direction cannot be distinguished,
then K+ρ(n ∓ 1) → K+ρ(n + 1), such that the register n is
simply increased by +1, when having measured a nonzero
current (events described by K∓). The absence of a transmitted
signal corresponds to a measurement of zero current, resulting
in no change in the detector count. If the current direction
can be distinguished, we may engage in a different protocol,
K+ρ(n ∓ 1) → K+ρ(n − 1). Here, for a measurement of the
eigenvalue I−, the detector count goes down by one, and and
for a measurement of I+, the detector count goes up by one.

To proceed, let us define the Fourier transform as ρ(ξ ) =∑
n einξ ρ(n) with a new counting field ξ , which is distinct

from, but (as we show now) to some extent related to, the
original counting field χ . The Fourier transformed master
equation becomes

ρ̇(ξ ) = [L(φ) + ωmK0 + ωmK+eiξ + ωmK−e∓iξ ]ρ(ξ ). (52)

Crucially, it can be shown that for ξ = π/2, the weak mea-
surement part in Eq. (52) can be brought into a very similar
form as the kernel in Eq. (21), provided that our detector is
able to distinguish between positive and negative currents,
e±iξ → e−iξ for K−. Note that setting ξ to a strong nonzero
value (i.e., ξ = π/2) is no problem whatsoever: the detector
is here physically realized, and the experimenter will be able
to directly access the classical probability distribution of mea-
surements along the space n (the space conjugate to ξ ). Hence,
the choice ξ = π/2 simply corresponds to a particular way of
evaluating (postprocessing) the classical information. At any
rate, plugging in ξ = π/2, we then find

ρ̇(π/2) =
[

L(φ) + ωmK0 − i
ωmδr

eEJR
{I, ·}

]
ρ(π/2). (53)

Indeed with the replacement

ωmδr → −χ
EJR

2
(54)

the kernel including the weak measurement can be mapped
(up to the extra term K0, which we discuss in a moment) onto
the kernel with small but finite χ . Of course, we can therefore
not hope to probe the global properties of the kernel for all
χ . However, this form of weak measurement can be used to
“simulate” the presence of a small but finite counting field.
Importantly, here the simulated χ enters as a system parameter
influencing the dynamics, and is no longer related to the trans-
port measurement (as the latter is encoded in the new classical
counting field ξ ). Hence, we are no longer required to expand
in χ , and can thus avoid any problems related to analytic
continuation, and the topological phase transition shown in
Fig. 8(d) can now be observed.

Let us now comment on the effect of aforementioned the
extra term K0. While the presence of K0 does distort the spec-

trum, we observe that the braid group of the two eigenvalues
λ± is preserved, when setting the weak measurement param-
eters (ωm and δr) to values that correspond to the value of χ

[according to Eq. (54)] in Fig. 8(d). As a proof of principle,
we show the new eigenvalues for the weak measurement in
comparison with old ones, for finite χ , in Fig. 9(b). Let us
repeat that this recreation of the braid phase transition via
weak measurement is only possible if the detector is able to
distinguish the sign of the current (see above discussion), as
otherwise, the weak measurement kernel cannot be mapped
onto Lcut-off(φ, χ ).

To conclude, let us provide a short interpretation of the
above concept. In the absence of the weak current mea-
surement (or transport measurement in general, χ = 0), the
complex open system spectrum is trivial, and the eigenvalues
belonging to the coherent time evolution, λ± are gapped, see
Fig. 1(e). This corresponds to the trivial Josephson effect. The
reason why they are gapped is simply because it is in general
impossible to tune the system parameters to the perfectly
symmetric values EJL = EJR and ε = 0 (due to U = 0). The
weak measurement can close the gap, and thus correct for
the “failure” to tune to perfect symmetry. We note that we
have to set the new counting field ξ to a precise value (π/2)
to accomplish this. This is, however, no real limitation: the
weak measurement has provided us with an entire array of
classical information [encoded in the register n, ρ(n), see
Eq. (51)], and setting ξ = π/2 is just a particularly chosen
way to evaluate (postprocess) this information. Figuratively
speaking, this particular choice of postprocessing the classi-
cal information “filters out” transport processes with integer
Cooper-pair charge 2e in favour of processes with fractional
charge e.

VII. CONCLUSIONS

We studied the topology of the transport properties of a
generic quantum system where supercurrents and dissipative
currents coincide, in terms of the transport degrees of freedom
of the counting field χ and the superconducting phase bias φ.
We found that fractional charges defined in the full-counting
statistics are related to fractional charges visible in the Joseph-
son effect in a generic open quantum system via exceptional
points defined in the 2D base space (χ, φ)—as a matter of fact,
the exceptional points can be considered as the generators of
these fractional charges. While thus related, the two notions
of fractional charges are nonetheless distinct in the sense that
they are defined along two independent spaces. By means
of the concrete model of a heterostructure circuit, where a
quantum dot is coupled to superconducting and normal metal
contacts, we showed that the intricate interplay between trans-
port measurement and nonequilibrium drive gives rise to a
plethora of topological phases, surprisingly including a phase,
which can be interpreted as an open system version of a frac-
tional Josephson effect, in spite of the system being composed
of trivial materials.

In addition, we elucidated different flavours of full-
counting statistics based on different implementations of the
transport detector, and their relevance for observing different
topological phases. For a continuously entangling detec-
tor, a novel type topological phase emerges, which can be
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interpreted as a statistical mix of fractional and integer charges
defined in the counting field χ . However, as we pointed out,
such detectors destroy the information about the supercurrent,
and thus cannot directly measure a fractional Josephson effect.
A complementary approach for obtaining the full-counting
statistics involves time-local measurements of the current,
leaving the system be in between measurements. While this
approach preserves supercurrents, it cannot detect topological
transitions away from zero counting field. This prompted us
to develop a third notion of full-counting statistics relying
on a continuous weak measurement of the supercurrent. We
sketched a proof of principle for an all-circuit implemen-
tation of such a weak measurement by means of SQUID
detectors. This approach preserves supercurrents, and impor-
tantly enables us to reach topological phases at finite counting
fields.

As a final note, we believe that the “revival” of a fractional
Josephson effect by means of a weak supercurrent measure-
ment might be an interesting effect also for actual Majorana
junctions, since the gap closing in the Josephson relation may
not be fully protected due to finite size effects. The applica-
bility of weak measurement and nonequilibrium driving to
induce topological protection will likely be subject of future
research.
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APPENDIX A: EIGENMODES OF SYSTEM DYNAMICS
AND THEIR INTERPRETATION

In order to find the eigenoperators belonging to L =
−i[H, ·] + WN · [as defined in Eq. (8)], we express the su-
peroperator in terms of the operator eigenbasis of −i[H, ·].
Due to 
N � |ε+ − ε−| the off-diagonal sector, given by the
operator subbasis |±〉〈∓| decouples from the diagonal sub-
basis |+〉〈+|, |−〉〈−|, |1σ 〉〈1σ |, such that the former remain
eigenoperators including W . However, they now acquire the
additional real part −
N in the eigenvalue, due to

〈±|(WN |±〉〈∓|)|∓〉 = −
N . (A1)

The remaining diagonal subblock |+〉〈+|, |−〉〈−|, |1σ 〉〈1σ |
can be diagonalized separately. We find

〈±|(WN |±〉〈±|)|±〉 = −2
N
1 ± δ

2
, (A2)

and

〈±|(WN |1σ 〉〈1σ |)|±〉 = 
N
1 ∓ δ

2
, (A3)

as well as

〈1σ |(WN |±〉〈±|)|1σ 〉 = 
N
1 ± δ

2
, (A4)

with δ defined as in Eq. (4). The remaining (decou-
pled) diagonal subblock reads [ρ]diagonal = P+|+〉〈+| +

∑
σ Pσ |1σ 〉〈1σ | + P−|−〉〈−|. For concreteness, let us assume

spin degeneracy for the odd state σ =↑,↓. Writing the kernel
W as a matrix, acting on the vector (P+, P↑, P↓, P−)T , we find

[W ]diagonal =

⎛⎜⎜⎜⎜⎝
−2
N

1+δ
2 
N

1−δ
2 
N

1−δ
2 0


N
1+δ

2 −
N 0 
N
1−δ

2


N
1+δ

2 0 −
N 
N
1−δ

2

0 
N
1+δ

2 
N
1+δ

2 −2
N
1−δ

2

⎞⎟⎟⎟⎟⎠.

(A5)
This matrix has left and right eigenvectors, denoted with
|v) and (w|. The right eigenvectors correspond to opera-
tors |v) = v+|+〉〈+| +∑σ vσ |1σ 〉〈1σ | + v−|−〉〈−|, whereas
the left eigenvectors correspond to maps from opera-
tors to scalars, (w|· = w+〈+| · |+〉 +∑σ wσ 〈1σ | · |1σ 〉 +
w−〈−| · |−〉. We here denote them in short vector nota-
tion, |v) = (v+, v↑, v↓, v−)T and (w| = (w+,w↑,w↓,w−).
The left and right eigenvectors to eigenvalue 0 are

(0| = (1, 1, 1, 1) (A6)

and

|0) = 1
4 ((1 − δ)2, 1 − δ2, 1 − δ2, (1 + δ)2)T . (A7)

The right eigenvector corresponds to the stationary state,
ρst = |0), also given in the main text. We find furthermore the
eigenvalue −2
N with the left and right eigenvectors

(parity| = (1,−1,−1, 1) − δ2(1, 1, 1, 1)

|parity) = 1
4 (1,−1,−1, 1)T , (A8)

which can be interpreted as the eigenmode connected to
fermion parity decay, along the lines given in Ref. [119].
Namely, we find that the vectors can be constructed from
the parity operator p = |0〉〈0| −∑σ |1σ 〉〈1σ | + |2〉〈2|, which
thus returns 1 for even parity states, and −1 for odd parity. In
particular, the left eigenvector can be expressed as

(parity| = (p| − 〈p〉(0|, (A9)

where (p| = (1,−1,−1, 1), and 〈p〉 = (p|0) = tr[p]. Finally,
there is the doubly degenerate eigenvalue −
N . One of them
can be associated to the spin decay, as its left and right eigen-
vectors are

(spin| = (0, 1,−1, 0),

|spin) = 1
2 (0, 1,−1, 0)T , (A10)

which can obviously related to the spin operator s =∑
σ σ |1σ 〉〈1σ |. The remaining set of left and right eigenvec-

tors can be related to what we referred to in the main text as
the pseudocharge,

(pseudocharge| = (1, 0, 0,−1) + δ(1, 1, 1, 1),

|pseudocharge) = 1
2 (1, 0, 0,−1)T , (A11)

related to the operator ĉ = |+〉〈+| − |−〉〈−|. Likewise, we
may express the left eigenvector as

(pseudocharge| = (c| − 〈̂c〉(0|, (A12)

with (c| = (1, 0, 0,−1).
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APPENDIX B: EXCEPTIONAL POINTS FOR ANALYSIS OF TOPOLOGICAL TRANSITIONS

In this Appendix, we derive the expressions for the exceptional points mentioned in the main text, which enable a quick
numerical analysis of the topological maps in Fig. 5. For this purpose, we need the eigenvalues of L(χ, φ), defined in Eq. (13),
which can be computed analytically. Defining the operator basis |0〉〈0|, |0〉〈2|, |2〉〈0|, |2〉〈2|, | ↑〉〈↑ |, | ↓〉〈↓ |, the superoperator
L(χ, φ) can be written in form of the matrix

L(χ, φ) =

⎛⎜⎜⎜⎜⎜⎜⎝
−2
N −iα1 iα2 0 0 0
−iα4 i(2ε + U ) − 
N 0 iα2 0 0
iα3 0 −i(2ε + U ) − 
N −iα1 0 0
0 iα3 −iα4 0 
N 
N


N 0 0 0 −
N 0

N 0 0 0 0 −
N

⎞⎟⎟⎟⎟⎟⎟⎠, (B1)

with

α1 = 1
2 (EJL + EJReiφeiχ ),

α2 = 1
2 (EJL + EJRe−iφeiχ ),

α3 = 1
2 (EJL + EJReiφe−iχ ),

α4 = 1
2 (EJL + EJRe−iφe−iχ ). (B2)

Of course for real counting fields χ and phases φ, α4 = α∗
1 and α3 = α∗

2 . However, in a moment, we will extend the system to
complex χ and φ, respectively, where these relationships are no longer valid.

For the above matrix, we find the doubly degenerate eigenvalues −
N , associated to the decay of spin and pseudocharge (see
main text, and Appendix A), which therefore depend neither on χ , nor on φ. These eigenvalues can therefore not partake in any
braid phase transitions. The remaining four eigenvalues are

−
N ± 1√
2

√
A −

√
B − 
N ± 1√

2

√
A +

√
B (B3)

with

A = 
2
N − ε2 − 2α1α4 − 2α2α3, (B4)

B = 16α1α2
(
α3α4 + 
2

N

)− 4α1α4(
N + iε)2 (B5)

− 4α2α3(
N − iε)2 + (
2
N + ε2

)2
. (B6)

The exceptional points (degeneracies) can be found through the equations

B = 0 and A2 − B = 0. (B7)

In order to find the exceptional points for transitions in χ or in φ, we either have to make the replacement e±iχ → z±1 or
e±iφ → z̃±1 (as indicated in the main text). Consequently, both conditions lead to polynomial equations of fourth order, via

z2B(z) = p4z4 + p3z3 + p2z2 + p1z + p0,

z2[A2(z) − B(z)] = q4z4 + q3z3 + q2z2 + q1z + q0. (B8)

We thus recover Eq. (28) in the main text, and its variant for z̃, where we have different coefficients p̃k and q̃k . Note that these
are two independent equations, that is, we receive a set of roots for z (̃z) for the quartic equation with pi ( p̃i) and another set with
qi (q̃i). We find the coefficients

p0 = E2
JLE2

JR,

p1 = 2EJLEJR
[(

E2
JL + E2

JR + ε2 − 
2
N

)
cos (φ) − 2
Nε sin (φ)

]
,

p2 = [E2
JL + E2

JR + 
2
N + ε2

]2 − 4E2
JR
2

N + 2E2
JLE2

JR cos (2φ), (B9)

p3 = 2EJLEJR
[(

E2
JL + E2

JR + ε2 + 3
2
N

)
cos (φ) + 2
Nε sin (φ)

]
,

p4 = E2
JR

(
E2

JL + 4
2
N

)
,

and

q0 = −E2
JLE2

JR sin2 (φ),

q1 = 4EJLEJR
Nε sin (φ),
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q2 = E2
JL

(
E2

JR − 4
2
N

)− 4
2
Nε2 − E2

JLE2
JR cos (2φ),

q3 = −4EJLEJR
N [2
N cos (φ) + ε sin (φ)],

q4 = −E2
JR

[
E2

JL sin2 (φ) + 4
2
N

]
. (B10)

For the set of equations with z̃, we find the coefficients,

p̃0 = E2
JLE2

JR,

p̃1 = 2EJLEJR
[(

E2
JL + E2

JR + 
2
N + ε2

)
cos (χ ) + 2
N (i
N − ε) sin (χ )

]
,

p̃2 = [E2
JL + E2

JR + 
2
N + ε2

]2 − 4E2
JR
2

N (1 − eiχ ) + 2E2
JLE2

JR cos (2φ), (B11)

p̃3 = 2EJLEJR
[(

E2
JL + E2

JR + 
2
N + ε2

)
cos (χ ) + 2
N (i
N + ε) sin (χ )

]
,

p̃4 = E2
JLE2

JR,

and

q̃0 = −E2
JLE2

JR sin2 (χ ),

q̃1 = −4EJLEJR
N [
N eiχ − ε sin (χ )],

q̃2 = E2
JL

(
E2

JR − 4
2
N

)− 4
2
N

(
ε2 + ei2χ E2

JR

)− E2
JLE2

JR cos (2χ ), (B12)

q̃3 = −4EJLEJR
N [
N eiχ + ε sin (χ )],

q̃4 = −E2
JLE2

JR sin2 (χ ).

All that is left, is using the quartic formula to find the positions of the exceptional points in z or z̃.

APPENDIX C: EXTRACTING DERIVATIVES OF EIGENVALUES FROM EXPERIMENTS

In the main text, we argue that the χ derivatives of eigenvalues λ can be extracted from experimental data. We here briefly
explain this statement. It is rooted in the first definition of FCS with time-local current measurements, as explained in Sec. IV A
of the main text. Here, one measures the cumulants, as defined in Eqs. (15) and (16). The moment and cumulant generating
functions can be expressed in terms of the eigenmodes of L(χ, φ) as

m(χ, τ ) = eτc(χ,φ,τ ) ≡ tr[eL(χ,φ)τ ρ0]

=
∑

n

eλn(χ,φ)τ tr[|n(χ, φ))(n(χ, φ)|ρ0]︸ ︷︷ ︸
eαn (χ,φ)

=
∑

n

eλn(χ,φ)τ+αn(χ,φ)

= eλ0(χ,φ)τ+α0(χ,φ) +
∑
n �=0

eλn(χ,φ)τ+αn(χ,φ) (C1)

where λn(χ, φ) are the eigenvalues of L(χ, φ) while |n(χ, φ)) and (n(χ, φ)| are its right and left eigenvectors, respectively.
We know that λ0(0, φ) = 0 and α0(0, φ) = 0 if ρ0 is the stationary state. The moment and cumulant generating functions can
be expanded about χ = 0. For notational simplicity, we omit the addition of the (−i)k prefactor for the kth cumulant, and we
likewise neglect the elementary charge prefactor e. Note that the physically measurable cumulants Ck in the main text and the
below defined ck are related as Ck = (−ie)kck . At any rate, we find

m(χ, φ, τ ) ≈ m0(φ, τ ) + χm1(φ, τ ) + 1
2χ2m2(φ, τ ) + · · · ,

mk (φ, τ ) = ∂k
χm(χ, φ, τ )

∣∣
χ→0

,

c(χ, φ, τ ) ≈ c0(φ, τ ) + χc1(φ, τ ) + 1
2χ2c2(φ, τ ) + · · · ,

ck (φ, τ ) = ∂k
χc(χ, φ, τ )

∣∣
χ→0

. (C2)

Now we can define the derivatives of the cumulant generating function in terms of the derivatives of the moment generating
function via the natural logarithm

1

τ
ln

[
1 + χm1(φ, τ ) + 1

2
χ2m2(φ, τ ) + · · ·

]
= c0(φ, τ ) + χc1(φ, τ ) + 1

2
χ2c2(φ, τ ) + · · ·

ln

[
1 + χm1(φ, τ ) + 1

2
χ2m2(φ, τ ) + · · ·

]
≈ χm1(φ, τ ) + 1

2
χ2
[
m2(φ, τ ) − m2

1(φ, τ )
]+ · · · , (C3)
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where we have used the Maclaurin series expansion ln(1 + x) = x − x2/2 + x3/3 − · · · . An order by order comparison yields
the well-known relationships

c0(φ, τ ) = 0,

c1(φ, τ ) = 1

τ
m1(φ, τ ), (C4)

c2(φ, τ ) = 1

τ

[
m2(φ, τ ) − m2

1(φ, τ )
]
.

To proceed we now have to find the relation between the derivatives of moment generating function and the derivatives of
eigenvalues. For the latter, we get

λn(χ, φ)τ + αn(χ, φ) ≈ [λ(0)
n (φ) + χλ(1)

n (φ) + 1
2χ2λ(2)

n (φ)
]
τ + [α(0)

n (φ) + χα(1)
n (φ) + 1

2χ2α(2)
n (φ)

]+ · · · (C5)

where λ(k)
n (φ) = ∂χλn(χ, φ)|χ→0, and the same for α(k)

n (φ). Plugging this expansion of λ and α into the definition of the moment
generating function, we get

m0(φ, τ ) = 1, (C6)

m1(φ, τ ) =
∑

n

eλ(0)
n (φ)τ+α(0)

n (φ)[λ(1)
n (φ)τ + α(1)

n (φ)
]
,

m2(φ, τ ) =
∑

n

eλ(0)
n (φ)τ+α(0)

n (φ)[λ(2)
n (φ)τ + α(2)

n (φ) + (λ(1)
n (φ)τ + α(1)

n (φ)
)2]

. (C7)

Finally we can write the cumulants in terms of derivatives of eigenvalues

c1(φ, τ ) =
∑

n

eλ(0)
n (φ)τ eα(0)

n (φ)

[
λ(1)

n (φ) + 1

τ
α(1)

n (φ)

]
,

c2(φ, τ ) =
∑

n

eλ(0)
n (φ)τ eα(0)

n (φ)

[
λ(2)

n (φ) + 2λ(1)
n (φ)α(1)

n (φ) + [λ(1)
n (φ)

]2
τ + 1

τ

(
α(2)

n (φ) + [α(1)
n (φ)

]2)]

−
∑
nn′

eλ(0)
n (φ)τ eλ

(0)
n′ (φ)τ

[
eα(0)

n (φ)λ(1)
n (φ)eα

(0)
n′ (φ)λ

(1)
n′ (φ)τ + eα(0)

n (φ)λ(1)
n (φ)eα

(0)
n′ (φ)α

(1)
n′ (φ)

+ eα(0)
n (φ)α(1)

n (φ)eα
(0)
n′ (φ)λ

(1)
n′ (φ) + 1

τ
eα(0)

n (φ)α(1)
n (φ)eα

(0)
n′ (φ)α

(1)
n′ (φ)

]
. (C8)

Just to briefly confirm, in the long time limit τ → ∞, the second cumulant becomes c2(φ, τ ) = −λ
(2)
0 (φ). Now, the idea is the

following. The quantities c1 and c2 are measurable as a function of τ , when performing a finite frequency evaluation of current
and noise. Then, all quantities, which have a distinct time evolution (be it due to a different exponential decay due to λn or due
to a prefactor with a different power law in τ ) can be distinguished and extracted in principle by fitting of the τ -dependent data,
by an appropriately chosen fitting function.

Consequently, in addition to the decay rates λ0
n, the following terms can be individually extracted from the experimental data.

For the first cumulant, these are

o1,n = eα(0)
n (φ)λ(1)

n (φ), (C9)

o2,n = eα(0)
n (φ)α(1)

n (φ). (C10)

From the second cumulant, we can independently extract

o3,n = eα(0)
n (φ)λ(2)

n (φ) + 2eα(0)
n (φ)λ(1)

n (φ)α(1)
n (φ), (C11)

o4,n = eα(0)
n (φ)[λ(1)

n (φ)
]2

, (C12)

o5,n = eα(0)
n (φ)(α(2)

n (φ) + [α(1)
n (φ)

]2)
. (C13)

Finally by taking different combination of these expressions we can get the first and second-order corrections of all eigenvalues,
that is

λ(1)
n (φ) = o4,n

o1,n
, (C14)
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and

λ(2)
n (φ) = (o1,no3,n − 2o2,no4,n)o4,n

o3
n,1

. (C15)

These individual results can be stitched together to get λn(χ ) ≈ λ(0)
n + χλ(1)

n + 1
2χ2λ(2)

n , which we plot in Fig. 9(a) in the main
text for λ±. While in principle, this procedure allows us to analytically continue the eigenvalues from χ = 0 to finite χ , we see
that this continuation fails to converge if there is a topological phase transition from zero χ to finite χ , unless one measures
cumulants up to infinite order in k, which is a prohibitive requirement.

APPENDIX D: CALCULATION OF THE TRANSMISSION COEFFICIENT FOR THE SQUID DETECTOR

In the main text, we describe an all-circuit realization of continuous weak measurement of the supercurrent. The decisive
figure of merit is the transmission coefficient of incoming waves towards the SQUID detector. To calculate this transmission
coefficient, we start from the Hamiltonian description of the SQUID detector given in Eqs. (31)–(33), and first diagonalize the
Hamiltonians for the left and right conductor lines, i.e., HL and HR, using the following mode expansion

q j,L/R = − i√
2

∫ π

0

dk

π

(
C0

L0

)1/4
√

2 sin

( |k|
2

)
cos (k( j − 1/2))[ak,L/R − a†

k,L/R],

ϕ j,L/R

2e
= 1√

2

∫ π

0

dk

π

(
L0

C0

)1/4 1√
2 sin

( |k|
2

) cos (k( j − 1/2))[ak,L/R + a†
k,L/R]. (D1)

The free Hamiltonians becomes

H0 = HL ⊗ IR + IL ⊗ HR = ω0

∫ π

0

dk

π
sin

(
k

2

)
a†

k,Lak,L ⊗ IR + IL ⊗ ω0

∫ π

0

dk

π
sin

(
k

2

)
a†

k,Rak,R. (D2)

We note that in the continuum limit (vanishing size of islands j), we recover a linear dispersion relation ∼ω0k. For now we keep
finite size effects, and take the continuum limit at an appropriate later time.

Consequently, the interaction term can be expressed in terms of these bosonic operators as follows:

V = γ

(
ϕ1 − ϕ0

2e

)2

= γ

4

√
L0

C0

∫ π

0

∫ π

0

dkdk′

(2π )2

cos
(

k
2

)
cos
(

k′
2

)√
sin
(

k
2

)
sin
(

k′
2

) [IL ⊗ ak,R + IL ⊗ a†
k,R − ak,L ⊗ IR − a†

k,L ⊗ IR]

∗ [IL ⊗ ak′,R + IL ⊗ a†
k′,R − ak′,L ⊗ IR − a†

k′,L ⊗ IR]

= γ

4

√
L0

C0

∫ π

0

∫ π

0

dkdk′

(2π )2

cos
(

k
2

)
cos
(

k′
2

)√
sin
(

k
2

)
sin
(

k′
2

) [IL ⊗ (ak,Rak′,R + a†
k,Ra†

k′,R) + 2IL ⊗ a†
k,Rak′,R − ak,L ⊗ ak′,R

− a†
k,L ⊗ a†

k′,R − a†
k,L ⊗ ak′,R − ak,L ⊗ a†

k′,R − ak′,L ⊗ ak,R − a†
k′,L ⊗ a†

k,R − ak′,L ⊗ a†
k,R

− a†
k′,L ⊗ ak,R + (ak,Lak′,L + a†

k,La†
k′,L ) ⊗ IR + 2a†

k,Lak′,L ⊗ IR]. (D3)

We can now deploy the following important simplification. We will be considering an incoming signal at a certain energy
focusing on the limit of elastic interaction (neglecting a small chance that the boson may be absorbed by the main circuit).
In addition, we perform a rotation wave approximation, discarding the pair-wise creation (annihilation) terms ∼a†a† (∼aa).
This allows us to work in the single particle picture, the relevant states being |0, k〉 and |k, 0〉, where the first (second) states
corresponds to a single particle eigenstate of HL (HR). The corresponding Green’s functions are

(Gk,k′ )LL = 〈k, 0| 1

E − H + i0+ |k′, 0〉,

(Gk,k′ )LR = 〈k, 0| 1

E − H + i0+ |0, k′〉,

(Gk,k′ )RL = 〈0, k| 1

E − H + i0+ |k′, 0〉,

(Gk,k′ )RR = 〈0, k| 1

E − H + i0+ |0, k′〉. (D4)
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According to the Fisher-Lee formula [137], for the transmission coefficient we need to find (Gk,k′ )RL. We can write the Dyson
equation as

(Gk,k′ )RL = 〈0, k| 1

E − H + i0+ |k′, 0〉 = 〈0, k| 1

E − H0 + i0+ |k′, 0〉 + 〈0, k| 1

E − H0 + i0+V
1

E − H + i0+ |k′, 0〉. (D5)

Since we consider only processes in V conserving the total boson number, we can insert the identity operator for single particle
subspace

IL =
∫ π

0

dk

2π
|k, 0〉〈k, 0|

I = IL ⊕ IR =
∫ π

0

dk1

2π
|k1, 0〉〈k1, 0| +

∫ π

0

dk2

2π
|0, k2〉〈0, k2| (D6)

to get

(Gk,k′ )RL = 〈0, k| 1

E − H0 + i0+ |k′, 0〉 + 〈0, k| 1

E − H0 + i0+

∫ π

0

dk1

2π
|k1, 0〉〈k1, 0|V

∫ π

0

dk3

2π
|k3, 0〉〈k3, 0| 1

E − H + i0+ |k′, 0〉

+ 〈0, k| 1

E − H0 + i0+

∫ π

0

dk1

2π
|k1, 0〉〈k1, 0|V

∫ π

0

dk4

2π
|0, k4〉〈0, k4| 1

E − H + i0+ |k′, 0〉

+ 〈0, k| 1

E − H0 + i0+

∫ π

0

dk2

2π
|0, k2〉〈0, k2|V

∫ π

0

dk3

2π
|k3, 0〉〈k3, 0| 1

E − H + i0+ |k′, 0〉

+ 〈0, k| 1

E − H0 + i0+

∫ π

0

dk2

2π
|0, k2〉〈0, k2|V

∫ π

0

dk4

2π
|0, k4〉〈0, k4| 1

E − H + i0+ |k′, 0〉. (D7)

Assuming weak tunneling, we may deploy a perturbation theory up to first order in the interaction V . To this end, we set H = H0

on the right side of Eq. (D5), to get

(Gk,k′ )RL ≈ 〈0, k| 1

E − H0 + i0+ |k′, 0〉 + 〈0, k| 1

E − H0 + i0+V
1

E − H0 + i0+ |k′, 0〉

= 1

E − ωk + i0+ 〈0, k|V |k′, 0〉 1

E − ωk′ + i0+ . (D8)

Since without the interaction term V , there cannot be any coupling between the left and right side of the system, the free Green’s
function connecting the left and right momenta is zero, i.e.,

〈0, k| 1

E − H0 + i0+ |k′, 0〉 = 0. (D9)

This leaves us with the task of computing the interaction term

〈0, k|V |k′, 0〉 = γ

4

√
L0

C0

∫ π

0

∫ π

0

dk1dk2

(2π )2

cos
( k1

2

)
cos
( k2

2

)√
sin
( k1

2

)
sin
( k2

2

) 〈0| ⊗ 〈0|ak,R
[
IL ⊗ ak1,R + IL ⊗ a†

k1,R

− ak1,L ⊗ IR − a†
k1,L

⊗ IR
][

IL ⊗ ak2,R + IL ⊗ a†
k2,R

− ak2,L ⊗ IR − a†
k2,L

⊗ IR
]
a†

k′,L|0〉 ⊗ |0〉

= γ

4

√
L0

C0

∫ π

0

∫ π

0

dk1dk2

(2π )2

cos
( k1

2

)
cos
( k2

2

)√
sin
( k1

2

)
sin
( k2

2

) 〈0| ⊗ 〈0|ak,R
[
IL ⊗ ak1,Rak2,R + IL ⊗ ak1,Ra†

k2,R

− ak2,L ⊗ ak1,R − a†
k2,L

⊗ ak1,R + IL ⊗ a†
k1,R

ak2,R + IL ⊗ a†
k1,R

a†
k2,R

− ak2,L ⊗ a†
k1,R

− a†
k2,L

⊗ a†
k1,R

− ak1,L ⊗ ak2,R − ak1,L ⊗ a†
k2,R

+ ak1,Lak2,L ⊗ IR + ak1,La†
k2,L

⊗ IR

− a†
k1,L

⊗ ak2,R − a†
k1,L

⊗ a†
k2,R

+ a†
k1,L

ak2,L ⊗ IR + a†
k1,L

a†
k2,L

⊗ IR
]
a†

k′,L|0〉 ⊗ |0〉

= γ

4

√
L0

C0

∫ π

0

∫ π

0

dk1dk2

(2π )2

cos
( k1

2

)
cos
( k2

2

)√
sin
( k1

2

)
sin
( k2

2

) [−(2π )2(δ(k2 − k′)δ(k1 − k) + δ(k1 − k′)δ(k2 − k))]

= −γ

2

√
L0

C0

cos
(

k
2

)
cos
(

k′
2

)√
sin
(

k
2

)
sin
(

k′
2

) . (D10)
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Hence to first order we get

(Gk,k′ )RL = −γ

2

√
L0

C0

1

E − ωk + i0+
cos
(

k
2

)
cos
(

k′
2

)√
sin
(

k
2

)
sin
(

k′
2

) 1

E − ωk′ + i0+ . (D11)

Let us connect the above Green’s function to a Green’s function in position space, using the following transformation:

| j〉 =
∫ π

0

dk

π
cos (k( j − 1/2))|k〉. (D12)

The position space Green’s function is

〈0, j| 1

E − H + i0+ | j′, 0〉 = −γ

2

√
L0

C0

∫ π

0

∫ π

0

dkdk′

π2
cos (k( j − 1/2))(Gk,k′ )RL cos(k′( j′ − 1/2)). (D13)

Hence the transmission coefficient using Eq. (35) is

tL = iv
γ

2

√
L0

C0
lim

j→∞, j′→−∞
〈0, j| 1

E − H0 + i0+ | j′, 0〉e−ikE ( j− j′ )

= iv
γ

8

√
L0

C0
lim
j→∞

(∫ π

0

dk

π

e−ik/2ei(k−kE ) j + eik/2e−i(k+kE ) j

E − 2ω0 sin
(

k
2

)+ i0+
cos (k/2)√
sin (k/2)

)

∗ lim
j′→−∞

(∫ π

0

dk′

π

e−ik′/2ei(k′+kE ) j′ + eik′/2e−i(k′−kE ) j′

E − 2ω0 sin
(

k′
2

)+ i0+
cos (k′/2)√
sin (k′/2)

)
(D14)

where kE is the wave vector corresponding to the energy at which the signal travels, E = 2ω0 sin(kE/2). Let us focus on the first
integral ∫ π

0

dk

π

e−ik/2ei(k−kE ) j + eik/2e−i(k+kE ) j

E − 2ω0 sin
(

k
2

)+ i0+
cos (k/2)√
sin (k/2)

≈ e−ikE j
∫ π

0

dk

π

e−ik/2eik j

E − 2ω0 sin
(

k
2

)+ i0+
cos (k/2)√
sin (k/2)

(D15)

where we have ignored the term e−i(k+kE ) j as it will become highly oscillatory in the limit j → ∞. We further-
more consider energies sufficiently low, such that we can also make a linear approximation for the sine and cosine
functions

e−ikE j
∫ π

0

dk

π

e−ik/2eik j

E − 2ω0 sin
(

k
2

)+ i0+
cos (k/2)√
sin (k/2)

≈ e−ikE j

ω0

∫ ∞

0

dk

π

eik j

kE − k + i0+

√
2

k
. (D16)

This is in accordance with taking the continuum limit, i.e., the dimensions of the islands j approaching zero.
To evaluate the remaining integral, we perform a contour integral in complex k space, where the contour is a quarter circle in

the first quadrant centered at the origin and with radius R, hence∮
C

dz

π

eiz j

kE − z + i0+

√
2

z
=
∫ R

0

dk

π

eik j

kE − k + i0+

√
2

k
+
∫ π/2

θ=0

iReiθ dθ

π

ei jR(cos θ+i sin θ )

kE − Reiθ + i0+

√
2

Reiθ

+
∫ 0

R

idk

π

e−k j

kE − ik + i0+

√
2

ik
. (D17)

The left-hand side of the above can be evaluated using Residue theorem, to get∮
C

dz

π

eiz j

kE − z + i0+

√
2

z
= 2π i

π
lim

z→kE +i0+
(z − (kE + i0+))

eiz j

kE + i0+ − z

√
2

z

= −2iei(kE +i0+ ) j

√
2

kE + i0+

= −2ieikE j

√
2

kE
. (D18)
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To evaluate the right-hand side, we take the limit R → ∞, hence the angular integral goes to zero, which gives us∫ ∞

0

dk

π

eik j

kE − k + i0+

√
2

k
=

√
2i
∫ ∞

0

dk

π

e−k j

kE − ik

√
1

k
− 2ieikE j

√
2

kE

=
√

2 ∗ iei jkE erfc(
√

j
√

ikE )√
kE

− 2ieikE j

√
2

kE
. (D19)

Hence ∫ π

0

dk

π

e−ik/2ei(k−kE ) j + eik/2e−i(k+kE ) j

E − 2ω0 sin
(

k
2

)+ i0+
cos (k/2)√
sin (k/2)

≈ e−ikE j

⎛⎝iei jkE erfc(
√

j
√

ikE )

√
2

kE
− 2ieikE j

√
2

kE

⎞⎠
= ierfc(

√
j
√

ikE )

√
2

kE
− 2i

√
2

kE
. (D20)

Similarly for the second integral we get∫ π

0

dk′

π

e−ik′/2ei(k′+kE ) j′ + eik′/2e−i(k′−kE ) j′

E − 2ω0 sin
(

k′
2

)+ i0+
cos (k′/2)√
sin (k′/2)

≈ ierfc(
√

− j′
√

ikE )

√
2

kE
− 2i

√
2

kE
. (D21)

Finally the transmission coefficient is

tL = iv
γ

8ω2
0

√
L0

C0
lim
j→∞

⎛⎝ierfc(
√

j
√

ikE )

√
2

kE
− 2i

√
2

kE

⎞⎠ lim
j′→−∞

⎛⎝ierfc(
√

− j′
√

ikE )

√
2

kE
− 2i

√
2

kE

⎞⎠
= −i

γ L0

kE
, (D22)

where v = ω0 cos(kE/2) ≈ ω0. The error function parts in both the integrals goes to zero in the respective limits. We thus arrive
at Eq. (36) in the main text.
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