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Differential conductance spectroscopy performed in the high bias regime—in which the applied voltage
exceeds the sample work function—is a suboptimal measure of the local density of states due to the effects of the
changing tunnel barrier. Additionally, the large applied voltage oftentimes makes constant-height measurement
experimentally impractical, lending constant-current spectroscopy an advantageous edge; but the differential
conductance in that case is even further removed from the local density of states due to the changing tip height.
Here, we present a normalization scheme for extracting the local density of states from high bias scanning
tunneling spectroscopy, obtained in either constant-current or constant-height mode. We extend this model to
account for the effects of the in-plane momentum of the probed states to the overall current. We demonstrate the
validity of the proposed scheme by applying it to laterally confined field-emission resonances, which appear as
peak-shaped spectroscopic features with a well-defined in-plane momentum.
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I. INTRODUCTION

Scanning tunneling spectroscopy is a tool for obtaining
atomically resolved information about the surface-projected
electronic density of states as a function of energy. However,
the measured differential conductance depends on a number
of parameters—such as the transmission through the tunnel
barrier, the tip density of states, the tip-sample distance, and
the finite temperature—which complicates its direct transla-
tion to a local density of states (LDOS). Several schemes have
been proposed for extracting quantitative information from
the tunnel current, for instance by considering the static con-
ductance d ln I/d ln V [1], fitting the differential conductance
to a tunneling probability function [2], or normalizing the
differential conductance by both the tunnel current and the
transmission coefficient [3–7]. However, these approaches are
solely suited for the treatment of spectroscopic data obtained
at a constant tip-sample distance, for electron energies well
below the sample and tip work functions.

In general, constant height measurements are a better
approximation of the local density of states [8–10], but
performing constant-current spectroscopy can be an advan-
tageous choice when, for example, covering large voltage
ranges, or when the change in the apparent height of the
surface varies drastically—both scenarios necessitate a large
dynamic range of current if the tip-sample distance is held
constant. Also, high currents during spectroscopy can some-
times alter or damage molecules or the atomic structure at
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the surface, as well as induce tip instabilities, in which case
it can be preferable to maintain a low, constant current. Un-
fortunately, constant-current spectra are quite removed from
the LDOS, in part due to the changing transmission through
the tunnel barrier, as well as the effects of the tip displace-
ment during data acquisition: For instance, the energy, relative
amplitude, and spatial extent of spectroscopic features are sig-
nificantly affected by changes in tip height [8,10]. As such, it
is critical to normalize constant-current spectra to reliably ex-
tract quantitative information from the measured differential
conductance. While such schemes have been proposed [8,10–
13], they are limited to low voltage ranges, well below the
sample work function—even though constant-current mea-
surements are most severely needed in the high bias regime.
Additionally, we can expect that the aforementioned tip dis-
placement effects are equally, if not more, relevant at high
bias voltages, where variations in the tunnel barrier are more
dramatic and necessarily accompany any differential conduc-
tance measurement.

The problem with extending existing schemes into the high
bias regime is twofold: First, the differential conductance
derived from transmission through an effective rectangular
barrier diverges at the barrier height. As such, it is only valid
for tunneling processes occurring well below the tip and sam-
ple work functions [3]. Secondly, this approximation results
in a significant underestimation of the rate of change and
magnitude of the transmission at high voltages nearing this
critical point.

A final point of consideration is the k selectivity of
the tunneling electrons: In a scanning probe configuration,
the tunneling current is exponentially dependent on the tip-
sample distance, as well as the in-plane momentum of the
probed states [14,15], making differential conductance mea-
surements mostly sensitive to states with small in-plane
momentum [16].
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Here, we present a normalization scheme for extracting
the local density of states from spectroscopic data obtained
at either constant current or constant tip-sample distance in
the field-emission regime, where the applied bias voltage
exceeds the sample work function. We extend this model to
account for the k selectivity of tunneling electrons, and apply
it to spectroscopic measurements—performed in both mea-
surement modes—of confined field emission resonances. The
particle-in-a-box modes generated by this confinement have
a well-defined in-plane momentum [17], a characteristic that
makes them ideally suited to normalization via a k-dependent
scheme.

II. MODEL

To determine the relation between the measured dif-
ferential conductance and the local density of states, we
begin by describing the total tunneling current I using the
one-dimensional Wenzel-Kramers-Brillouin (WKB) theory,
wherein the tunneling barrier is defined by a transmission
coefficient, T (z,V, E ), that is both energy and distance de-
pendent. In the low-temperature limit (where the temperature
T � eV/kB, e is the electron charge and kB the Boltzmann
constant), applying a bias voltage V across the barrier leads
to a tunneling current at a tip-sample distance z that is deter-
mined by [2,18,19]

I (z,V ) =
∫ eV

0
ρs(E )ρt (E − eV )T (z,V, E )dE , (1)

where we set the proportionality constant relating the current
to the integral to unity, and ρs and ρt are the tip and sample
densities of states, respectively.

To determine the expression for the differential conduc-
tance performed at a constant tip-sample distance z0, we
simplify the tip density of states by approximating it to be
constant [11] and setting it equal to unity [3], arriving at

dV I (z0,V ) = eρs(eV )T (z0,V, eV )

+
∫ eV

0
ρs(E )∂VT (z0,V, E )dE , (2)

where we apply the Leibniz rule to differentiate the argument
of the integral. Analogously, we can express the differential
conductance obtained in constant current mode as

dV I (z(V ),V ) = eρs(eV )T (z(V ),V, eV )

+
∫ eV

0
ρs(E )[∂VT (z(V ),V, E )

+ dV z(V )∂zT (z(V ),V, E )]dE , (3)

where we have accounted for voltage dependence of the trans-
mission through z(V ) explicitly,

dVT (z(V ),V, E ) = ∂VT (z(V ),V, E )

+ dV z(V )∂zT (z(V ),V, E ). (4)

We note that both expressions for the differential conductance
[Eqs. (2) and (3)] involve the derivative of the transmission
with respect to the applied bias voltage: These terms cannot
be neglected in the high bias regime.

FIG. 1. Energy landscape at the tip-sample junction, in the di-
rection perpendicular to the sample surface. A positive bias voltage
applied to the sample shifts the sample Fermi level (EF,S) by −eV
relative to the tip Fermi level (EF,T ), creating a trapezoidal potential
barrier. This barrier, which depends on the tip-sample distance z,
and the work functions of the tip (φt ) and sample (φs), has an as-
sociated transmission factor T (E ), which indicates the exponentially
decreasing probability that an electron with a certain energy tunnels
through the barrier. The Fermi-Dirac distributions of the sample and
tip (green and blue rectangles, respectively) are schematically shown
for zero temperature. Electrons from the occupied states of the tip
tunnel to the empty states on the sample side. The tip density of states
(blue line) is assumed to be a constant, while the sample density of
states can be expected to vary with energy (schematically illustrated
by the green line); both are filled below the respective Fermi levels.

To further evaluate Eqs. (2) and (3), we need an analyt-
ical form for the transmission factor in the field emission
regime. In this case, the applied voltage is by definition greater
than the sample work function, and we can approximate the
tunnel barrier to be triangular, in the region where eV > φs,
with a transmission factor given by the WKB approximation,
wherein the transmission factor T is related to the integral of
the momentum p via T (z,V, E ) = exp( −2

h̄

∫ |p(z′)|dz). From
this we can derive a transmission [20,21],

T (z,V, E )

= exp

(
−4

√
2me

3h̄

z

φt − φs + eV
(φt + eV − E )3/2

)
. (5)

In this framework, the width of the barrier is given by the
tip-sample distance z, and its shape is determined by φs and φt ,
which are the tip and sample work functions, respectively (see
Fig. 1). Note that this description of the tunnel barrier neglects
the contributions of the image potential on the tip and sample
sides—this is generally justified at bias voltages above the
sample work function, where the total out-of-plane potential is
dominated by the linear potential drop arising from the applied
voltage [22]. In any case, the image potential mainly acts to
lower the effective potential barrier across the entirety of the
tip-sample junction.
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Here, we note a key and convenient relation [3] between
the transmission factor T (z,V, E ) through the tunnel barrier,
and its partial derivative with respect to the applied voltage
∂VT (z,V, E ),

∂VT (z,V, E ) = 2e
√

2me

h̄

z

(φt − φs + eV )
T (z,V, E )

×
(

2(φt + eV − E )3/2

3(φt − φs+ eV )
− (φt + eV − E )1/2

)
.

(6)

A similar relation can be obtained between the transmission
factor T (z,V, E ) and its partial derivative with respect to the

tip-sample distance ∂zT (z,V, E ),

∂zT (z(V ),V, E ) = −4
√

2me

3h̄

(φt + eV − E )3/2

φt − φs + eV
T (z(V ),V, E ).

(7)

We can now substitute these expressions in Eq. (2) and
Eq. (3) to determine the relationship between the local density
of states and the differential conductance obtained in either
measurement mode.

First, we consider differential conductance spectroscopy
performed in constant height mode [Eq. (2)], for which we
obtain

dV I (z0,V ) = eρs(eV )T (z0,V, eV ) +
∫ eV

0
ρs(E )T (z0,V, E )

2e
√

2me

h̄

z0

(φt − φs + eV )

×
(

2(φt + eV − E )3/2

3(φt − φs + eV )
− (φt + eV − E )1/2

)
dE . (8)

The arguments of the integrals in Eqs. (1) and (8) are the same (noting that we set the tip density of states to unity), except
for the additional factors that relate the transmission to its partial derivative. By noting that these factors are slowly varying in
the energy range of interest, and the transmission itself exponentially peaks at an energy eV , we can set their mean value by
evaluating them at E = eV , yielding 4e

√
2me

3h̄
z

(φt −φs+eV )2 φ
3/2
t and − 2e

√
2me

h̄
z

φt −φs+eV φ
1/2
t , respectively. Using the generalized mean

value theorem [3] to evaluate the integral, we obtain

dV I (z0,V ) = eρs(eV )T (z0,V, eV ) + 4
√

2me

3h̄

z0

φt − φs + eV

(
φ

3/2
t

φt − φs + eV
− 3

2
φ

1/2
t

)
eI (z0,V ). (9)

Using this expression, we can isolate the density of states from a constant-height differential conductance measurement
according to

ρs(eV ) = 1

eT (z0,V, eV )

(
dV I (z0,V ) − 4

√
2me

3h̄

z0eI (z0,V )

φt − φs + eV

(
φ

3/2
t

φt − φs + eV
− 3

2
φ

1/2
t

))
. (10)

Equivalently, we can evaluate the differential conductance
for constant current measurements to isolate the local density
of states. Noting once more that the factors that relate the
transmission to its derivative with respect to z(V ) are slowly
varying, we can again apply the mean value theorem to eval-
uate the integral,

dV I (z(V ),V )

= eρs(eV )T (z(V ),V, eV ) + 4
√

2me

3h̄

φ
3/2
t I0

φt − φs + eV

×
(

ez(V )

(
1

φt − φs + eV
− 3

2φt

)
− dV z(V )

)
, (11)

where I0 is the current set-point. Here, we should note that a
measurement of the dI/dV at a specific dc bias amounts to
tracking the change in the current caused by the applied bias
modulation; correspondingly, the dV z(V ) term corresponds to
the change in the tip-sample separation due to the same ac
component of the applied bias. If the frequency of the ac
bias is sufficiently high compared to the cut-off frequency
of the feedback, which is normally the case, then dV z(V ) is
negligible [8,11]. In this case, the density of states can be

extracted from the measured differential conductance via an
analogous expression to Eq. (10), where I (z0,V ) → I0 and
z0 → z(V ).

As such, Eq. (10) and its constant-current analog can be
used to normalize differential conductance spectra to obtain
the local density of states, in the case where the applied volt-
age is greater than the sample work function. This approach
relies on recording the differential conductance dV I (z,V ), the
relative tip-displacement �z, and the current-voltage behav-
ior I (V ) simultaneously. While this is easily and commonly
implemented, gaining experimental information about the
absolute distance z = �z + z0 requires additional I (z) mea-
surements to estimate the point of contact between the tip and
sample.

However, it is in general possible to make a reasonable
estimate of this parameter [8]. In the particular case of field-
emission resonances, the absolute distance can be estimated
by modeling the out-of-plane potential to match the exper-
imental and calculated energies of the resonances [17]. In
either case, the exact value of z0 does not dramatically affect
the spectral shape of the normalized differential conductance:
For a wide range of z0 values, the peak positions and widths
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(a) (b) (c)

(d) (e)

(f)

constant-height

constant-current

FIG. 2. Local density of states extracted from constant-height and constant-current spectroscopic data. (a) Constant-height (light green)
and constant-current (dark blue) differential conductance spectroscopy probing confined field-emission resonances on the chlorinated Cu(100)
surface [17], obtained at current set-point of 250 pA. [(b),(c)] The raw dI/dV is normalized to obtain the local density of states, with (c) and
without (b) considering the in-plane momentum of the probed state, for both the constant-height (light gray) and constant-current (maroon)
measurements. Simultaneously acquired tip-sample distance, offset by z0 to obtain the absolute distance [(b) inset], and current-voltage curve
[(c) inset], measured during both constant-height (light green, z0 ≈ 0.2 nm) and constant-current (grey, z0 ≈ 0.6 nm) spectroscopy. (d) Local
density of states obtained from normalizing the constant-height spectrum, for a range of z0 (exact values indicated in the color bar). Dotted
lines are Lorentzian profiles fitted to the first peak. [(e), (f)] Effects of a changing z0 on the relative peak width (e) and energy (f) of the first
peak in the LDOS, extracted from both constant-current (dark blue) and constant-height (light green) spectra.

remain roughly constant, while the relative height of the peaks
are subject to variation (see Fig. 2) [8]. This demonstrates the
robustness of the normalization scheme against uncertainties
in z0.

III. EFFECTS OF k SELECTIVITY
IN THE TUNNELING CURRENT

In general, the total tunneling current depends not only
on the tunneling barrier, but also on the in-plane momentum
k‖ of the probed state [14,15]. In fact, scanning tunneling
spectroscopy is mostly sensitive to states with a small in-plane
momentum, meaning the total contribution to the current dies
off as the k‖ of the state increases [16]. This effect has been

previously accounted for in the Bardeen description of the
tunneling current: There, k‖ is incorporated into the decay
constant that defines the current. Namely, I ∝ exp(−2κz),
where κ =

√
2mφ/h̄2 + k2

‖ , and φ is the potential barrier for
tunneling [14–16].

Analogously, the effects of the in-plane momentum can
be accounted for in the WKB approach via the transmission
factor, namely,

T (z,V, E , k‖)

= exp

(−2

h̄

∫ z

0

√
2me(φ(z′,V, E ) − E ) + h̄2k2

‖dz′
)

.

(12)
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This expression can be generally applied to any functional
form of the in-plane momentum k‖, which can depend on the
energy and applied bias voltage. In the simplest case, there
is only one value of the in-plane momentum at each energy;
contributions from a range of k‖ values at a single energy can
be accommodated via a weighted integral. In the low-bias
regime, where the tunneling barrier is approximated by a rect-
angular potential (eV < φs, φt , necessarily), with an effective
tunneling barrier height φeff = (φt + φs)/2, the transmission
reduces to T (z,V, E ) = exp( −2

h̄ z
√

2me(φeff − E ) + h̄2k2
‖ ).

The tunneling current in this case is proportional to this

transmission,

I (V ) ∝ T (z,V, E = EF , k‖)
∫ eV

0
ρs(E )dE , (13)

∝ exp

(−2

h̄
z
√

2meφeff + h̄2k2
‖

)∫ eV

0
ρs(E )dE , (14)

as in the Bardeen approach. In the above, we consider
T (z,V, E , k‖) ∼ T (z,V, E = EF , k‖), a common approxima-
tion when eV < φs, φt , and we set the tip density of states to
unity.

In the field-emission regime, we can similarly incorporate the effects of the in-plane momentum of the probed state, leading
to a transmission factor that depends on k‖,

T (z,V, E , k‖) = exp

(
− 2

3meh̄

z

φt − φs + eV
((2me(φt + eV − E )+ h̄2k2

‖ )3/2− |h̄k‖|3)

)
, (15)

where the partial derivative with respect to the voltage is

∂VT (z,V, E , k‖) = T (z,V, E , k‖)

(
2e

3meh̄

z

(φt − φs + eV )2
((2me(φt + eV − E ) + h̄2k2

‖ )3/2 − |h̄k‖|3)

− 2e

h̄

z

φt − φs + eV

(
2me(φt + eV − E ) + h̄2k2

‖
)1/2

)
. (16)

From this, we can determine the local density of states by following the same steps as delineated in the previous section to obtain
for the density of states from a constant-height measurement

ρs(eV ) = 1

eT (z0,V, eV )

⎛
⎝dV I (z0,V ) − 2e

h̄

z0I (z0,V )

φt − φs + eV

⎛
⎝(

2meφt + h̄2k2
‖
)3/2 − |h̄k‖|3

3me(φt − φs + eV )
− (

2meφt + h̄2k2
‖
)1/2

⎞
⎠

⎞
⎠, (17)

an expression, which is readily adapted to constant-current
measurements, where I (z0,V ) → I0 and z0 → z(V ).

IV. APPLICATION OF NORMALIZATION PROCEDURE
TO PEAK-SHAPED SPECTROSCOPIC FEATURES

To test the validity of the proposed normalization schemes,
we apply them to constant-current and constant-height spec-
troscopic data obtained for field-emission resonances (FERs).
These resonances are quantized electronic states localized
in the vacuum, between the surface and the probe tip: The
linear potential drop across the junction due to the applied
bias voltage elevates the potential barrier above the vacuum
level of the sample, thereby giving rise to a new class of
confined states. In this high-electric field regime, tunneling
electrons will be reflected both by the sample surface and
the rising potential barrier generated by the applied voltage,
thus creating standing waves in front of the sample surface.
These vacuum-localized states depend critically on the elec-
tronic properties of the sample—such as the surface-projected
band structure, which alters the surface reflectivity. As such,
they are useful in obtaining information about the surface,
including local work function changes [23–26] or scattering

properties at interfaces [27], and even allow for atomically
resolved images of insulators [28] and spin textures [29] far
from the surface.

Here, we focus specifically on laterally confined field-
emission resonances [17]: We arrange single vacancies on the
chlorinated Cu(100) surface [30–32] to reveal square patches
of the underlying metal surface, creating atomically precise
potential wells, which we refer to by their size in unit cells. In
doing so, we generate particle-in-a-box states that carry some
finite k‖. We can understand this in analogy to the simple case
of an infinite potential well, wherein the angular wave number
for each state, described by principle quantum number n, is
given by nπ/L, where n is a positive integer and L is the width
of the well. This allows us to test our normalization schemes
for a system in which k‖ is relevant, in addition to inspecting
how it compares for open- or closed-feedback measurements.

A. Comparison LDOS extracted from constant-height
and constant-current spectroscopy

Ideally, differential conductance measurements performed
in either spectroscopic mode—constant-current or constant-
height—should yield, via the proposed normalization pro-
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cedures, identical local densities of states. In Fig. 2, we
show dI/dV measurements performed in both modes, and
normalize each according to Eqs. (10) and (17), as well as
their constant-current analogs, to obtain the local density of
states. The extracted LDOS is remarkably similar for the two
measurement modes, for both of the normalization schemes
proposed here—which either neglect [Fig. 2(b), Eqs. (10)] or
consider [Fig. 2(c), Eqs. (17)] the effects of k selectivity on
the tunnel current. In both cases, the position, relative ampli-
tude, and width of the peaks in the extracted LDOS are quite
consistent, although the first peak appears sharper and slightly
shifted for the constant-current normalized spectrum; this is
likely due to the drastic change in the tip-sample distance
around this resonance, a feedback response that cannot be
completely rectified by the normalization scheme.

At applied voltages exceeding the sample work function,
the differential conductance spectra obtained in either mea-
surement mode are subject to tunnel barrier variations: For
constant-height measurements, this occurs through the chang-
ing applied voltage; whereas constant-current measurements
additionally involve a changing tip-sample distance. The com-
parison between the raw and normalized spectra obtained in
both modes [see Figs. 2(a) and 2(b)] allows us to deduce
that the impact of a nonconstant transmission introduced by
a changing applied voltage is much less pronounced than that
derived from a variable tip-sample distance.

Explicitly considering the in-plane momentum of the
probed states k‖ [Fig. 2(c)] only affects the relative amplitudes
of the resonances, as expected. Since the tunneling current
is increasingly less sensitive to states with increasing k‖, it
follows that the relative amplitude of the higher energy peaks
are increasingly underestimated if this effect is not accounted
for. We model the dependence of the in-plane momentum of
the probed states on the energy by performing a weighted
average over Lorentzian peaks corresponding to the confined
resonances as well as the resonance belonging to the chlo-
rinated layer, which has finite intensity near the edges of
the patch. Peak heights and widths are estimated from the
unnormalized dI/dV spectroscopy. The confined resonances
are assigned fixed k‖ values based on an infinite square well
treatment of the patch. The k‖ value of the chlorine resonance
is determined by performing an average over the first Bril-
louin zone, taking into account the exponential decay factor
mentioned in Sec. III.

As previously mentioned, the schemes proposed here rely
on the absolute tip-sample distance, while usually, only the
relative tip displacement �z is readily available and easily
measured. The value of z0, which converts the measured rel-
ative change into an absolute distance z = �z + z0, can be
reasonably estimated by several means—such as additional
I (z) measurements—but is hard to pin-point precisely. As
such, any normalization procedure that cannot tolerate small
variations in z0 cannot be widely implemented.

First, we note that the experimental conditions for each
spectroscopic mode help us set some limits on the value of z0

for comparing constant-current and constant-height measure-
ments. Constant-height measurements, for instance, require
regulating at a bias voltage of interest Vstpt (at a current of
choice) before opening the feedback for measurement. This is
not the case for constant-current measurements, as the feed-

back is always engaged—but in either case, the tip-sample
distance at Vstpt should be the same for both measurement
modes, given measurements are performed with the same
microscopic tip and at the same set-point current. Here, we
chose Vstpt to be the highest bias voltage of interest [6.2 V,
see Fig. 2(a)], to ensure the tip-sample distance is set to
its maximum value over the course of spectroscopy, thereby
minimizing the risk of tip crashes. This means that the value
of z0, while different for each mode, should result in the same
absolute distance z at the highest bias voltage, as we see in
Fig. 2(b) (inset). This condition allows us to compare the
extracted LDOS for the two measurements, knowing that the
parameter z0 does not skew one curve relative to the other.

To more concretely trace the effects of a changing z0,
we focus on dI/dV spectroscopy normalized for a range of
z0 values, as shown in Fig. 2(d)—we can see by eye that
this parameter mainly determines the overall intensity of the
peaks. To quantify this, we fit the first peak in the experimental
LDOS with a Lorentzian lineshape [Fig. 2(d)] to extract its
width and position. Carrying out this procedure for LDOS
extracted from both constant-current and -height measure-
ments [Figs. 2(e) and 2(f)], we see that in both cases the
width �, and position E0, of the peak are not significantly
altered over a z0 range of nearly 1 nm—to put this value in
context, a few angstroms displacement of the tip can cause the
tunneling current to change by an order of magnitude. In fact,
we observe a maximum variation of �E0 ∼ 0.02% in the peak
position (∼5.05 V at 0.26 nm), which, in this case, is smaller
than the broadening associated with the lock-in modulation
(10 mV). The change in the peak width �� is greater, but
still negligible over such a broad range of z0: We observe a
maximum variation of ∼13% and ∼10% in the peak width,
for constant-current and constant-height extracted LDOS, re-
spectively. As we can see, the exact value of z0 can impact the
overall intensity of the experimentally derived LDOS, but it
is the relative change �z—which is easily measured during
spectroscopy—that plays a critical role in determining the
relevant peak features, such as relative intensity, width, and
position.

B. Comparison of experimentally and theoretically
derived LDOS

Having ascertained that our normalization procedure is
robust for different spectroscopic modes, and yields consis-
tent results against a varying z0, we now focus on how it
fares compared to the expected (calculated) local density of
states. To calculate the local density of states, we model the
potential landscape of the laterally confined field-emission
resonances using a finite potential well with slanted walls,
where the depth of the well is set by the work-function dif-
ference between the chlorinated and bare Cu(100) surfaces
(∼1.1 V) [33] and the slope of the walls is set by the finite
screening length associated with this work function change,
which we approximate to be ∼1.5 units cells [17]. From
this, we can calculate the expected eigenstates and energies
to determine the LDOS, which is simply given by |	|2.
To mimic the state broadening—which is primarily lifetime-
limited, but also affected by experimental considerations,
such as the lock-in modulation and temperature—we generate
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(a) (b)

(c) (d) (e)

calc. LDOS
exp. LDOS

FIG. 3. Spatially dependent comparison of raw constant-current
spectra, and the corresponding extracted and calculated local den-
sity of states. [(a),(b)] LDOS extracted (red) from constant-current
dI/dV spectroscopy obtained at a set-point 0f 50 pA (insets), com-
pared to the calculated LDOS (blue), obtained for the center (a) and
edge (b) of the 7 × 7 patch (the relative position is schematically il-
lustrated, inset). Experimental LDOS is normalized by its maximum
value, and rescaled by the maximum value of the calculated LDOS.
(c) Raw, stacked constant-current differential conductance spectra
obtained at a set-point of 50 pA, taken along a line crossing the center
of the 7 × 7 patch (schematically illustrated to the right), similarly
presented in [17]. (d) The corresponding LDOS, extracted from the
experimental data using the k‖ sensitive normalization scheme, and
(e) the calculated LDOS.

Lorentzians centered at each eigenenergy, with the linewidth
set to match the experiment. More precisely, the lifetime of the
resonances decreases as the principle quantum number of the
in-plane mode increases [34,35], leading to a corresponding
increase in the linewidth, which is echoed in the theoretical
LDOS.

Figure 3 shows the experimental LDOS retrieved from
constant-current dI/dV measurements performed at the cen-
ter and edge of square patch made out of 7 × 7 vacancies,
compared to the corresponding calculated LDOS. The agree-
ment between the experimentally derived and expected local
density of states is remarkable, especially in light of the
raw dI/dV spectra. The effects of the feedback, which are
most pronounced at the energy of the first resonance, are
well distinguished in the raw spectrum obtained at the patch
edge [Fig. 3(b)]; Here, the tip displacement artificially lends
the first resonance an asymmetric line-shape and heightened

Low High

(a)

(b)

(c)

4.80 5.00 5.15 5.25 5.35 5.50

c.c dI/dV

Experimental LDOS

Calculated LDOS

FIG. 4. Local density of states extracted from constant-current
differential conductance maps. (a) Experimental constant-current
differential conductance maps, taken at a current-set point of 100 pA
over the 7 × 7 patch, at the energies indicated above. Data from [17].
Scale bar: 2 nm. (b) LDOS obtained from normalizing the differential
conductance maps compared to (c) the theoretically derived LDOS.

relative intensity, which is remedied by the normalization
procedure. To probe the spatial evolution of the experi-
mentally derived and calculated LDOS, we perform dI/dV
spectroscopy along a line crossing the center of the patch
[Fig. 3(c)]; the raw data is normalized to obtain the LDOS
[Fig. 3(d)], which we find is in fair agreement with the cal-
culated LDOS [Fig. 3(e)]. We note that the feature at roughly
5.5 V hosts a heightened intensity just to the right of the center
of the patch, which is absent in the calculated LDOS—we
attribute this to the tip asymmetry and shape, which can cause
an overall spatial shift in the observed spectroscopic features.
All in all, the comparison between the raw dI/dV and the
calculated LDOS makes it clear that the tip displacement dur-
ing data acquisition dramatically broadens the spatial extent of
the states well beyond the confines of the patch, and changes
the line-shape of the spectroscopic features, in agreement with
previous findings [8,11,12].

Another experimental approach towards probing the full
spatial evolution and extent of the local density of states
is performing differential conductance maps. To do so in
constant-current mode (i.e., with the feedback loop closed)
complicates the matter, as the local topographic features will
induce significant cross-talk between the tip-sample displace-
ment and the measured differential conductance, convoluting
data interpretation [8,36,37]. In Fig. 4, we apply our nor-
malization procedure to constant-current maps obtained over
a 7 × 7 patch, and compare it to the theoretically derived
LDOS: Again, we see a reduction in the spatial extent of
the patch, and an increased sharpness in the spectroscopic
features that allows us to better distinguish the nodal planes
at each energy. The confined state at 5.5 V faintly exhibits
the same nodal pattern as expected from the corresponding
calculated LDOS, but the agreement is less convincing than
for the lower energy states. This discrepancy is due to the
upcoming resonance on the surrounding chlorine monolayer
(at roughly 5.7 V), which limits the contrast for the confined
state at 5.5 V. Finally, we note that the data presented in Figs. 3
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and 4 are obtained with different tips, resulting in a slight
relative shift of the resonance energies.

V. CONCLUSIONS

In this paper, we present a normalization scheme for ex-
tracting quantitative information about the local electronic
density of states from constant-current or constant-height
spectra taken in the high bias regime, i.e., at bias voltages
exceeding the sample work function. We consider the effects
of the in-plane momentum of the probed states on this relation,
and apply the normalization procedure to laterally confined
field-emission resonances. The extracted LDOS obtained
through normalization of constant-height and constant-current
spectra agree well with each other, and in turn with the
theoretically derived LDOS. Furthermore, we find that a

changing tip-sample distance significantly impacts the quan-
titative characteristics of the spectroscopic features, such as
their central energy, width, and intensity. Conversely, account-
ing for the in-plane momentum mainly impacts the relative
amplitude of the peaks: This counteracts the effects of the
k-sensitive tunnel current, which renders differential conduc-
tance measurements most sensitive to states with a small in
plane momentum.

All data presented in this paper are publicly available in
Ref. [38].
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