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Theory for polaritonic quantum tunneling
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I investigate the tunneling decay rate of a polaritonic system formed by a strong coupling between a vacuum
cavity mode and N metastable systems. Using a simple model potential, I find the instanton solutions controlling
the low-temperature tunneling rate. The resulting rate modification due to the cavity is proportional to the mean
of the second power of the light-matter coupling. No collective effect that would enhance the rates by a factor of√

N is present, which is in line with the results in the thermal activation regime.
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I. INTRODUCTION

Tunneling is a manifestation of quantum coherence:
Quantum systems are able to surmount barriers they energet-
ically should not due to their wavelike properties [1]. The
range of tunneling systems is broad: Elementary particles
in nuclear matter [2], electrons in conductors [3,4], magne-
tization in nanomagnets [5], and superconducting phase in
superconducting circuits [6]. Theoretically, tunneling can be
understood as the quantum mechanical counterpart to clas-
sical thermal activation describing, for instance, chemical
reactions [7–9].

Another type of quantum coherence can be seen when
a coherent exchange of energy between two quantum me-
chanical systems happens. A prime example of such coherent
systems is polaritons, which are the hybrid excitations of
the vacuum electromagnetic field and molecular degrees of
freedom. Recently, it has been suggested that the formation
of such coherent systems could affect chemistry, which is still
poorly understood [10–13]. In fact, a transition state theory
calculation shows that all the polaritonic enhancements to the
reaction rate scale as 1/N where N is the number of molecules
participating in the polariton [14–16]. This is often attributed
to the fact that the coupling to light induces only two ener-
getically different polaritonic states, separated in energy by
the Rabi splitting proportional to

√
N , while N − 1 molecular

states, the so-called dark states, remain energetically the same.
Motivated by the idea of polaritonic chemistry, I focus on

a related question, whether there can be a genuine polaritonic
quantum tunneling effect. This question arises naturally as the
light-matter coupling changes the coherence properties of the
system at hand. It also induces collective behavior through
the formation of polaritons. In fact, the N − 1 dark states
are superpositions over the molecular states even though their
energy does not change.

In this paper, I present a model of N metastable systems
coupled to a cavity mode and investigate the effect of the
common cavity mode on the low-temperature tunneling decay
rate. For a simple model potential, I analytically solve the
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polaritonic rate modification using path integral techniques
in the semiclassical approximation. Such solvable models are
rare; there are only a few truly multidimensional problems in
quantum tunneling that have been solved analytically [1,17].

In the low-temperature regime, the tunneling decay rate
is dominated by instantons. I find the instanton solutions for
the polaritonic system without friction. As the main result,
I find the polaritonic rate modification as a function of the
number N of metastable systems. The tunneling decay rate
is modified by a factor proportional to the single-molecule
coupling constant and not by the Rabi splitting. This shows
that the cavity indeed induces a coherence effect but it is not
a collective effect. Similar to the transition state theory cal-
culation [14,15], the polaritonic enhancements scale as 1/N
if the Rabi splitting is fixed. Therefore, the practical route to
realizing the cavity-induced coherence is not in the collective
strong coupling regime with large number of systems but
rather in single systems with large couplings to the cavity.

II. SEMICLASSICAL APPROXIMATION TO TUNNELING

Consider a metastable system described by a potential

V (q) =
{

1
2ω2

0q2, q � a,

−∞, q > a,
(1)

where a determines the energy of the potential barrier Eb =
1
2ω2

0a2 as in Fig. 1(a). The quadrature q is defined here so
that the conjugate momentum quadrature p is given simply by
p = q̇. Although this potential has been used before [18,19],
it lacks a name, and so I call it the ski-jumping potential. I set
h̄ = 1 everywhere.

Next, consider N identical metastable systems coupled to
a single harmonic cavity mode whose position quadrature is
x, normalized similarly to q. I assume that this coupling is di-
rectly between the quadratures x and q. The total Hamiltonian
of this polaritonic system is given by

H = 1

2
ẋ2 +

N∑
i=1

1

2
q̇2

i + Vtot, (2)
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(a) (b)

FIG. 1. (a) Ski-jumping potential of Eq. (1). It is obtained by
a limiting process from a potential Eb[(q/a)2 − θ (q)(q/a)n] with
θ being the Heaviside step function and n → ∞. The dotted line
represents n = 4. (b) Inverted potential −V (q). The arrow indicates
the instanton solution in which the system moves from q = 0 to
q = a and back.

where

Vtot =
N∑

i=1

V (qi ) + 1

2
ω2

c x2 +
N∑

i=1

λ2
i xqi. (3)

Here, the apparent eigenfrequency of the cavity mode is ωc

while the light-matter coupling is encoded within λ2
i . It can be

related to the coupling constant gi obtained from a quantum
electrodynamics calculation [20] by λ2

i = √
ωcω0gi. If one

considers the ski-jumping potential to be a simplistic model
of a potential energy surface of a molecule, the exact value
of each coupling constant depends on the orientation and
position of the molecule within the cavity [20].

There are several methods to calculate the tunneling de-
cay rate of a metastable system. Here, I use the so-called
ImF method [21] as it can straightforwardly be used for
multidimensional systems and provides the possibility to ex-
tend the theory to include dissipation [1,19]. Physically, the
idea is simple: The metastability of the ski-jumping poten-
tial means that there are no stationary states. This may be
represented by the eigenenergies obtaining a finite imaginary
part, which is associated to a tunneling decay rate. Like-
wise, the partition function Z defined in terms of the states
within the ski-jumping potential obtains an imaginary part.
Then, the tunneling decay rate k at low temperature may be
expressed as

k = 2

β
Im lnZ, (4)

where β = 1/kBT is the inverse temperature [1,22]. The par-
tition function Z can be represented by an Euclidean path
integral

Z =
∫

D(φ) exp{−SE [φ(τ )]} (5)

over β-periodic paths in imaginary time τ = it . Here, φ =
(x, q1, . . . , qN )T represents a column vector of all the dynam-
ical degrees of freedom and the Euclidean action is given by

SE =
∫ β/2

−β/2
dτ

[
1

2
φ̇T φ̇ + Vtot (φ)

]
. (6)

One can associate this Euclidean action to the classical action
of systems moving in the inverted potential −Vtot.

For independent systems, the total potential energy can be
written as a sum of system’s potential energies. Thus, the
partition function factorizes as Z = ZN

1 for identical systems.
Whatever the single-system tunneling decay rate k1 is, the
total rate is then k = Nk1.

In general, solving the path integral exactly to obtain the
partition function is difficult. Thus, I resort to the semiclassi-
cal approximation, which is valid when the barrier energy Eb

is large compared to the real part of the ground-state energy
(which is of the order of ω0) [22]. I expand the path integral
around the classical solutions and take into account only the
quadratic fluctuations

Z ≈
∑

μ

Iμe−SE (φμ ), (7a)

Iμ =
∫

D(rμ) exp

{
−1

2
rT
μ

[
∂2
τ + V (φμ)

]
rμ

}
. (7b)

Here, φμ represents one possible classical β-periodic path and
Iμ the contribution of quadratic fluctuations, which may be ex-
pressed using a second derivative matrix Vi j = ∂2Vtot/∂φi∂φ j

evaluated at the corresponding classical solution φμ. The inte-
gration variable rμ is the deviation from φμ with the boundary
conditions rμ(±β/2) = 0. As the action SE is a real variable,
the imaginary part of the partition function must be in fluctu-
ations Iμ.

The ski-jumping potential allows for the solution of clas-
sical paths in a general case but it complicates the evaluation
of the fluctuations as the potential is discontinuous at qi = a.
These problems can mostly be avoided since the quadratic
fluctuations can be expressed in terms of the classical solu-
tions exactly in the case of a closed system [23,24].

A. Solution of the Euclidean action

First, I solve the classical periodic paths in imaginary time.
The problem is the same as solving classical motion in real
time but in the inverted potential. Note that qi = a represents a
wall in the inverted potential as in Fig. 1(b). Thus, at this point,
the velocity q̇i is discontinuous. Rather than trying to piece
together solutions before and after hitting the wall, I expand
the mathematical trick presented in Ref. [18] for a polaritonic
system and take this discontinuity into account at the level
of the equations of motion. If a single quadrature q1 hits the
wall at time τ1, that is, q1(τ = τ1) = a, the dynamics in the
inverted potential is determined by

−ẍ + ω2
c x +

N∑
i=1

λ2
i qi = 0, (8a)

−q̈1 + ω2
0q1 + λ2

1x = Aδ(τ − τ1), (8b)

−q̈i + ω2
0qi + λ2

i x = 0, i = 2, 3, . . . N. (8c)

The unknown constant A is determined from the condition
q1(τ = τ1) = a.

Since I am searching for periodic solutions, the way to
proceed is to write all dynamical quantities as Fourier series.
Here, I choose the convention f (τ ) = ∑

m fmeiωmτ with ωm =
2πm/β being the bosonic Matsubara frequency. The inverse

035405-2



THEORY FOR POLARITONIC QUANTUM TUNNELING PHYSICAL REVIEW B 107, 035405 (2023)

transformation is then fm = 1
β

∫
dτ f (τ )e−iωmτ . By applying

the latter definition to Eqs. (8), I find

(
ω2

c + ω2
m

)
xm +

N∑
i=1

λ2
i qi,m = 0, (9a)

(
ω2

0 + ω2
m

)
q1,m + λ2

1xm = A

β
e−iωmτ1 , (9b)

(
ω2

0 + ω2
m

)
qi,m + λ2

i xm = 0. (9c)

This set of linear equations can be solved. The idea is first to
find the dynamics of the cavity mode x, which then gives the
solutions of the individual quadratures qi. This is achieved by

defining a collective variable Qm = ∑N
i=1

λ2
i

〈λ2〉qi,m with 〈λ2〉 =∑
i λ

2
i /N representing the average over the couplings. The

dynamics of Q can be determined from Eqs. (9b)–(9c), which
allows for solving the dynamics of x. After a short calculation
I find the solutions in Fourier space to be

xm = −A

β
λ2

1χP(ωm)e−iωmτ1 , (10a)

qi,m = A

β

λ2
1λ

2
i

ω2
m + ω2

0

χP(ωm)e−iωmτ1 , (10b)

q1,m = A

β

1

ω2
m + ω2

0

[
1 + λ4

1χP(ωm)
]
e−iωmτ1 , (10c)

where I defined a shorthand notation describing the polari-
tonic response

χP(ωm) = [(
ω2

m + ω2
0

)(
ω2

m + ω2
c

) − N〈λ4〉]−1
. (11)

The cavity-mediated interaction can be seen in the fact that
the dynamics of all the quadratures qi depend on the coupling
λ2

1 of the first quadrature.
The abstract Fourier space solutions become clearer in

the zero-temperature limit β → ∞. Then, the Fourier series
can be transformed to an integral, which I evaluate using the
residue theorem. Setting τ1 = 0 for brevity, this results in the
imaginary-time paths

x(τ ) = A
λ2

1√
〈λ4〉

√
1 − δ2

4N

(
e−ω+|τ |

ω+
− e−ω−|τ |

ω−

)
, (12a)

qi(τ ) = A
λ2

1λ
2
i

〈λ4〉
f (τ )

N
, (12b)

q1(τ ) = A
e−ω0|τ |

2ω0
+ A

λ4
1

〈λ4〉
f (τ )

N
, (12c)

f (τ ) = 1 + δ

2

e−ω+|τ |

2ω+
+ 1 − δ

2

e−ω−|τ |

2ω−
− e−ω0|τ |

2ω0
(12d)

with further definitions of the polariton eigenfrequencies ω±
without the rotating wave approximation and a detuning pa-
rameter δ ∈ [−1, 1] given by

ω± =
√

ω2
0 + ω2

c

2
± 1

2

√
4N〈λ4〉 + (

ω2
0 − ω2

c

)2
, (13a)

δ = ω2
0 − ω2

c

ω2+ − ω2−
. (13b)

FIG. 2. Polaritonic instanton solution for N = 6 on resonance
ωc = ω0. The coupling constants are chosen so that λ2

1/ω
2
0 = 0.1

and λ2
i 	=1/ω

2
0 ∈ {0, ±0.1, ±0.2}. The dashed orange line in the middle

graph also represents the second term in Eq. (12c) that describes the
modification to the bounce due to the light-matter coupling.

The Rabi splitting is typically defined as ω+ − ω− when the
cavity is on resonance ωc = ω0. Finally, A resolves by de-
manding that q1(τ = τ1 = 0) = a. It gives rise to a weighted
harmonic average

A = 2a
N〈λ4〉

N〈λ4〉−λ4
1

ω0
+ λ4

1

(
1+δ

2
1

ω+
+ 1−δ

2
1

ω−

) ≡ 2aωH,1. (14)

Here, the weights are the second-order coupling constants
λ4

i and detuning factors (1 ± δ)/2. This expression already
shows that, similarly to the discussion about dark states, the
bare frequencies ω0 are weighted with a factor proportional
to N − 1 whereas the polariton frequencies ω± have a weight
close to unity, independently of N . Thus, in general, ωH,1 ≈
ω0 for N � 1. If λ2

1 = 0, then ωH,1 = ω0.
An example of the polaritonic instanton solution is shown

in Fig. 2. Initially, τ → −∞, all the quadratures are at zero.
Very slowly, the first quadrature starts to evolve, pulling all the
other systems with it. The exact direction the other systems are
pulled towards depends on the relative signs of the coupling
constants λ2

i . At time τ = 0, the first quadrature is at the
wall and bounces back. From this hitting time to τ → ∞, the
inverse happens. The first quadrature starts to slow down and
all the quadratures creep towards their initial position.

The Euclidean action follows directly from the instanton
solutions at any temperature. I obtain

SE ,1 = 1

2
a2

[
1

β

∑
m

1 + λ4
1χP(ωm)

ω2
0 + ω2

m

]−1

(15a)

→ 2
Eb

ω0

ωH,1

ω0
≡ S0

ωH,1

ω0
, when β → ∞. (15b)

In the low-temperature limit, the action is determined by two
ratios: First, the barrier energy Eb is compared to the pseu-
doeigenenergy ω0. This is in contrast to the high-temperature
result with SE = βEb. Second, the polaritonic effect is con-
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tained within the ratio of the harmonic mean frequency ωH,1

and the bare frequency ω0. This ratio is unity when there is
no coupling, λ2

1 = 0, and the action is just the bare action,
SE ,1 = S0. A fully uncoupled system does not know about the
polaritons, as expected.

The classical action in Eq. (15) assumes that a single
quadrature bounces off the wall or, more technically, q1(τ =
τ1) = a while qi 	=1(τ ) 	= a for all τ . This assumption is readily
lifted and one can search for multibounce solutions with M
bounces, that is, qi(τi ) = a for i = 1, 2, . . . , M and M � N . A
possible approach to obtain these classical solutions is briefly
discussed in Appendix A.

However, the multibounce solutions do not contribute to
the quantum tunneling rate, as they represent extremal points
of the action SE , which are not saddle points. This is an
aspect of the quantum tunneling theory [25] and the classical
transition state theory (TST) [8,26] that is present when the
metastable system has multiple degrees of freedom. In the
classical TST, which is the high-temperature limit of the ImF
approach used here, the action is expanded around solutions
that are constant in imaginary time. In this case, the sad-
dle points of the action SE are directly the saddle points of
the total potential Vtot. These points are characterized by a
single unstable quadrature [27]. I note that some works appear
to be in contradiction with this principle, for instance Ref. [28]
suggests a “coherent TST picture” in the context of polariton-
ics. Here, it is difficult to show that the multibounce instantons
are not proper saddle points of SE because it would require
evaluating the eigenvalue spectrum of the operator ∂2

τ + V (φ)
defined in Eq. (7b). However, there are two clear physical
signs why the multibounce solutions must be neglected. First,
the high-temperature limit of those solutions correspond to
saddle points with multiple unstable quadratures, which I
show in a special case in the Appendix A. Second, one does
not obtain the correct limit of N independent systems when
the light-matter coupling vanishes, that is, λ2

i → 0. The latter
point becomes more clear in the next section as I obtain the
correct limit with single bounces.

B. Polaritonic tunneling rate modification

To get from the instanton solution (12) to the polaritonic
tunneling decay rate, one needs to calculate the fluctuation
factor Iμ. The program is somewhat cumbersome even in the
one-dimensional case [22]. The first derivative of the instan-
ton solution happens to be a zero eigenvalue mode for the
fluctuations and Iμ formally diverges. The existence of the
zero mode also implies that there exists a negative eigenvalue
mode, which makes Iμ imaginary. A further complication is
that one should include multiple sequential bounces. Such
paths are obtained by essentially gluing instanton solutions
together: The imaginary-time axis can be separated into n
partitions of length β/n. Since the instanton paths change
appreciably only for the imaginary time 2/ω0, using the in-
stanton solution (12) for each partition of length β/n gives a
path with n bounces. The error of this process is exponentially
small in β when 2/ω0 � β. In these steps, I follow closely
the one-dimensional treatment of Ref. [24]. I do this as the
relatively recent literature [29,30] cannot be applied since the
instanton solution (12) is not differentiable at the hitting time.

The fluctuation factor of a single bounce can be obtained
from a version of the Gelfand-Yaglom formula [22]

In=1
1 ∝ −iβ

√
SE ,1

√
ε1(β )

D1
, (16)

where D1 = | det( ∂φ j (β/2)
∂φ̇i (−β/2)

)| is the fluctuation determinant
evaluated in the β → ∞ limit and ε1(β ) provides a finite
temperature correction to it. In these and the following expres-
sions, I denote the number of bounces as a superscript whereas
the subscript refers to the quadrature that hits the wall. I also
choose not to keep track of the powers of 2π ; in the end,
they are fixed by comparing to the noninteracting result. By
expanding the method in Ref. [31] to the multidimensional
system at hand, I find

ε1(β ) ≈ 2
φ̇T (−β/2)φ̈(−β/2) − φ̇T (β/2)φ̈(β/2)∫ ∞

−∞ φ̇T (τ )φ̇(τ )dτ
, (17)

where φ refers to the vectorized form of the instanton solution
(12). The derivation of this result can be found in Appendix B.
The factor −i is the Maslov-Morse index, which takes into
account the one negative eigenvalue mode. Mathematically, it
follows from the singularity of the fluctuation determinant at
the turning point of the classical solution (see, e.g., Ref. [22]).
Lastly, β

√
SE ,1 follows from the Faddeev-Popov method as

the hitting time τ1 is in fact a free parameter. By a change
of integration variables from the zero mode proportional to
the first derivative of the instanton solution to τ1 in Iμ, one
integrates τ1 over the whole range [−β/2, β/2] while the
Jacobian of the transformation is

√
SE ,1 [19,22,32].

To connect two bounces, in principle, one needs to cal-
culate the action with variable ending points. This is not
feasible in practice. However, since the instanton paths re-
side mostly near φ = 0, it is justified to expand the action.
Thus, from the initial φ(−β/2) = φ− = 0 to an arbitrary point
φ̃, the action can be expressed in terms of the final point
φ(β/2) = φ+ = 0 as

SE [φ−, φ̃] ≈ SE ,1[φ−, φ+]

+ 1

2
(φ+ − φ̃)T

[
∂2SE

∂φi∂φ j

]
(φ+ − φ̃). (18)

The Hessian matrix on the second row is calculated along the
classical instanton path. The same structure is also obtained
from a variable initial point and a fixed final point. Thus, the
paths are connected by first dividing the path integral into two
parts with a variable midpoint φ̃ and then integrating over it.
These two parts are assumed to obey the instanton solutions
individually.

At this point, the multidimensional nature of the problem
becomes relevant. To connect two bounces, I should take into
account that the two bounces correspond to different quadra-
tures. In the case of equal couplings, they are exactly the
same. Thus, the integration over the midpoint φ̃ is a Gaussian
integral and the Hessian matrices in Eq. (18) are the same. In
this case, the determinant rising from integration is equal to
the inverse of the fluctuation determinant D1 [23]. I assume
here that this relation holds, at least to an approximation, also
in the case of variable coupling constants.
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The extension from two to n bounces does not require
considerably more effort. One should note that there are now
n hitting times, which are all free parameters and for which
the Faddeev-Popov method gives an extraneous factor of 1/n!.
Otherwise, the fluctuation factor is similar to Eq. (16) for
each bounce. Thus, the general n bounce contribution to the
partition function is

IneSn
E ∝

√
1

D

∑
{k}

(−iβ )n

n!

n∏
i=1

√
SE ,kiεki (β/n)e−SE ,ki . (19)

The vector k enumerates which quadrature hits the wall in
each bounce and the sum is taken over all the possible
n-bounce configurations (ki ∈ {1, . . . N}). There are n inde-
pendent sums and, thus, in total Nn configurations. These
sums can be alternatively written as

IneSn
E ∝ (−iβ )n

n!
Nn〈

√
SEε(β/n)e−SE 〉n. (20)

Here, 〈·〉 denotes the ensemble average over the coupling
constants λ2

i .
The remaining problem is to calculate the finite temper-

ature correction ε(β ) and evaluate the sum over all bounces
to arrive at the partition function Z . The strategy I use is
to approximate ε(β/n)n ≈ C(β )ε(0)n with a prefactor C(β ).
This approximation renders the partition function Z to an ex-
ponential form, which gives the leading-order contribution in
temperature to the tunneling rate. The function C(β ) plays no
role in the rate as it becomes a real prefactor of the imaginary
part in the partition function Z . This approximation is further
discussed in Appendix B. Effectively, it leads in Eq. (20) to

ε1(β/n) → ε1(0) = 4ωA,1ωH,1, (21)

where I need to define the weighted arithmetic average

ωA,1 =
(
N

〈
λ4

〉 − λ4
1

)
ω0 + λ4

1

(
1+δ

2 ω+ + 1−δ
2 ω−

)
N〈λ4〉 (22)

with the same weights as in the harmonic average ωH,1. When-
ever the total coupling N〈λ4〉 is small compared to ω2

cω
2
0

(i.e., the rotating wave approximation is applicable), always
ωA,1 ≈ ω0. In the limit λ2

1 → 0, one finds ε1(β/n)n = (2ω0)2n

without any approximations.
Finally, the sum over all classical solutions and their

quadratic fluctuations can be evaluated to arrive at the par-
tition function Z . The important quantity here is the average
modification r of the tunneling rate, defined as the ratio of
the total tunneling rates with and without the coupling to the
cavity, r = k/k(λ = 0). I find

r =
〈
ωH

ω0

√
ωA

ω0
exp

[
−S0

(
ωH

ω0
− 1

)]〉
. (23)

This analytical result is for an arbitrary distribution of cou-
plings. It directly shows that the most important polaritonic
effects are contained in the harmonic frequency ωH defined in
Eq. (14) while the arithmetic mean frequency ωA of Eq. (22)
provides a small correction relevant only in the ultrastrong
coupling regime.

The rate modification r describes the total tunneling rate
modification of an N-body polaritonic system. The light-
matter coupling modifies the tunneling for each system and,

FIG. 3. Polaritonic tunneling rate modifications of a single sys-
tem with different tunneling barriers Eb/ω0 = S0/2.

thus, there must be an ensemble average over the coupling
constants. To be more precise, the average is over the second-
order couplings λ4

i , which are the weighing factors in the
harmonic average ωH . Using the expression λ2

i = √
ωcω0gi it

is instructive to write
ωH

ω0
= 1

1 + g2

N〈g2〉
(

1+δ
2

ω0
ω+

+ 1−δ
2

ω0
ω−

− 1
) (24)

in terms of the true coupling constants g. Thus, the relevant
distribution is that of g2. This is in contrast to our recent
work focusing on bistable potentials in the thermal activation
regime where we found that the distribution of g plays an
important role [33].

III. ANALYSIS OF THE POLARITONIC
RATE MODIFICATION

Let us consider the consequences of the rate modification
(23). In the following, I assume that the rotating wave approx-
imation holds and that ωc ≈ ω0. The polariton frequencies are
effectively redefined as

ω± = ωc + ω0

2
±

√
N〈g2〉 + (ωc − ω0)2/4 (25)

and ωA/ω0 = 1. The harmonic average simplifies as the
relation

1 + δ

2

1

ω+
+ 1 − δ

2

1

ω−
= ωc

ω0ωc − N〈g2〉 (26)

removes the need for the detuning parameter δ.
N = 1: For a single metastable system, the analysis is

straightforward. The harmonic average is then over the po-
lariton states, which favors the lower polariton state. By
employing the rotating wave approximation, I have ωH/ω0 =
1 − g2/ω0ωc. Inserting this relation into Eq. (23) gives

r =
(

1 − g2

ωcω0

)
exp

(
S0

g2

ωcω0

)
. (27)

Whether the tunneling rate is increased or decreased depends
on the bare action S0 = 2Eb/ω0. Expanding to the lowest
order in the coupling gives r ≈ 1 + (S0 − 1) g2

ωcω0
. A high tun-

neling barrier is represented by S0 > 1 in which case the rate
always increases due to the presence of the cavity. The higher
the barrier, the stronger the effect for a fixed coupling g. This
is visualized in Fig. 3. It should be noted that S0 < 1 is at
odds with the semiclassical approximation and, thus, the result
might not be accurate in such case.
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The case of a single tunneling system coupled to a har-
monic oscillator is relevant for experiments conducted in
superconducting circuits [1]. The metastable quadrature could
be, for instance, the superconducting phase difference of a
Josephson junction in an electrical circuit. Then, Eq. (27)
predicts the tunneling rate change if this circuit is connected
to an external resonator.

N � 1 but N〈g2〉 < ω0ωc: The case of macroscopically
large N is the typical regime of polaritonic chemistry. The en-
semble average in Eq. (23) could be calculated numerically for
some model distribution of couplings but, rather, I calculate it
with the cumulant expansion to the second order. This gives

r ≈
[〈

ωH

ω0

〉
− S0Var

(
ωH

ω0

)]

× exp

[
S0 − S0

〈
ωH

ω0

〉
+ 1

2
S2

0Var

(
ωH

ω0

)]
, (28)

where Var(·) refers to ensemble variance defined as Var(x) =
〈x2〉 − 〈x〉2. Thus, in principle, the variance of the coupling
constants can modify the observed rate modification. How-
ever, for N � 1, the variance is well approximated by

Var

(
ωH

ω0

)
=

〈
ωH

ω0

〉4 Var(g2)

(ω0ωc − N〈g2〉)2
, (29)

because the fluctuation of couplings is also suppressed by the
factor 1/N in the harmonic mean. Now, if g2

i /ωcω0 � 1 for
all i, which is a typical assumption in the collective coupling
regime, the variance can be neglected as Var(g2/ωcω0) � 1.
Consequently, the expectation value of ωH/ω0 is given by〈

ωH

ω0

〉
= ω0ωc − N〈g2〉

ω0ωc − (N − 1)〈g2〉 ≈ 1 − 1

N

N〈g2〉
ωcω0

. (30)

Here, it appears that ωH/ω0 is determined as a ratio of po-
lariton frequencies (ω+ω−)2 so that the polaritons in the
denominator consist of N − 1 systems and in the nominator of
N systems. The latter equation is an expansion in the leading
order of 〈g2〉/ω0ωc. Using this expanded form I find

r ≈
(

1 − 〈g2〉
ωcω0

)
exp

(
S0

〈g2〉
ωcω0

)
, (31)

which generalizes the single-system polaritonic rate modifi-
cation of Eq. (27). In conclusion, there is no considerable
collective tunneling effect, even if the collective coupling√

N〈g2〉 is a considerable fraction of
√

ωcω0.

Comparison to high-temperature escape rate

Thermal activation is the main mechanism in the escape
from a metastable potential whenever the temperature is above
a threshold temperature proportional to ω0 [8,34]. The in-
stanton path shrinks to a single point in the limit of high
temperature, β → 0. This follows from Matsubara frequency
ωm 	=0 → ∞. Thus, only m = 0 contributes in the Fourier
series expressions [e.g., Eq. (15)]. The action is in this case

SE ,i = βEb
ω0ωc − N〈g2〉

ω0ωc − (
N〈g2〉 − g2

i

) . (32)

The similarity to the low-temperature action in Eq. (15) is
evident: The bare action has changed from S0 = 2Eb/ω0 to

βEb while the polaritonic modification is expressed in a form
similar to Eq. (30) instead of ωH,i/ω0. However, I have not
used the rotating wave approximation here as in Eq. (30).

In the high-temperature regime, one can also calculate the
rate using the classical transition state theory [8]. This ap-
proach gives the same action but it allows for a straightforward
solution of the factor in front of the exponent containing the
action (also called the attempt frequency). The rate modifica-
tion r obtained in this way is

r =
〈√

ω0ωc − N〈g2〉
ω0ωc − (N〈g2〉 − g2)

exp

[ −βEb · g2

ω0ωc − (N〈g2〉 − g2)

]〉
.

(33)

The structure of the classical escape rate modification is
therefore different from the low-temperature one in Eq. (23).
Besides the change of the harmonic frequency ωH to the ratio
of polariton frequencies (which coincide in the rotating wave
approximation), the modification of the action and preexpo-
nential factor are in different powers.

With both the low- and high-temperature limits of the rate
modification at hand, one can imagine the following set of
experiments (see, e.g., Ref. [6]): One varies the temperature
of the polaritonic system and measures the escape rate. Start-
ing from a high temperature and lowering it, the rate drops
and eventually saturates to the quantum tunneling rate. By
repeating this measurement without the cavity, the polaritonic
coherence effect should become visible. The results I obtained
imply, however, that this is likely only in single systems with
sizable light-matter coupling because there is no collective
enhancement of the rates.

IV. CONCLUSION

The work presented here is rather technical and, in many
ways, cumbersome. Next, I try to clarify what I think are the
main ideas and results of the work.

I show a simple, analytically solvable, toy model for polari-
tonic tunneling. In principle, there are numerous calculation
techniques in the literature but the multidimensionality of
the polaritonic system and the ski-jumping potential require
some adaptation. These techniques might prove useful, for
instance, in the investigations of macroscopic tunneling in
superconducting circuit arrays or other interacting ensembles
of metastable systems.

Even if the main result, the polaritonic tunneling rate mod-
ification (23), is obtained in a ski-jumping potential that does
not directly correspond to any potential seen in nature, it
has value. As a first guess, the structure of the solution is
likely similar for a different potential: The modification is
determined by the bare action and the harmonic frequency ωH .
The formation of polaritons affects the coherence properties
in such a way that the tunneling rate may be increased. At the
same time, if N � 1, the dark states spoil the effect of the
polaritons to the tunneling decay rate out of any metastable
potential. Of course, I would prefer to be proven wrong.

My work in the low-temperature regime coupled with the
transition state results in Refs. [14,15] indicate that there is
no collective and resonant polaritonic effect in the escape
rate in the case of a large number N of molecules. However,
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there are extensions to the model presented here that may
affect the end result. It has been theoretically suggested that
inhomogeneous broadening of metastable system frequencies
might change polaritonic dark states by providing them some
photonic weight, which can change the tunneling rate as well
[35,36]. One may also expect changes to tunneling rates when
entering the ultrastrong-coupling regime [37]. Furthermore,
I include a single-cavity mode, coupling linearly to a single
coordinate of the metastable system. The inclusion of multiple
modes allows for a more realistic description of a cavity and
light-matter interaction. It would open an avenue to investi-
gate possible symmetry effects within light-matter coupling
and tunneling rates, motivated by a recent experiment in po-
laritonic chemistry [38].

This paper considers only a truly metastable potential. An
alternative system would be a bistable potential, which we
have considered in the thermal activation limit [33]. For the
low-temperature limit, the approach would have to be dif-
ferent than what I present here because there are no similar
instantons. This is because these imaginary-time paths are at
zero energy while the cavity changes the energies of the sta-
tionary states. Tunneling in bistable systems therefore requires
another approach.

I did not take into account the friction or dissipation
the systems realistically have. On the level of the action
this would be, in principle, a straightforward extension
[1,19,39,40]. I expect dissipation to modify the tunneling rate
modification: Since the formation of polaritons leads to a
coherent effect, the modification should be larger for a nearly
dissipationless cavity than for a bad cavity with a large dissi-
pation rate. However, it should not change, for instance, the N
scaling of the action.
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APPENDIX A: AN APPROACH TO CLASSICAL
MULTIBOUNCE SOLUTIONS

For completeness, I show how the method presented in
the main text can be expanded to finding classical solutions
with multiple quadratures visiting the point qi = a at specified
times τi. Even though such instanton configurations do not
contribute to the quantum tunneling rate (see main text), the
classical problem is interesting on its own. The approach
presented in the main text requires modification.

One has to introduce a matrixlike structure to the δ

functions in the equations of motion. From the viewpoint
of Lagrangian mechanics, the δ function can be seen as a
constraint force following from the condition q1(τ1) = a. If
there is another constraint, say, q2(τ2) = a, the constraint on
quadrature 1 affects also quadrature 2 due to the coupling via
the cavity. The equations of motion to be solved are in general

−q̈i + ω2
0qi + λ2

i x =
∑

j

Ai jδ(τ − τ j ) (A1)

for all quadratures that hit the wall, qi(τi ) = a.
If one assumes that all the off-diagonal elements of Ai j are

zero, the δ functions do not conserve energy E (τ ) = 1
2 φ̇T φ̇ −

Vtot (φ). (The energy is zero for instanton solutions in the limit
β → ∞.) That is, the solution is only correct in a piecewise
manner with abrupt changes in energy at hitting times τi. The
energy is conserved for a single bounce.

One can fix the unknown parameters Ai j not only from the
conditions qi(τi ) = a but also from the energy conservation
and symmetry considerations. This seems clear for two bounc-
ing quadratures, because the constraint forces between the
two systems should be similar and, consequently, A12 = A21.
Whether or not it can be adapted the solution of the general
many-bounce dynamics, I do not know.

When there is a solution of the action in terms of the hitting
times τi, which are fixed in the beginning, the exact meaning
of the solution is still unclear in the viewpoint of classical
mechanics. Presumably, in the spirit of the least action, the
classical path should be that of minimal action. Thus, one
should further minimize the action in terms of the hitting times
τi, which presents another difficult step in a general case.

Finally, I note that in the special case τi = 0 and λ2
i = λ2

for i = 1, 2, . . . M there is a much more straightforward route
to the solution. Then, the N quadratures can be divided into
two classes: Those that hit the wall and those that do not.
The equations of motion are exactly the same within these
two classes. Therefore, the dynamics can be described by
using Q1 = ∑M

i=1 qi and Q0 = ∑N
i=M+1 qi for which the equa-

tions of motion in the inverted potential are

−ẍ + ω2
c x + λ2(Q0 + Q1) = 0, (A2a)

−Q̈1 + ω2
0Q1 + Mλ2x = MAδ(τ ), (A2b)

−Q̈0 + ω2
0Q0 + (N − M )λ2x = 0. (A2c)

This set of equations can be solved in a similar way as the
one-bounce problem in the main text [note that Q1(0) = Ma].
This results in the action

SE ,M = M

2
a2

[
1

β

∑
m

1 + Mλ4χP(ωm)

ω2
0 + ω2

m

]−1

, (A3)

where χP(ωm) is as in Eq. (11). In the limit of no light-
matter coupling, SE ,M = MSE ,1 which reads SE ,M = βMEb in
the high-temperature limit. Hence, the action scales with M
for fully independent systems. However, the total tunneling
rate of N independent systems should simply be N times
the single-system tunneling rate, which is obtained by setting
M = 1 and N = 1. Moreover, in the high-temperature limit
there are M systems that reside at the maximum of their poten-
tial V (q). Considering the total potential Vtot = ∑N

i=1 V (qi ),
there are thus M unstable modes at this extremal point. The
presence of light-matter coupling does not change the nature
of these extremal points. The multibounce trajectories with
M � 2 should therefore be neglected in the tunneling rate
calculation: They describe configurations that will not turn out
to be saddle points of the action.
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APPENDIX B: FINITE TEMPERATURE CORRECTION

For large but finite β, an exponentially small correc-
tion to the zero eigenvalue mode should be included. This
section generalizes the discussion in Ref. [31] to multidi-
mensional systems. Since the eigenvalues of the fluctuation
determinant can be mapped to the eigenvalues in the time-
independent Schrödinger equation, the question is, how do the
energies change when a system is put into an infinite potential
well. That is, there are two equations

(
∂2
τ + V

)
f (τ ) = 0, (B1a)(

∂2
τ + V

)
g(τ ) = −εg(τ ) (B1b)

with boundary conditions f (τ → ±∞) → 0 and g(τ =
±β/2) = 0. It can be shown that the solution of the former
equation is related to the classical instanton path φ(τ ) by
f (τ ) = φ̇(τ ). By multiplying Eq. (B1a) by gT from the right
and similarly Eq. (B1b) by f T , integrating over [−β/2, β/2],
and then subtracting the equations, I find

f T (−β/2)ġ(−β/2) − f T (β/2)ġ(β/2)

= ε

∫ β/2

−β/2
f T (τ )g(τ )dτ. (B2)

Since the correction must be small for large β, the integral on
the right-hand side can be approximated by replacing g by f
and extending the integration limits to ±∞. Consequently, ε

can be solved in terms of f and g. The question is then about
the relation between the derivative of g and f at the boundaries
±β/2.

For real-valued functions, the WKB approximation gives
ġ(±β/2) ≈ 2 ḟ (±β/2). Alternatively, one can set g(τ ) =
c(τ ) f (τ ) and find c to first order in ε, which results
in ġ(±β/2) ≈ 2

√
3 ḟ (±β/2) for the ski-jumping potential.

However, in this paper, the exact proportionality constant is
not of great importance as such factors cancel out when deter-
mining the cavity-induced modifications to the tunneling rate.

For vector-valued f and g, the argument is similar but
less rigorous. It is possible that putting the system into a box
changes both the magnitude of the derivative and its direction.
However, the change of direction can be neglected in the
ski-jumping potential: The potential matrix V is close to a

FIG. 4. The values of [ε(β/n)/ε(0)]n for N = 1, βω = 5 and
(1 ± δ)ω±/ω0 = 1 ± 0.1.

constant near the boundaries so one can diagonalize it by an
orthogonal matrix. For the ski-jumping potential especially, V
is constant for all values of τ except the hitting time τ = τ1.
The argument for real-valued functions holds then for each
component of the transformed vectors. Since the transforma-
tion is the same for both f and g, the result is also the same.
Inserting the relations ġ(±β/2) ≈ 2 ḟ (±β/2) and f = φ̇ into
Eq. (B2), I get Eq. (17). It should be noted, however, that this
result will likely not hold for more complicated potentials but,
in general, ġ(±β/2) = C ḟ (±β/2) where C is a matrix.

Correction for ski-jumping potential

The finite temperature correction (17) is readily obtained
by using the instanton solutions (12). It should be noted that
the denominator in the correction ε1(β ) is the action SE ,1 and
that the instanton solutions are symmetric with respect to the
hitting time τ1 = 0. I find

ε1(β ) = 4ωH,1
1

N〈λ4〉

[(
N〈λ4〉 − λ4

1

)
ω0e−βω0

+ λ4
1

(
1 + δ

2
ω+e−βω+ + 1 − δ

2
ω−e−βω−

)]
. (B3)

As implied in the main text, this expression is not particularly
helpful because the partition function Z depends on ε(β/n)
so that n is summed over. A reasonable approximation is
to replace ε(β/n) by ε(0) because it represents the n → ∞
limit. Furthermore, it can be shown that, for a constant β,
the value of ε(β/n) can be limited by ε(0) in the sense that
A � [ε(β/n)/ε(0)]n � B for all n with suitable constants A
and B. This is exemplified in Fig. 4. The prefactor in the
approximation ε(β/n) ∝ ε(0) does not contribute to the imag-
inary part of the partition function Z and is thus unimportant.
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