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Periodically driven model with quasiperiodic potential and staggered hopping amplitudes:
Engineering of mobility gaps and multifractal states
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In this study, we examine whether periodic driving of a model with a quasiperiodic potential can generate
interesting Floquet phases that have no counterparts in the static model. Specifically, we consider the Aubry-
André model, which is a one-dimensional time-independent model with an on-site quasiperiodic potential V0

and a nearest-neighbor hopping amplitude that is taken to have a staggered form. We add a uniform hopping
amplitude that varies in time either sinusoidally or as a square pulse with a frequency ω. Unlike the static
Aubry-André model, which has a simple phase diagram with only two phases (only extended or only localized
states), we find that the driven model has four possible phases for the Floquet eigenstates: a phase with gapless
quasienergy bands and only extended states, a phase with multiple mobility gaps separating different quasienergy
bands, a mixed phase with coexisting extended, multifractal, and localized states, and a phase with only localized
states. The multifractal states have generalized inverse participation ratios that scale with the system size with
exponents that are different from the values for both extended and localized states. In addition, we observe
intricate reentrant transitions between the different kinds of states when ω and V0 are varied. The appearance
of such transitions is confirmed by the behavior of the Shannon entropy. Many of our numerical results can
be understood from an analytic Floquet Hamiltonian derived using a Floquet perturbation theory that uses the
inverse of the driving amplitude as the perturbation parameter. In the limit of high frequency and large driving
amplitude, we find that the Floquet quasienergies match the energies of the undriven system, but the Floquet
eigenstates are much more extended. We also study the spreading of a one-particle wave packet, and we find that
it is always ballistic but the ballistic velocity varies significantly with the system parameters, sometimes showing
a nonmonotonic dependence on V0 that does not occur in the static model. Finally, we compare the results
for the driven model, which has a static staggered hopping amplitude, with a model that has a static uniform
hopping amplitude, and we find some significant differences between the two cases. All of our results are found
to be independent of the driving protocol, either sinusoidal or square pulse. We conclude that the interplay
of the quasiperiodic potential and driving produces a rich phase diagram that does not appear in the static
model.
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I. INTRODUCTION

Periodically driven systems have been studied extensively
for the past several years because of the multitude of unusual
phenomena that they can exhibit [1–8], which have no analogs
in time-independent systems. For instance, periodic driving
can be used to engineer topological states of matter [9–14],
Floquet time crystals [15–17], and other novel steady states
[18,19]; produce dynamical localization [20–23], dynamical
freezing [24–26], and other dynamical transitions [27–37];
tune a system into ergodic or nonergodic phases [38–40]; and
generate emergent conservation laws [41].

The effects of periodic driving on localization-
delocalization transitions have been relatively less studied
[42,43]. A well-studied time-independent model in one
dimension with a localization-delocalization transition is the
Aubry-André model [44,45]. This is a tight-binding model
with uniform nearest-neighbor hopping amplitude γ and a
quasiperiodic on-site potential with strength V0. Depending

on the value of V0, this model is known to have two phases,
with all states being extended (localized) for V0 smaller
(larger) than some critical value; the critical value of V0 is
known to be equal to 2γ . Studies of other variants of this
system have shown that multiple localization transitions and
states with multifractal properties can appear [46,47]. Given
these different possibilities for an undriven system, it would
be interesting to study what can happen if a system with both
a quasiperiodic potential and a staggered hopping amplitude
is driven periodically in time. In particular, we would like to
understand if the driving can generate mobility edges or gaps,
and whether states that are neither extended nor localized
can appear [48]. (See Ref. [49] for a recent experiment on a
kicked system with a quasiperiodic potential.)

The plan of this paper is as follows. In Sec. II we present
our model, which is essentially the Aubry-André model driven
periodically in a particular way. The Hamiltonian consists
of a staggered time-independent hopping with values γ1

and γ2 on alternating sites, a uniform time-periodic hopping
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with driving amplitude a and frequency ω (both hopping
amplitudes are between nearest neighbors only), and a
quasiperiodic on-site potential with strength V0. In the limit
where both a and ω are much larger than the time-independent
hopping amplitudes and V0 (i.e., a, ω � γ1, γ2,V0), we use
a Floquet perturbation theory to analytically derive an ef-
fective time-independent Hamiltonian HF called the Floquet
Hamiltonian. Both sinusoidal driving and driving by a peri-
odic square pulse are considered. In Sec. III we numerically
study the properties of the eigenstates of the Floquet oper-
ator U (in particular, their scaling with the system size L
to see if they are localized, extended, or multifractal), and
whether there are any mobility edges or gaps in the Floquet
quasienergies. We compare the results obtained numerically
from the Floquet operator with those obtained from the Flo-
quet Hamiltonian. We also study the Shannon entropy and
the structure of the Floquet Hamiltonian in real space to
shed more light on the degree of localization of the Floquet
eigenstates. The form of the Floquet eigenstates and eigen-
values in the high-frequency limit is studied. In Sec. IV we
consider the spreading of a wave packet and compare the
cases in which the time-independent hopping amplitudes are
uniform (γ1 = γ2) and staggered (γ2 = −γ1), respectively. We
use van Vleck perturbation theory to gain an understanding
of the results for the case of uniform hopping. In Sec. V we
summarize our results and point out some directions for future
studies.

Our main results are as follows. We find that in contrast
to the Aubry-André model, which has only extended or only
localized states depending on the value of V0, the periodi-
cally driven model has four possible phases: a phase with
gapless quasienergy bands and only extended states; a phase
with multiple mobility gaps separating different quasienergy
bands; a mixed phase with coexisting extended, multifractal,
and localized states; and a phase with only localized states.
The multifractal states appear at intermediate driving fre-
quencies ω and large values of V0; these are eigenstates of
the Floquet operator that are neither extended nor localized.
The multifractal nature is inferred from the scaling with the
system size of the generalized inverse participation ratio of
these states; the scaling exponents are found to be differ-
ent from the values of both extended and localized states.
We find multiple reentrant transitions between the different
kinds of states for certain ranges of values of ω and V0;
such transitions have no counterparts in the Aubry-André
model. All this is found to be true for both sinusoidal driving
and square pulse driving. In the high-frequency limit, we
find that the spectrum of Floquet quasienergies approaches
the energy spectrum of the model with no driving. How-
ever, when the driving amplitude is also large, we find that
the Floquet eigenstates are significantly different from those
of the undriven system; typically, driving makes the states
much more extended. We find that one-particle wave packets
always spread ballistically, but the ballistic velocity varies
considerably depending on the system parameters. Interest-
ingly, for the case of uniform time-independent hopping, we
sometimes find a nonmonotonic dependence of the ballistic
velocity on V0. In conclusion, we find that a combination of
quasiperiodic potential, periodic driving of the uniform hop-
ping amplitude, and a time-independent staggered hopping

gives rise to a wide range of unusual properties of the Floquet
eigenstates.

II. MODEL HAMILTONIAN AND FLOQUET
PERTURBATION THEORY

In this section, we will study a one-dimensional model
with both uniform and staggered nearest-neighbor hopping
amplitudes and a quasiperiodic on-site potential. We will first
consider what happens when the uniform hopping amplitude
is driven sinusoidally in time with a frequency ω and an am-
plitude a. Later we will study what happens when the driving
is given by a periodic square pulse. The Hamiltonian of the
system is given by

H (t ) =
∑

j

([a sin(ωt ) + γ1](a†
j b j + b†

ja j )

+ [a sin(ωt ) + γ2](a†
j b j−1 + b†

j−1a j )

+V0{cos (2πβ(2 j − 1))a†
j a j

+ cos (2πβ(2 j))b†
jb j}), (1)

where the quasiperiodic potential has strength V0, and we take
β = (

√
5 − 1)/2 so that it is irrational. We have taken the unit

cells, labeled by an integer j, to consist of two sites labeled as
a j and b j . We will set the nearest-neighbor spacing to be equal
to 1, hence the size of a unit cell is 2. We will impose periodic
boundary conditions and take the system to have a total of L
sites. As we will discuss later, for our numerical calculations
we will allow β to deviate in a minimal way from (

√
5 − 1)/2

in order to have periodic boundary conditions. We will set h̄ =
1 in this paper.

It is possible to do a unitary transformation that changes
b j → −b j but keeps a j unchanged for all j in Eq. (1).
This allows us to change the relative signs of both the
time-independent and time-dependent hoppings on alternat-
ing bonds. Hence there are two possibilities for these two
hoppings: both can be uniform, or one can be uniform and
the other staggered. We find it convenient to take the driving
term to be uniform rather than staggered. (This may also be
easier to realize experimentally. One way to drive the hopping
is to apply a time-dependent periodic pressure on the system.
This would make all the bond lengths increase and decrease
alternately with time. As a result, all the nearest-neighbor
hoppings will change periodically with time. This corresponds
to a uniform term in the time-dependent hopping.) Assuming
the time-dependent hopping is uniform, the time-independent
hoppings (γ1 and γ2) can be either uniform or staggered. In
this paper, we will mainly study the staggered hopping model
in which γ2 = −γ1. We will also briefly study the case of
uniform hopping with γ2 = γ1 and compare the results found
there with those obtained for γ2 = −γ1. Finally, we note that
if there is no driving, i.e., a = 0, then the cases of uniform and
staggered time-independent hoppings (γ2 = γ1 and γ2 = −γ1,
respectively) are identical since they are related by the uni-
tary transformation described above; both cases reduce to the
Aubry-André model.

We now compute the Floquet Hamiltonian using first-order
Floquet perturbation theory (FPT) for a, ω � γ1, γ2, V0
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[8,38,41,50]. FPT is a method for deriving the Floquet Hamil-
tonian in the limit where the driving amplitude is much larger
than the coefficients of the time-independent terms in the
Hamiltonian. In that limit, FPT is more powerful than the
Magnus expansion, which is often used in the high-frequency
limit [4,6]; unlike the Magnus expansion, FPT does not in-
volve expanding in powers of 1/ω. To develop FPT for our
model, we write the Hamiltonian as H (t ) = H0(t ) + V1 + V2,
where, in terms of a momentum k (which lies in the range
[−π/2, π/2]),

H0(t ) =
∑

k

[a sin(ωt )(1 + e−2ik )a†
kbk + H.c.], (2)

and the perturbation has two parts,

V1 =
∑

k

[(γ1 + γ2e−2ik )a†
kbk + H.c.],

V2 =
∑
k,k′

[ f1(k, k′)a†
kak′ + f2(k, k′)b†

kbk′ ], (3)

with

f1(k, k′) = 2V0

L

∑
j

cos

[
4πβ

(
j − 1

2

)]
e−2i(k−k′ ) j,

f2(k, k′) = 2V0

L

∑
j

cos[4πβ j]e−2i(k−k′ ) j . (4)

We note that the Fourier transform of the quasiperiodic po-
tential couples different momenta, which is a consequence
of the fact that such a potential breaks translation symmetry.
More specifically, f1(k, k′) and f2(k, k′) are nonzero when-
ever k − k′ = ±2πβ mod π .

The instantaneous eigenvalues of H0(t ) are given by

Ek± = ±2a sin(ωt ) cos(k). (5)

These satisfy the condition

ei
∫ T

0 dt[Ek+(t )−Ek−(t )] = 1, (6)

where T = 2π/ω is the time period of the drive. We therefore
have to carry out degenerate FPT. The eigenfunctions corre-
sponding to Ek± are given by

|k±〉 = 1√
2

(
1

±eik

)
. (7)

We begin with the Schrödinger equation

i
d|ψ〉

dt
= (H0 + V )|ψ〉, (8)

where V = V1 + V2. We assume that |ψ (t )〉 has the expansion

|ψ (t )〉 =
∑

n

cn(t )e−i
∫ t

0 dt ′En(t ′ )|n〉. (9)

Equation (8) then implies that

dcm

dt
= −i

∑
n

〈m|V |n〉ei
∫ t

0 dt ′[Em (t ′ )−En (t ′ )]cn. (10)

Integrating this equation, and keeping terms only to first order
in V , we find that

cm(T ) = cm(0) − i
∑

n

∫ T

0
dt〈m|V |n〉

× ei
∫ t

0 [Em (t ′ )−En(t ′ )]dt ′
cn(0). (11)

This can be written as

cm(T ) =
∑

n

(
I − iH (1)

F T
)

mncn(0), (12)

where I denotes the identity matrix and H (1)
F is the Floquet

Hamiltonian to first order in V .
The calculation proceeds as follows. First, we consider

H (1)
F1 = ∑

k H (1)
Fk1, which is proportional to V1. This term has

nonzero matrix elements between states with the same mo-
menta, and it yields

〈k±|H (1)
Fk1|k±〉 = ±(γ1 + γ2) cos(k),

〈k+|H (1)
Fk1|k−〉 = −i(γ1 − γ2) sin(k)J0(μk )eiμk ,

μk = 4a cos(k)

ω
. (13)

Using Eq. (13), we write H (1)
Fk1 as

H (1)
Fk1 = (γ1 + γ2) cos(k)σz

+ (γ1 − γ2)J0(μk ) cos(μk ) sin(k)σy

+ (γ1 − γ2)J0(μk ) sin(μk ) sin(k)σx, (14)

where we have defined the Pauli matrices σx,y,z in the
|k+〉, |k−〉 basis.

Next, we change the basis to

|k↑〉 = a†
k |0〉, |k↓〉 = b†

k|0〉, (15)

so that

|k±〉 = 1√
2

(|k↑〉 ± eik|k↓〉). (16)

Using a two-component operator ψk = (ak, bk ), we can write
H (1)

F1 in the new basis as

H (1)
F1 = 1

2

∑
k

ψ
†
k

(
α2k α1k

α∗
1k −α2k

)
ψk,

α1k = g1k[1 + J0(μk ) cos(μk )]

+ g2k[1 − J0(μk ) cos(μk )],

g1k = γ1 + γ2e−2ik, g2k = γ2 + γ1e−2ik,

α2k = (γ1 − γ2) sin(k)J0(μk ) sin(μk ). (17)

We note that if γ2 = γ1, we obtain α1k = 2γ1(1 + e−i2k ) and
α2k = 0. Hence H (1)

F1 does not depend on the driving parame-
ters ω and a. It is possible that higher-order terms will depend
on the driving parameters when γ2 = γ1, but these terms will
be smaller than the first-order term derived here. We therefore
expect that driving will have a smaller effect when γ2 = γ1

compared to γ2 = −γ1.
Next, we compute the first-order contribution to the Flo-

quet Hamiltonian, H (1)
F2 , arising from V2. To this end, we first
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define

p±(k, k′) = 1

2
( f1(k, k′) ± f2(k, k′)e−i(k−k′ ) ),

q±(k, k′) = 1

2
( f2(k, k′) ± f1(k, k′)ei(k−k′ ) ),

r±(k, k′) = i

2
( f2(k, k′)e−ik ± f1(k, k′)e−ik′

),

t±(k, k′) = i

2
( f1(k, k′)eik ± f2(k, k′)eik′

),

μ±
kk′ = 1

2
(μk ± μk′ ). (18)

We then find that in the |k±〉 basis, the matrix elements of
H (1)

F2 are given by

〈ks|H (1)
F2 |k′s′〉 = pss′ (k, k′)J0(μ−ss′

kk′ )eisμ−ss′
kk′ , (19)

where ss′ = +1 if s = s′ = +1 or s = s′ = −1, and ss′ = −1
if s = +1, s′ = −1 or s = −1, s′ = +1.

Using Eq. (16), we find that HF2 is diagonal in the |k↑〉,
|k↓〉 basis, and it takes the form

H (1)
F2 = [cos(μ−

kk′ )J0(μ−
kk′ )p+(k, k′)

+ cos(μ+
kk′ )J0(μ+

kk′ )p−(k, k′)]a†
kak′

+ [cos(μ−
kk′ )J0(μ−

kk′ )q+(k, k′)

+ cos(μ+
kk′ )J0(μ+

kk′ )q−(k, k′)]b†
kbk′

+ [sin(μ−
kk′ )J0(μ−

kk′ )r+(k, k′)

+ sin(μ+
kk′ )J0(μ+

kk′ )r−(k, k′)]a†
kbk′

+ [sin(μ−
kk′ )J0(μ−

kk′ )t+(k, k′)

+ sin(μ+
kk′ )J0(μ+

kk′ )t−(k, k′)]b†
kak′ . (20)

This completes our derivation of the first-order Floquet
Hamiltonian within FPT.

We can follow the same procedure to find the Floquet
Hamiltonian for square pulse driving. We consider a driving
protocol having the form

f (t ) = a for 0 � t � T/2

= −a for T/2 � t � T . (21)

The form of the first-order Floquet Hamiltonian for square
pulse driving is similar to the form we obtained for sinusoidal
driving except that J0(x) has to be replaced by sin(x)/x, and
μk = 4a cos(k)/ω has to be replaced by μk = aT cos(k). A
square pulse driving is easier to study numerically since the
Floquet operator U that time-evolves the system for one time
period T can be obtained by simply multiplying two opera-
tors, one that time-evolves from t = 0 to T/2 and the other
that evolves from t = T/2 to T .

We now look at the form of H (1)
F in the limits ω � a �

γ1, γ2,V0 and a � ω � γ1, γ2,V0, which we will refer to as
the high- and intermediate-frequency regimes, respectively.
In both cases, we are assuming that ω � γ1, γ2,V0. If this
condition is not satisfied (i.e., if we are in the low-frequency
regime), the Floquet Hamiltonian HF cannot be uniquely de-
fined since the eigenvalues e−iθm of the Floquet operator U will
not satisfy |θm| � π for all the Floquet eigenstates m. Hence

HF = (i/T ) ln U will suffer from branch cut ambiguities. This
necessitates folding back of Floquet eigenstates into the first
Floquet Brillouin zone [40], a technical complication that we
will avoid in this work.

We first consider the case of sinusoidal driving and look at
the two limits separately.

(i) The high-frequency limit can be studied using either the
FPT described above or the Magnus expansion. In the FPT,
we have μk = (4a/ω) cos(k) → 0 for all k lying in the range
[−π/2, π/2]. Since the Bessel function satisfies J0(z) → 1
when z → 0, we find that H (1)

F1 + H (2)
F2 approaches the time-

independent part, V1 + V2, of the Hamiltonian H (t ) given in
Eq. (3). Hence, the high-frequency limit should give the same
results as the undriven system with a = 0. However, we will
see later that although this is true for the Floquet eigenvalues,
it does not seem to hold for the Floquet eigenstates.

(ii) The intermediate-frequency limit cannot be studied
using the Magnus expansion, and we have to use the FPT. We
now use the fact that J0(z) goes to zero as

√
2/(πz) cos(z −

π/4) when |z| → ∞. Furthermore, μk → ±∞ except near
the special point k = π/2. Similarly, μ±

kk′ = (1/2)(μk ±
μk′ ) → ±∞ except near the point (k, k′) = (π/2, π/2) and
the line k = ±k′. However, we saw after Eq. (4) that the
functions f1(k, k′) and f2(k, k′) are nonzero only if k − k′ =
±2πβ mod π . Since β = (

√
5 − 1)/2  0.618, and k, k′ lie

in the range [−π/2, π/2], we take 2πβ mod π to be equal
to either (

√
5 − 2)π  0.742 or (

√
5 − 3)π  −2.400, so

that k − k′  0.742 or −2.400. Putting together the condi-
tions arising from μ±

kk′ , f1(k, k′), and f2(k, k′), we see that
in Eq. (20), the terms involving products of J0(μ±

kk′ ) and
f1(k, k′) or f2(k, k′) will go to zero at all values of k, k′
except near the four points (k, k′)  ±(0.742/2)(1,−1) or
±(2.400/2)(1,−1). Ignoring these special points, we see that
in the intermediate-frequency limit, H (1)

F2 → 0 in Eq. (20),
which implies that the effect of the quasiperiodic potential
goes to zero. Similarly, we see that except near the special
point k = π/2, J0(μk ) → 0, and H (1)

F1 in Eq. (17) approaches
the form

H (1)
F1 = 1

2
(γ1 + γ2)

∑
k

ψ
†
k

(
0 1 + e−i2k

1 + ei2k 0

)
ψk . (22)

This describes a system with uniform hopping amplitude
(1/2)(γ1 + γ2) on all bonds. We thus see that in the
intermediate-frequency limit, the system approaches a sim-
ple limit in which the hopping amplitude is uniform and there
is no quasiperiodic potential. The quasienergies will then be
given by (γ1 + γ2) cos(k), which is a gapless spectrum.

We reach similar conclusions in the case of square pulse
driving. Namely, the high-frequency limit is the same as an
undriven system with staggered hopping amplitudes γ1, γ2

and a quasiperiodic potential V0, while the intermediate-
frequency limit is a system with a uniform hopping amplitude
(1/2)(γ1 + γ2) and no quasiperiodic potential.

Finally, we discuss some exact symmetries of the Floquet
Hamiltonian. We can show that the Floquet Hamiltonian for
the present problem can only have terms proportional to odd
powers of V1 and V2 for a drive satisfying the condition
f (−t ) = − f (t ) [which is satisfied if f (t ) is either given by
a sin(ωt ) or by the square pulse form in Eq. (21)]. To see this,
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we first show that the Floquet operator U satisfies

U −1(a, γ1, γ2,V0) = U (a,−γ1,−γ2,−V0). (23)

Hence the Floquet Hamiltonian HF , which satisfies U =
e−iHF T , must satisfy

HF (a, γ1, γ2,V0) = −HF (a,−γ1,−γ2,−V0). (24)

Hence HF can only have odd powers of γ1, γ2, and V0. As
a result, the next correction after the terms of first order in
γ1, γ2, and V0 will be of third order and will therefore be
small. Hence, in the following sections we will only show the
perturbative results based on first-order FPT.

III. RESULTS FOR THE MODEL WITH γ2 = −γ1

The Floquet Hamiltonian obtained in Sec. II allows us to
study the properties of the Floquet eigenstates within first-
order FPT. To this end, we numerically diagonalize H (1)

F =
H (1)

F1 + H1)
F2 to obtain its eigenvectors and eigenvalues

H (1)
F

∣∣ψ (1)
m

〉 = E (1)
Fm

∣∣ψ (1)
m

〉
. (25)

On the other hand, the Floquet operator U will have eigenvec-
tors |ψm〉 and corresponding eigenvalues exp(−iθm), where
θm = EFmT can be chosen to lie in the range [−π, π ]. Then
the quasienergies EFm obtained from θm will lie in the range
[−ω/2, ω/2].

The results obtained using FPT will be compared with
those obtained from an exact numerical calculation of the
Floquet operator. To this end, we divide the time period T into
N steps so that H (t ) does not vary appreciably within the time
step δt = T/N . For the present case, we find that N ∼ 500
achieves this task; a further increase in N does not change
the numerical results appreciably. This allows us to use the
standard Suzuki-Trotter decomposition to write U as

U (T, 0) =
∏

j=1,N

U (t j, t j−1),

Uj ≡ U (t j, t j−1) = e−iH [(t j+t j−1 )/2]δt , (26)

where t0 = 0 and tN = T . We can then numerically diagonal-
ize U to obtain its eigenvectors |ψm〉 and eigenvalues e−iθm .
We can then write

U (T, 0) =
∑

m

e−iθm |ψm〉〈ψm|. (27)

In this section, we will study and compare the properties of the
Floquet eigenstates obtained using first-order FPT and exact
numerics. To this end, we compute the inverse participation
ratio (IPR) of these eigenstates given, for a normalized Flo-
quet eigenstate m, as

I (2)
m =

L∑
j=1

|ψm( j)|4. (28)

It is well-known that I (2)
m can distinguish between localized

and extended states; I (2)
m ∼ L−η, where η = 0 (1) for localized

(extended) eigenstates.

FIG. 1. (a)–(d) Plots of I (2)
m Lη (sorted in increasing order) vs m/L

for γ1 = 1, γ2 = −1, V0 = 2.5, system sizes L = 3000, 4000, 5000,
and 6000, and sinusoidal driving. (a) I (2)

m Lη for Floquet eigenstates
with ω = 5 and a = 5. The exponent η = 1, and we see that all states
are extended. (b) I (2)

m Lη with ω = 40 and a = 5. Here η = 0 showing
that all states are localized. (c) and (d) I (2)

m Lη with ω = 15.1 and a =
5. Plots (c) and (d) correspond to η = 0 and 1, respectively, and they
clearly show a jump in the IPR value around m/L  0.76. (e) Plot
of I (2)

m vs quasienergy EF for ω = 15, a = 5, and L = 3000. We see
several gaps in EF .

A. Localized, extended, and multifractal states

We now present our numerical results. Figures 1(a)–1(d)
show plots of I (2)

m Lη (sorted in increasing order) versus m/L
for systems with γ1 = 1, γ2 = −1, V0 = 2.5, different values
of ω and a, and sinusoidal driving. For generating this and
all subsequent figures, the quasiperiodic potential at site j
is taken to be Vj = V0 cos(2πα j), where α is taken to be a
rational approximant for (

√
5 − 1)/2 by choosing α = N/L,

where L is the system size and N is the integer closest to
L(

√
5 − 1)/2. We have chosen L = 3000, 4000, 5000, and

6000. The plots clearly indicate a jump in the IPR value for
certain ranges of values of ω and a. From Figs. 1(a) and 1(b),
we find that at relatively low (high) driving frequencies, all
the Floquet eigenstates are extended (localized). This can be
seen from the collapse of the I (2)

m Lη curves for η = 1 at ω = 5
[Fig. 1(a)] and η = 0 at ω = 40 [Fig. 1(b)] for different L.
In contrast, at an intermediate driving frequency, ω = 15.1, as
shown in Figs. 1(c) and 1(d), a jump in the IPR between local-
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FIG. 2. (a)–(d) Plots of I (2)
m Lη vs m/L, and (e) plot of I (2)

m vs EF

for the same parameter values as in Fig. 1 but obtained using first-
order FPT. All the plots agree qualitatively with the plots from exact
numerics shown in Fig. 1.

ized and extended eigenstates around m/L  0.76. The data
for different L collapse upon scaling with Lη for two different
values of η; the collapse happens for η = 0 for m/L � 0.764
[Fig. 1(c)] and for η = 1 for m/L � 0.764 [Fig. 1(d)]. This
demonstrates the appearance of an IPR jump around m/L 
0.76 at this driving frequency. Figure 1(e) shows a plot of I (2)

m
versus the quasienergy EF for ω = 5, a = 5, and L = 3000.
This clearly shows that there are gaps in the quasienergy
spectrum; we call these mobility gaps. (In this paper, we use
the term “mobility gap” regardless of whether the states in the
quasienergy bands on the two sides of a gap are both extended
or both localized or one extended and the other localized.) The
states with EF around zero have large IPRs and correspond to
localized states, whereas states with EF away from zero (on
either the positive or the negative side) have very small IPRs
and are extended states. (It is important to note that sorting
in increasing order of I (2)

m [as done in Figs. 1(a)–1(d)] and in
increasing order of EF [as done in Fig. 1(e)] are quite differ-
ent from each other. The presence of mobility gaps becomes
apparent only in the latter type of sorting.)

In Fig. 2, similar plots are shown for Floquet eigen-
states obtained from first-order FPT. These correspond to
the same parameter values as their counterparts in Fig. 1.
A comparison between Figs. 1 and 2 shows that first-order
FPT provides a reasonable match to the exact numerics,

FIG. 3. Plots showing I (3)
m Lη and I (4)

m Lη (sorted in increasing
order) vs m/L obtained by exact numerical calculations for L =
3000, 4000, 5000, and 6000, with γ1 = 1, γ2 = −1, a = 5, ω =
15.1, V0 = 2.5, and sinusoidal driving. Plot (a) shows a data collapse
of I (3)

m with η = 0 for m/L � 0.764. Plot (b) shows a data collapse
of I (3)

m with η = 2 for m/L � 0.764. Plot (c) shows a data collapse
of I (4)

m with η = 0 for m/L � 0.764. Plot (d) shows a data collapse
of I (4)

m with η = 3 for m/L � 0.764. These plots show that I (q)
m scales

with η = 0 for states with m/L � 0.764 (localized states) and with
η = q − 1 for states with m/L � 0.764 (extended states).

although the IPR values found from exact numerics are
significantly smaller than the ones found from first-order
FPT. Importantly, both exact numerics [Fig. 1(e)] and first-
order FPT [Fig. 2(e)] show mobility gaps at intermediate
driving frequencies like ω = 5. We conclude that first-order
FPT can provide a good understanding of the driven system
when a � γ1, γ2.

To determine if any of the eigenstates exhibit multifractal
behavior, we calculate a generalized IPR defined as

I (q)
m =

∑
j

|ψm( j)|2q, (29)

and we study its scaling with the system size L [42,51–53].
If I (q)

m scales as L−ηq and ηq = (q − 1)Dq, then Dq = 1 for all
q for extended states [since |ψm( j)|2 is of the order of 1/L
for all j for such states], and Dq = 0 for all q for localized
states [since |ψm( j)|2 for such states is of order 1 over a finite
region whose size remains constant as L → ∞]. Multifractal
states typically have 0 < Dq < 1 for all q. Figure 3 shows
plots of I (q)

m Lη for q = 3 and 4 for systems with γ1 = 1,
γ2 = −1, ω = 15.1, a = 5, V0 = 2.5, different system sizes,
and sinusoidal driving. Figures 3(a) and 3(c) show that states
with m/L � 0.764 scale with L with the powers η3 = η4 = 0,
showing that Dq = 0; hence these states are localized. Fig-
ures 3(b) and 3(d) show that states with m/L � 0.764 scale
with powers η3 = 2 and η4 = 3, showing that Dq = 1; hence
these states are extended. Thus there is no evidence of multi-
fractal states for this set of parameter values. However, we will
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FIG. 4. (a),(b) Plots of I (2)
m and I (3)

m (sorted in increasing order
of quasienergy EFm) vs ω and m/L for γ1 = 1, γ2 = −1, a = 5,
V0 = 2.5, L = 3000, and square pulse driving. (c),(d) Plots of η2

and η3 (extracted from the IPRs sorted in increasing order for L =
3000, 4000, 5000, and 6000) vs ω and m/L, with the parameter
values the same as in plots (a),(b). Multiple jumps in I (2)

m and I (3)
m

observed in plots (a),(b) indicate multiple localization-delocalization
transitions. This is more evident in plots (c),(d), where η2 and η3 are
extracted from the scaling analysis of IPR values. We note that for
30 � ω � 45 in plots (c),(d), the values of η2 and η3 for a small
fraction of states are different from the usual scaling exponents
of both extended states (η2 = 1 and η3 = 2) and localized states
(η2 = η3 = 0). Plot (e) shows I (2)

m as a function of EFm (sorted in
increasing order) for γ1 = 1, γ2 = −1, a = 5, V0 = 2.5, ω = 30, and
L = 3000.

show below that multifractal behavior appears for a different
range of values of ω.

In Fig. 4, we show plots of I (2)
m and I (3)

m versus m/L, and
their scaling exponents with L, η2, and η3, versus ω and
m/L for systems with γ1 = 1, γ2 = −1, a = 5, V0 = 2.5, and
square pulse driving. Figures 4(a) and 4(b) show I (2)

m and I (3)
m

for a system with L = 3000, while Figs. 4(c) and 4(d) show
the scaling exponents η2 and η3 for these two quantities ex-
tracted from the results for L = 3000, 4000, 5000, and 6000.
We see that most states have η2 = η3 = 0 (localized) at lower
frequencies and have η2 = 1 and η3 = 2 (extended) at higher
frequencies. Interestingly, however, we see some states for
which η2 and η3 are different from the values of both localized
and extended states. Hence these states have a multifractal
nature. In Fig. 4(e) we show I (2)

m versus the quasienergy EFm

FIG. 5. (a) Plot of I (2)
m (sorted in increasing order of quasienergy)

vs ω and m/L with γ1 = γ2 = 1 (uniform hopping), a = 5, V0 = 2.5,
L = 3000, and square pulse driving. (b) Plot of η2 (extracted from
the IPRs sorted in increasing order for L = 3000, 4000, 5000, and
6000) vs ω and m/L.

for ω = 30. For this value of ω, all three kinds of states
coexist—extended, multifractal, and localized—as is evident
from the scaling exponents η2 and η3 shown in Figs. 4(c)
and 4(d). We have also studied what happens if the driving
is sinusoidal instead of square pulse, and we find similar
results that we do not show here. This demonstrates that the
generation of multifractal states does not depend significantly
on the driving protocol.

Figure 5 shows plots of I (2)
m and the scaling exponent η2

versus ω and m/L for L = 3000, 4000, 5000, and 6000, for
γ1 = γ2 = 1 (uniform hopping), a = 5, V0 = 2.5, and square
pulse driving. The results looks somewhat similar to those
shown in Fig. 4 for γ1 = −γ2 = 1 (staggered hopping) in that
both extended and localized states appear in the two cases.
However, extended states persist up to larger values of ω for
γ1 = −γ2 = 1 compared to γ1 = γ2 = 1.

It is useful to look at the average values of both I (2)
m and

the normalized participation ratio (NPR) which, up to a factor
of L, is the inverse of I (2)

m [46]. For the mth Floquet eigen-
state, the NPR is defined as NPRm = 1/(LI (2)

m ). The average
values of these two quantities are then defined as 〈IPR〉 =
(1/L)

∑
m I (2)

m and 〈NPR〉 = (1/L)
∑

m NPRm. For a large
system size L, we have I (2)

m ∼ 1/L (1) and NPRm ∼ 1 (1/L)
for an extended (localized) state m, respectively. Hence, the
quantity φ = log10(〈IPR〉〈NPR〉) will be large and negative
(of the order of − log10 L) either if all states are extended or
if all states are localized. But if φ is not large and negative,
this would indicate that there are some states that are neither
extended nor localized. We will also look at the average value
of the Shannon entropy as another measure of the degree of
localization [23]. For the mth Floquet eigenstate, the Shan-
non entropy is defined as Sm = −∑

n |ψm(n)|2 ln (|ψm(n)|2),
and its average is then given by 〈S〉 = (1/L)

∑
m Sm. For an

extended (localized) state m, we have Sm ∼ ln L (0), respec-
tively. Hence the average value 〈S〉 will be of order ln L if all
states are extended and will be close to zero if all states are
localized.

Figure 6 shows plots of 〈IPR〉, φ = log10(〈IPR〉〈IPR〉), and
〈S〉 versus ω and V0 for a system with γ1 = 1, γ2 = −1, a = 5,
and square pulse driving. Figure 6(a) indicates that all states
are extended when both ω and V0 are small and are localized
when both ω and V0 are large. For 2 � V0 � 3.5, we see
only extended states for low values of ω, coexisting states of
different types for intermediate values of ω, and only localized
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FIG. 6. (a) Plot on a log scale of the average of I (2)
m , denoted

as 〈IPR〉, vs V0 and ω for γ1 = 1, γ2 = −1, a = 5, L = 3000, and
square pulse driving. (b) Plot of φ = log10(〈IPR〉〈NPR〉) vs V0 and
ω. (c) Plot of the average Shannon entropy 〈S〉 vs V0 and ω. Plots
(a)–(c) suggest that all the Floquet eigenstates below V0  2 are
extended for all values of ω. For 2 � V0 � 3.5, we find three distinct
regions, with only extended states for small ω, coexisting states of
different types for intermediate ω, and only localized states for large
ω. A different behavior appears for V0 � 3.5, where we see multiple
reentrant transitions between regions with only extended and only
localized states as ω is increased.

states for large values of ω. Interestingly, when V0 � 3.5, we
find multiple reentrant transitions between regions with only
extended and only localized states as ω is increased. These ob-
servations are confirmed qualitatively by Figs. 6(b) and 6(c).
We note that the range of values of V0 that supports reentrant
transitions is the same range where the time-independent part
of the model exhibits only localized states.

Figure 7 shows plots of I (2)
m , the scaling exponent η2, and

the real part of the Floquet eigenvalues versus ω and m/L for
systems with γ1 = 1, γ2 = −1, a = 5, V0 = 5.5, and different
sizes, for square pulse driving. This figure confirms the mul-
tiple reentrant transitions between regions that are completely
extended, completely localized, or have both extended and
localized states, which we see in Fig. 6 when V0 � 3.5. (We
note that similar reentrant transitions have been observed in a
kicked quasicrystal [49].) We would like to mention here that
the plots in Fig. 7 are difficult to explain by any perturbation
theory since the values of a, ω, and V0 are all comparable to
each other.

Figure 8 shows the average 〈IPR〉 and average Shannon
entropy 〈S〉 as functions of V0 and of ω for a system with uni-
form hopping, γ1 = γ2 = 1, a = 5, and L = 3000, for square
pulse driving. The results deviate significantly from the case
of staggered hopping, γ2 = −γ1, shown in Fig. 6, particularly
for V0 � 3.5.

It is known that there are no reentrant transitions in the
Aubry-André model (which is the time-independent part of

FIG. 7. (a) Plot of I (2)
m (sorted in increasing order of quasienergy)

vs ω and m/L, with γ1 = 1, γ2 = −1, a = 5, V0 = 5.5, L = 3000,
and square pulse driving. (b) Plot of η2 vs ω and m/L. We extract
η2 using system sizes L = 3000, 4000, 5000, and 6000. The plots
confirm the multiple transitions seen in Fig. 6 for V0 � 3.5 as ω is
varied. Plot (b) shows several transitions. A transition to a phase with
all extended states occurs at ω  5.1, and this phase then continues
up to ω  7.1. For ω � 7.1, we get both extended and localized
states until ω  9.1. Another phase of extended states appears for
9.2 � ω � 12.1. Beyond ω  12.1, plot (b) suggests that the system
moves towards complete localization as ω increases.

our model) if there is no driving. Furthermore, there are
no such transitions in a driven model with no quasiperiodic
potential. Comparing Fig. 6 (where γ2 = −γ1) and Fig. 8
(where γ2 = γ1), we see that staggered hopping, driving, and
quasiperiodic potential are all necessary to clearly see reen-
trant transitions between delocalized states and other kinds of
states.

B. High-frequency limit

In the high-frequency limit ω � a � γ1, γ2, V0, we ex-
pect the effects of driving to disappear as we have argued
in Sec. II. Surprisingly, however, we find that although the
quasienergies for large ω match the energies for the undriven
system, the IPRs do not agree in the two cases.

In Figs. 9(a) and 9(b), we show plots of I (2)
m versus

quasienergy EF (sorted in increasing order) for systems with
γ1 = 1, γ2 = −1 and +1, respectively, ω = 35, a = 5, V0 =
2.5, L = 3000, and square pulse driving. Figure 9(c) shows
a plot of I (2)

m versus energy E (sorted in increasing order) for

FIG. 8. (a) Plot on a log scale of the average of I (2)
m , 〈IPR〉, vs ω

and V0, with γ1 = γ2 = 1 (uniform hopping), a = 5, L = 3000, and
square pulse driving. (b) Plot of average Shannon entropy, 〈S〉, vs ω

and V0. For V0 � 3.5, we see that the case of uniform hopping shown
here deviates significantly from the case of nonuniform hopping
shown in Fig. 6.
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FIG. 9. (a) Plot of I (2)
m vs quasienergy EF (sorted in increasing

order) for a system with γ1 = 1, γ2 = −1, ω = 35, a = 5, V0 = 2.5,
L = 3000, and square pulse driving. (b) Plot of I (2)

m vs quasienergy
for a system with γ1 = 1, γ2 = 1 (uniform hopping), ω = 35, a =
5, and V0 = 2.5. (c) Plot of I (2)

m vs energy E (sorted in increasing
order) for an undriven system (a = 0) with γ1 = 1, γ2 = 1, and V0 =
2.5. (d) Plot of I (2)

m vs energy E (sorted in increasing order) for an
undriven system (a = 0) with γ1 = 1, γ2 = −1, and V0 = 1.5. Note
that the range of IPR values in plot (d) is much smaller than in plots
(a)–(c). In all cases, we have considered system size L = 3000 and
square pulse driving.

an undriven system with γ1 = 1, γ2 = 1 (the relative sign of
γ1 and γ2 is unimportant in the absence of driving), V0 = 2.5,
and L = 3000. We have chosen V0 = 2.5 so that V0 > 2γ1 and
all the states of the undriven system are localized. We note
that the quasienergies in plots (a) and (b) and the energies
in plot (c) have almost the same values. This is expected
since driving at high frequencies should give the same Flo-
quet Hamiltonian as the undriven part of the Hamiltonian.
Surprisingly, however, the IPR values are not the same in the
three plots. The IPR values for the driven system with uniform
hopping amplitudes differ only a little from the IPRs of the
undriven system, but the IPRs of the driven staggered model
(γ2 = −γ1) differ substantially from those of the undriven
system. [This may be because driving has a smaller effect
when γ2 = γ1 compared to γ2 = −γ1, for reasons explained
after Eq. (17).] We observe that the undriven system [plot (c)]
shows only localized states, but the driven staggered model
[plot (a)] shows that some of the states have very low IPR
values and are therefore extended states. Thus driving even
at a high frequency seems to convert some of the localized
states to extended states, provided that a � γ1, γ2, and V0.
(We have checked numerically that if a � γ1, γ2, and V0, then
all the states remain localized.) This suggests that although
terms of order 1/ω and higher in the Floquet Hamiltonian are
small for large ω, they have a significant effect on the IPR
values of the Floquet eigenstates. It is possible that these small
terms have a negligible effect on the quasienergies, but they
couple localized states that lie close to each other, and this
hybridization produces extended states.

FIG. 10. Plots of EFm vs ω for (a) V0 = 1.5, (b) V0 = 2.5, and
(c) V0 = 5.5, for systems with γ1 = 1, γ2 = −1, a = 5, size L =
2000, and square pulse driving. The spectrum of EFm is gapless for
intermediate ω and develops several gaps as ω increases.

On the other hand, if we choose V0 < 2γ1 and all the
other parameters are the same as in Figs. 9(a)–9(c), we find
that there is no discernible difference between the spectra
of quasienergies (or energies) and IPR values in the three
cases. All the states are extended in all three cases (driven
with γ2 = ±γ1 and undriven). Figure 9(d) shows a plot of
the energies and corresponding IPR values for an undriven
system with γ1 = 1, γ2 = −1, and V0 = 1.5. The IPR versus
quasienergy plots for the driven systems with γ2 = ±γ1 look
the same and are not shown here.

In Fig. 10, we show plots of all the quasienergies EFm for
systems with γ1 = 1, γ2 = −1, a = 5, size L = 2000, square
pulse driving, and (a) V0 = 1.5, (b) V0 = 2.5, and (c) V0 = 5.5.
We have chosen these three values of V0 for the following
reason. For V0 = 1.5, all states are found to be extended. For
V0 = 2.5, various kinds of states can coexist depending on the
values of ω, as we see in Fig. 4. For V − 0 = 5.5, we find reen-
trant transitions as shown in Fig. 7. The plots in Fig. 10 show
that the spectrum of EFm is generally gapless for intermediate
frequencies but several gaps appear as ω is increased. This can
be qualitatively understood from the FPT as follows. In the
limit that γ1, γ2, V0 � ω � a, we saw in the discussion given
towards the end of Sec. II that the model reduces to one in
which the hopping amplitude is uniform and the quasiperiodic
potential is absent. This system clearly has no gaps in the
spectrum. On the other hand, when γ1, γ2, V0 � a � ω, we
saw that the model reduces to an undriven system (a = 0).
Hence the quasienergies will approach the energies of the
undriven system. For the undriven Aubry-André model, it
is known that there is a large number (in fact, an infinite
number) of energy gaps for any nonzero value of V0 [44,45].
It would be useful to understand precisely how the different
gaps appear successively as ω is increased from intermediate
to large values. (We have checked numerically that for V0 = 0,
there are no gaps for any value of ω or a. Hence the gaps seen

035402-9



ADITYA, SENGUPTA, AND SEN PHYSICAL REVIEW B 107, 035402 (2023)

FIG. 11. Plots of the absolute values of the matrix elements of the Floquet Hamiltonian HF (X,Y ) in real space (X and Y represent space
coordinates), where the axes are chosen to be X and Y -X . In all cases, we considered γ1 = 1, γ2 = −1, V0 = 2.5, system size L = 2000,
and sinusoidal driving. Figures (a)– (c) are obtained from exact numerical calculations. The parameters used are (a) a = 10, ω = 5; (b) a =
5, ω = 15.1; and (c) a = 5, ω = 40. We note that plots (a) and (d) are for a system with only extended states, plot (b) is for a system with
both extended and localized states, and plot (c) is for a system with only localized states.

in Fig. 10 are entirely due to the presence of a quasiperiodic
potential.)

C. Floquet Hamiltonian in real space

To visualize the effects of localization, it is instructive
to look at the matrix elements of the Floquet Hamiltonian.
Figure 11 shows the absolute values of the matrix elements
of HF (X,Y ) in real space for systems with γ1 = 1, γ2 = −1,
V0 = 2.5, size L = 2000, and sinusoidal driving. HF (X,Y )
is obtained by doing a Fourier transform of HF in momen-
tum space as found numerically from the Floquet operator U
[Figs. 11(a)–11(c)]. The plots are shown as a function of Y -X
and X . If the system was translation-invariant, the plot would
depend only on the relative coordinate Y -X and not on X .
Indeed we see that the plots do not vary with X at lengthscales
much larger than 1/β  1.62 [which is the lengthscale of
variation of the quasiperiodic potential cos(2πβ j)]. In terms
of the relative coordinate Y -X , the plots show a large spread in
Fig. 11(a) corresponding to all states being extended, a smaller
spread in Fig. 3(b) corresponding to a case in which there are
both localized and extended states, and a very small spread in
Fig. 11(c) corresponding to all states being extended. We find
that HF (X,Y ) obtained by doing a Fourier transform of HF in
momentum space as found from the first-order FPT gives very
similar results, and we do not show those plots here.

A more detailed explanation of the results shown in Fig. 11
is as follows. We know that although the Hamiltonian of the
undriven Aubry-André model is local in real space, it exhibits
a delocalized phase below a critical disorder strength. We
now look at the structure of matrix elements of the Floquet
Hamiltonian HF (X,Y ) in real space. In all the plots in Fig. 11,
we consider γ1 = 1, γ2 = −1, a = 5, and V0 = 2.5. V0 = 2.5
necessarily implies that the static model exhibits a localized
phase in the absence of driving. However, in the presence of
driving and with diminishing values of ω, we observe a signif-
icant decrease in the value of the diagonal elements HF (X, X ).
The values of these elements are found to be about 2 for
ω = 40, about 1.2 for ω = 15.1, and about 0.35 for ω = 5.
The decreasing value of the diagonal elements implies that the

effective strength of the quasiperiodic potential is decreasing.
Furthermore, we find that there is a rapid spreading of the
off-diagonal matrix elements signifying a growing nonlocality
of HF as ω decreases. The combination of these two effects
leads the system towards increasing delocalization.

D. Spreading of a one-particle wave packet

We now consider a measure of delocalization given by the
spreading of a one-particle state that is initially localized at
the middle site of system of size L, namely the site j0 = L/2.
This initial state, denoted |ψin〉, is evolved over n time periods
by acting on it with the Floquet operator n times. This gives

|ψnT 〉 = U n|ψin〉. (30)

The root-mean-squared displacement is then given by

σ (n) =
⎡
⎣∑

j

( j − j0)2|ψnT ( j)|2
⎤
⎦

1/2

. (31)

The growth of σ (n) with n gives an idea of how delocalized
the system is. Figure 12 shows plots of σ (n) for systems with
γ1 = 1, γ2 = ±1 (uniform and staggered hopping amplitudes,
respectively), a = 5, ω = 5 and 30, various values of V0,
and square pulse driving. (The system size L is taken to be
6000.) We see that the spreading of the wave packet is always
ballistic. The ballistic velocity, given by the slope of σ (n)
versus n, is smaller for ω = 30 compared to ω = 5. This is
because driving with a very large frequency is equivalent to
not driving at all. In the absence of driving, it is known that a
system with a quasiperiodic potential with strength V0 < 2γ1

has only extended states, while a system with V0 > 2γ1 has
only localized states [44,45]; these results hold regardless of
whether γ2 = γ1 or γ2 = −γ1 since we can change the sign of
γ2 by doing a unitary transformation which does not affect γ1

and V0. Indeed we see in Figs. 12(b) and 12(d) that the wave
packet spreads ballistically if V0 < 2 but remains completely
localized if V0 > 2. The situation at the lower frequency, ω =
5, is more interesting. The system with staggered hopping,
γ2 = −γ1, shows ballistic spreading for V0 = 1.5, 3, and 6,
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FIG. 12. (a),(b) Root-mean-squared displacement, σ (n), vs the
stroboscopic evolution number n for γ1 = 1, γ2 = −1, a = 5, and
ω = 5 and 30, respectively, for a one-particle state that is initially
located at the middle site of a large system. (c),(d) Plot of σ (n)
vs n for γ1 = γ2 = 1 (uniform hopping), a = 5, and ω = 5 and 30,
respectively. All the figures are for system size L = 6000 and square
pulse driving. Plots (a),(b) show that compared to the high-frequency
regime (where the behavior is similar to an undriven system), the
intermediate-frequency regime shows a ballistic behavior up to a
larger value of V0 for the case of staggered hopping compared to
uniform hopping. For the uniform hopping system at the lower value
of ω = 5, plot (c) exhibits a nonmonotonic ballistic velocity of σ (n)
as a function of V0 before showing a completely localized behavior
for large V0. Such a nonmonotonic behavior is not seen at the higher
value of ω = 30 as shown in plot (d).

and no spreading for V0 = 9. However, the system with uni-
form hopping, γ2 = γ1, always shows some ballistic spreading
for all values of V0. Furthermore, the ballistic velocity is a
nonmonotonic function of V0, being smaller for V0 = 1.5 and
9 compared to V0 = 3 and 6. A similar nonmonotonic behav-
ior of the ballistic spreading is seen in Fig. 13 for driving at
an intermediate frequency with ω = 12.

FIG. 13. (a) Root-mean-squared displacement, σ (n), vs the stro-
boscopic evolution number n from the exact numerical calculation
with γ1 = γ2 = 1 (uniform hopping), a = 5, and ω = 12. (b) σ (n)
vs n as obtained from the second-order Floquet Hamiltonian in
Sec. IV. Both figures are for L = 3000 and square pulse driving. The
two figures agree qualitatively and indicate a nonmonotonic ballistic
velocity of σ (n) as V0 increases.

IV. PERTURBATION THEORY FOR A MODEL
WITH UNIFORM HOPPING

In this section, we will study a system with a uniform
hopping amplitude, γ1 = γ2 = 1, which is driven by a square
pulse. For uniform hopping, the unit cell consists of a single
site, and we will denote the fermionic operator as c j . The
Hamiltonian is given by

H (t ) = [1 + f (t )]
∑

j

(c†
j c j+1 + H.c.)

+V0

∑
j

cos(2πβ j)c†
j c j, (32)

where f (t ) has the square pulse form described in Eq. (21).
Note that for V0 = 0, the periodic driving would have no effect
since the time-independent and driven parts of the Hamilto-
nian commute with each other in that case, and the Floquet
Hamiltonian HF would just be given by

∑
j (c

†
j c j+1 + H.c.)

independently of the driving frequency.
We will now find the Floquet Hamiltonian HF in the high-

frequency regime using van Vleck perturbation theory [4,6].
This is a perturbative expansion in powers of 1/ω, and it
has the advantage over the Floquet-Magnus expansion that it
does not depend on the phase of the driving protocol, i.e., it
is invariant under f (t ) → f (t + t0). Furthermore, unlike the
FPT, which gives us HF in momentum space, the van Vleck
perturbation theory gives us HF in real space. This makes it
more suitable for studying the dynamics of a wave packet.

The zeroth-order Floquet Hamiltonian given by van Vleck
perturbation theory turns out to be

H (0)
F = 1

T

∫ T

0
dtH (t )

=
∑

j

(c†
j c j+1 + H.c.) + V0

∑
j

cos(2πβ j)c†
j c j . (33)

The mth Fourier component of H (t ) is given by

Hm = 2ia

mπ

∑
j

(c†
j c j+1 + H.c.) for m odd,

= 0 for m even and �= 0, (34)

and H0 = H (0)
F . We then find that the first-order Floquet

Hamiltonian, H (1)
F = ∑

m �=0[H−m, Hm]/(2mω), is zero since
H−m = (−1)mHm for all m. The second-order Floquet Hamil-
tonian consists of two terms,

H (2)
F =

∑
m �=0

[[H−m, H0], Hm]
2m2ω2

+
∑
m �=0

∑
n �=0

[[H−m, Hm−n], Hn]
3mnω2

.

(35)

The first term in Eq. (35) takes the form

H (2)
F = 2t2

∑
j

[cos (2πβ( j + 1)) + cos (2πβ( j − 1))

− 2 cos(2πβ j)]c†
j c j + t2

∑
j

[2 cos (2πβ( j + 1))

− cos (2πβ( j + 2)) − cos(2πβ j)](c†
j c j+2 + H.c.),

(36)
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where t2 = a2T 2V0/96. The second term in Eq. (35) turns out
to be zero. The third-order Floquet Hamiltonian vanishes due
to the symmetry given in Eq. (24). In principle, we can calcu-
late higher-order terms, but such corrections are expected to
be small compared to H (0)

F and H (2)
F .

Figure 13 shows a comparison between the results obtained
for the root-mean-squared displacement σ (n) versus the stro-
boscopic evolution number n as obtained from exact numerics
and the second-order Floquet Hamiltonian derived above, for
systems with a = 5, ω = 12, various values of V0, and square
pulse driving. We find a qualitative agreement between the
two sets of results.

We can now understand better the results for staggered
hopping and uniform hopping shown in Figs. 12 and 13.
Naively, one should expect that the spreading of the wave
function should diminish as the value V0 of the quasiperiodic
potential increases. However, in the uniform hopping case and
in the presence of driving, we observe in Figs. 12 and 13
that the ballistic spreading velocity first increases and then
decreases (Fig. 12) and vice versa (Fig. 13) with increasing
V0 depending on the values of ω. It is difficult to obtain
any analytical insight for the first case (Fig. 12) since the
parameter values do not allow us to perform a perturbative
expansion. The second case (Fig. 13) can, however, be ex-
plained using the Floquet–van Vleck Hamiltonian described
above. The zeroth-order term in this Hamiltonian is just the
Aubry-André model as expected. But the second-order term
contains a second nearest-neighbor quasiperiodic hopping as
well as a quasiperiodic on-site potential. Furthermore, both of
these terms depend on V 2

0 /ω. We believe that these competing
terms in HF can give rise to a nonmonotonic dependence
of the velocity of spreading as a function of V0. To sup-
port this statement, we compare the wave-packet dynamics
obtained from the exact numerical calculation with the one
obtained from the van Vleck Hamiltonian in Fig. 13. We
observe that the two results qualitatively agree with each
other.

V. DISCUSSION

We will now summarize our results. We considered a
one-dimensional model with time-independent staggered hop-
ping amplitudes γ1 and γ2 and a periodically driven uniform
hopping amplitude between nearest-neighbor sites, and a
quasiperiodic potential with strength V0. We have studied the
effects of both sinusoidal driving and driving by a periodic
square pulse. While we have mainly studied the case of stag-
gered hopping amplitudes, γ2 = −γ1, we have also looked
at the case with uniform hopping amplitudes, γ2 = γ1, for
comparison. (In the absence of driving, both of these cases
reduce to the Aubry-André model, but we find some signifi-
cant differences between the two cases when they are driven.)
In the limit in which the driving amplitude a and frequency ω

are much larger than γ1, γ2, and V0, we analytically derived a
Floquet Hamiltonian HF to first-order in Floquet perturbation
theory. We then numerically computed the Floquet operator
U . The eigenstates and eigenvalues of U were found, and var-
ious properties of the Floquet eigenstates were then examined
as follows.

We studied a generalized IPR, called I (q)
m , of the Floquet

eigenstates (labeled as m), and we found the exponent of
their scaling with the system size L, namely I (q)

m ∼ 1/Lηq .
For standard extended states, we expect ηq = q − 1 for all
q, while standard localized states have ηq = 0 for all q. We
found that while most states are either extended or localized in
a standard way, there are some multifractal states that show an
intermediate behavior with 0 < ηq < q − 1 (we have looked
at the cases q = 2, 3, and 4). These states typically appear
along with reentrant transitions at intermediate frequencies
ω and large values of V0. A study of the average Shannon
entropy also suggests that there can be different kinds of states
that have very different degrees of localization. In addition,
we find reentrant transitions between regions with extended,
localized, and multifractal states as ω is varied. We note that
reentrant transitions have been studied earlier in periodically
driven non-Hermitian systems with quasiperiodic potentials
[54].

Interestingly, we find that in the high-frequency limit
where ω is much larger than all the other parameters,
γ1, γ2,V0, and a, the quasienergies are almost the same as
the energies for the undriven system (a = 0), but the cor-
responding IPRs can have quite different values when V0

is large and γ2 = −γ1. Namely, when V0 is larger than the
critical value 2γ1, we know that all the states of the undriven
system are localized. We then find that periodic driving of
this system at a high frequency does not change the spectrum
of quasienergies noticeably but significantly reduces some of
the IPR values. Thus driving seems to convert some of the
localized states to extended states. The exact mechanism by
which this happens may be an interesting problem for future
studies.

In general, our numerical results show that there are many
gaps in the quasienergy that separate states with significantly
different values of the IPR [see Figs. 1(e) and 2(e) in par-
ticular]. These mobility gaps appear due to the presence of
the quasiperiodic potential. The number of gaps increases as
the driving frequency is increased from intermediate to large
values, as we see in Fig. 10. It would be useful to study
exactly why this happens. Interestingly, our numerical results
show only mobility gaps. We have not found any examples of
mobility edges that appear when there is a continuous range
of quasienergies, and somewhere within that range there is a
particular quasienergy that separates localized and extended
states.

As a dynamical signature of localization, we have studied
how a one-particle state initialized at one particular site of
the system evolves in time. For all the parameter values that
we have examined, we find that the mean-squared displace-
ment always increases linearly in time. The ballistic velocity,
given by the slope of the displacement versus time, depends
on the system parameters. The velocity generally decreases
as either ω or V0 is increased. However, for a system with
uniform hopping amplitudes (γ2 = γ1) and intermediate val-
ues of ω, the velocity shows a nonmonotonic dependence
on V0.

There is some evidence of reentrant transitions in a recent
experiment in which ultracold bosonic atoms are trapped in
an optical lattice and the atoms experience a quasiperiodic
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potential whose strength is given periodic δ-function kicks
[49]. The experiment finds regimes of parameter space where
there are multiple transitions between localized, extended, and
multifractal states as the strength of the kicked quasiperiodic
potential is varied.
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