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We study the electronic transport properties in a tilted n-p-n junction of monolayer 1T ′-MoS2 under a
vertical electric field. The analytical derivations and numerical results show that, since the spin degeneracy
of the anisotropic bands of monolayer 1T ′-MoS2 is lifted by the electric field Ez, electrically tunable valley-
and spin-dependent electron retroreflection occurs in the tilted n-p-n junction. It is also found that when the
electric field Ez is adjusted to a critical value Ec, valley- and spin-dependent Klein tunneling happens in the
n-p-n junction, and the incident angle of Klein tunneling depends on the tilt angle of the junction. Especially,
for a certain specific tilt angle, in the case of normal incidence, only a spin-up electron from the K valley
can undergo Klein tunneling. Our work offers an efficient mechanism to modulate valley- and spin-dependent
electron retroreflection and Klein tunneling in anisotropic tilted Dirac systems.
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I. INTRODUCTION

Since the celebrated discovery of monolayer graphene,
various other two-dimensional monolayer materials made
from group III-VI elements have emerged one after another,
such as silicene [1], germanene [2], stanene [3], phospho-
rene [4–6], arsenene [7,8], antimonene [9], and borophene
[10–12]. Meanwhile, layered transition metal dichalcogenides
(TMDCs), which have the general chemical formula MX2

with M = (W, Mo) and X = (Te, Se, S), have also been
researched widely, both experimentally and theoretically
[13–22]. Monolayer TMDCs possess a variety of polytypic
structures including 1H , 1T , and 1T ′ [15,17]. Unlike its
stable 1H counterpart, monolayer 1T ′-MX2 is typically unsta-
ble and undergoes a spontaneous lattice distortion to form a
period-doubling zigzag chain, which leads to the formation of
1T ′-MX2 [15,17,23–28]. In this type of materials, 1T ′-MoS2

is a typical representative of 1T ′-MX2. It has been shown
that monolayer 1T ′-MoS2 possesses tilted Dirac bands with a
spin-orbit coupling (SOC) gap (∼0.08 eV) at each Dirac point
and a large band-inverted gap (∼0.6 eV) at the � point in the
Brillouin zone. Furthermore, the anisotropic band structure of
monolayer 1T ′-MoS2 is tunable by a vertical electric field,
leading to strong spin splitting of the doubly degenerate bands
around the Dirac points [15].

In addition to 1T ′-MX2, other anisotropic monolayer
Dirac materials, such as 8-Pmmn borophene [29], α-SnS2

[30], TaCoTe2 [31], and TaIrTe4 [32], also possess tilted
Dirac bands in the vicinity of Dirac points. The band
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tilting in these anisotropic Dirac systems induces a strong
anisotropy in physical properties, including anisotropic plas-
mons [33,34], optical conductivities [35,36], Weiss oscillation
[37], Fabry-Pérot resonances [38], Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions [39], and thermoelectric effects
[40]. As is well known, the electrons in isotropic materi-
als undergo specular reflection at an interface due to the
fact that the group velocity component parallel to the in-
terface is locked to the corresponding wave vector, while
in anisotropic materials, the anisotropic band structure may
release the locking relation, which makes electron retroreflec-
tion possible [41–43]. Recently, it was reported that electron
retroreflection and Klein tunneling may be generated in 8-
Pmmn borophene-based tunnel junctions by changing the
direction of the junction [44–46]. But from practical applica-
tions, it is inconvenient to adjust the direction of the junction
for a given device. Therefore, the purpose of this paper is
to explore an electrically tunable electron retroreflection and
Klein tunneling in a tilted n-p-n junction of monolayer 1T ′-
MoS2.

The rest of the paper is organized as follows. In Secs. II
and III, the model and basic formalism are constructed and
derived. In Secs. IV and V, the numerical results and theo-
retical analyses are presented and discussed. Finally, a brief
summary is given in Sec. VI.

II. BAND STRUCTURE UNDER AN EXTERNAL FIELD

In the presence of a vertical electric field, the low-energy
k · p Hamiltonian for monolayer 1T ′-MoS2 is given by [15]

H = Hk·p + HEz , (1)
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where

Hk·p

=

⎛
⎜⎜⎝

Ep(kx, ky) 0 −iv1h̄kx v2h̄ky

0 Ep(kx, ky) v2h̄ky −iv1h̄kx

iv1h̄kx v2h̄ky Ed (kx, ky ) 0
v2h̄ky iv1h̄kx 0 Ed (kx, ky)

⎞
⎟⎟⎠, (2)

and

HEz = αEz

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠. (3)

Here, Ep = −δp − h̄2k2
x /(2mp

x ) − h̄2k2
y /(2mp

y ) and Ed = δd −
h̄2k2

x /(2md
x ) − h̄2k2

y /(2md
y ) are the on-site energies of p and

d orbitals in monolayer 1T ′-MoS2, respectively, with −δp

and δd being the corresponding energies of p and d or-
bitals at the � point, and mp(d )

x and mp(d )
y being the effective

masses of the p (d) band in the x and y directions. In ad-
dition, v1 and v2 denote the velocities along the x and y
directions, α is the electrical coefficient, and Ez is a ver-
tical electric field that can break inversion symmetry and
introduce a strong Rashba splitting of the doubly degener-
ate bands around the Dirac points. The above parameters
were obtained by fitting the first-principles band structures
[15]. They are as follows: δp = 0.46 eV, δd = 0.20 eV, v1 =
3.87 × 105 m/s, v2 = 0.46 × 105 m/s, mp

x = 0.50m0, mp
y =

0.16m0, md
x = 2.48m0, and md

y = 0.37m0 with m0 being the
free electron mass.

For Eq. (1), we perform the unitary transformation [47].
Then, the spin texture is resolved and the Hamiltonian of the

system is transformed to a block-diagonal form. In the vicinity
of the two Dirac points located at � = ±(0, 1.46) nm−1 [15],
we further make the Taylor expansions and finally obtain

H′
η =

(
hη↑(k) 0

0 hη↓(k)

)
, (4)

where the top-left block,

hη↑(k) = h̄kxv1τy − h̄k′
y(ηv−τ0 + ηv+τz + v2τx )

+(αEz − η�so)τx, (5)

corresponds to the spin-up states, and the bottom-right block,
hη↓(k) = h∗

−η↑(−k), corresponds to the spin-down states.
Here, τ0 and τi (i = x, y, z) stand for the Pauli matrices in
the band pseudospin space, k′

y = ky − ηk0 is the wave vector
relative to the Dirac points with k0 = 1.46 nm−1, η = ±1
stands for the valley index (K or K ′), �so = v2h̄k0 (∼0.04 eV)
represents the SOC gap (2�so) at the Dirac points, and
v± = h̄k0(md

y ± mp
y )/(2mp

y md
y ). Since H′

η is block diagonal,
the eigenstates can be written as

ψη↑ =
(

φη↑
0

)
, ψη↓ =

(
0

φη↓

)
, (6)

where 0 is a two-component zero vector, and φη↑ (φη↓) is the
eigenvector of hη↑ (hη↓). It is noted that ψη↑ is related to ψη↓
by time-reversal symmetry, i.e.,

ψη↓(k) = −iσyK ⊗ I2×2ψ−η↑(−k). (7)

Here, I2×2 is a 2 × 2 identity matrix, K denotes the complex
conjugation operator, and σy is the Pauli matrix in real-spin
space.

From Eq. (4), it follows that the energy dispersion around
the Dirac points reads

E±
ηs = −ηh̄v−k′

y ±
√

(h̄v1kx )2 + (h̄v+k′
y)2 + [h̄v2k′

y + (η�so − sαEz )]2, (8)

where ± corresponds to the conduction and valence bands,
and s = ±1 stands for electron spin up (↑) and spin down (↓),
respectively. In the absence of a vertical electric field (Ez = 0),
the energy bands of monolayer 1T ′-MoS2 are spin degenerate,
and SOC gaps (2�so) exist at the Dirac points. For each valley,
the shift of the conduction-band bottom and valence-band top
of the tilted energy bands along the ky direction is

χ = 2v−v+�so

h̄
(
v2

2 + v2+
)√

v2
2 + v2+ − v2−

, (9)

and their corresponding energy difference is

� =
2v+

√
v2

2 + v2+ − v2−
v2

2 + v2+
�so ≈ 1.83�so, (10)

which is smaller than the SOC gap (2�so) at the Dirac points,
as can be seen in Fig. 1(a). However, in the presence of a
vertical electric field, as shown in Figs. 1(b) and 1(c), the spin
degeneracy of the energy bands of monolayer 1T ′-MoS2 is
lifted, and then for each valley, the shift of the subbands with

the same spin along the ky direction and the corresponding
indirect energy gap become valley and spin dependent, which
read

χηs = 2v−v+|ηs�so − αEz|
h̄
(
v2

2 + v2+
)√

v2
2 + v2+ − v2−

(11)

and

�ηs =
2v+

√
v2

2 + v2+ − v2−
v2

2 + v2+
|ηs�so − αEz|. (12)

Hence, the vertical electric field Ez can effectively modulate
the band structure of monolayer 1T ′-MoS2. As the electric
field Ez increases, the band gap first decreases to zero at a crit-
ical field Ec = �so/α (∼1.42 V nm−1) [15] and then reopens,
as shown in Figs. 1(b) and 1(c).

In order to further explore the band structure of monolayer
1T ′-MoS2 under an electric field, in Fig. 2 we show the bottom
of the valley-spin resolved subbands in the positive-energy
region (E+,b

ηs ) and the top of the corresponding subbands in the
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FIG. 1. Band structures around the two Dirac points for mono-
layer 1T ′-MoS2 under a vertical electric field of (a) Ez = 0, (b) Ez =
Ec, and (c) Ez > Ec. For Ez = 0, the spin-orbit coupling gaps 2�so

at the Dirac points are shown in (a), and the indirect nature of the
gap near the K valley is illustrated in the inset of (a), in which the
two pink dots correspond to the minimum and maximum of the band
branches. Here, � is the magnitude of the indirect band gap, and χ

denotes the corresponding wave vector shift. In (b) and (c), the red
and blue lines represent the spin splitting of the doubly degenerate
bands around the Dirac points due to the vertical electric field, and
then the indirect band gaps �ηs become valley and spin dependent.

negative-energy region (E−,t
ηs ) as functions of the reduced elec-

tric field Ẽz, where reduced Ẽz = Ez/Ec is a unitless variable.
One can see that for ηs = −1 subbands, the energy difference
�Eηs=−1 between E+,b

ηs and E−,t
ηs increases with increasing

Ẽz, while for ηs = 1 subbands, the energy difference �Eηs=1

first decreases to zero at Ẽz = 1 and then increases gradually
with Ẽz. This is due to �Eηs=−1 ∝ (1 + Ẽz )�so, but �Eηs=1 ∝
|1 − Ẽz|�so, as referred to Eq. (12). In addition, it can also be
seen that when εF > �so, for 0 < Ẽz < Ẽz1, all the values of
E+,b

ηs are smaller than εF, and then the Fermi level intersects

with each subband; for Ẽz1 < Ẽz < Ẽz2, only E+,b
ηs=1 is smaller

than εF, and then the Fermi level only crosses the K ↑ and
K ′ ↓ subbands; for Ẽz > Ẽz2, all values of E+,b

ηs are larger than
εF, and then the Fermi level drops into the band gap. Here, Ẽz1

and Ẽz2 can be determined by Eq. (8), which read

Ẽz1 =
(
v2

2 + v2
+
)
εF(

v+
√

v2
2 + v2+ − v2− + v2v−

)
�so

− 1,

Ẽz2 =
(
v2

2 + v2
+
)
εF(

v+
√

v2
2 + v2+ − v2− − v2v−

)
�so

+ 1. (13)

FIG. 2. Minimum and maximum of valley-spin resolved bands
near the Dirac points as functions of the reduced electric field Ẽz

(Ẽz = Ez/Ec). Here, �Eηs is the energy difference between the cor-
responding band branches. The horizontal dashed line indicates the
Fermi level εF lying in the positive-energy region. Ẽz1 and Ẽz2 are the
specific electric-field values when the Fermi level intersects with the
valley-spin resolved subbands, respectively.

III. TRANSMISSION PROBABILITY OF TILTED
n-p-n JUNCTION

Next, we consider a tilted n-p-n junction of monolayer 1T ′-
MoS2, in which the junction is rotated by an angle θ in the xy
plane with respect to the x axis, as schematically shown in
Fig. 3. Here and thereafter, the normal (tangential) direction
of the junction interface is defined as the x′ (y′) axis of the
coordinate system x′-y′. Then, the Hamiltonian of the tilted
junction is given by

Hη = H′
η + V0�(x′)�(L − x′), (14)

θ x
x'

y' y

L

pn
n

Substrate
1 -MoST' 2

�

FIG. 3. Schematic diagram of a tilted n-p-n junction of mono-
layer 1T ′-MoS2 under a vertical electric field. Here, the direction
of the tilted junction is characterized by angle θ , while the incident
electron is in the direction deviated from the x′ axis with angle ϕ.
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where � is the Heaviside step function, and L denotes the
length of the potential barrier. The electric potential V0 can
be adjusted by a gate voltage or doping. The transformation
relationship between the wave vector components in the coor-
dinate systems x-y and x′-y′ can be expressed as

kx = kx′ cos θ − ky′ sin θ,

ky = kx′ sin θ + ky′ cos θ. (15)

In the coordinate system x′-y′, the diagonal blocks in Eq. (4)
can be rewritten as

hηs(k) = h̄Sxkx′ + h̄Syky′ + h̄k0(v−τ0 + v+τz + ηsv2τx )

+ (Ẽz − ηs)�soτx, (16)

where

Sx = v1τy cos θ − (ηv−τ0 + ηv+τz + sv2τx ) sin θ,

Sy = −v1τy sin θ − (ηv−τ0 + ηv+τz + sv2τx ) cos θ. (17)

Correspondingly, in the coordinate system x′-y′, the wave
functions in the left, middle, and right regions of such a tilted
n-p-n junction can be expressed as

ψL = ψ i
L,η↑(↓) + rψ r

L,η↑(↓),

ψM = aψ i
M,η↑(↓) + bψ r

M,η↑(↓),

ψR = tψ t
R,η↑(↓). (18)

The wave functions in each region can be determined by
solving the eigenequation of the Hamiltonian in Eq. (14) [47].

So, the transmission coefficient t through this tilted junction
can then be straightforwardly obtained by matching the wave
functions at x′ = 0 and x′ = L.

By means of the continuity equation for the probability
density [48,49]

∂ρ

∂t
+ ∇ · j = 0, (19)

with ρ = φ†φ, we can get the probability current in the tilted
n-p-n junction, i.e.,

j = ( jx′, jy′ ) = (φ†Sxφ, φ†Syφ), (20)

where φ is the corresponding eigenvector of hηs(k) in Eq. (16).
In our system, the probability current along the x′ direction is
conserved, and then the transmission probability reads

T = jx′t

jx′i
, (21)

in which the incident probability current jx′i = (φi )†Sxφ
i and

the transmitted probability current jx′t = t∗t (φt )†Sxφ
t . Since

the incident and transmitted wave functions are the same in
the n-p-n junction considered here, i.e., φi = φt , thus the
transmission probability is reduced to T = t∗t .

IV. VALLEY- AND SPIN-DEPENDENT ELECTRON
RETROREFLECTION

First, using Eqs. (8) and (15), we get the velocity compo-
nents of an electron in the junction,

uηs
x′ = ∂E+

ηs

h̄∂kx′
= −ηv− sin θ + h̄v2

1kx cos θ + h̄
(
v2

+ + v2
2

)
k′

y sin θ + (η − sẼz )v2�so sin θ√
(h̄v1kx )2 + (h̄v+k′

y)2 + [h̄v2k′
y + (η − sẼz )�so]2

,

uηs
y′ = ∂E+

ηs

h̄∂ky′
= −ηv− cos θ − h̄v2

1kx sin θ − h̄
(
v2

+ + v2
2

)
k′

y cos θ − (η − sẼz )v2�so cos θ√
(h̄v1kx )2 + (h̄v+k′

y)2 + [h̄v2k′
y + (η − sẼz )�so]2

, (22)

which depend on valley and spin indices. In Fig. 4, we show
the valley- and spin-dependent transverse velocity uηs

y′i (uηs
y′r)

of the incident (reflected) electron in the tilted junction with
θ = π/6 as functions of the transverse wave vector ky′ for
the three different electric fields. It can be seen that there are
always the ky′ intervals that satisfy the electron retroreflection
condition as uηs

y′i · uηs
y′r < 0 in the tilted junction, regardless of

the presence or absence of the electric field. The intervals can
be determined by the values of ky′ at uηs

y′i = 0 and uηs
y′r = 0,

as marked by the solid and open circles in Figs. 4(a)– 4(c).
It is easy to find from Eq. (22) that for the case of θ 
= 0,
uηs

y′i and uηs
y′r are no longer identical, and there is the pos-

sibility for uηs
y′i · uηs

y′r < 0, which leads to the release of the
locking relation between the transverse wave vector and the
corresponding velocity component in the tilted junction and
makes electron retroreflection appear. Moreover, it can also
be seen that under an electric field, the ky′ intervals for elec-
tron retroreflection to occur are valley and spin dependent, as
shown in Figs. 4(b) and 4(c). In particular, for Ẽz1 < Ẽz < Ẽz2,

the retroreflection of only electrons with ηs = 1 may occur.
This is mainly because in this case the Fermi level inter-
sects only with the K ↑ and K ′ ↓ subbands of monolayer
1T ′-MoS2.

To explore the electron retroreflection in a tilted junction
with different tilt angles θ , in Figs. 4(d)– 4(f) we display the
contour lines of uηs

y′i = 0 and uηs
y′r = 0 as functions of θ and

ky′ . One can see that for 0 < θ < π/2, electron retroreflection
always occurs and is valley and spin dependent under the
electric field Ẽz, as shown in Figs. 4(e) and 4(f). Especially, for
θ = 0, electron retroreflection cannot happen in the junction.
It is due to the fact that for θ = 0, as known from Eq. (22),
uηs

y′i and uηs
y′r are always equal, which does not satisfy the

retroreflection condition of uηs
y′i · uηs

y′r < 0. On the other hand, it
can be obtained from Eq. (22) that for θ = π/2, the transverse
velocity of incident (reflected) electron is then reduced to

uηs
y′i(r) = h̄ky′v2

1

ε + h̄ηv−
(
kηs

x′i(r) − ηk0
) , (23)
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FIG. 4. (a)–(c) Dependence of the group velocity component parallel to the interface (uy′ ) on the transverse wave vector ky′ for the three
different electric field strengths: (a) Ẽz = 0, (b) Ẽz = 1, and (c) Ẽz = 2 within the range Ẽz1 < Ẽz < Ẽz2. Here, ε = 0.1 eV and θ = π/6. uη

y′i(r)
denotes the transverse velocity of incident (reflected) electron from each valley. The solid and open circles are used to mark the values of ky′ at
uηs

y′ i(r) = 0. (d)–(f) Contour lines of uηs
y′ i(r) = 0 as functions of the transverse wave vector ky′ and tilt angle of the junction θ for the above values

of Ẽz.

which indicates that in this case the ky′ intervals for electron
retroreflection to occur disappear at ky′ = 0.

Considering that it is inconvenient to adjust the tilt angle of
the junction for a given device in practical operations, in Fig. 5
we further illustrate the contour lines of uηs

y′i = 0 and uηs
y′r = 0

as functions of the electric field Ẽz and ky′ at a given θ . It is
clearly seen that the ky′ intervals for electron retroreflection
to occur depend on the electric field Ẽz. For Ẽz < Ẽz1, since
the Fermi level crosses each subband in the conduction band,
as can be seen also in Fig. 2, then spin-up and spin-down
electrons from each valley can be retroreflected in the tilted
junction. While for Ẽz1 < Ẽz < Ẽz2, the Fermi level only inter-
sects with the ηs = 1 subbands, then the retroreflection of K ↑
and K ′ ↓ electrons may occur. Therefore, the vertical electric
field can effectively modulate the valley- and spin-dependent
electron retroreflection in the tilted junction.

V. VALLEY- AND SPIN-DEPENDENT KLEIN TUNNELING

Using the Heisenberg equation of motion, we can ob-
tain the velocity operator along the x′ direction, i.e., ûx′ =

FIG. 5. Contour lines of uηs
y′i(r) = 0 as functions of the transverse

wave vector ky′ and the electric field Ẽz at θ = π/6. The other
parameter values are as in Fig. 4.
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FIG. 6. Dependence of electronic transmission probability in the
tilted n-p-n junction with θ = π/6 on the transverse wave vector ky′

under an electric field of Ẽz = 1. Here, ε = 0.1 eV, V0 = 0.5 eV, and
L = 80 nm.

[x′, hηs]/(ih̄) = Sx. Its time evolution is given by

˙̂ux′ = 1

ih̄
[ûx′ , hηs]

= 2v1(ky′ − ηk0 cos θ )(sv2τz − ηv+τx )

− 2�so

h̄
(Ẽz − ηs)(v1 cos θτz + ηv+ sin θτy). (24)

Due to the translational invariance along the y′ direction, the
transverse wave vector ky′ is conserved. The result in Eq. (24)
reveals that when ky′ = ηk0 cos θ , the velocity along the x′ axis
of the K ↑ or K ′ ↓ electron is conserved in the case of Ẽz = 1,
which means the appearance of Klein tunneling with T ≡ 1.
To verify the above analysis, we calculate the valley- and spin-
dependent transmission probability T of an electron in the
tilted junction with θ = π/6 versus the transverse wave vector
ky′ at Ẽz = 1, as shown in Fig. 6. It is seen that since the energy
gaps of the K ↑ and K ′ ↓ subbands decrease to zero at Ẽz = 1,
then only an electron with ηs = 1 can undergo the Klein
tunneling in the case of ky′ = ηk0 cos π/6 ≈ ±1.26 nm−1, as
indicated by the two vertical dashed lines in Fig. 6(b).

FIG. 7. Electronic transmission probability in the tilted n-p-n
junction with θ = π/6 vs the incident angle ϕ under an electric field
of Ẽz = 1. The other parameter values are as in Fig. 6.

In order to further demonstrate the Klein tunneling of
a massless Dirac electron in the tilted n-p-n junction of
monolayer 1T ′-MoS2, in Fig. 7 we plot the valley- and spin-
dependent transmission probability of an electron in the tilted
junction with θ = π/6 as a function of the incident angle ϕ

under an electric field of Ẽz = 1. Here, the incident angle of
an electron is defined as

ϕ = arctan
uηs

y′i

uηs
x′i

. (25)

According to Eqs. (24) and (25), we find that in the case of
Ẽz = 1, only an electron with ηs = 1 can undergo the Klein
tunneling at ϕ

K↑
kt ≈ 12.8◦ and ϕ

K ′↓
kt ≈ 42.1◦, as marked by the

red and blue dots in Fig. 7(b). Besides these incident angles
for the Klein tunneling, in Fig. 7 there are other incident
angles with T = 1, corresponding to the resonant tunneling
of electrons. Unlike the incident angles for the Klein tunnel-
ing, these angles for resonant tunneling are very sensitive to
the width and height of a potential barrier and the incident
electron energy.

Since perfect transmission (T ≡ 1) in the tilted junction
should satisfy the condition of ky′ = ηk0 cos θ at Ẽz = 1, thus
the incident angles of Klein tunneling in the system depend on
the direction of the junction, as can be seen in Fig. 8. Under
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FIG. 8. Valley- and spin-dependent incident angle of Klein tun-
neling ϕ

K↑(K ′↓)
kt vs the tilt angle of the junction θ under an electric

field of Ẽz = 1.

an electric field of Ẽz = 1, for θ = 0, the incident angles of
Klein tunneling ϕ

K↑(K ′↓)
kt = arctan(−ηv−/v1) ≈ −η36.5◦ by

calculating Eq. (25), while for θ = π/2, then ϕ
K↑(K ′↓)
kt = 0.

Generally, for 0 < θ < π/2, the incident angle of Klein tun-
neling in the titled n-p-n junction can be expressed as

ϕ
K↑(K ′↓)
kt

= arctan
ṽ2 sin θ cos θ − ηv− cos θ

√
v2

1 + ṽ2 sin θ2

v2
1 + ṽ2 sin θ2 − ηv− sin θ

√
v2

1 + ṽ2 sin θ2
,

(26)

with ṽ =
√

v2
2 + v2

+ − v2
1 . It is found from Eq. (26) that

when θ = arcsin(v1v−/ṽ

√
ṽ2 − v2−) ≈ π/9, then ϕ

K↑
kt = 0, as

marked by the red solid circle in Fig. 8. This result indicates
that in the case of normal incidence, the phenomenon of Klein
tunneling happens only for the K ↑ electron in the titled n-p-n
junction.

VI. CONCLUSIONS

In summary, we have investigated the electronic transport
properties in a tilted n-p-n junction of monolayer 1T ′-MoS2

subjected to a vertical electric field. It was shown that valley-
and spin-dependent electron retroreflection can be generated
in this tilted junction, which arises from the anisotropic band
structure of monolayer 1T ′-MoS2, and the exotic electron
retroreflection can be modulated by the electric field. We also
found that when the electric field is adjusted to a critical
value (∼0.142 V/Å), the phenomenon of valley- and spin-
dependent Klein tunneling occurs in the junction, and the
incident angle of the Klein tunneling is strongly dependent
on the tilt angle of the junction. Especially, for a specific tilt
angle (∼π/9), in the case of normal incidence, only a spin-up
electron from the K valley can undergo Klein tunneling. It
is expected that the above results are qualitatively valid for
other monolayer TMDCs with a 1T ′ structure due to the
similarity of their band structures. Our work offers an efficient
mechanism to modulate valley- and spin-dependent electron
retroreflection and Klein tunneling in anisotropic tilted Dirac
systems.
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