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Anomalous Hall effect in conical helimagnetic crystals

Andrei Zadorozhnyi and Yuri Dahnovsky *

Department of Physics and Astronomy/3905, 1000 E. University Avenue, University of Wyoming, Laramie, Wyoming 82071, USA

(Received 26 September 2022; revised 1 December 2022; accepted 23 December 2022; published 12 January 2023)

Spin-spiral texture can substantially change charge transport properties in helimagnets. We find the anomalous
Hall effect (AHE) exhibiting the dramatic behavior with respect to chemical potential μ in conical magnetic
structures. The direct conductivity demonstrates kinks, and the anomalous Hall current exhibits minima and
maxima changing the sign. We analytically derive the expression for energy bands and eigenstates in the most
general case. Because of the conical potential, the energy bands are split into two nonparabolic bands where the
lower band can have one- or two-minima shapes in the kz direction (ẑ is a direction of the spiral axis). We prove
that the origin of the anomalous Hall effect is not topological and is due to the interplay between the asymmetry
of energy bands in the x and z directions and spin restrictions in the phase space due to the conical potential.
We also investigate the dependence of transport properties on cone half- angle θ , and find that the effects are
most pronounced at θ = π/2 (a helical state). Electric current is calculated using the Boltzmann equation where
the relaxation is caused by electron-acoustic phonon interaction. The transition probability is found to be a
2 × 2 matrix with nonvanishing off-diagonal elements indicating the strong interband transitions. The origin of
interband transitions is because of the nature of the conical potential where conduction electron spins interact
with localized magnetic moments. To verify the proposed theory, we calculate the temperature dependence of
resistivity for MnSi crystals and find the discontinuity at the phase transition between conical and paramagnetic
phases. The calculations are in the excellent agreement with the experimental data. In addition, we predict the
discontinuity behavior for the anomalous Hall resistivity at the phase transition where the resistivity exhibits the
abrupt change at T = TC , (a) to zero if the relativistic effects for the conduction electrons are small or (b) to a
nonzero value if Rashba/Dresselhaus effects are taken into account.
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I. INTRODUCTION

Helimagnetism can be originated from both relativistic cor-
rections [1–4] and exchange interaction with spin frustrations
[5]. A conical phase can be one of phases in a phase diagram
[6,7]. The conical phases were experimentally observed in
U3P4 [8], γ − Fe [9], and MnP [10] crystals. Because of
the interaction between a conduction electron spin and mag-
netic moments of the conical magnetic structure, we expect
that charge transport properties will have unusual behaviors,
which can be theoretically understood from the calculations
employing the Boltzmann equation for a nonequilibrium dis-
tribution function. The Boltzmann equation approach has the
advantage because it allows for the consideration of realistic
electron scattering mechanisms such as electron-phonon or
electron-impurity scattering. For electron scattering in pure
crystals, we choose the electron-phonon scattering as the
main electron scattering mechanism. Along with electronic
structure and transport in conical spin spirals, we also study
the Berry curvature to understand whether such materials are
topological. The chirality is also investigated.

*yurid@uwyo.edu

To describe the transport properties in 3D conical magnetic
materials, we consider the following Hamiltonian [9]:

Ĥ0 = Ĥcrys + Ĥcon = h̄2k2

2m
− JS0σ̂ · n(r)

= h̄2k2

2m
− JS‖(σx cos(κz) + σy sin(κz)) − JSzσz,

(1)

where J is an exchange integral between the conduction elec-
trons and localized magnetic moments S0. Here σ is the vector
of the three Pauli matrices. The spiral period of the localized
spin rotation about the z axis is 2π/κ. Spin-orbit coupling
should be in general considered for both conduction and local-
ized electrons. Nevertheless, for the conduction electrons such
effects can be weak because the Rashba/Dresselhaus con-
stants can be numerically small. Moreover, there are materials
that exhibit spin-spiral properties without spin-orbit coupling,
for example, FeP [5]. In the latter case the origin of the helical
structure is due to spin frustration in Heisenberg spin-spin in-
teraction originating from the electron exchange mechanism.
However, we should note that the Rashba/Dresselhaus inter-
action can dramatically alter the behavior of anomalous Hall
conductivity in other materials, for example, in a skyrmion
phase [11]. In this paper we do not consider spin-orbit cou-
pling for conduction electrons, even if it is responsible for
the spiral spin structures. Therefore, all the effects we con-
sider here arise from the exchange interaction between the
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spin spiral and the conduction electron. This approach was
previously employed for electrons in the presence of helical
spin-structures [9,12,13] and skyrmions [14,15].

We organize this paper in the following way:
Hamiltonian (1) is diagonalized in Sec. II where band
structures and wavefunctions are found in the most general
form. The Boltzmann equation approach and electron-phonon
transition rate calculations are discussed in Sec. III.
The transport properties including the anomalous Hall
electroconductivity are calculated in Sec. IV. The comparison
between the theoretical predictions and experimental data for
MnSi crystals is discussed in Sec. V. The Berry curvature and
chirality are calculated in Sec. VI.

II. ELECTRONIC STRUCTURE

In this section we find eigenstates and eigenvalues of
Hamiltonian (1). To do this, we employ the Wannier theorem
[16], [

ε0(−i∇) +
∑

s′
Vss′ (r)

]
�s

k = ε�s
k. (2)

In this equation ε0 is the energy band where the conical
potential is not considered. Vss′ (r) is a conical potential. To
diagonalize the Hamiltonian, we present the wavefunction as

follows:

�s
k = ψ0k(r)�s

zk(z), (3)

where ψ0k is an unperturbed wavefunction satisfying the fol-
lowing equation:

ε0(−i∇)ψ0k(r) = ε0(k)ψ0k(r). (4)

Then, we substitute wavefunction (3) into Wannier Equa-
tion (2) resulting in the following expression for the total
wavefunctions,(

�
↑(ν)
k,κ

(r)

�
↓(ν)
k,κ

(r)

)
=

(
aν (k, κ)e−i κ2 z

bν (k, κ)e+i κ2 z

)
ψ0k(r). (5)

Here, aν and bν are coefficients independent of the coordi-
nates. Index ν = 1, 2 designates a band number. Then, we
insert wavefunction (5) back into Eq. (2) resulting in the two
linear equations for the coefficients aν and bν ,

−aνJSz − bνJS‖ + aνε0

(
kx, ky, kz − κ

2

)
= aνεν,

bνJSz − aνJS‖ + bνε0

(
kx, ky, kz + κ

2

)
= bνεν. (6)

Here ε0(k) is taken in the most general form. Using Eq. (6),
we find the expression for ε1,2,

ε1,2 = ε0
(
k + ez

κ

2

) + ε0
(
k − ez

κ

2

)
2

±

√√√√J2S2
‖ +

[
ε0

(
k + ez

κ

2

) − ε0
(
k − ez

κ

2

)
2

+ JSz

]2

= ε0
(
k + ez

κ

2

) + ε0
(
k − ez

κ

2

)
2

±
√

J2S2
‖ + [D + JSz]2,

(7)

where D = [ε0(k + ez
κ

2 ) − ε0(k − ez
κ

2 )]/2. From the nor-
malization conditions and Eqs. (6) and (7), we determine the
coefficients aν and bν ,

a1 = b2 = 1√
2

√√
J2S2

‖ + (D + JSz )2 + (D + JSz )

(J2S2
‖ + (D + JSz )2)1/4

,

a2 = −b1 = − 1√
2

√√
J2S2

‖ + (D + JSz )2 − (D + JSz )

(J2S2
‖ + (D + JSz )2)1/4

.

(8)

For further calculations we consider a parabolic form for
ε0(k). ε1,2(k) are presented Fig. 1. As shown in Fig. 1(a),
ε1,2(k) are symmetric paraboloids where JS‖ = 0 (a pure fer-
romagnetic state). The helical state with the single minimum
in ε1(k) (the Sz = 0, h̄2

κ
2/2m < 2JS‖ case) is depicted in

Fig. 1(b). As shown in Fig. 1(c), ε1(k) has two symmetric min-
ima in the kz direction for a helical state (h̄2

κ
2/2m > 2JS‖).

Case (d) corresponds to the conical state (Sz �= 0, S‖ �= 0)
where the bands are asymmetric in the kz direction. The two-
minima shape of ε1(k) is a saddle rather than a Mexican-hat
shape discussed in Ref. [11] for the Rashba effect. Indeed, in
x and y directions ε1(k) are still parabolas.

III. TRANSPORT IN CONICAL SPIN-SPIRALS

A. Boltzmann equation

For the transport calculations we employ the Boltzmann
equation with the relaxation rate due to electron-phonon in-
teraction,

∂ f0

∂ε
eE · vν =

∑
ν ′

∑
k′

(
W νν ′

kk′ f ν ′
1 (k′) − W ν ′ν

k′k f ν
1 (k)

)
. (9)

f0 is the equilibrium Fermi distribution function, f1 is the
nonequilibrium part of the total distribution function, E is an
applied electric field, v is an electron velocity. The transition
rates W νν ′

kk′ are defined as follows:

W νν ′
kk′ = (2π/h̄)|〈k′, ν ′, N ′

q j |�V |k, ν, Nq j〉|2δ(εν (k)−εν ′ (k′)).

(10)

In this equation �V is the electron-phonon interaction po-
tential. Nq j is the population number of phonons with the
wavevector q and the branch j determined from the Bose
distribution function,

Nq j = 1

e
εph
kBT − 1

. (11)
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FIG. 1. Band structures for ε1 and ε2 in for four different cases.
(a) The ferromagnetic phase (S‖ = 0, Sz �= 0) where ε1,2(k) are
paraboloids; (b) a helical state (Sz = 0) where ε1(k) has one non-
parabolic minimum (h̄2

κ
2/2m < 2JS‖); (c) a helical state where

ε1(k) has two symmetric minima (h̄2
κ

2/2m > 2JS‖); and (d) con-
ical phase (Sz �= 0, S‖ �= 0) where the bands are asymmetric. The
blue color corresponds to the spin-↓ projection and the red color
represents the spin-↑ projection. The mixture of the spin-up and
spin-down states is shown in the middle region.

Index ν denotes an energy band number (ν = 1, 2). As soon
as the transition rates are found and the Boltzmann equation is
solved, we can determine the electric current density

jνi = e
1

(2π )3

∫
f ν
1 vν

i d3k, (12)

where vν
i is a velocity projection (i = x, y, z) determined as

vν
i = ∂εν (k)/h̄∂ki.

To solve the Boltzmann Equation (9), we have written the
original codes where the relaxation rates are considered within
the first Born approximation. We have used nonparabolic
ε1(k) and ε2(k) for the solution of the Boltzmann equation.
The numerical codes include the calculation of constant en-
ergy surface, which contains multiple subsurfaces. For each
(ν, k) and (ν ′, k′) at the energy surface, the transition rates
have been found and substituted into the integral Boltzmann
equation, which has been numerically solved for f1 in the
piecewise constant approximation and then is inserted into the
expression for the current [see Eq. (18)].

B. Transition rates

Bearing in mind that the system is a pure crystal with
no impurities, the electron scattering results only from the
electron-phonon interaction. The phonon system includes
acoustic and optical phonons. We consider only acous-
tic phonons for the electron-phonon interaction. Indeed, in
MnSi the optical phonon with the lowest frequency is about
hν = 22 meV = 225 K. The conical state exists only be-
low 29 K [17,18]. Since the optical phonon contribution is
about exp (−hν/kT ) ∼ 10−3, it can be safely disregarded.
The electron-phonon interaction is considered in the following
form:

V̂e−ph ≈ −∇(Ĥcrys + Ĥcon) · u. (13)

Ĥcrys and Ĥcon are defined in Eq. (1). The atom displacement
u can be expressed in terms of normal phonon coordinates.
The matrix element in Eq. (10) is determined for electron and
phonon wavefunctions separately. If we consider the phonons
in equilibrium, then the contribution for the absorption and
emission of a phonon with a wave vector q by the electron is
given by the following expression [16]:

L = 〈Nq j − 1|aq j |Nq j〉 =
√

h̄Nq j

2ωq j
,

L+ = 〈Nq j + 1|a+
q j |Nq j〉 =

√
h̄(Nq j + 1)

2ωq j
. (14)

The averaging over the electron wavefunctions is more
complicated. Indeed, the electron wavefunctions have two
components (5) resulting in a 2 × 2 matrix for the transition
probabilities. We omit the derivation of the transition rate
because the procedure of the calculation of the matrix ele-
ments is similar to that of presented in Refs. [16,19]. The
final expression for the transition probabilities is given by the
equation

W νν ′
kk′ = 2π

h̄

1

NM

h̄Nq j

2ωq
|K+

νν ′ |2δ(εν (k) − εν ′ (k′))δ(k′ − k − q)

+ 2π

h̄

1

NM

h̄(N−q j + 1)

2ω−q
|K−

νν ′ |2δ(εν (k)

− εν ′ (k′))δ(k′ − k + q), (15)

where K±
νν ′ are defined by the following equations:

K±
νν ′ = ∓

∑
s

i
h̄2

m
(k − k′) ·

∫ (∇uν
sk

)(
eq j · ∇uν ′∗

sk′
)
dτ0

∓
∑

s

[
εν (k) − εν ′(

k′) −
(

h̄2k2

2m
− h̄2k′2

2m

)]

×
∫

uν
sk

(
eq j · ∇uν ′∗

sk′
)
dτ0. (16)

Substituting the wavefunctions from Eq. (5) into Eq. (16) and
assuming that the period of the conical spiral is much greater
than the lattice constant a (κa � 1), and keeping the terms of
the order of a−2, we obtain the final expression for K±

νν ′ ,

K±
νν ′ = ±i

h̄2

2ma2

2

3
(q · eq j )(aν (k)aν ′ (k′) + bν (k)bν ′ (k′)),

(17)

where aν and bν are described in Eq. (8). From Eq. (17) there
is a probability of the electron to scatter from ν to ν ′ �= ν, i.e.,
interband transitions are allowed.

IV. RESULTS AND DISCUSSIONS

In this paper we perform the calculations with the pa-
rameters chosen for a MnSi pure crystal. The acoustic
phonons are considered in the Debye approximation with
ωD = v0(6π2/�0), v0 is a velocity of sound, and �0 is a unit-
cell volume. We have chosen MnSi for numerical estimation
where vs = 740 m/s [20] and �0 = 0.092 nm3. According to
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FIG. 2. Geometry of the spin-spiral direction and the electric
field E direction. The current has two components, j‖ along the
electric field and j⊥ perpendicular to the electric field (anomalous
Hall current). The angle between the spiral axis and the electric field
is φ, and a cone half-angle is 2θ .

Ref. [16], the elastic scattering is a good approximation for
the numerical calculations where the transition rate matrix
elements are given by Eq. (15).

If there is a nonvanishing angle φ between the spiral axis
and the electric field, there are two electric current compo-
nents, j‖ along the electric field and j⊥ perpendicular to the
electric field (anomalous Hall current) as shown in Fig. 2.
The expression for the current in this case was found if
Ref. [11],

js
‖ = js

0‖ + js
2 cos (2φ), js

⊥ = js
0⊥ + js

2 sin (2φ). (18)

Because of the absence of the specific direction (the
cylindrical symmetry in x, y plane) for the anomalous Hall
component j0⊥, the angle-independent component in the sec-
ond equation in (18), js

0⊥, vanishes.
We calculate the dependence of electroconductivity in par-

allel and perpendicular directions with respect to chemical
potential μ. The chemical potential (or εF , Fermi energy) can
be varied by the gate voltage in a proper electronic device.
For the calculations we have chosen the parameters close
to those of MnSi single crystals. In Figs. 3, and 4 7, 9 we

consider different cone half-angles (θ = 0, π/16, π/4, π/2).
The case where the cone half-angle θ = 0 corresponds to a
pure ferromagnetic state, and θ = π/2 represents a helical
spin-spiral phase.

The direct and anomalous Hall components in a pure ferro-
magnetic state are presented in Fig. 3. This case corresponds
to the band arrangement shown in Fig. 1(a). In Fig. 3(a), the
direct conductivities are growing functions, and the anoma-
lous Hall conductivities due to the spin spiral in Fig. 3(b) are
zero because of the spherical symmetry of ε(k).

If the cone half-angle is θ = π/16, we find the unusual
behavior in both direct and anomalous Hall components of
the electric conductivity. This case corresponds to the band
structures shown in Fig. 1(d). Indeed, the two kinks in red
and black curves are depicted in Fig. 4(a). The first kink takes
place at μ = 0.095 eV, and can be explained using Fig. 1(d).
Indeed, as soon as μ reaches the region of spin-down electrons
shown in blue color in ε1, the phase volume increases and
therefore, the electric current [see Eq. (18)] grows. The second
kink occurs at μ approaching the upper band, which begins
to contribute to scattering decreasing the current value. The
insertion in Fig. 4(a) demonstrates the dramatic derivative
change in the vicinity of the kinks’ regions. Contrary to the
ferromagnetic case [see Fig. 3(b)], there is the unusual be-
havior in the anomalous Hall electroconductivity. As shown
in Fig. 4(b), the anomalous Hall component exhibits the two
peaks. To explain such an behavior, we use the explanation
based on a simplified model where W is k independent. Ac-
cording to Ref. [16], the transition probability per unit time
can be calculated using the following formula:

1

τ
=

∫
W (θ )(1 − cos θ )d�. (19)

If we assume W (θ ) = const (angle independent), we can eas-
ily evaluate 1/τ , where

1

τ
= 2πW

[
3

4
+ cos (θ0) + 1

4
cos (2θ0)

]
. (20)

For the derivation we notice that the integration takes place
only in a restricted phase space for single spin shown in Fig. 5.

FIG. 3. (a) Direct and (b) anomalous Hall conductivities for the ferromagnetic case. The blue curve represents the conductivity for the
upper band, and the red curve is for the lower band. The black line corresponds to the total electroconductivity.

035202-4



ANOMALOUS HALL EFFECT IN CONICAL HELIMAGNETIC … PHYSICAL REVIEW B 107, 035202 (2023)

FIG. 4. (a) Direct and (b) anomalous Hall conductivities for θ = π/16. The blue curves represent the conductivities for the upper band,
and the red curves are for the lower band. The black lines describe the total electroconductivity. In the insertion the derivative of the direct
component of the conductivity over chemical potential is presented

θ0 = θ
↑,↓
0 are defined in Fig. 5. The current density can be

calculated according to Ref. [16], where τ is found in Eq. (20),

j = − e2

4π3

∫
τ (k)

∂ f0

∂ε
v(v · E )d3k

= 2m∗

h̄2

e2

4π2
τk2

F v2
F

1

12

⎛
⎜⎝

Ex(9 cos (θ0) − cos (3θ0) + 8)

Ey(9 cos (θ0) − cos (3θ0) + 8)

Ez(6 cos (θ0) + 2 cos (3θ0) + 8)

⎞
⎟⎠.

(21)

The anomalous Hall current can be determined as follows:

j⊥ = j sin α =
[

j × E
|E|

]
y

= ExEz(σzz − σxx )/|E|, (22)

where α is an angle between the current and the electric field,

σzz − σxx = 2m∗

h̄2

e2

4π2
τk2

F v2
F

1

12
(3 cos (3θ0) − 3 cos θ0),

≈
θ0→0

−2m∗

h̄2

e2

4π2
τk2

F v2
F

1

12
× 24θ2

0 < 0. (23)

As demonstrated in Eq. (23), the current is negative for
small θ

↑,↓
0 (θ↑,↓

0 is defined in Fig. 5). This means that the

FIG. 5. Energy surface cross section in kx , kz plane for the lower
band. The red and blue colors correspond to the spin-up and spin-
down states, respectively. Two-sided arrows 1 and 1′ correspond to
allowed transitions with the same spin ↑ and ↓ respectively. Line 2
demonstrates the spin-forbidden transition.

current tends to lean towards the x axis, as shown in Fig. 4
(the negative value of σ⊥). Then, according to this figure,
the current goes up because the transition probability W is
asymmetric with respect to scattering in the x and z directions.
Indeed, in the kx direction the transition rates are stronger be-
cause of the larger phase volume and weaker in the kz direction
because of the restricted scattering rate in this direction. Thus,
we conclude that the current in the x direction is lower than in
the z one. From this consideration, it follows that the current
leans towards z axis, and therefore | j⊥| decreases. By adding
the upper band there are more carriers and therefore, the cur-
rent increases in the z-direction. It would increase further up
unless the bands become spherical. To explain the maximum
in the positive region we have to introduce the two parabolic
energy bands,

εna
1,2 ≈ h̄2

2m

(
k2

x + k2
y + (kz ± κ/2)2

) ± JSz. (24)

εna
1,2 are shown in Fig. 6. In this case each energy band has

the spherical symmetry and therefore, the anomalous Hall
electroconductivity vanishes.

We also study the cone half-angle θ = π/4 (see Fig. 7).
The dependencies for both σ‖ and σ⊥ are similar to the
previous case, θ = π/16. However, the effects are more

FIG. 6. Energy bands. A spin projection is conserved for each
band.
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FIG. 7. (a) Direct and (b) anomalous Hall conductivities for θ = π/4. The blue curves describe the conductivities for the upper band,
and the red curves are for the lower band. The black lines represent the total electroconductivity. In the insertion, the derivative of the direct
component of the conductivity over chemical potential is depicted.

pronounced because the bands become more anisotropic. This
case also corresponds to Fig. 1(d) where the blue region is
lower than for θ = π/16. All the explanations of the kinks in
Fig. 7(a) and maximum and minimum in Fig. 7(b) remain the
same.

As mentioned above, the transition rate matrix has nonvan-
ishing off-diagonal matrix elements. Such elements allow for
the transitions between ε1(k) and ε2(k) bands for chemical
potentials greater than the gap. In Fig. 8 we demonstrate the
diagonal and nondiagonal matrix elements of Wνν ′ determined
from the following Equation [16]:

τ−1
νν ′ = Wνν ′ =

∑
k′

Wνν ′ (k, k′)( fν ′ (k′) − fν (k)). (25)

FIG. 8. Transition probability matrix elements, W = τ−1. The
red curve corresponds to transitions within the lower band, the blue
curve represents transitions within the upper band, and the green
curve corresponds to the interband transitions.

As shown in Fig. 8, the nondiagonal matrix element (the green
curve) has large values and therefore, substantially contributes
to the transition between the bands, strongly affecting the
electroconductivity in this region of μ. The energy band struc-
tures for a helical state (θ = π/2) are shown in Figs. 1(b)
and 1(c). The two components of the electroconductivity are
presented in Fig. 9. The first kink goes to zero because of
the symmetry of the bands and the absence of the maximum.
However, the anomalous Hall component demonstrates the
more dramatic behavior and such a dependence can be ex-
plained in the same manner as in the description of Fig. 3(b).
The amplitudes are higher because the anisotropy in ε1(k) is
stronger.

V. TEMPERATURE DEPENDENCE

The proposed theory can be verified in some experiments
where phase transition from the conical (helical) to ferromag-
netic (or paramagnetic) state occurs. Indeed, there is the phase
transition from a helical to paramagnetic state at T = 28.8 K
in a MnSi single crystal [18]. In Fig. 10 we present the tem-
perature dependencies for the hole resistivity of the direct and
anomalous Hall components, ρ‖ and ρ⊥, at the phase transi-
tion. In Fig. 10(a) the experimentally measured dependence
of ρ‖ is described by the black curve, the calculated ρ‖(T )
in the helical and in the paramagnetic states are represented
by the red and blue curves, respectively. Theoretical results
have been scaled to numerically fit experimental data. We find
the excellent agreement between the calculated results and
the experimental data for the direct resistivity. In addition, in
Fig. 10(b) we demonstrate the temperature dependence of ρ⊥.
The theory predicts the growing anomalous Hall resistivity in
the helical phase and no anomalous Hall current in the param-
agnetic state at T > TC . As mentioned above, the anomalous
Hall resistivity takes place only for anisotropic bands. In
the absence of the helicity the bands are isotropic. Conse-
quently, the anomalous anomalous Hall conductivity vanishes.
If the spin-orbit interaction for conduction electrons is
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FIG. 9. (a) Direct and (b) anomalous Hall conductivities for θ = π/2, the helical state. The blue curves represent the conductivities for the
upper band, and the red curve is for the lower band. The black lines represent the total electroconductivity. In the insertion the derivative of the
direct component of the conductivity over chemical potential is presented.

included, the anomalous Hall conductivity may go to another
finite value.

The model we use for the calculations does not precisely
represent MnSi. For example, it does not include many-band
structure of MnSi, the bands are not shaped in such a complex
way as in the real material, and the spin-orbit coupling for
conduction electrons is not considered here. Nevertheless, the
theory is capable to recognize and explain some of the effects
observed in the experiment. Another way to investigate the
particular material is to consider a realistic band structure
from DFT calculations because Eqs. (7) and (8) are not re-
stricted to parabolic energy bands. If a many-band structure is
considered, the predicted effects still remain. Indeed, multiple
nonparabolic bands are split in the same way as parabolic
ones, and transitions due to electron-acoustic phonon scatter-
ing will still take place. More kinks similar to observed in

Figs. 4, 7, 9 may occur due to the complex shape of energy
bands but the behavior of the resistivity at the phase transition
should not change.

The temperature dependence of the electroconductivity
stems from the two factors: (a) the equilibrium Fermi dis-
tribution function in the Boltzmann Equation (9) and (b) the
Bose-Einstein distribution function in the expression for the
transition probability matrix (15). In the high temperature
limit, the latter yields W ∼ T and therefore, conductivity
σ ∼ 1/T or resistance ρ ∼ T .

VI. BERRY CURVATURE

It is important to understand whether conical spin-spiral
textures are topological structures causing the anomalous Hall
effect. In order to calculate Berry curvature in a real space,

FIG. 10. Temperature dependence of the hole resistivity for a MnSi single crystal, (a) direct and (b) anomalous Hall components. The red
and blue curves are theoretical and the black curve in (a) is experimental (see Ref. [18]). JS0 = 0.07 eV, m∗ = 0.5me, n = 7.5 × 1019 cm−3,
the period of the spiral is 36 lattice constants.
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we employ the unitary transformation approach where we are
looking for a unitary transformation, which diagonalizes the
conical potential,

Û †(σ̂ · n)Û = σ̂ · ez, (26)

where Û is given by the following equation:

Û =
(

cos θ
2 sin θ

2 e−iϕ

sin θ
2 eiϕ − cos θ

2

)
. (27)

Here ϕ(z) is a polar angle for the unit vector along the mag-
netization direction n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). By

using the unitary transformation, the Hamiltonian becomes

Û †ĤÛ = Û † p2Û

2m
− JS0σz = (Û † pÛ )2

2m
− JS0σz

= (p − ih̄Û †(∇ · Û ))2

2m
− JS0σz. (28)

Then the product Û †∇ · Û can be expressed in the follow-
ing way:

Û †∇Û =
(

i
2 (1 − cos θ )(∇ϕ) 1

2 e−iϕ[(∇θ ) − i sin θ (∇ϕ)]
1
2 cos θ

2 eiϕ (∇θ ) + i sin θ
2 eiϕ (∇ϕ) − i

2 (1 − cos θ )(∇ϕ)

)
. (29)

We assume that the electron remains on the same energy
band as it travels in r space and cannot flip between states, and
use adiabatic approximation, setting off-diagonal elements of
Eq. (29) to zero [21]. Using this approximation and the (1,1)
diagonal matrix element in Eq. (29), we obtain the effective
vector potential,

A↑↑ = Aad = h̄

2e
(1 − cos θ )(∇ϕ). (30)

Because the parameters depend only on the coordinate z,
the curl of the vector potential vanishes,

Beff = h̄

2e
∇ × (1 − cos θ )(∇ϕ)

= h̄

2e
[∇(1 − cos θ )] × (∇ϕ) = 0. (31)

Thus, we have proved that there is no effective magnetic
field resulting in the absence of topological Hall effect. We
also have found that the chirality change (κ → −κ) does
not affect electronic structure and transport properties. That
was checked numerically and also can be understood from
the symmetry considerations: κ is included into the equa-
tions as (kz ± κ/2)2, and replacing κ → −κ is equivalent to
kz → −kz. For the band structure it results in mirroring the
Fig. 1, and the conductivity tensor is diagonal, so the transport
properties also must stay the same.

VII. CONCLUSIONS

In this paper we propose the theory of transport properties
in conical helimagnets. The system is described by Hamil-
tonian (1), where the conical potential is considered in the
continuum approximation. In this Hamiltonian we do not in-
clude spin-orbit coupling for conduction electrons. We should
note that helimagnets can exist without Dzyaloshinskii-
Moriya interaction. The helical structure can be due to the
electron exchange interaction in FeP crystals as discussed in
Ref. [5].

We diagonalize Hamiltonian (1) and find the energy
bands ε1(k) and ε2(k) with corresponding eigenfunctions [see

Eqs. (7) and (8)]. For the derivations, the crystal band structure
ε0(k) has been chosen in the most general form.

For the lower band ε1(k), there are four different cases
depending on the parameters: (a) the spherical paraboloids,
(b) helical where ε1(k) has one minimum, (c) ε1(k) has two
symmetric minima corresponding to a helical state, and (d)
ε1(k) is asymmetric and has one or two minima in the conical
phase. We have calculated the electroconductivities for differ-
ent cone half-angles θ (see Fig. 2). We have found that in the
conical state there is an anomalous Hall component in electric
conductivity. However, we have proven that the Berry curva-
ture vanishes and therefore, the nature of the anomalous Hall
electroconductivity is nontopological. We have shown that the
origin of the anomalous Hall current is caused by the interplay
of the decrease of the momentum space in the z direction and
the restrictions imposed by spin-forbidden transitions in ac-
cordance with Equation (7). We have proven that the chirality
does not affect electronic structure and transport properties.
To find the electroconductivites, we have used the semiclas-
sical approach based on the Boltzmann Equation (9), which
has been solved numerically. The relaxation mechanism is
due to the electron-phonon interaction. For MnSi pure crystals
we have proven that the optical phonons do not contribute
because of the large frequency values, hνopt � kBTC . We have
found that the transition rate matrix has nondiagonal matrix
elements causing the interband transitions. As demonstrated
in Fig. 8, the transitions between the bands are strong for
higher chemical potentials. In this paper we vary only two
parameters: chemical potential and temperature. The former
can be changed by applying gate voltage. We have compared
the proposed theory with the experiments. The theory has
been verified by the comparison with the experimental tem-
perature dependence of the direct resistivity at the helical
to paramagnetic phase transition at TC = 29 K. As shown in
Fig. 10(a), the resistivity abruptly increases at T = TC . The
excellent agreement between the theoretical calculations and
the experimental data has been found. We have also predicted
that the anomalous Hall resistivity has the abrupt behavior
dropping to zero in the paramagnetic phase or another value
if the spin-orbit coupling is not small. It could be a good
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test of the theory if the anomalous Hall conductivity vanishes
or have the nonzero value in the ferromagnetic phase. In the
former case the proposed theory is true and in the latter one
consideration of spin-orbit coupling for conduction electrons
is necessary.
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