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Multipole decomposition method is a promising tool for investigation of radiating or scattering responses of
electromagnetic sources or particles. It works even in the case of relatively complicated and compound scatterers
like multilayer particles, clusters, or asymmetrical systems. Commonly, the radiation fields of point electric
or magnetic sources are decomposed only into electric or magnetic dipole moments, while real sources can
be described by a series of multipoles, including higher multipoles and toroidal moments. In this paper, we
introduce the concept of modified multipoles describing real sources of electric, magnetic, and toroidal types.
Using the analytical expressions of first-order multipoles, we discuss how they depend on the position of the
center of radiation, as well as on the shift of the source, relative to the center of coordinates. We present results of
multipoles for the sources with defects and asymmetry. The long-awaited question about distinguishing radiation
patterns of electric and toroidal dipole moments in a far-field zone is discussed and solved in this paper. We
show that radiation patterns of shifted electric and toroidal dipoles can be rotated to different angles relative
to each other due to shifting. Moreover, we discuss modified anapoles. Our modified dipole approach will be
useful for multipole analysis of complex systems in photonics such as nanoparticle clusters, metamaterials, and
nanoantennas, as well as for better understanding issues of toroidal electrodynamics.
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I. INTRODUCTION

Sources of electromagnetic radiation are widely repre-
sented in various spectral regions from radio waves to x-ray
[1,2]. Electromagnetic systems have been known since the
works of Hertz and they are converters of signals supplied to
them into radiation energy [3,4]. Generally, characterizations
of antennas and scatterers of electromagnetic waves are based
on the concept of electric and magnetic dipole moments as
well as their modification—the Huygens element that is the
simplest type of multipole interaction [5].

Due to the progress in modern nanophotonics, the sci-
ence of the light interaction with subwavelength metaparticles
and metamaterials is based on more complex electromagnetic
effects such as Fano resonances [6–8], the effect of elec-
tromagnetically induced transparency (EIT) [9–11], Kerker
effect [12–16], anapole states [17–23], and bound states in
the continuum (BIC) [24] in which electrodynamics is no
longer limited to a description of interactions of only elec-
tric and magnetic multipoles but also quadrupoles, toroidal
interactions, and, even more, moments of mean-square radii
[25–28]. Multipole effects pave the way for the design of
open high-Q subwavelength resonators, cloaking devices, and
invisible nanoparticles, as well as biological and chemical
sensors [6,13].

A well-proven tool for describing the electrodynamics of
such particles is the method of multipole expansion in spher-
ical and Cartesian harmonics [5]. This theoretical approach
was considered by Mie in 1908 [29,30], who introduced
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the concept of electric and magnetic moments for spheri-
cal and cylindrical particles. Moreover, multipole definitions
in Taylor multipole expansion are different from the ones
considered in the multipole expansion in terms of spherical
harmonics. Recently, there has been hot discussion about the
relevancy to consider toroidal multipoles as separate mem-
bers of a multipole series [31–33]. In particular, toroidal
multipoles are independent terms in the Cartesian multipole
decomposition. However, it is included as part of the elec-
tric moment in the spherical expansion. Both methods work
well for identical particles. A comprehensive discussion of
the topics related to different multipole decompositions for
applications in nanophotonics can be found in Ref. [33].
Thus, both methods of multipole decomposition are needed
as tools for explaining the radiation/scattering characteristics
of objects. In particular, it was demonstrated that in some
cases (in long-wavelength approximation) it is convenient
to use the Cartesian multipole expansion because it gives
fewer terms in the multipole expansion series. Moreover, the
spherical multipole expansion is not enough to explain the
anapole effects. It does not evaluate the origin of the sup-
pressed scattering of the particle but explains it in a Cartesian
decomposition, as a result of destructive interference between
electric and toroidal dipole moments [18]. The requirement
to take toroidal multipoles into account in many systems has
been proven excessively over the years [18,34,35]. From the
physical point of view, the introduction of toroidal multipoles
allows the prediction and interpretation of unique physical
effects like anapole [17,18] and pseudo-anapole states [36],
superdipoles [37], and nullifying of multipoles in metama-
terials [38]. Commonly, the radiation fields of elementary
electric and magnetic sources are decomposed only into these
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moments. Thus, a point electric dipole is described solely by a
pure electric dipole moment, while a loop of zero radius with
an electric current is described by a magnetic dipole moment,
and the rest of the multipoles are supposed to tend to zero.

Meanwhile, in the electrodynamics of metamaterials, ar-
tificial negative magnetism is mainly delivered by a split
ring resonator (SRR) [39] and, very often in the literature,
unconditionally, a SRR is characterized by a pure magnetic
moment without paying attention to the contribution of other
multipoles to the radiation. However, one can address a valid
question on the difference between a closed loop with a cur-
rent and with a split one. Obviously, a closed loop cannot be
characterized by an electric dipole moment at all, but a split
ring must acquire it.

The second question that arises on the multipole analysis
of metaparticles is the choice of the radiation center of mul-
tipoles. Even for a SRR, whose geometric center is no longer
coincident with the center of the ring, there is a principal
choice of the center affecting the selection of the multipole
series. It was shown and thoughtfully discussed [40] that
multipole moments, except for zero-order multipoles, depend
on the choice of origin in the same way that lower order
multipoles define the change of the higher order multipoles.
As long as the previous terms in the multipole series are
nonzero, they apparently suffer from a shift of the center of
mass [41,42].

The obvious consequence is the uncertainty of performing
multipole expansion of a compound media as well as the
question of placement of a nonpoint source with respect to the
origin. The fundamental point distinguishing metamaterials
from homogeneous media is that the size of the meta-atoms
is proportional to the distance between them, as well as their
inclusions being not much less than wavelength. There is
no chance to consider a series with only low-order dipole
interaction between inclusions, therefore, one should take into
account the higher order multipoles [43]. In particular, chiral
particles were thoroughly described in Ref. [44]. Their chi-
rality was explained from the point of view of quadrupole
moments that were calculated with respect to the center of
particles. However, the geometric center of the system was
not considered, which led to alternative conclusions about the
origin of the chirality of the composite particles, as discussed
in Ref. [43] (formula 17, p. 172). In this paper, we argue that
the position of the source in its center of mass of the system
is crucial for the accurate calculus of multipole moments,
especially for the case of secondary multipole decomposition
[45].

Recently, such effects as Fano-resonance, the effect of
EIT, bound states in the continuum, and anapole modes
have a general approach for using hybrid particles for their
excitation, consisting of several meta-atoms, some of them
being asymmetric, leading to interference between particles
[24,35,37,38,46,47]. Thus, the question of the secondary
multipole analysis of the multipoles excited in complex meta-
molecules still remains open. Each element of a hybrid
metamolecule is characterized by its own set of multipoles,
which are placed relatively to the common center of the meta-
molecule [45].

The overall scattering of hybrid metamolecules can be
defined by their individual responses in long-wavelength

FIG. 1. Radiated electromagnetic dipoles and their multipole
contributions.

approximation. For this aim, one can apply the secondary
multipole decomposition method introduced by Tuz et al.
[45]. In particular, they showed how multipole moments of
an all-dielectric trimer are related to the multipole moments
of individual disks which make up a trimer. As a result,
the collective toroidal mode is defined by coupling between
magnetic modes of disks.

To demonstrate the electrodynamics of modified multi-
poles, we organize our paper as follows:

(1) We consider modified first-order multipoles—electric,
magnetic, toroidal—to show how the deformation of real
(nonpoint) dipoles leads to the appearance of the entire family
of dipole moments, which must be taken into account for the
correct analysis of metamolecules.

(2) We demonstrate a procedure for choosing the center
of radiation for calculating the dipole moments of asymmetric
structures.

(3) We will show that a source moved from the coordinate
center possesses a unique set of multipoles. Moreover, we
demonstrate different types of modified anapoles, arising due
to the shifting of the source center.

(4) We discuss the long-awaited question of distinguishing
toroidal and electric dipole moments in the far field using the
example of modified dipole moments.

II. MODIFIED DIPOLES

We depart from the obvious electric, magnetic, and toroidal
real sources: electric dipole—straight wire with current;
magnetic dipole—closed loop with current; and toroidal
dipole—solenoid with current (Fig. 1). The geometry of each
source is given by radii vectors obeying the parametric equa-
tions of sources [48]:

for electric dipole:

rel = (0, 0, dz ); (1)

for magnetic dipole:

rmag = (R cos ϕ, R sin ϕ, 0); (2)
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for toroidal dipole:

rtor =((D − R cos nϕ) cos ϕ,

(D − R cos nϕ) sin ϕ,

R sin nϕ),

(3)

where ϕ is the angle between x axes and radius vector r
projection onto the xy plane (0 < ϕ < 2π ), D—torus radius,
R—the radius of its rings, n—number of windings, and dz is
the length of electric dipole.

The dipoles under investigation are assumed to be made
of infinitely thin wire. Assuming the uniform current flow I
along the wires, we define a current element as jdV = Idr.
Then the current must be introduced into multipole moments
equations as dr = dr

dϕ
dϕ. We assume that the multipole mo-

ments can either be extracted from the induced currents or
calculated from the dynamics of charge and current densities
anticipated for the sources.

Then, we can write lower order multipoles in parametric
form:

electric dipole moment:

p = I

iω

∫ ϕ1

ϕ0

dr
dϕ

dϕ; (4)

magnetic dipole moment:

m = I

2c

∫ ϕ1

ϕ0

[
dr
dϕ

× r
]

dϕ; (5)

toroidal dipole moment:

T = I

10c

∫ ϕ1

ϕ0

[(
r · dr

dϕ

)
r − 2r2 dr

dϕ

]
dϕ, (6)

where ϕ0 and ϕ1 define the limits of integration. The limits
ϕ0 = 0 and ϕ1 = 2π give a closed loop configuration and
the finite limits ϕ0 = −ϕ1 give a split configuration. At small
values ϕ0 = −ϕ1, Eq. (2) of the ring transforms into Eq. (1)
and determines a straight line section with current.

The structure of sources ensures some distinct electromag-
netic properties. Excitation of their modes is manifested as
resonant features in radiating spectra. Obviously, the electric
dipole source is characterized by only the electric dipole mo-
ment and the magnetic dipole is defined by solely magnetic
dipole moment Fig. 1. The toroidal solenoidlike wire config-
uration is characterized by the toroidal dipole moment, as it
would also support a strong magnetic dipole moment because
of the helical nature of its windings [48].

We study the far-field radiation of these sources by electric,
magnetic, and toroidal multipole families, as demonstrated by
Savinov et al. ([49], Appendix B).

A. Modified electric and magnetic dipoles

Under this study, we derive modified electric and magnetic
dipole moments for current rings and observe the radiation
properties due to geometry transforming from magnetic to
electric dipole sources, according to Eqs. (1) and (2). We
assume the radius of ring R = λ

2 , where λ is the wavelength.
Within the limits of integration ϕ0 = 0 and ϕ1 = 2π , the

FIG. 2. The modifications of electric/magnetic dipole and their
total radiation patterns.

closed ring is characterized only by the magnetic dipole mo-
ment, since there is no electric dipole moment for a closed
configuration:

p = 0,

mx = 0

my = 0,

mz = IR2π

c
,

T = 0. (7)

However, the contribution of the multipoles changes dra-
matically when a gap appears in the ring. In this case, the
appearance of an electric dipole moment and an accompany-
ing toroidal moment is inevitable. One can imagine that the
split ring is being stretched, thus transforming from a mag-
netic dipole into an electric one. Accordingly, the radiation
pattern of the magnetic dipole is turned at a π/2 angle in
the case of an electric dipole and for an intermediate state
resembles the radiation pattern of the Huygens element with
simultaneously excited electric and magnetic dipole moments,
Fig. 2.

We assume that the ring is located in the xy plane. In the
case of integration within the limits −ϕ0, ϕ0, a nonzero com-
ponent py of the electric dipole moment and Ty component
of the toroidal moment appear in the system and they also
depends on ϕ0:

px = 0,

py = 2IR

iω
sin ϕ0,

pz = 0,

mx = 0,

my = 0,
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FIG. 3. Dependence of the multipoles intensities over the angle of the curve for different position of radiating center of multipoles.

mz = 1

2c
IR2ϕ0,

Tx = 0,

Ty = −−2I

5c
R2 sin ϕ0,

Tz = 0. (8)

Here, the mz component of the magnetic dipole moment
depends on ϕ0 and tends to zero at small integration angles.
Indeed, in this case, the ring equation describes the linear
section of the electric dipole. It becomes obvious that only
a closed ring with current possesses a pure magnetic dipole.
At the same time, only a straight-line section with the current
has a pure electric dipole. Within the intermediate limits of
integration, the contribution to the response can be defined by
all multipoles of electric, magnetic, and toroidal families.

We underline that the dipole moments (except for the
electric dipole moment) depend on the choice of the reference
point—the radiation center of the system coinciding with
the center of mass. In the case of a symmetric system, its
geometrical center coincides with the center of radiation,
while in the case of asymmetric system, incoincidence of
their centers leads to incorrect multipole contributions. The
center of radiation must be determined in the same way as
the center of mass is chosen in mechanics by integration of

particle volume [43,45]:

rcm =
∫

r�(r)dV∫
�(r)dV

, (9)

where, � is density of wire, in our case, thin wire possesses
� = 1 in each point of wire.

We note the importance of the setting of the radius vector
on the origin of the wire in its center of mass for result correct-
ness as is demonstrated in Fig. 3. In this plot, we present the
dependence of multipoles intensities [Eq. (10)] over the angle
of the radiating loop.

Ip = 2ω4

3c3
|p|2, Im = 2ω4

3c3
|m|2, Ip = 2ω6

3c5
|T |2. (10)

One can place the radiation center either in the center of the
loop or on the loop—we obtain the correct results only when
the radiating center is on the center of mass of the wire. If
we set the radiating center on the geometrical center of the
loop, we obtain the correct result for the magnetic dipole
(i.e., closed loop), however, for the electric dipole (straight
wire) we obtain that the magnetic dipole moment is higher
than the electric dipole moment. Likewise, when we set the
radiating center of the loop on the center of the electric dipole
(|ϕ1 − ϕ0| −→ 0), we get the correct results only for case of
the electric dipole moment, while for the closed current loop
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we get a nonzero toroidal dipole moment which is physically
wrong. As long as the center of mass of the curve is taken
into consideration, the calculation of the multipole moments
can be handled regularly. For clarity, we plot Fig. 3 on a
logarithmic and linear scale.

Importantly, these results lead to the conclusion that SRRs
are not purely magnetic elements, since the toroidal dipole
moment is still quite high for the small values of the gap.
Moreover, using the case of a SRR, we conclude that splitting
of any system always leads to the appearance of an electric
dipole moment. On the other hand, the bending of the system
is always accompanied by magnetic and toroidal dipole mo-
ments due to the excitation of circular and poloidal currents,
respectively.

B. Modified toroidal dipole

Meanwhile, a reasonable question remains: Does the de-
formation of the toroidal dipole source lead to the appearance
of an electric dipole moment?

Let us consider the parametric Eq. (3) of a toroidal dipole
source and add a small perturbation by the factor 1 + αϕ to the
z component responsible for the deformation of the toroidal

source:
rtor =((D − R cos nϕ) cos ϕ,

(D − R cos nϕ) sin ϕ,

R(1 + αϕ) sin nϕ).

(11)

If α = 0, Eq. (11) turns into the form of an ordinary toroid,
Eq. (3). Accordingly, if α > 0, then we go to the equation of
a toroid stretched on one side; if α < 0, we get compressed
form.

Direct calculation of the dipole moments by Eqs. (4)–(6)
leads to the following expressions for multipole components
of modified toroid:

px = 0,

py = 0,

pz = 0,

(12)

mx = 2

c

αInπR(−D + 4Dn2R + R − 3n2R + 2n4R)

1 − 5n2 + 4n4
,

my = 0,

mz = 1

2c
Iπ (2D2 + R2),

(13)

Tx = 20

c

αIn2π (1 + απ )R2[D(−1 + 10n2 − 9n4) + R(1 − 7n2 + 12n4)]

−1 + 14n2 − 49n4 + 36n6
,

Ty = −20

c

α2In2πR2[D(−3 + 4n2)(1 − 10n2 + 9n4)2 + R(1 − 4n2)2(3 − 22n2 + 51n4)]

(1 − 14n2 + 49n4 − 36n6)2
,

Tz = 1

2c
DIR2nπ (1 + απ ).

(14)

If α = 0, multipoles correspond to the dipole moments
of the pure toroid obtained earlier by Afanasiev [50] and
Marinov et al. [48]:

px = 0,

FIG. 4. The modified toroidal dipole sources and their total radi-
ation patterns.

py = 0,

pz = 0,

mx = 0,

my = 0,

mz = 1

2c
Iπ (2D2 + R2),

Tx = 0,

Ty = 0,

Tz = 1

2c
DIR2nπ. (15)

Note that a pure toroid (α = 0) is characterized by zero
electric dipole moment p. This is quite obvious, since the
system is closed. At the same time, the mz component of the
magnetic dipole moment appears and, moreover, is indepen-
dent on the number of turns n. Toroidal moment component
Tz is also aroused in the system and possesses a symmetric
radiation pattern (Fig. 4) that resembles the radiation pattern
of the electric dipole, however, the current distribution of the
toroidal dipole is different from the electric one.

As far as we know at this moment, there is no method
allowing detection of whether the electric or toroidal source
is radiating in the far-field zone [19,34]. However, in this
part of the paper, we pay attention to the fact that with the
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FIG. 5. Multipole components intensities [Eq. (10)] of modified
toroid over α.

modification of the geometry of the toroidal source (without
breaking the solenoid), only the toroidal moment components
are changing, while the electric dipole moment remains zero
as for pure toroid.

In particular, in addition to the z component of the mag-
netic moment, an x component arises and depends on the
number of windings n. At large values of α → π , the radiation
pattern of the magnetic moment is turned.

It is noteworthy that the toroidal moment of the modified
solenoid has all three components. For lower values of α, Tx

and Ty components are negligible, however, the are increasing
significantly for large α (Fig. 5), so toroidal moment radiation
pattern acquires a pronounced asymmetry (Fig. 4), namely,
the donut shape of its radiation pattern is stretched and tilt-
ing. Thus, the total radiation pattern of the modified toroidal
dipole is mainly determined by the contribution of the toroidal
moment, while the magnitude of the magnetic moment is
small and does not contribute to the entire radiation. The total
radiation pattern (Fig. 4) is also asymmetric at higher values
of α. At the same time, the electric dipole moment is still zero.

Let us note below the main features of the modified dipole
radiation.

(1) An electric dipole moment is always present in a radi-
ating system that has a split.

(2) A closed system of currents is always characterized by
a magnetic dipole moment. If the number of turns is more
than one, n > 1, inside the source, it leads to toroidal moment
manifestation.

(3) Modification of the toroidal source affects only
toroidal moment components leading to asymmetry of the
radiation pattern. Meanwhile, the electric dipole moment in
the system is equal to zero.

(4) Due to such asymmetry of the radiation pattern, it is
possible to detect the difference between the radiation pattern
of the electric and toroidal moment in the far field zone, if
one modifies the source and knows a priori that the source is
closed.

(5) Modification of an electric dipole does not lead to the
asymmetry of its radiation pattern.

III. COMPENSATION OF THE TRANSLATION
DEPENDENCE

Generally, definitions for dipole moments are used for
sources located at the center of radiation. In this case,
the center of mass of the system (the center of radiation)
coincides with the geometrical center of the source. However,
in the case of a source moving from the coordinate center due
to experimental or fabrication errors, as well as compound
sources consisting of several elements located at a distance
from each other, this approach is not always correct. This is
especially typical for the study of clusters of metamolecules.

For this aim, we consider sources characterized by a set of
multipoles. We analyze the definitions for electric, magnetic,
and toroidal dipole moments for a source shifted from the
coordinate center and consider it by translation vector d. For
this purpose, radius vector r in the equations for multipoles,
Eq. (16) is replaced by r − d. Indeed, the electric dipole
moment is not changed due to independence from radius
vector r. However, the magnetic and toroidal dipole moments
are changed dramatically since extra multipoles arose in the
system.

Indeed, a shift in the system of multipoles leads to the
appearance of additional multipole terms of another family in
multipole decomposition, which we denote by symbol ∼. We
also add common formulas for electric and magnetic modified
quadrupoles:

p̃i = 1

iω

∫
jid

3r = pi,

m̃i = 1

2c

∫
[(r − d ) × j]id

3r = mi − iω

2c
(d × p)i,

T̃i = 1

10c

∫
[(r − d ) · j](r − d )i − 2(r − d )2 jid

3r

= Ti − iω

5c
pid

2 + iω

10c
pid

2
i + iω

10c
did j p j + iω

10c
didk pk + 3

10
[m × d]i + ω

10ci
d jQ

e
i j + ω

10ci
diQ

e
ik + 3ω

20ci
dkQe

ii,

Q̃e
i j = i

ω

∫
[(r j − d j ) ji + (ri − di ) j j ) − 2

3
δ((r − d ) · j)]d3r

= Qe
i j + d j pi + di p j − 2

3
δ(d · p),
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Q̃m
i j = 1

3

∫
[(r − d ) × j]i(r − d ) j + (r − d )i[(r − d ) × j] jd

3r

= Qm
i j + 1

3c
iωdidk pi − 1

3c
iωd jdk p j + iω

3c

(
d2

j − d2
i

)
pk − d jmi − 1

3
dimj − ω

6ic
d jQ

e
jk + ω

6ic
diQ

e
ik + ω

6ic
dk

(
Qe

j j − Qe
ii

)
.

(16)

A. Shifted electric dipole

Accordingly, an electric dipole shifted to distance d from
the coordinate center of the system leads to the appearance
of additional nonzero magnetic dipole and toroidal moments.
Importantly, the shift of the system results in unique multi-
poles, which are determined by the multipoles of the unshifted

source. Hence, if the source response is determined only by
the electric dipole moment, then only its contribution estab-
lishes other dipole moments of the shifted source: electric,
magnetic, and toroidal due to the terms, including the electric
dipole moment as well as other terms in Eq. (16), should
be zero. The multipoles of the shifted electric dipole are the
following:

p̃i = pi,

m̃i = − iω

2c
(d × p)i,

T̃i = − iω

5c
pid

2 + iω

10c
pid

2
i + iω

10c
did j p j + iω

10c
didk pk + ω

10ci
d jQ

e
i j + ω

10ci
diQ

e
ik + 3ω

20ci
dkQe

ii,

Q̃e
i j = Qe

i j + d j pi + di p j − 2

3
δ(d · p),

Q̃m
i j = 1

3c
iωdidk pi − 1

3c
iωd jdk p j + iω

3c

(
d2

j − d2
i

)
pk − ω

6ic
d jQ

e
jk + ω

6ic
diQ

e
ik + ω

6ic
dk

(
Qe

j j − Qe
ii

)
. (17)

The presence of magnetic and toroidal moments in the
multipole contribution of the shifted electric dipole leads to
tilting and stretching of the radiation pattern of the source via
the appearance of x and y components of the magnetic and
toroidal moments (Fig. 6).

B. Shifted magnetic dipole

On the one hand, it is clear that absence of electric mul-
tipoles in the source does not lead to multipole terms when
the system is shifted. Thus, in the case of a magnetic dipole
(ring with electric current) shifted to distance d from the
coordinate center, the multipole response is characterized by

FIG. 6. Radiation patterns of shifted sources.

the magnetic dipole moment and toroidal dipole moment:

p̃i = 0,

m̃i = mi,

T̃i = 3
10 [m × d]i,

Q̃e
i j = 0,

Q̃m
i j = Qm

i j − d jmi − 1
3 dimj .

(18)

Indeed, results become obvious if we imaginary rotate
a ring with current around the center of radiation, thereby
producing virtual poloidal currents. This is a reason for the
occurrence of a toroidal moment in the system. Moreover, due
to the closed currents in the ring, the electric dipole moment
disappears even when the ring is shifted. Using the magnetic
dipole (current ring) as an example, we demonstrate that the
magnetic dipole moment does not change when the ring is
translated by the vector d. The presence of a z component
of the magnetic dipole moment leads to excitation of x and
y components of the toroidal dipole moment, resulting in an
asymmetrical radiation pattern as shown in Fig. 6.

C. Shifted toroidal dipole

In the case of a shifted toroidal dipole, the magnetic dipole
moment also remains the same as in the system without an
electric dipole moment and there is only the first term in
Eq. (16). On the other hand, the toroidal dipole changes with
the occurrence of an extra component proportional to the
magnetic dipole moment. Thus, the radiation pattern of the
shifted toroidal source (Fig. 6) becomes asymmetric due to
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the occurrence of components proportional to the magnetic
dipole moment, as in the following from Eq. (19):

p̃i = 0,

m̃i = mi,

T̃i = Ti + 3
10 [m × d]i,

Q̃e
i j = 0,

Q̃m
i j = Qm

i j − d jmi − 1
3 dimj .

(19)

For a toroidal dipole (solenoid) shifted from the origin, the
magnetic dipole moment is the same as for a system without
an electric dipole moment whenever the toroidal dipole is
different and its radiation is responsible for the asymmetry of
the radiation pattern changing, as shown in Fig. 6.

Moreover, comparison of the total radiation patterns of the
modified electric and toroidal sources may cause confusion:
Why are they rotated by π/2 relative to each other? On the
one hand, with a small shift of the toroidal source by d = λ/2,
equal to half the outer radius of the toroid, it becomes obvious
that the distribution of the near zone of the source plays a
role in the formation of radiation. In the toroid, the currents
are concentrated in the volume, which contrasts to an electric
dipole. When comparing the formulas for the dipole moments
of shifted sources, one can note the difference in the modi-
fied toroidal moments of the electric dipole source, Eq. (20),
and toroidal dipole sources, Eq. (21). For example, when the
sources are oriented along the z axis, the Tx component of
the toroidal source is negative, Eq. (21) and it leads to the
rotation of the pattern, that is, in contrast with an electric
source. This is an important fundamental difference between
the far-field radiation of toroidal and electric dipoles, which
can be revealed in future experiments.

For a shifted electric dipole oriented along z:

T̃x = 0,

T̃y = 0,

T̃z = iω

10c
[(dxdz )pz].

(20)

For a shifted toroidal dipole oriented along z:

T̃x = − 3
10 mzdy,

T̃y = 3
10 mzdx,

T̃z = Tz.

(21)

D. Difference between radiation of electric and toroidal
dipole sources

Indeed, the radiation patterns of electric and toroidal dipole
moments are identical in the far-field zone. Moreover, three
multipole families (electric, magnetic, toroidal) are needed
to describe the source, and only two (electric and magnetic
spherical multipoles) are needed to describe the fields radiated
by them [31]. Moreover, Fernandez-Corbaton et al. estab-
lished that the electric and toroidal parts cannot be separately
determined by measuring the electromagnetic fields produced
by the source outside its region or by measuring its coupling to
external electromagnetic waves. Indeed, electric and toroidal

FIG. 7. Shifted (a) electric and (b) toroidal sources.

dipole moments radiate with an electrical-type pattern; sim-
ilarly, it is also true that they radiate with a toroidal-type
radiation pattern. This is especially correct in the case of a
solenoid whose electric dipole moment is exactly zero.

Therefore, this statement works only if we compare two
point sources placed in a coordinate center, both electric and
toroidal sources have the same x, y, or z components and
both of them placed in vacuum. Moreover, the intensity of the
multipoles are different if we place the sources in a medium
with refractive index n [34,51]. Thus, if one would like to
observe differences in toroidal and electric multipoles radia-
tion, the modification of the source (position, transformation,
surrounding media) should be performed.

For a demonstration of our approach, we consider two
sources as electric dipole and toroidal dipole, represented as
a thin wire with current and solenoid, respectively (Fig. 7).
Electric dipole has a λ length. We study the evolution of
the total radiation pattern and radiation of each multipole via
shifting of the source from the coordinate center by trans-
lation vector d . If the dipole is placed in the coordinate
center d = (0, 0, 0), the radiation pattern has a symmetrical
shape and is defined by electric dipole moment radiation.
A small shift, d = (λ/10, λ/10, λ/10), is accompanied by
an increase of the intensity of the toroidal, magnetic dipole
moments, and quadropoles (Fig. 10). However, the shape of
their radiation patterns changes slightly with increasing shift d
(Fig. 8).

The shape of the toroidal dipole radiation acquires asym-
metry. Nevertheless, we should note that the electric dipole
moment is unchangeable due to shifting d . It retains its shape
and intensity that follows from Eq. (17) for an electric dipole
moment.
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FIG. 8. Radiation patterns of shifted electric source.

On the contrary, the shifting of the toroidal dipole from
the coordinate center is different. We consider a toroidal
source,—its shape is defined by Eq. (3)—with n = 10, R =
1
3λ, and D = 2

3λ. The multipole decomposition is still devoid
of the contribution of the electric dipole moment and electric
quadropole. For small shifting, the total radiation pattern is de-
fined by asymmetric radiation of the toroidal dipole moment,
which is accompanied by its additional components (Fig. 11).
The shape of the magnetic dipole moment and quadropoles
is independent from shift d . However, intensities of radiated
quadropoles are changed with d and remain unchanged for the
magnetic moment, accordingly with Eq. (19) (Fig. 9).

Moreover, we highlight differences between radiation of
shifted electric and toroidal sources. An electric dipole is
more susceptible to shift. The high contribution of the electric
dipole moment is preserved only for low d < 0.2λ and ac-
companied by toroidal, magnetic moments, and quadropoles.
In the case of a toroidal source, the dominance of the toroidal
dipole is kept for the broadband of d , as well as magnetic
quadropole is growing for large d .

Moreover, the total radiation patterns of shifted electric and
toroidal sources are rotated by π/2 relative to each other,
giving us a chance to observe their differences in far-field
zone due to shifting. Thus, the long-awaited question of dis-
tinguishing toroidal and electric dipole moment radiation in
the far field can be resolved if we perform the real experiment
and measure radiation patterns of both sources shifted from

the coordinate center by translation vector d . This difference
in the radiation patterns of an electric and toroidal source is
a direct confirmation of the physical meaning of the toroidal
moment. We note that the statement about the identity of
the radiation patterns of the toroidal and electric moments is
correct, although it is necessary to make a clarification that it
works only for sources placed in the center of coordinates and
if the sources have the same components x, y or z of moments.
In our case of shifted from coordinate center dipoles, we
observe a difference in radiation patterns measured, however,
relative to coordinate center.

E. Modified anapoles

The presence of extra terms in multipole coefficients leads
to unique kinds of anapoles via destructive interference be-
tween parts of shifted multipoles. We call them modified
anapoles of magnetic type [following from Eq. (18)] and
toroidal type [following from Eq. (19)]. These solutions nul-
lify the magnetic and toroidal moments of the sources via
shifting, along with the usual anapole, that is, destructive
interference between electric and toroidal moments.

In principle, modified anapoles also enable suppressing
radiation of electric or magnetic types. In particular, an elec-
tric anapole is excited due to the shifted electric dipole. In
this case, the source only possesses a modified magnetic
dipole moment, while electric multipoles are suppressed due
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FIG. 9. Radiation patterns of shifted toroidal source.

to a common electric anapole, Table I. Similarly, a modified
toroidal anapole suppresses electric-type radiation, resulting
in only a magnetic dipole moment in the system. Thus, shifted
electromagnetic sources relative to the center of radiation can
acquire the properties of multipoles of other families due to
the appearance of anapoles of the common and modified types
suppressing their proper type of radiation.

FIG. 10. Intensities of radiated dipoles of the shifted electric
source over its shift.

F. Independence multipoles contributions on the
translation of the source

Furthermore, a reasonable question is about whether there
is a system comprising a set of all multipoles regardless of the
shift of the system center, so modified multipoles correspond
to multipoles of unshifted ones. For this aim, we consider
a double solenoid system independent of the placement of
the system center up to quadrupole moments. Marinov et al.
[48] proposed a configuration that allows one to suppress the
magnetic dipole moment and quadrupole in a solenoid of two
wires wound in opposite directions, as described by the radii
vectors in Eq. (22):

rtor =((D − R cos nϕ) sin ϕ,

(D − R cos nϕ) cos ϕ,

R sin nϕ),

rrev
tor =((D − R cos nϕ) cos ϕ,

(D − R cos nϕ) sin ϕ,

R sin nϕ).

(22)

Toroidal, magnetic dipole, and magnetic quadrupole mo-
ments are now calculated as T1 = T2, m1 = −m2, and Qm1 =
−Qm2. Thus, a double-wound toroidal solenoid has a zero net
magnetic dipole and magnetic quadrupole moments whereas
the toroidal moment of the structure is twice that of a single-
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TABLE I. Modified anapoles and their general and common definitions.

Anapoles
Common electric

anapole
Modified magnetic

anapole Modified toroidal anapole

General expression p̃ = −ikT̃ m = iω
2c (d × p) Ti = iω

5c pid2 − iω
10c pid2

i − iω
10c did j p j − iω

10c didk pk

− 3
10 [m × d]i − ω

10ci d jQe
i j − ω

10ci diQe
ik − 3ω

20ci dkQe
ii

Electric source p̃ = −ikT̃ iω
5c pid2 − iω

10c pid2
i − iω

10c did j p j − iω
10c didk pk

− ω

10ci d jQe
i j − ω

10ci diQe
ik − 3ω

20ci dkQe
ii = 0

Magnetic source -

Toroidal source Ti = − 3
10 [m × d]i

wound torus: 2T . In the case of shifting of the double-toroidal
source, its multipole contribution is described only by the
toroidal moment and radiation pattern of the double-toroidal
source shifted by d , similar to the system positioned in the
coordinate center, up to higher multipoles.

Here, we summarize and highlight the following mecha-
nisms of the shifting of dipole sources from the coordinate
center of the system:

(1) The shifting of the electric dipole source is accom-
panied by the occurrence of magnetic and toroidal dipoles
proportional to the electric dipole moment of the source.
However, the electric dipole moment remains unperturbed in
comparison with the electric dipole placed in the center of
radiation.

(2) The shifting of the magnetic dipole source is accompa-
nied by a magnetic dipole moment and occurance of a toroidal
dipole moment proportional to the magnetic dipole moment of
source.

(3) The shift of the toroidal dipole source is accompanied
by a magnetic dipole moment equaling the magnetic moment
of the centered torus. However, the toroidal dipole moment
consists of a toroidal dipole moment of the centered torus and
proportional term to the magnetic moment.

(4) Indeed, all sources with shifted centers suffer from
excitation of extra magnetic and toriodal dipole moments.
However, only electric dipole source possesses an electric
dipole moment. The main difference between shifted mag-
netic and toroidal sources is the presence of a toroidal term,
an unshifted toroidal dipole moment.

(5) The radiation patterns of the electric and toroidal
dipoles can be shifted by π/2 relative to each other, which
is a way to distinguish them in the far-field zone.

IV. SECONDARY MULTIPOLE DECOMPOSITION

Here we demonstrate several examples of a modified
multipole approach to explain effects in compound sys-
tems. Recently, Tuz et al. [45] proposed secondary multipole
decomposition for explanation of interference effects in clus-
ters of metaparticles. Metaparticle clusters are the building
blocks for demonstrating such high Q-factor effects as Fano-
resonance, EIT, lattice Kerker effects, etc. From multipole
analysis of such clusters, it must be taken into account that
the contribution of the modified multipoles will explain the
contribution of the entire system.

A. Toroidal dipole excitation due to modified dipoles

Let us consider a system consisting of four magnetic dipole
moments placed in an xy plane distanced from the center at a
distance d (Fig. 12).

We use our modified multipole approach and definitions
for the magnetic dipole shift and we get modified multipoles
for each of the four dipoles.

Dipole 1 :

p̃i = 0,

m̃i = mx,

T̃z = 3
10 [mxdy].

(23)

Dipole 2 :

p̃i = 0,

m̃i = −my,

T̃z = 3
10 [mydx].

(24)

Dipole 3 :

p̃i = 0,

m̃i = −mx,

T̃z = 3
10 [mxdy].

(25)

FIG. 11. Intensities of radiated dipoles of the shifted toroidal
source over its shift.
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FIG. 12. Toroidal dipole excitation due to magnetic dipoles
interference.

Dipole 4 :

p̃i = 0,

m̃i = my,

T̃z = 3
10 [mydx],

(26)

And for the total multipoles we can write

p̃i = 0,

m̃i = 0,

T̃z = 4 3
10 md.

(27)

Obviously, each of shifted dipole moments is characterized
by a zero electric moment as well as magnetic and toroidal
moments excited due to shift. Magnetic dipole moments have
x or y components, while toroidal moments have only a z
component. As a result of interference, the total multipole
contribution is determined solely by the toroidal moment, four
times surpassing magnetic moment per distance d .

B. Broadband nonradiating system

The double solenoid system is characterized only by
toroidal dipole moment T that can be easily suppressed by
flattening the structure, as shown in Fig. 13. However, the
flat double wound toroidal structure can be considered as a
broadband nonradiating source. We consider that a system of
two flat helices organized as currents in each helix are directed
oppositely.

Direct multipole decomposition reveals that all moments
in a system are zero due to nullifying multipoles up to
higher multipoles, which can arise due to near-field coupling.
Obviously, closed current loops of each helix cannot be char-
acterized by an electric moment and its higher multipoles.
Magnetic moments of double wound helices are compensated
by each other. Toroidal moments are also zero because of
poloidal currents compensating each other.

Thus, one can be confused because the law of energy
conversation is violated. However, separated multipole de-
composition of each helix demonstrates magnetic moments
with opposite signs, so their coupling leads to the zero mag-
netic moment in a system and the radiated electric field in

FIG. 13. Broadband nonradiating system based on two flat helixes.

far-field zone is zero ([49], Appendix B):

E l=1 = E loop1
l=1 + E loop2

l=1

≈ μ0c2

3
√

2π

exp(−ikr)

r

[ ∑
m=1,±1

i
√

3k2|M1,m| × Y 1,1,m

+
∑

m=1,±1

i
√

3k2(−|M1,m|) × Y 1,1,m

]
≈ 0. (28)

Indeed, if excitation of a double helix is due to one channel
(cable), than this system is unphysical. In our case, excita-
tion should be organized by two independent cables for each
helix. Such a nonradiating system, unlike an anapole, does
not depend on the frequency, as a magnetic dipole, unlike an
electric one, does not. Actually, this system can be realized
experimentally for demonstration of wide band anapole ex-
citation in planar structures. Thus, the secondary multipole
decomposition can be crucial for explanation of hybrid sys-
tem, where direct decomposition gives unclear results.

V. CONCLUSION

In conclusion, we have proposed and examined theo-
retically modified multipoles. We introduce the multipole
decomposition for explaining radiating effects in real (non-
point) systems like sources and particles, as well as clusters
of particles. The shift from the coordinate center or asymmet-
rical sources should be described by multipoles, taking into
account modified multipoles of new families and calculated
by taking into account the center of mass of the system.
Moreover, we introduced the modified anapoles which arise
due to shifting. We found a long-awaited answer about dis-
tinguishing electric and toroidal dipole far-field radiation. We
demonstrated that the total radiation patterns of shifted elec-
tric and toroidal sources are rotated by π/2 relative to each
other, which gives us a chance to observe their differences
in a far-field zone due to shifting. Our approach of modified
multipoles can be useful in multipole analysis of complicated
metaparticles and metamaterials, Fano systems, and nonradi-
ating systems in photonics.
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