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Reliability of lattice gauge theories in the thermodynamic limit

Maarten Van Damme,1 Haifeng Lang ,2,3 Philipp Hauke,2 and Jad C. Halimeh 2

1Department of Physics and Astronomy, University of Ghent, Krijgslaan 281, 9000 Gent, Belgium
2INO-CNR BEC Center and Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy

3Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

(Received 4 July 2021; revised 30 October 2022; accepted 23 January 2023; published 30 January 2023)

Although gauge invariance is a postulate in fundamental theories of nature such as quantum electrodynamics,
in quantum-simulation implementations of gauge theories it is compromised by experimental imperfections. In a
recent paper [Halimeh and Hauke, Phys. Rev. Lett. 125, 030503 (2020)], it has been shown in finite-size spin-1/2
quantum link lattice gauge theories that upon introducing an energy-penalty term of sufficiently large strength
V , unitary gauge-breaking errors at strength λ are suppressed ∝ λ2/V 2 up to all accessible evolution times.
Here, we show numerically that this result extends to quantum link models in the thermodynamic limit and with
larger spin S. As we show analytically, the dynamics at short times is described by an adjusted gauge theory
up to a timescale that is at earliest τadj ∝ √

V/V 3
0 , with V0 an energy factor. Moreover, our analytics predicts

that a renormalized gauge theory dominates at intermediate times up to a timescale τren ∝ exp(V/V0)/V0. In
both emergent gauge theories, V is volume independent and scales at worst ∼S2. Furthermore, we numerically
demonstrate that robust gauge invariance is also retained through a single-body gauge-protection term, which is
experimentally straightforward to implement in ultracold-atom setups and NISQ devices.

DOI: 10.1103/PhysRevB.107.035153

I. INTRODUCTION

Recent years have witnessed impressive progress in the
level of control and precision achieved in synthetic quantum
matter [1–4]. In addition to allowing for the exploration of
exotic phenomena such as many-body localization [5–7], the
Kibble-Zurek mechanism [8–12], dynamical phase transitions
[13–15], prethermalization [16–18], and many-body dephas-
ing [19], this technological advancement has facilitated the
realization of complex multispecies systems such as lattice
gauge theories [20–30]. Not only can this ability enable a
possible foray into questions of high-energy physics in inex-
pensive low-energy tabletop quantum simulators [31–34], it
also sets the grounds for a standard experimental benchmark
for the latter. Indeed, even though in nature gauge invariance is
a postulate, such as Gauss’s law in quantum electrodynamics
(QED), it is not guaranteed in generic ultracold-atom imple-
mentations of lattice gauge theories (excepting for realizations
that use manifestly gauge-invariant mappings to reduce the
number of degrees of freedom [32,35,36]). This potential
detriment is due to experimental errors avoidable only by
way of unrealistic fine-tuning in the experimental parame-
ters. Amidst the current intense drive in both academia and
industry to build reliable quantum simulators, gauge-theory
implementations therefore promise to serve as a measure of
experimental control and precision regarding how robustly
gauge invariance can be enforced.

A convenient framework for the realization of lattice gauge
theories is given by quantum link models [31,37] (QLMs). In
this framework, matter fields (such as electrons and positrons
in QED) are represented by fermionic degrees of freedom

located at sites of a lattice, while the gauge degree of freedom
(such as the electric field) is represented by spins of length S
located at the links connecting neighboring lattice sites. One
way of protecting gauge symmetry has been proposed in the
form of energy penalties [38–50]. Reliable gauge invariance in
the dynamics of a quantum link spin-1/2 lattice gauge theory
H0 in the presence of gauge-breaking terms λH1 has been
demonstrated numerically in finite systems through the intro-
duction of full and linear protection terms V HG = V

∑
j G2

j

and V H̃G = V
∑

j c jG j , respectively. These energetically iso-
late the target gauge sector in Hilbert space [48,50], where
Gj is the generator of Gauss’s law at lattice site j and c j

is a sequence of appropriately chosen rational numbers (see
Sec. III B); cf. Fig. 1. The resulting system has been shown to
be analytically connected to the ideal (error-free) theory for a
sufficiently large protection- to error-strength ratio V/λ for all
accessible times in exact diagonalization [48]. At long times,
the gauge violation settles into a steady-state value ∝ λ2/V 2

in this controlled-error regime.
Nevertheless, two interesting questions remain unsettled.

How will the gauge protection scheme work in the thermody-
namic limit where energetic overlap between different gauge
sectors may become unavoidable? And how well does the
protection work at larger link spin length S? In this paper,
we show through infinite matrix product state calculations
(iMPS), which work directly in the thermodynamic limit, that
at sufficiently large volume-independent protection strength V
the gauge violation remains reliably suppressed ∝ λ2/V 2 up
to all accessible evolution times for both full and linear gauge
protection. Further, we demonstrate analytically that V scales
at worst ∼S2 under full protection V HG. Even more, specific
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FIG. 1. Energy protection in lattice gauge theories. The initial
gauge-invariant state is quenched by the “faulty” gauge theory H =
H0 + λH1 + Hpro; the ideal gauge theory H0 is the spin-S U(1)
quantum link model given in Eq. (1), the gauge-breaking term λH1

describes experimentally relevant local errors given in Eq. (3), and
Hpro is an “energy penalty” used to suppress gauge violations and
implemented using either full protection Hpro = V HG = V

∑
j G2

j

or linear protection Hpro = V H̃G = V
∑

j c jGj , with c j a properly
chosen sequence of normalized rational numbers. Gj is the generator
of Gauss’s law at the local constraint comprised of matter site j and
its adjacent links ( j − 1, j) and ( j, j + 1), as given in Eq. (2). Since
H0 is gauge invariant, it satisfies [H0, Gj] = 0, ∀ j.The initial state
is chosen in the physical sector Gj |ψ0〉 = 0,∀ j, and such that the
matter fields are empty σ z

j |ψ0〉 = −1 |ψ0〉 , ∀ j and with staggered
polarization on the links sz

j, j+1 |ψ0〉 = (−1) j+1S |ψ0〉. Here, σ z
j is

the Pauli matrix denoting matter occupation at site j and sz
j, j+1 is

the spin-S matrix depicting the electric field at link ( j, j + 1). We
have checked that the conclusions of our paper are independent of
the choice of initial state.

realizations can perform decisively better than this rigorous
bound. For example, in the scenario considered in this paper,
the gauge violation is suppressed further with S for fixed val-
ues of λ and V under both full and linear protection. Moreover,
we analytically prove in the case of full protection at suffi-
ciently large volume-independent V that an adjusted version
of the ideal gauge theory arises and persists until a timescale
τadj ∝

√
V/V 3

0 , where the energy scale V0 is roughly given by
a linear sum of {λ, g2aS2, μ, J}, which means V0 ∼ S2 in the
worst scenario. This complements earlier findings [50] for an
adjusted gauge theory in the case of linear protection up to a
timescale τ̃adj ∝ V/(V0L)2.

In the subsequent stages, a renormalized gauge theory
dominates lasting up to a timescale τren ∝ exp(V/V0)/V0 for
both full and linear protection, with the latter only in the
case of a compliant sequence (no such emergent theory exists
in the case of a noncompliant sequence; see Sec. III B and
Ref. [50]). Only beyond this exponentially large timescale,
the energy protection can no longer guarantee reliable gauge
invariance. It is to be noted, however, that in the case of
linear protection with a compliant sequence, V will have to
be increased with system size to maintain a given level of
gauge fidelity, because the spacing in the compliant sequence
c j decreases with system size (see Sec. III B).

The rest of the paper is organized as follows: We present
our main model in Sec. II, where the ideal gauge theory
is represented by the one-dimensional spin-S U(1) quan-
tum link model in the presence of experimentally relevant
gauge-breaking terms. In Sec. III, we present our numer-
ical and analytic results on quench dynamics of various
observables while including either full (Sec. III A) or linear
(Sec. III B) gauge-protection terms to suppress gauge vio-
lations. In Sec. IV, we summarize the different emergent
gauge theories and corresponding timescales. We conclude
and discuss future directions in Sec. V. We complement the
main part of the paper with several Appendices. Supporting
numerical results are found in Appendix A. The analytics
of our paper are found in Appendix B for the Abanin-De
Roeck-Ho-Huveneers (ARHH) method [51], Appendix C for
constrained quantum dynamics [52,53], and Appendix D for
the quantum Zeno effect [54–57].

II. MODEL

To put our discussion on a formal footing, we consider
the paradigmatic one-dimensional spin-S U(1) quantum link
model (QLM) described by the Hamiltonian [41,58,59]

H0 =
L∑

j=1

[ −J

2a
√

S(S + 1)
(σ−

j s+
j, j+1σ

−
j+1 + H.c.)

+ μ

2
σ z

j + g2a

2

(
sz

j, j+1

)2
]
. (1)

The Pauli matrices σ j represent the matter fields on matter site
j with rest mass μ, where σ z

j denotes their occupation and
σ±

j are the creation and annihilation operators, respectively.
L is the total number of matter sites. The spin-S matrices
sx,z

j, j+1 represent the gauge and electric fields, respectively, with
electric-field-ladder operators s±

j, j+1, on the link ( j, j + 1).
The lattice spacing and gauge coupling are denoted by a
and g, respectively. The term ∝ J , which couples the matter
and gauge fields, describes the creation or annihilation of an
“electron-positron” pair and the concomitant flipping in the
intermediate electric field to satisfy Gauss’s law, the generator
of which is

Gj = (−1) j

2

[
2
(
sz

j−1, j + sz
j, j+1

) + σ z
j + 1

]
. (2)

We consider the physical (or target) sector as that consisting
of the states |ψ〉 such that Gj |ψ〉 = 0, ∀ j, where Gauss’s law
is satisfied. The U(1) QLM is gauge invariant, i.e., [H0, Gj] =
0, ∀ j.

In a realistic experiment without infinite fine-tuning, how-
ever, there will be unavoidable coherent errors that violate
Gauss’s law. Even if just perturbative, such errors are cru-
cial to understand and, if possible, control, in order to have
a reliable gauge-theory implementation. An experimentally
relevant local error term is

λH1 = λ

L∑
j=1

[
σ−

j σ−
j+1 + σ+

j σ+
j+1 + 2sx

j, j+1√
S(S + 1)

]
, (3)

of strength λ, which describes unassisted creation or annihila-
tion of “electron-positron” pairs and unassisted electric-field
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flipping, either of which will break gauge invariance and ulti-
mately undermine a gauge-theory realization [27].

III. QUENCH DYNAMICS

Several proposals have been put forward to protect against
gauge-breaking errors such as those in Eq. (3) [38–50], with
one straightforward method that has received a lot of interest
being an energy term that penalizes processes away from
the physical sector Gj |ψ〉 = 0, ∀ j. In the following, we will
study quench dynamics in such a scenario. A system initially
prepared in a gauge-invariant state |ψ0〉 in the target sec-
tor (Gj |ψ0〉 = 0,∀ j) is subsequently quenched by a “faulty”
gauge-theory implementation

H = H0 + λH1 + Hpro, (4)

where Hpro is the gauge-protection term whose purpose is to
suppress gauge violations arising due to λH1. We will employ
two variants of this gauge-protection term: the full protection
[48] Hpro = V HG = V

∑
j G2

j (see Sec. III A), and the linear
protection [50] Hpro = V H̃G = V

∑
j c jG j , where c j is a se-

quence of rational numbers that we will discuss further in
Sec. III B. In the following, we will provide our numerical
results calculated in ED and iMPS. For the latter, we find that
our most demanding calculations achieve convergence at a
bond dimension D = 200 and a timestep of �t = 0.005/J .
In our ED implementations, we employ periodic boundary
conditions, leading to a system of size 2L, with L matter sites
and L corresponding links. We note, however, that removing
the periodic boundary conditions does not qualitatively alter
the ED results [48].

A. Full protection

A natural way to implement the energy penalty is in the
form

V HG = V
∑

j

G2
j , (5)

with V the protection strength. We shall refer to this energy-
penalty term as full gauge protection.

It has been shown through exact diagonalization (ED) in
finite systems [48] that upon quenching a gauge-invariant
initial state in the physical sector with H = H0 + λH1 + V HG,
the long-time gauge violation falls in one of two regimes: an
uncontrolled-error regime for sufficiently large λ/V , where
the ideal gauge-theory dynamics can no longer be analytically
retrieved, or a controlled-error regime for sufficiently small
λ/V where the gauge violation at long times is suppressed
∝ λ2/V 2, and the gauge-theory dynamics perturbatively con-
nects to that of the ideal case. The aim of this section is to
analyze the persistence of this protective power through nu-
merical calculations in the thermodynamic limit and through
additional analytic bounds.

Using the iMPS technique based on the time-dependent
variational principle (TDVP) [60–62], we calculate the
quench dynamics under the Hamiltonian H of Eq. (4) starting
in the initial state |ψ0〉 shown in Fig. 1. For our results,
we have chosen a = 1/2, g = √

J , λ = 0.1J , and μ = 0.1J ,

although we have checked that our conclusions remain valid
for different initial states and parameter values.

The ensuing dynamics of the temporally averaged gauge
violation

ε(t ) = 1

Lt

∫ t

0
ds

L∑
j=1

〈ψ0| eiHsG2
j e

−iHs |ψ0〉 , (6)

is shown in Fig. 2 for various lengths S of the link spin.
The violation grows ∝ λ2t2 at short times, in agreement with
time-dependent perturbation theory (TDPT) [48]. Whereas
in the unprotected (V = 0) case the gauge violation grows
rapidly, at sufficiently large V it is suppressed ∝ λ2/V 2 at long
times, settling into a plateau beginning at a timescale t ∝ 1/V
at sufficiently large V . This is the timescale at which the
protection term begins to dominate. The gauge violation then
remains at this plateau throughout all the accessible evolution
times in iMPS. We see that for fixed λ and V , the gauge-
violation plateau actually slightly decreases with increasing
S, although this may be specific to our error term in Eq. (3).
Indeed, the protection strength V can be shown analytically
to scale ∼S2 in the worst case; cf. Appendices B and C.
Nevertheless, the apparent small dependence of V on S in the
case of experimentally relevant local gauge-breaking errors
such as those of Eq. (3) is very encouraging for ongoing exper-
iments seeking to approach the Kogut-Susskind limit (lattice
QED) by achieving larger link spin lengths in gauge-theory
implementations [27].

To analyze the finite-size behavior of the gauge violation,
we show in Figs. 3(a) and 3(b) for S = 1/2 and 1, respectively,
at λ = 0.1J and V = 10J , the gauge-violation dynamics at
several finite values of L, calculated in ED, along with the
thermodynamic limit L → ∞, calculated in iMPS. Conver-
gence to the latter is very fast, with deviations from the iMPS
results becoming insignificant already with only L = 4 matter
sites (see insets). This is remarkable especially from an exper-
imental perspective since state-of-the-art quantum-simulator
implementations of lattice gauge theories are of the order of a
few dozen matter sites [30], and our results indicate that this
already captures the thermodynamic limit in the behavior of
the gauge violation.

Our iMPS results show that the gauge violation in the
thermodynamic limit will still quickly settle into a plateau
at sufficiently large V/λ, but they do not tell us much about
whether such a plateau will last indefinitely given the inac-
cessibility of longer evolution times in iMPS. However, it
has been analytically proven that in the case of a controlled
suppression of the gauge violation in the presence of local
gauge-breaking terms as those in Eq. (3), full protection at
a volume-independent strength V will give rise to a renormal-
ized gauge theory, where the gauge violation is upper bounded
∝ λ/V and which lasts up to a timescale τren ∝ exp(V/V0)/V0

[50,51]; cf. Appendix B. As such, we cannot rule out that the
gauge violation will leave the plateau ∝ λ2/V 2 appearing in
Fig. 2 and rise to some larger value with upper bound ∝ λ/V
at longer evolution times t < τren that are not accessible to
iMPS. Nevertheless, as the iMPS data in Figs. 2 and 3 show,
for times that are accessible to current quantum-simulation
experiments [25–27,30] the gauge violation in the thermody-
namic limit remains suppressed ∝ λ2/V 2, same as in the case
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FIG. 2. Gauge violation as given in Eq. (6) as function of gauge-spin length S [(a) S = 1/2, (b) S = 1, (c) S = 3/2, and (d) S = 2],
computed in the thermodynamic limit using iMPS. The initial state, outlined in Fig. 1, is quenched with Hamiltonian H0 + λH1 + V HG, i.e.,
using the “full” gauge protection given in Eq. (5). Errors, generated by the gauge-breaking term λH1 of Eq. (3), which may be present in typical
ultracold-atom implementations of the U(1) quantum link model H0 given in Eq. (1), remain reliably suppressed ∝ λ2/V 2 for the evolution
times accessible in iMPS, regardless of S. The plateau ∝ λ2/V 2 occurs at the timescale ∝ 1/V at which the protection term begins to dominate.
Here, we have set a = 1/2, g = √

J , λ = 0.1J , and μ = 0.1J , and scanned over the protection-strength values V/J = 0, 1, 10, 102, 103,
although our conclusions are valid also for other values.

of finite systems [48]. Indeed, for example for the experimen-
tally feasible [48] parameter values λ = 0.1J and V = 10J ,
which lie in the controlled-error regime, the largest evolution

(a)

(b)

FIG. 3. Finite-size behavior of the gauge violation at λ = 0.1J
and V = 10J , for the link spin lengths (a) S = 1/2 and (b) S = 1.
The gauge violation for finite-size chains is larger than its coun-
terpart in the thermodynamic limit (see legends). As can be seen
in the insets, convergence relative to system size is very fast, with
the gauge violation for L = 4 matter sites already approaching the
results in the thermodynamic limit L → ∞. We have checked that
this behavior persists for other values of λ and V . The dynamics
in the thermodynamic limit is calculated in iMPS, while for finite
systems in ED.

times achieved in iMPS are tmax ≈ 10/J . Setting J ∼ 20−
30 Hz, which is within the typical range of values used in
current ultracold-atom realizations of lattice gauge theories
[30], leads to tmax ∼ 50−80 ms. This is a typical lifetime
of modern large-size lattice-gauge-theory implementations in
ultracold-atom setups [30], which means that our conclusions
from iMPS can be readily checked in such experiments.

The timescales over which the gauge symmetry can be
protected are worthy of a more detailed discussion. The ideal
gauge theory H0 is perturbed by the gauge-breaking term λH1,
against which we protect with a strong V HG. This scenario
enables us to demonstrate the existence of an emergent gauge
theory that is perturbatively connected to H0. In particular, the
frameworks of constrained quantum dynamics [52,53] and the
Abanin-De Roeck-Ho-Huveneers (ARHH) method [51] prove
to yield useful insight.

First, let us define the adjusted gauge theory Hadj = H0 +
λP0H1P0, which preserves gauge invariance exactly and in-
cludes those terms of λH1 that act purely within the physical
sector, denoted by the projector P0. Now, after quenching
a gauge-invariant initial state in the target sector with H =
H0 + λH1 + V HG, the large scale V restricts the dynamics of
local observables to the one generated by Hadj. Within the
framework of constrained quantum dynamics [52,53], one can
show the deviation for the local observable O, to be bounded
from above as

|〈eiHt Oe−iHt − eiHadjt Oe−iHadjt 〉| � �adj, (7)

with �adj ∼ t2V 3
0 /V . This polynomial error bound is thus en-

sured up to a fractional timescale τadj ∝
√

V/V 3
0 . An important

feature of this bound is its volume independence, providing
an analytic proof complementary to Ref. [50] that energy
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FIG. 4. Deviation of particle density from ideal dynamics due to gauge-breaking terms. Plotted is the temporally averaged particle density
for gauge-breaking strength λ/J = 0 (ideal theory; red line), and λ/J = 0.1 with full protection at various strengths V (lines in shades of
blue) for link spin lengths (a) S = 1/2, (b) S = 1, (c) S = 3/2, and (d) S = 2. The deviation from the ideal theory is rapidly suppressed as V
increases, at least up to the evolution times accessible by iMPS. With increasing V , the short-time scaling diminishes from ∝ t2 (the theoretical
upper bound) to a milder scaling ∝ t , at a timescale ∝ 1/V when the protection term dominates the dynamics.

protection of gauge symmetry can work in the thermodynamic
limit. The exact form of �adj and other derivational details are
included in Appendix C.

This error bound also restricts the deviation of Gauss’s law
from the ideal value of 0. As can be seen in Fig. 2, con-
crete physical scenarios can remain considerably below this
upper bound. In fact, we observe a timescale ∝ 1/V < τadj

at which the gauge violation plateaus at a constant value
∝ λ2/V 2, the value that can also be derived in degenerate
perturbation theory [48]. The timescale ∝ 1/V is when the
protection term Hpro starts to dominate, and therefore the
initial gauge violation growth ∝ λ2t2 due to the error term
as calculated in TDPT [48] is suppressed. The gauge vio-
lation then remains at that value to times larger than τadj.
This favorable behavior can be explained within the ARHH
framework [51]. Namely, one can show the existence of a
renormalized gauge theory [50] that exists up to a timescale
τren ∝ exp(V/V0)/V0. This framework bounds the gauge vio-
lation within λ/V , as derived in Ref. [50] and also summarized
in Appendix B.

As these discussions illustrate, there exist powerful frame-
works to derive analytic bounds for the gauge violation, which
realistic situations can even significantly undershoot.

It is instructive to look at other local observables where
the timescale ∝ 1/V does not prominently appear as it does
in the gauge violation, and where we can therefore more
clearly see the features of the adjusted gauge theory Hadj =
H0 + λP0H1P0. Indeed, even though at times longer than
the timescale ∝ 1/V the protection term dominates, its ef-
fect in general local observables may not be as apparent as
in the plateauing behavior in the gauge violation of Fig. 2.
This in turn would allow us to better estimate how well the
dynamics of the faulty theory H reproduces the one of the
adjusted gauge theory. The particular gauge-breaking error
described by Eq. (3) is characterized by P0H1P0 = 0, and

so the adjusted gauge theory is H0 itself. As such, we expect
local observables after the quench with the faulty theory H to
follow the ideal-theory dynamics for sufficiently large V , up
to an error that according to Eq. (7) is at most ∝ t2V 3

0 /V . To
check this expectation, we calculate in iMPS the dynamics of
the temporally averaged particle density

n = 1

2
+ 1

2Lt

∫ t

0
ds

L∑
j=1

〈ψ0| eiHsσ z
j e−iHs |ψ0〉 , (8)

which we present in the main text, in addition to the tem-
porally averaged absolute value of the normalized (by spin
length S) electric field

E = 1

SLt

∫ t

0
ds

∣∣∣∣∣∣
L∑

j=1

(−1) j 〈ψ0| eiHssz
je

−iHs |ψ0〉
∣∣∣∣∣∣, (9)

which we relegate to Appendix A 1. The same conclusions are
drawn from both these local observables.

Figure 4 shows the time evolution of the temporally aver-
aged particle density at gauge-breaking strength λ = 0.1J and
various protection strengths V for several values of the link
spin length S, and compares the result to the corresponding
ideal gauge-theory dynamics propagated by only H0. Once
in the controlled-error regime (V � 10J), the particle density
agrees well with that of the ideal theory (λ = V = 0; thick
red line) up to an error upper bound ∝ t2V 3

0 /V at short times,
in support of our analytic predictions. Indeed, as seen in the
insets, the deviation |�n| between the particle density due
to a quench by Eq. (4) and that due to the ideal theory H0

is suppressed at later times as 1/V while growing slower
than t2, i.e., substantially more benign than our analytically
derived error upper bound. In principle, this comparison can
also be carried out with the renormalized gauge theory as a
reference for the error upper bound. However, the form of the
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FIG. 5. Finite-size behavior of the particle density under full
gauge protection. Parameters are λ = 0.1J , V = 10J , and quantum
link spin length (a) S = 1/2 and (b) S = 1. As in the case of the
gauge violation in Fig. 3, the result quickly approaches its value in
the thermodynamic limit already at small system sizes. Our results
hold for other values of the microscopic parameters. The dynamics
in the thermodynamic limit is calculated in iMPS, while for finite
systems in ED.

Hamiltonian for the renormalized gauge theory is in general
not known, rendering such a comparison unfeasible.

The finite-size behavior of the particle density is shown in
Fig. 5 for two values of the link spin length S = 1/2 and 1,
and the quench parameters λ = 0.1J and V = 10J , although
we have checked that our conclusions hold for other values of
the microscopic parameters. Similar to the case of the gauge
violation in Fig. 3, the finite-size behavior of the particle
density calculated in ED approaches already at a few matter
sites the dynamics in the thermodynamic limit within the
evolution times accessible in iMPS. This is particularly en-
couraging news from an experimental perspective, because it
shows that modern ultracold-atom implementations of lattice
gauge theories, which now reach a few dozens of matter sites
[30], should be able to faithfully achieve the thermodynamic
behavior of gauge-theory dynamics at least up to timescales
∝

√
V/V 3

0 .
Finally, it is worth mentioning that the timescale ∝ 1/V ,

although not evident in the dynamics of the particle density
itself, does actually appear in the deviation of the particle
density from its dynamics under the ideal theory, as can be
seen in the insets of Fig. 4.

B. Linear protection

Recently, it has also been shown that reliable gauge protec-
tion can be achieved using single-body energy terms [50] of
the form

V H̃G = V
∑

j

c jG j, (10)

with properly chosen normalized rational compliant coeffi-
cients c j ∈ [−1, 1] that satisfy the condition

∑
j c jg j = 0 if

and only if gj = 0, ∀ j. Here, the “local charges” g j are the
eigenvalues of the generators Gj of Gauss’s law.

The analysis from the constrained quantum dynamics dis-
cussed in Appendix C does not apply here, since it requires
that the protected target space be the ground state of Hpro,
which is not satisfied for the linear protection. In contrast,
the analysis based on the quantum Zeno effect [54–57] as
discussed in Appendix D can be adapted to this scenario.
As derived within this formalism, linear protection with a
compliant or even noncompliant sequence leads also to an
adjusted gauge theory H0 + λP0H1P0 for local observables
up to a system size-dependent error

|〈eiHt Oe−iHt − eiHadjt Oe−iHadjt 〉| � �̃adj, (11)

with �̃adj ∼ tV 2
0 L2/V . The specific form of �̃adj is given

in Appendix D. This bound is therefore ensured up to the
timescale τ̃adj ∝ V/(V0L)2. A renormalized gauge theory dom-
inates at later times, but only for a compliant sequence, and
persists up to an exponential timescale τren ∝ exp(V/V0)/V0,
which is similar to its counterpart in the case of full protec-
tion; cf. Appendix B. Unlike τ̃adj, the timescale τren does not
explicitly depend on the system size L, but the reliability of
dynamics nevertheless does. As mentioned above, the compli-
ant sequence c j is a normalized set of rational numbers, such
that the largest |c j | is unity: As L increases, this means that the
spacing between the different c j will get smaller on average.
For a fixed value of λ, this in turn implies that V must be
increased to achieve the same level of provable reliability in
the gauge invariance up to a given evolution time.

The compliance of c j is a sufficient albeit not a necessary
condition when the gauge-breaking errors are local. Indeed,
in Ref. [50] it is demonstrated numerically for finite systems
that for specific error terms even noncompliant sequences
such as c j = (−1) j+1 can still suppress the gauge violation
∝ λ2/V 2 up to indefinite times. Furthermore, such a noncom-
pliant sequence can be shown [50,54–57] to still give rise to
at least the adjusted gauge theory H0 + λP0H1P0 up to the
timescale τ̃adj ∝ V/(V0L)2, just like its compliant counterpart,
albeit no analytic proof of a renormalized gauge theory up to
a timescale exponential in V exists.

A strong and essential feature of iMPS is translation invari-
ance, and as such a compliant sequence is not optimal in an
iMPS implementation as it breaks this symmetry. In contrast,
a sequence such as c j = (−1) j+1 preserves translation invari-
ance down to a unit cell of two adjacent matter sites. Using
this feature, we now quench the target-sector initial state |ψ0〉
of Fig. 1 by the Hamiltonian H = H0 + λH1 + V H̃G, with
H̃G = ∑

j (−1) j+1Gj . The resulting dynamics of the gauge
violation is plotted in Fig. 6 for various values of the link
spin length S. Qualitatively, the results are identical to those
of Fig. 2. The gauge violation initially grows ∝ λ2t2, in agree-
ment with TDPT, before plateauing at a timescale ∝ 1/V upon
which the protection term dominates. The plateau value at
sufficiently large V is ∝ λ2/V 2, as expected from degenerate
perturbation theory [48]. As in the case of full protection,
linear protection affords reliable gauge invariance at any link
spin length S within the accessible evolution times in iMPS,
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FIG. 6. Same as Fig. 2 but with the energy-protection term given by the single-body Hamiltonian V H̃G = V
∑

j c jGj of Eq. (10) with
c j = (−1) j+1 rather than the full protection Hamiltonian HG of Eq. (5). Even with a noncompliant sequence, the linear protection works
remarkably well, and yields results qualitatively identical to those under full protection for the evolution times accessible in iMPS, including
the gauge-violation plateau ∝ λ2/V 2 that occurs at the timescale ∝ 1/V .

even with the noncompliant sequence c j = (−1) j+1. This
is remarkable as it shows that even in the thermodynamic
limit there is an experimentally feasible single-body protec-
tion scheme with the simple coefficients ±1 that allows for
well-controlled gauge-theory dynamics at least up to times
that are relevant for current experiments. It is interesting to
note that we do not find a deterioration of the reliability of
gauge invariance when increasing the link spin length S. On
the contrary, with our particular experimentally relevant error
given in Eq. (3), gauge invariance seems to become even more
reliable with larger S for a fixed value of λ and V .

We now analyze the finite-size behavior of the gauge
violation in the case of the linear protection term V H̃G =
V

∑
j (−1) j+1Gj , as shown in Figs. 7(a) and 7(b) for link

spin lengths S = 1/2 and 1, respectively. The same qualitative
conclusions from the full-protection case (see Fig. 5) hold
in that the dynamics of finite systems calculated through ED
quickly converge to the dynamics in the thermodynamic limit,
which is calculated in iMPS. Indeed, for both spin lengths
considered, already the result for L = 4 matter sites almost
coincide with that of the thermodynamic limit. This behav-
ior is intriguing because in the case of linear protection the
system-size dependence of the timescale τ̃adj ∝ V/(JL)2 for
the adjusted gauge theory may lead one to expect a slow
approach to the thermodynamic limit L → ∞. Our numerical
results indicate that, quite to the contrary, this approach is as
fast as in the case of full protection, at least up to the accessible
times in iMPS and for the local error presented in the article.

It is instructive to also study the performance of linear
protection with a noncompliant sequence for local observables
such as the particle density. The results are shown in Fig. 8 for
various values of the link spin length S, where we compare
the time evolution of the particle density upon quenching |ψ0〉
with H = H0 + λH1 + V H̃G to that after quenching |ψ0〉 with
the adjusted gauge theory Hadj = H0 + λP0H1P0 = H0. As in

the case of full protection, the protected dynamics quickly
approaches its ideal-theory counterpart with larger V for all
values of S considered. In the insets, we also see an initial
growth ∝ t2 in the deviation |�n| that transitions to a growth
∝ t at later times for a fixed V . The time of this transition
decreases with V just as in the case of full protection. Actually,
it seems that this transition timescale ∝ 1/V , upon which the
protection term begins to dominate. However, in contrast to
the case of full protection, we do not find a suppression by V

(a)

(b)

FIG. 7. Same as Fig. 3 but with the energy-protection term given
by the single-body Hamiltonian H̃G of Eq. (10) with c j = (−1) j+1

rather than the “full” protection Hamiltonian HG of Eq. (5). Also in
this case of linear protection with a noncompliant sequence, conver-
gence to the thermodynamic limit is very fast over the evolution times
accessible to iMPS.
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FIG. 8. Same as Fig. 4 but using the linear-protection term with a noncompliant sequence, V H̃G = V
∑

j (−1) j+1Gj , rather than full
protection. The dynamics under the faulty gauge theory H = H0 + λH1 + V H̃G reliably approaches the ideal-theory dynamics under H0 (which
is also the adjusted gauge theory in the case of our gauge-breaking term) for V � 10. The insets show the deviation |�n| of the faulty dynamics
from its ideal counterpart, where the error initially grows at ∝ t2, but then slower (∝ t) at later times, with this transition occurring at a timescale
∝ 1/V at which the protection term begins to dominate. This is milder than the upper error bound with respect to the adjusted gauge theory
(see main text and Appendix D).

in the deviation. Indeed, the adjusted gauge theory is valid up
to an error upper bound ∝ tV 2

0 L2/V , which is L dependent,
unlike in the case of full protection. How precisely the error
grows within this bound may therefore be influenced by the
system size in different ways depending on the value of V and
on the observable considered. In the case of full protection
(see Sec. III A and Appendix B), where the error upper bound
∝ t2V 3

0 /V is fully independent of system size, L does not
seem to play a role in the deviation growth at early times.
Nevertheless, it is remarkable that up to even intermediate
evolution times the dynamics under the faulty gauge theory
H is still in excellent agreement with that of the adjusted
gauge theory, as shown in Fig. 8. This behavior far exceeds
the expectations laid out in our analytics, and suggests that ex-
perimentally relevant local errors are quite reliably controlled
even under linear protection with noncompliant sequences.

Finally, we study the finite-size behavior of the particle
density in Figs. 9(a) and 9(b) for link spin lengths S = 1/2
and 1, respectively. Qualitatively similar to the case of full
protection, the dynamics calculated in ED for finite L quickly
approach the dynamics in the thermodynamic limit L → ∞
calculated in iMPS. So not only does linear protection with a
simple noncompliant sequence c j = (−1) j+1 provide reliable
gauge invariance up to experimentally relevant times, it also
faithfully reproduces observable dynamics even in the ther-
modynamic limit. This is despite the fact that our analytic
derivations of a volume-dependent timescale τ̃adj ∝ V/(V0L)2

in the case of linear protection predict that agreement with
the adjusted gauge theory (H0 in our case) may not happen in
the thermodynamic limit in a worst-case scenario. Once again,
this affirms the suggestion already extracted from Fig. 8 that
local errors such as those of Eq. (3) are faithfully controlled by
linear protection even with a simple sequence c j = (−1) j+1.

In Appendix A 1 b, we provide similar results for the electric
field, which support the above conclusions.

For nonlocal error terms the noncompliant sequence is
in general not sufficient [50]. However, typical experimental
errors have a large degree of locality, so we expect to obtain
similarly good performance in most relevant situations, poten-
tially by slightly increasing the unit cell of the noncompliant
sequence.

FIG. 9. Same as Fig. 5, but where gauge invariance is supported
through the linear-protection term with a noncompliant sequence,
V H̃G = V

∑
j (−1) j+1Gj . Also in this case, convergence to the ther-

modynamic limit occurs at just a few matter sites during the evolution
times accessible in iMPS.
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IV. SUMMARY OF EMERGENT GAUGE THEORIES
AND TIMESCALES

We summarize here all the timescales and emergent gauge
theories discussed in Sec. III, and their dependence on the
kind of protection used (i.e., full or linear).

A. Adjusted gauge theory

Independent of whether full protection V HG = V
∑

j G2
j

or linear protection V H̃G = V
∑

j c jG j (with a compliant or
noncompliant sequence c j) is used to protect against gauge-
breaking errors H1, an adjusted gauge theory Hadj = H0 +
λP0H1P0 emerges. It is valid up to a given timescale, dur-
ing which the error in the dynamics of a local observable
is controllably bounded from above with respect to the ad-
justed gauge theory. In the case of full protection, this upper
bound is ∝ t2V 3

0 /V , leading to the timescale of τadj ∝
√

V/V 3
0 .

Derivational details are provided in Appendix C. In the case of
linear protection, the upper bound is ∝ tV 2

0 L2/V , yielding the
timescale τ̃adj ∝ V/(V0L)2. Derivational details are provided
in Appendix D. In both cases, the energy term V0 is roughly
a linear sum of {λ, g2aS2, μ, J}, and its exact form is given in
Eq. (B2) in Appendix B.

As such, we find that the dynamics is related to an adjusted
gauge theory up to a fractional (in V ) timescale that is volume
independent in the case of full protection, but which depends
on system size in the case of linear protection. However, our
numerical results in Sec. III B indicate that system size can
play a trivial role in the case of linear protection even when the
sequence c j is noncompliant. This is evidenced by the excel-
lent agreement of the dynamics of the particle density under
the faulty theory H = H0 + λH1 + V

∑
j (−1) j+1Gj and that

under the adjusted theory in the thermodynamic limit, as
shown in Fig. 8. Furthermore, the finite-size behavior of the
particle density in Fig. 9 also indicates that convergence to
the thermodynamic limit is fast in this case (results for the
electric field in Appendix A 1 b yield the same conclusion).
We can therefore conclude that in the case of experimentally
relevant local gauge-breaking terms as those of Eq. (3), even
linear protection with a simple noncompliant sequence c j =
(−1) j+1 can reliably reproduce the adjusted gauge theory
dynamics in the thermodynamic limit.

B. Renormalized gauge theory

In the case of full protection or linear protection with a
compliant sequence, a renormalized gauge theory emerges
lasting up to an exponential timescale τren ∝ exp(V/V0)/V0.
The derivation of this renormalized gauge theory is based on
the ARHH framework [51], and has recently been adapted to
gauge theories in Ref. [50]. Even though τren is not explicitly
volume dependent, a given level of gauge invariance at a fixed
error strength λ will require V to increase with system size
in the case of linear protection with a compliant sequence
but not in the case of full protection. Derivational details of
the renormalized gauge theory is presented in Appendix B.
The same degree of rigorously provable reliability cannot be
achieved for linear protection with noncompliant sequences,
as in that case gauge breakings to high order could become
resonant and thus spoil the gauge symmetry at fractionally

large times (although our numerical results suggest a very
favorable behavior even in this case).

V. CONCLUSIONS

We have presented infinite matrix product state calcula-
tions for quench dynamics in the paradigmatic spin-S U(1)
quantum link model in the presence of experimentally relevant
local gauge-breaking errors, against which we protect with
either full or linear protection terms. We have found that
reliable gauge invariance is achieved in the thermodynamic
limit for all accessible evolution times.

In the case of full protection, our numerical results sup-
port our analytic predictions that quench dynamics under a
faulty gauge theory is reproduced by an adjusted gauge the-
ory. Analytic calculations demonstrate this adjusted gauge
theory to hold up to a volume-independent error bound that
grows proportional to the inverse of the protection strength.
Remarkably, our numerical results show that for the local
gauge-breaking terms considered the actual deviation of local
observables grows well below this bound. This allows the
dynamics under the faulty theory at sufficiently large protec-
tion strength to agree very well with that under the adjusted
gauge theory for all times accessible to our simulations. Exact
diagonalization results at just a few matter sites converge to
those in the thermodynamic limit calculated through infinite
matrix product state techniques, indicating a wide-reaching
volume-independence of full protection.

In the case of linear protection with a noncompliant se-
quence, an adjusted gauge theory also emerges, although
analytics predicts an error bound that is inversely proportional
to the protection strength and grows as the square of sys-
tem size. Nevertheless, our numerical results indicate a much
milder behavior even in the thermodynamic limit, with the
dynamics under the faulty theory at sufficiently large pro-
tection strength agreeing very well with that of the adjusted
gauge theory up to all accessible evolution times. In fact,
we see that linear protection with a simple alternating non-
compliant sequence ±1 fares qualitatively just as well as full
protection. Additionally, we have also shown through exact
diagonalization that the dynamics converges quickly to the
thermodynamic limit, even at just a few matter sites, regard-
less of the link spin length. This bodes well for experimental
efforts attempting to realize the QED limit of lattice gauge
theories on intermediate-scale quantum devices, because our
findings support the conclusion that for experimentally rel-
evant local gauge-breaking errors, reliable gauge invariance
can be achieved in the thermodynamic limit for large link spin
length throughout evolution times typical of modern setups.
Even more, depending on the error form, this can be possible
with linear-protection sequences as simple as a local chemical
potential that alternates as ±1 on odd and even matter sites.

It is worth mentioning that in this paper we have only
considered a (1 + 1)−D Abelian gauge theory. It would be in-
teresting to extend these studies to non-Abelian gauge theories
where local generators do not commute. Nevertheless, inves-
tigations on (1 + 1)−D Abelian gauge theories are highly
relevant for ongoing experiments [25–27,30]. Moreover, the
conclusions of our paper, namely that gauge invariance in
the quench dynamics of a faulty gauge theory can be re-
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liably achieved in the thermodynamic limit through energy
protection, complement the findings of Ref. [63] in equi-
librium for the same (1 + 1)−D Abelian gauge theory (see
also Ref. [64] for similar conclusion in equilibrium for a
gauged Kitaev chain). There, full protection of sufficiently
large strength produces a renormalized gauge theory. This
behavior is possible because the full protection term lends
mass to the Higgs boson with which the gauge-breaking errors
couple [43,65,66]. Another current frontier for gauge quan-
tum simulations is presented by higher dimensions [67,68].
The resilience and protection against gauge breaking errors
in quantum link models and other lattice gauge theories in
(2 + 1)−D and (3 + 1)−D, where a massless photon exists,
is thus another interesting avenue for the future studies.
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APPENDIX A: SUPPORTING NUMERICAL RESULTS

1. Results for electric field

In the main text, we have provided numerical results in
both ED and iMPS for the gauge violation and particle
density in the case of both full and linear protection. Here, we

supplement these results by showing their counterparts for the
electric field normalized by the link spin length S, as given
in Eq. (9). Conclusions are qualitatively the same as those
reported in the main text.

a. Full protection

The temporally averaged dynamics of the electric field
under the faulty theory H = H0 + λH1 + V HG is shown in
Fig. 10, at a fixed gauge-breaking error strength λ and for
various values of the link spin length S and the protection
strength V . As in the case of the particle density, see Eq. (8),
the dynamics agrees very well with that under the adjusted
gauge theory Hadj = H0 + λP0H1P0 = H0. As the insets in
Fig. 10 show, the error grows within the analytically derived
upper bound of t2V 3

0 /V (details of the derivation can be found
in Appendix C) at sufficiently large V and for all link spin
lengths S considered.

The finite-size behavior of the electric field, displayed in
Figs. 11(a) and 11(b) for S = 1/2 and 1, respectively, shows
quick convergence to the thermodynamic limit already at a
few matter sites, similarly to the cases of the gauge violation
(Fig. 3) and particle density (Fig. 5).

b. Linear protection

Similarly to its counterpart for the particle density (Fig. 8),
the dynamics of the electric field in the case of linear protec-
tion with a noncompliant sequence, V H̃G = V

∑
j (−1) j+1Gj ,

shows great agreement with that under the adjusted gauge
theory Hadj = H0 for all accessible times; see Fig. 12. This
is particularly surprising because the error upper bound for
the adjusted gauge theory in the case of linear protection is
∝ tV 2

0 L2/V , which becomes infinite in the thermodynamic

FIG. 10. Deviation of electric field from ideal dynamics due to gauge-breaking terms. Plotted is the temporally averaged absolute value
of the electric field (normalized by spin length S) for gauge-breaking strength λ/J = 0 (ideal dynamics; red line) and λ/J = 0.1 with full
protection V HG = V

∑
j G2

j at various strengths V (faulty gauge theory; shades of blue) for link spin lengths (a) S = 1/2, (b) S = 1, (c) S =
3/2, and (d) S = 2. The deviation from the ideal theory is rapidly suppressed as V increases, at least up to the evolution times accessible by
iMPS. With increasing V , the short-time scaling diminishes from ∝ t2 (the theoretical upper bound) to a milder scaling ∝ t at a timescale
∝ 1/V , after which the protection term begins to dominate.

035153-10



RELIABILITY OF LATTICE GAUGE THEORIES IN THE … PHYSICAL REVIEW B 107, 035153 (2023)

FIG. 11. Finite-size behavior of the electric field under full gauge
protection. Parameters are λ = 0.1J , V = 10J , and quantum link
spin length (a) S = 1/2 and (b) S = 1. As in the case of the gauge
violation in Fig. 3 and particle density in Fig. 5, the result quickly
approaches its value in the thermodynamic limit already at a few
matter sites.

limit. Nevertheless, our iMPS results indicate that this upper
bound is extremely conservative, at least for the scenario
considered here. Furthermore, the finite-size behavior of the
electric field in this case also shows fast convergence to
the thermodynamic limit for all accessible evolution times
in iMPS, as exhibited in Fig. 13. This is especially encour-

aging for ongoing experimental efforts to realize reliable
lattice gauge theories, because a single-body protection term
such as V H̃G = V

∑
j (−1) j+1Gj is straightforward to en-

gineer, e.g., through an optical superlattice in cold-atom
experiments [30].

2. Temporally nonaveraged gauge violation

For completeness, here we present the behavior of the
gauge violation without temporal averaging, given by

εraw(t ) = 1

L

∑
j

〈ψ0| eiHt G2
j e

−iHt |ψ0〉 . (A1)

The results are presented in Fig. 14 for the case of a quench
on the initial state |ψ0〉 (see Fig. 1) by the faulty Hamiltonian
H = H0 + λH1 + V

∑
j (−1) j+1Gj at different system sizes

2L (L matter sites and L links given that we use periodic
boundary conditions in our ED calculations). The link spin
length is S = 1/2, while the error and protection strengths are
set to λ = 0.1J and V = 10J , respectively. As can be seen,
temporal fluctuations of εraw(t ) decrease with system size at
small values of L, but already at about L = 4 matter sites the
fluctuations behave very similarly to the thermodynamic limit.
Results at finite values of L are computed in ED, while those
in the thermodynamic limit are calculated through iMPS. We
have checked that the behavior seen in Fig. 14 also applies to
other cases, including full protection, different initial states,
and other various values of the microscopic parameters.

3. Convergence with bond dimension in iMPS

In the iMPS results we have shown thus far, we only
included data up to evolution times where convergence with

FIG. 12. Same as Fig. 10 but using a linear protection term V H̃G = V
∑

j c jGj with the noncompliant sequence c j = (−1) j+1. Same as in
the case of the particle density in Fig. 8 of the main text, the dynamics of the electric field under the faulty gauge theory H = H0 + λH1 + V H̃G

reliably approaches the ideal-theory dynamics under H0 (which is also the adjusted gauge theory) for V � 10. The insets show the deviation
|�E | of the faulty dynamics from its ideal counterpart, where the error initially grows at ∝ t2, but then slower (∝ t) at later times, with this
transition occurring at the timescale ∝ 1/V as then the protection term begins to dominate. This is milder than the upper error bound with
respect to the adjusted gauge theory (see main text and Appendix D).
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FIG. 13. Same as Fig. 11 but for linear protection with a non-
compliant sequence, V H̃G = V

∑
j (−1) j+1Gj . As in the case of the

gauge violation in Fig. 7 and particle density in Fig. 9 for this protec-
tion scheme, the dynamics quickly approaches the thermodynamic
limit already at a few matter sites.

respect to timestep and bond dimension is achieved. For our
most stringent calculations, this occurs for a timestep �t =
0.005/J and bond dimension D = 200. However, it is inter-
esting to look at the behavior of the gauge violation relative
to D. For this purpose, we again quench the initial state
|ψ0〉 (see Fig. 1) by the faulty Hamiltonian H = H0 + λH1 +
V

∑
j (−1) j+1Gj . The link spin length is S = 3/2, while the

error and protection strengths are set to λ = 0.1J and V =
100J , respectively. The timestep is fixed to �t = 0.005/J . We
show in Fig. 15 the ensuing gauge violation, Eq. (6), at several
values of the bond dimension D (see legend). After reaching
the plateau ∝ λ2/V 2, we find that as the bond dimension
is increased, the plateau persists to longer evolution times
before the result diverges and can no longer be trusted. This
behavior is not restricted to the case considered in Fig. 15, but
holds also when full protection is used, or the initial state or
microscopic parameters are different.

FIG. 14. Same as Fig. 7(a), but instead of showing the tempo-
rally averaged gauge violation ε(t ) given in Eq. (6), we plot the
raw gauge violation εraw(t ) = ∑

j 〈ψ0| eiHt G2
j e

−iHt |ψ0〉 /L. At small
system sizes, the fluctuations in the signal decrease and converge fast
to the thermodynamic limit.

FIG. 15. Behavior of the gauge violation, Eq. (6), with respect to
iMPS bond dimension at fixed timestep �t = 0.005/J , in the case
of a quench by the faulty Hamiltonian with linear protection V H̃G =
V

∑
j (−1) jG j , at error strength λ = 0.1J , protection strength V =

100J , and for link spin length S = 3/2 (see legend). As we increase
the bond dimension, the plateau ∝ λ2/V 2 persists longer in evolution
time, until the result diverges (see inset). The conclusions of this plot
remain the same under full protection, and also for other initial states
and different values of the microscopic parameters.

APPENDIX B: ABANIN-DE ROECK-HO-HUVENEERS
(ARHH) METHOD

For the sake of completeness and self-containment, here
we briefly review the gauge protection for the full and compli-
ant linear protection terms, introduced in Ref. [50] and based
on the ARHH framework [51].

For convenience, we define Hbare = H0 + λH1. We also
define Pn as the projection operator onto the eigenstates of
HG with eigenvalue n. The Hamiltonian Hbare can now be
decomposed into two parts: Hdiag = ∑

n PnHbarePn = H0 +
λ

∑
n PnH1Pn, and Hndiag = H − Hdiag − V HG, where H =

H0 + λH1 + V HG.
The full protection term V HG = V

∑
j G2

j protects the
gauge-invariant dynamics in the faulty gauge theory H for
sufficiently large V [48,50,51]. In the U(1) gauge theory given
in Eq. (1), the spectrum of HG is composed of integers, based
on the form of the corresponding generators Gj of Gauss’s
law; cf. Eq. (2). Specifically, the ground-state manifold with
n = 0 of HG is the physical sector we want to protect. The
projector onto the ground-state manifold is denoted as P0.

The ARHH method is based on the norm of potentials,
which permits a formulation that is volume independent and
applicable in the thermodynamic limit. Define � as a finite
subset of the lattice Zd , in d-dimensional space. The algebra
of bounded operators acting on the total Hilbert space H�

equipped with the standard operator norm is denoted as B�.
The subalgebra is defined as BA ⊂ B� of operators of the form
OA ⊗ I�\A with A ⊂ �. Generally, any local operator X can
be decomposed (in a nonunique way) as X = ∑

A∈Pc (�) XA

where XA ∈ BA and Pc(�) is the set of finite, connected (by
adjacency) subsets of �. We call the collection of XA a “poten-
tial”. The family of norms on potentials with a rate parameter
κ � 0, which gives operators with different spatial support
different weights, is defined as

||X ||κ := sup
x∈�

∑
A∈Pc (�):A�x

eκ|A|||XA||. (B1)

The supremum in this definition picks the lattice site x with
the largest sum of weighted norms of the operators XA that
have support on x.
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With the above definitions, the following can be derived.
Given the full protection term HG with integer spectrum, as-
sume there exists a κ0 and relevant energy scale

V0 := 54π

κ2
0

(||Hdiag||κ0 + 2||Hndiag||κ0 ). (B2)

Then, if V satisfies the conditions

V � 9π ||Hndiag||κ0

κ0
, (B3a)

n∗ :=
⌊

V

V0(1 + ln V − ln V0)3

⌋
− 2 � 1, (B3b)

there exists a quasilocal unitary operator Y satisfying

Y HY † = V HG + H ′

= V HG + H ′
diag + H ′

ndiag, (B4)

where

H ′ = Y HY † − V HG, (B5a)

H ′
diag =

∑
n

PnH ′Pn, (B5b)

H ′
ndiag = H ′ − H ′

diag, (B5c)

||H ′
diag − Hdiag||κn∗ � CV0/V, (B5d)

||H ′
ndiag||κn∗ � (2/3)n∗ ||Hndiag||κ0 , (B5e)

κn∗ := κ0

1 + log(1 + n∗)
, (B5f)

with C a constant.
For arbitrary local operator O and up to an exponentially

large time t on the scale ekn∗/V0, we have

||U (t )†OU (t ) − eit (V HG+H ′
diag )Oe−it (V HG+H ′

diag )|| � K (O)

V
,

(B6)

where U (t ) = e−iHt is the time-evolution operator, 0 < k <

(d + 1)−1 ln (3/2), and K (O) is V - and volume-independent
but model parameter-dependent term.

In the operator norm sense, the dynamics of all local ob-
servables as generated by the effective Hamiltonian H ′

diag is
perturbatively close (in V0/V ) to Hdiag. As discussed in Ref.
[50], we cannot expect H ′

diag to be a gauge-invariant Hamilto-
nian. However, if we prepare the initial state in the physical
target space and focus on the dynamics of expectation values,
the above operator norm bound can be translated to

|〈U †(t )OU (t ) − eiH ′
eff t Oe−iH ′

eff t 〉| � K (O)

V
, (B7)

where H ′
eff = P0H ′P0. In contrast to H ′

diag, H ′
eff is a gauge-

invariant Hamiltonian. Up to now, we obtain an effective
renormalized gauge Hamiltonian H ′

eff = P0H ′P0, which gov-
erns all the dynamics of expectation values of local ob-
servables O with an error bounded by K (O)/V up to a
timescale ekn�/V0. This is what we refer to in the main
text as the renormalized timescale, which can be written as
τren ∝ exp(V/V0)/V0 when V is sufficiently large. It is worth

mentioning that this timescale also exists in the case of lin-
ear protection with a compliant sequence c j (for derivational
details see Ref. [50]). However, in that case V has to be in-
creased with system size L in order to achieve a given level of
gauge-invariance reliability. This is because the larger L is, the
smaller is the spacing in the normalized rational coefficients
c j of the compliant sequence. As such, even though the renor-
malized timescale itself is not explicitly volume dependent,
the reliability is not in the case of linear protection with a
compliant sequence. This is not a problem in the case of full
protection, and therefore the reliability is volume independent.

Let us now look at how V scales with the link spin length
S. The exact form of H ′

eff is in general difficult to obtain.
Nevertheless, this framework permits us to make general scal-
ing statements. In particular, the required protection strength
is volume independent and determined by Eqs. (B3a) and
(B3b). For a perturbative error term λH1 and sufficiently large
S, Eq. (B3b) determines the minimal protection strength as
Vmin ∼ V0. In this case, V0 roughly scales as the maximum of
the norm of the local terms of Hbare, which in our model is
g2a(sz

j, j+1)2/2 ∼ S2. Therefore, in the worst case the minimal
protection strength Vmin scales as S2 when S is sufficiently
large.

APPENDIX C: CONSTRAINED QUANTUM DYNAMICS

As mentioned in Appendix B treating the ARHH method,
the dynamics of local observables can be protected up to an
exponential timescale. However, the fact that the renormal-
ized effective Hamiltonian is in general unknown makes that
method somewhat inconvenient for practical applications to
concrete systems, particularly when knowledge of an emer-
gent theory is desired to quantify a controlled error. Using a
simpler framework also in the context of full protection, we
can additionally prove that the dynamics is generated by an
adjusted gauge theory described by the Hamiltonian Hadj =
H0 + λP0H1P0 up to a timescale fractional in the protection
strength V and is still volume independent and scales as S2

when S is sufficiently large. For the physical error given by
Eq. (3), this adjusted gauge theory Hamiltonian is exactly
H0 since P0H1P0 = 0 in this case. This section adapts recent
paper treating a universal bound on the constrained quantum
dynamics [52,53].

The ingredients of the derivations of this bound are:
(1) The Hamiltonian H and observable O are local in the

sense of the potentials introduced in Appendix B, which is
identical to the locality requirement of the ARHH method.

(2) All terms in the decomposition of Hpro =∑
A∈Pc (�) Hpro,A commute with one other, where the collection

of Hpro,A is a potential.
(3) The ground-state manifold of Hpro is frustration-free,

i.e., the ground state also minimizes the local energies Hpro,A

everywhere for all A.
(4) There exists a sufficiently large energy gap �0 be-

tween the ground state and excited states of Hpro. By
sufficiently large, we mean here that V scales at least
∼||Hbare||κ=0.
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If all these four conditions are satisfied, the following bound holds:

||P0[U (t )†OU (t ) − eit (Hpro+P0HbareP0 )Oe−it (Hpro+P0HbareP0 )]P0|| � ||Hbare||κ=0

�0
p(t ), (C1)

where p(t ) is a polynomial in ||Hbare||κ=0t with degree d + 1 and (at most) order-one coefficients.
It is easy to check that the model H = H0 + λH1 + V HG in this paper satisfies all these necessary conditions. The decompo-

sition of Hpro = V HG can be chosen as Hpro,A = V G2
j and the energy gap of Hpro is V . To apply the bound to H , we immediately

obtain that the dynamics of the arbitrary local observable O is generated by the adjusted Hamiltonian Hadj = H0 + λP0H1P0

with an error bounded by ||H0 + λH1||κ=0/V up to a timescale fractional in V , which is volume independent,

|〈U †(t )OU (t ) − eiHadjt Oe−iHadjt 〉| � ||Hbare||κ=0

V
p(t ) ∼ t2V 3

0

V
, (C2)

In the above expression, we have already used V0 instead of ||Hbare||κ=0 since they are roughly of the same scale in magnitude.
In the large S limit, as discussed in the Appendix B, ||H0 + λH1||κ=0 scales as S2, which means the protection strength is
volume-independent and scales as S2 in the worst case.

APPENDIX D: QUANTUM ZENO EFFECT

In Ref. [50], it has been shown that linear protection with the noncompliant sequence of coefficients c j = (−1) j+1 can protect
the evolution operator exp(−iHt ) of the spin-1/2 U(1) gauge-theory dynamics because of the quantum Zeno effect [54–57],

||e−iHt − e−i(Hadj+Hpro )t || � q(t )

V
, (D1)

where q(t ) is a polynomial in t (V0,qzeL)2 of degree 1 and a coefficient of order 1, and V0,qze ∼ V0 is the relevant energy scale for
the quantum Zeno effect. Therefore, the deviation of observables O is given by

|〈U †(t )OU (t ) − eiHadjt Oe−iHadjt 〉| � ||〈U †(t )OU (t ) − eiHadjt Oe−iHadjt 〉||
= ||[U †(t ) − eiHadjt ]OU (t ) + [U †(t ) − eiHadjt ]Oe−iHadjt + U †(t )O[U (t ) − e−iHadjt ] + eiHadjt O[U †(t ) − e−iHadjt ]||

� 4
q(t )

V
∼ tV 2

0 L2

V
. (D2)

Hence, the gauge theory is reliable up to a timescale t ∝ V/(V0,qzeL)2 ∼ V/(V0L)2, with a controlled violation of
O(V 2

0,qzeL2/V ) ∼ O(V 2
0 L2/V ).
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