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Gross-Neveu-Heisenberg criticality from 2 + ε expansion

Konstantinos Ladovrechis , Shouryya Ray , Tobias Meng , and Lukas Janssen
Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062 Dresden, Germany

(Received 15 September 2022; accepted 19 January 2023; published 30 January 2023)

The Gross-Neveu-Heisenberg universality class describes a continuous quantum phase transition between a
Dirac semimetal and an antiferromagnetic insulator. Such quantum critical points have originally been discussed
in the context of Hubbard models on π -flux and honeycomb lattices, but more recently also in Bernal-stacked
bilayer models, of potential relevance for bilayer graphene. Here, we demonstrate how the critical behavior of
this fermionic universality class can be computed within an ε expansion around the lower critical space-time
dimension of two. This approach is complementary to the previously studied expansion around the upper
critical dimension of four. The crucial technical difference near the lower critical dimension is the presence of
different four-fermion interaction channels at the critical point, which we take into account in a Fierz-complete
way. By interpolating between the lower and upper critical dimensions, we obtain improved estimates for
the critical exponents in 2+1 space-time dimensions. For the situation relevant to single-layer graphene, we
find an unusually small leading-correction-to-scaling exponent, arising from the competition between different
interaction channels. This suggests that corrections to scaling may need to be taken into account when comparing
analytical estimates with numerical data from finite-size extrapolations.
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I. INTRODUCTION

Fermionic quantum critical points are continuous quan-
tum phase transitions that are driven by interactions between
gapless fermionic degrees of freedom. They can be viewed
as the simplest examples of quantum critical points that do
not exhibit classical analogs. Such transitions were originally
discussed in the context of toy models, mimicking aspects
relevant to high-energy physics, such as chiral symmetry
breaking and spontaneous mass generation [1], nonperturba-
tive renormalizability [2–4], and asymptotic safety [5]. The
poster child of fermionic quantum criticality is embodied by
the (2 + 1)-dimensional Gross-Neveu-Ising transition, across
which massless Dirac fermions in two spatial dimensions
acquire an interaction-induced mass gap as a consequence
of a spontaneous Z2 symmetry breaking [6–21]. From a
field-theoretical viewpoint, a crucial simplicity of the Gross-
Neveu-Ising transition is the absence at criticality of any
further four-fermion interaction channel at all orders in per-
turbation theory [22]. This allows one to compute loop
corrections to high orders not only in the vicinity of the upper
critical space-time dimension of four [13], but also near the
lower critical space-time dimension of two [19].

In many physically relevant lattice realizations of fermion
quantum criticality, however, the symmetry that sponta-
neously breaks across the transition is continuous, and
governed by a vector order parameter. A well-known ex-
ample is given by the Hubbard model on the honeycomb
lattice [23–25], which realizes as function of on-site repulsion
U a direct and continuous transition between a symmetric
Dirac semimetal at small U and an antiferromagnetic insu-
lator at large U . In the strong-coupling phase, the fermionic

spectrum is gapped out and the SU(2) spin symmetry is
spontaneously broken. The transition is expected to fall into
the Gross-Neveu-Heisenberg universality class [26], which
has been heavily discussed in recent years [13,16,27–39].
The transition between nematic and coexistent nematic-
antiferromagnetic orders on the Bernal-stacked honeycomb
bilayer has recently been identified as another potential real-
ization of Gross-Neveu-Heisenberg criticality, albeit with the
number of fermion degrees of freedom doubled in comparison
with the single-layer case [40]. Another possible realization
on the Bernal-stacked honeycomb bilayer has been proposed
for the transition between the trigonal-warping-induced Dirac
semimetal and the antiferromagnetic insulator [41,42]. In this
latter case, each quadratic band touching point present in the
noninteracting limit for vanishing trigonal warping splits into
four Dirac cones, leading to a quadrupled number of fermion
degrees of freedom in comparison with the the single-layer
case [42].

Similar to classical universality classes, each fermionic
quantum universality class is characterized by a unique set
of universal critical exponents. For the relativistic Gross-
Neveu-type criticalities, the dynamical critical exponent
z = 1, leaving three independent quantities 1/ν, ηφ , and
ηψ , corresponding to the correlation-length exponent and the
order-parameter and fermion anomalous dimensions. While
for the Gross-Neveu-Ising case provisional convergence of
the predictions of the different methods appears within
reach [11,43], the disagreement among the different literature
results in case of the Gross-Neveu-Heisenberg criticality re-
mains significant, see, e.g., Ref. [29] for a recent overview.
On the field-theoretical side, a major challenge is the fact that
the perturbative series are at best asymptotically convergent,
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requiring appropriate resummation schemes. In the Gross-
Neveu-Ising case, a significant step forward has been the
possibility to employ interpolational schemes that make use of
the known expansions near the lower and upper critical dimen-
sions simultaneously [16,43]. In the Gross-Neveu-Heisenberg
case, however, different four-fermion interaction channels
are generically present at criticality, necessitating a Fierz-
complete study that deals with these channels in an unbiased
way [44].

In this paper, we provide such an analysis. We study
the renormalization group (RG) fixed-point structure of the
theory space defined by the symmetries of the Gross-Neveu-
Heisenberg field theory within an expansion around the
lower critical space-time dimension of two. After Fierz
reduction, this space is spanned by six independent four-
fermion couplings. We identify the fixed point corresponding
to Gross-Neveu-Heisenberg criticality and determine the
corresponding quantum critical behavior in terms of the
correlation-length exponent 1/ν and the order-parameter
anomalous dimensions ηφ to one-loop order. The fermion
anomalous dimension ηψ is computed to two-loop order. To
arrive at these results, we derive general formulas for the
order-parameter and fermion anomalous dimensions that we
expect to be of use for the community also beyond the par-
ticular theory space studied in this paper. Our results near
the lower critical dimension allow us to provide improved
estimates for the exponents in the physical situation in 2+1
space-time dimensions by employing an interpolational re-
summation scheme that takes also previous results near the
upper critical dimension [13] into account.

The remainder of this paper is organized as follows: In
Sec. II, we determine the theory space of the Gross-Neveu-
Heisenberg model, its symmetries, and a corresponding
Fierz-complete basis. The RG flow and the fixed-point struc-
ture are discussed in Sec. III. In Sec. IV, we derive the
general formulas to compute the order-parameter and fermion
anomalous dimensions ηφ and ηψ to one-loop and two-loop
order, respectively, and use these to provide a complete set of
critical exponents near the lower critical dimension. Estimates
for the exponents in 2+1 space-time dimensions using an
interpolational resummation scheme are presented in Sec. V.
Section VI contains our conclusions and outlook.

II. GROSS-NEVEU-HEISENBERG THEORY SPACE

A. Microscopic model

Within a purely fermionic formulation, the Gross-Neveu-
Heisenberg model can be defined via the Euclidean micro-
scopic action [12,16,26,39,40]

SGNH =
∫

dDx

{
ψ̄α (γμ ⊗ 12)∂μψα

− g1

2Nf
[ψ̄α (12 ⊗ �σ )ψα]2

}
(1)

in D = 2 + ε space-time dimensions. In the above equation,
the space-time index μ = 0, . . . , D − 1, the flavor index α =
1, . . . , Nf , with Nf counting the number of four-component
Dirac fermions, and �σ = (σx, σy, σz ) denotes the vector of

2×2 Pauli matrices. Here and in what follows, if not stated
otherwise, summation over repeated indices is implicitly
assumed. In two dimensions, we employ an irreducible
two-dimensional representation of the Clifford algebra
{γμ, γν} = 2δμν12, such as

γ0 =
(

0 −i
i 0

)
and γ1 =

(
0 1
1 0

)
. (2)

The Dirac conjugate field is defined as ψ̄ ≡ ψ†(γ0 ⊗ 12). The
Gross-Neveu-Heisenberg coupling g1 has mass dimension
[g1] = 2 − D. The coupling becomes dimensionless, and the
theory perturbatively renormalizable, at D = 2. Thus, D = 2
defines a critical space-time dimension that can further be
identified as the lower critical dimension, around which we
expand. This approach is complementary to the previously
studied expansion around the upper critical dimension of four
[12,13,26].

Within the large-Nf expansion, an ultraviolet completion
of the above model exists for all dimensions 2 < D < 4 [39],
and we assume this property to hold also for finite Nf . A
potential complication is the possibility of emergent evanes-
cent operators that may in principle be generated within the
perturbative expansion [19,45,46]. At the one-loop level, these
induce shifts in the β functions, which cancel with corre-
sponding contributions from the two-loop diagrams [47]. As
for the critical exponents, we therefore expect the emergence
of evanescent operators to play a role only beyond the leading-
order estimates computed in the present paper.

In the (2+1)-dimensional realization of the model on the
single-layer honeycomb lattice [24,26], the number of four-
component fermion flavors is Nf = 2. The criticality between
nematic and coexistent nematic-antiferromagnetic orders in
bilayer graphene corresponds to Nf = 4 [40]. At the transition
between the warping-induced spin-1/2 Dirac semimetal and
the antiferromagnetic insulator on the honeycomb bilayer, the
number of gapless four-component flavors is Nf = 8 [42].

B. Symmetries

In contrast to the Gross-Neveu-Ising case [19], the mi-
croscopic action defined in Eq. (1) is not closed under RG
transformations. Already at the one-loop order, fluctuations
induce new interaction channels that need to be taken into
account in a consistent way. The possible newly generated
terms are, however, strongly constrained by the symmetries
of the microscopic action. These symmetries are:

a. Lorentz invariance: In two Euclidean space-time dimen-
sions, the Dirac spinors transform as

ψ (x) �→ e−iε i
4 [γ0,γ1]⊗12ψ (x′), (3)

where we have suppressed the flavor index for simplicity. The
space-time coordinate x = (xμ) transforms as xμ �→ x′μ =
�μ

νxν , with rotation matrix (�μ
ν ) ∈ O(2).

b. Flavor symmetry:

ψα �→ U αβψβ, (4)

with unitary matrix U ∈ U(Nf ).
c. Z2 chiral symmetry:

ψ �→ (γ5 ⊗ 12)ψ, (5)
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where γ5 = iγ0γ1 denotes the chiral matrix, which is diagonal
in the representation of Eq. (2). Note that ψ̄ �→ −ψ̄ (γ5 ⊗ 12),
such that the mass bilinears ψ̄ψ and iψ̄ (γ5 ⊗ 12)ψ are odd
under chiral symmetry.

d. SU(2) spin symmetry:

ψα �→ eiφ�n·(12⊗�σ )ψα, (6)

under which the Heisenberg bilinear ψ̄ (12 ⊗ �σ )ψ transforms
as a vector.

e. Time-reversal symmetry:

ψ (x) �→ T ψ (x), (7)

with the time-reversal operator T = (γ1 ⊗ σy)K in Euclidean
time, where K denotes complex conjugation. We note that the
Heisenberg bilinear ψ̄ (12 ⊗ �σ )ψ is odd under time reversal,
in agreement with its lattice realizations in 2+1 dimensions,
where it corresponds to antiferromagnetic orders [24,26,40].
The mass bilinears ψ̄ψ and iψ̄ (γ5 ⊗ 12)ψ are even under time
reversal.

f. Inversion symmetry:

ψ (x) �→ Iψ (x′), (8)

with the inversion operator I = γ0 ⊗ 12, and the space-time
coordinate x = (x0, x1) transforming as x �→ x′ = (x0,−x1).
While the standard mass term ψ̄ψ is inversion symmetric, the
bilinear iψ̄γ5ψ is odd under inversion.

C. Classification of four-fermion operators

The above symmetries forbid mass terms or other bi-
linears in the effective action obtained by integrating out
fermionic fluctuations. However, in addition to the Gross-
Neveu-Heisenberg four-fermion interaction already present in
the microscopic model, Eq. (1), there exist other four-fermion
terms that feature the same symmetries and thus will generi-
cally be generated under the RG. In order to identify a basis
of the theory space, we now classify all possible four-fermion
terms according to their symmetries.

Flavor symmetry allows for two different types of
four-fermion terms: those having singlet flavor structure
(ψ̄αOψα )(ψ̄βQψβ ) and those with non-singlet flavor struc-
ture (ψ̄αOψβ )(ψ̄βQψα ). Here, O and Q denote 4×4
matrices that act on the spinor indices of ψ and ψ̄ . The
singlet and nonsinglet terms are related to each other via Fierz
identities [22,48], and it is therefore always possible to write
the latter as a linear combination of the former. Similarly,
terms of the form (ψα	Oψβ )(ψ̄βQψ̄α	) are related to the
above terms via Fierz identities, and do not lead to any new
independent interaction channels. For our purposes, it thus
suffices to determine the invariant four-fermion terms with
flavor singlet structure. These can be constructed from the
symmetry transformation properties of the bilinears

ψ̄αOψα, (9)

with O being a 4×4 matrix acting on the spinor indices of
ψ and ψ̄ . A basis in the sixteen-dimensional space of 4×4
matrices is given by the direct product of the basis matrices of
the charge and the spin sectors,

{12, γ0, γ1, γ5} ⊗ {12, �σ }, (10)

and any O can hence be written as a linear combination of
these.

We now discuss the transformation properties of these ba-
sis matrices. They can be divided into two groups of eight
matrices each, A = {12, γ5} ⊗ {12, �σ } and B = {γ0, γ1} ⊗
{12, �σ }, which commute and anticommute, respectively, with
the chiral matrix γ5. Each group can be further split into
sets of spin SU(2) scalars and vectors, respectively, viz.,
AS = (12, γ5) ⊗ 12, AV = (12, γ5) ⊗ �σ , BS = (γ0, γ1) ⊗ 12,
and BV = (γ0, γ1) ⊗ �σ . Any flavor-singlet four-fermion term
invariant under both chiral and SU(2) spin symmetries can
therefore be written as ψ̄αOψαψ̄βQψβ with O and Q from
the same set AS, AV, BS, or BV. Invariance under time rever-
sal and inversion then implies that O = Q. Finally, Lorentz
invariance implies that the two different four-fermion terms
with O = Q ∈ BS appear symmetrically in the Lagrangian
with the same coefficients, and equivalently for O = Q ∈ BV.
Assuming Nf > 1, a Fierz-complete basis of the Gross-Neveu-
Heisenberg theory space therefore contains six four-fermion
terms,

Lint = − g1

2Nf
[ψ̄α (12 ⊗ �σ )ψα]2 − g2

2Nf
[ψ̄α (γμ ⊗ �σ )ψα]2

− g3

2Nf
[ψ̄α (γ5 ⊗ �σ )ψα]2 − g4

2Nf
[ψ̄α (12 ⊗ 12)ψα]2

− g5

2Nf
[ψ̄α (γμ ⊗ 12)ψα]2 − g6

2Nf
[ψ̄α (γ5 ⊗ 12)ψα]2,

(11)

parametrized by the six couplings g = (g1, . . . , g6).1 Here,
g1 corresponds to the Gross-Neveu-Heisenberg coupling
[12,16,26,39,40], g4 corresponds to the Gross-Neveu-Ising
coupling [3–6,19,22], and g5 corresponds to the Thirring cou-
pling [47–49]. In following, we study the flow of the full
effective action

S =
∫

dDx[ψ̄α (γμ ⊗ 12)∂μψα + Lint], (12)

out of which SGNH is a subspace that we explicitly show to be
not closed under the RG.

III. RENORMALIZATION GROUP FLOW

A. Flow equations

In order to compute the RG flow equations for the six four-
fermion couplings g = (g1, . . . , g6), we employ the general
one-loop formula derived in [22]. A straightforward evalu-
ation of the matrix algebra occurring in this formula, using
standard computer algebra software, yields the following flow

1For Nf = 1, there exist further Fierz identities that may reduce the
number of independent four-fermion terms.
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equations, valid for arbitrary Nf ,

β1 =
[
ε + 2(2g2 − g3 + g4 + 2g5 + g6)

Nf

]
g1

−2(2Nf + 1)

Nf
g2

1 + 4(g3g5 + g2g6)

Nf
, (13)

β2 = εg2 + 8g2
2

Nf
+ 2[g3(g3 + g4) + g1(g1 + g6)]

Nf
, (14)

β3 =
[
ε + 2(g1 + 2g2 − g4 + 2g5 − g6)

Nf

]
g3

+2(2Nf + 1)

Nf
g2

3 + 4(g2g4 + g1g5)

Nf
, (15)

β4 =
[
ε + 2(3g1 + 6g2 + 3g3 + 2g5 + g6)

Nf

]
g4

−2(2Nf − 1)

Nf
g2

4 + 4(3g2g3 + g5g6)

Nf
, (16)

β5 = εg5 + 2(3g1g3 + g4g6)

Nf
, (17)

β6 =
[
ε − 2(3g1 − 6g2 + 3g3 + g4 − 2g5)

Nf

]
g6

+2(2Nf − 1)

Nf
g2

6 + 4(3g1g2 + g4g5)

Nf
, (18)

where ε = D − 2 and we have rescaled the couplings as
�

(F)
1 gi/2π �→ gi for i = 1, . . . , 6, with �

(F)
1 a dimensionless

regulator-dependent constant. The sign of the β functions
is defined such that a coupling gi decreases (increases)
in the flow towards the infrared if βi > 0 (βi < 0). For
g1 = g2 = g3 = 0, the above flow equations are consis-
tent with those of Ref. [47] upon identifying �

(F)
1 = 1

for the minimal subtraction scheme employed therein. We
note that the flow equations (13)–(18) are invariant under
the exchange of the couplings as (g1, g2, g3, g4, g5, g6) ↔
(−g3, g2,−g1,−g6, g5,−g4). This property arises from the
fact that the chiral matrix γ5 anticommutes with the fermion
propagator and squares to one.

B. Large-Nf fixed-point structure

The topology of the RG flow is determined by the solutions
of the fixed-point equations ∂t gi|g� = 0. Any nontrivial solu-
tion g� �= 0 is located at finite distance of order O(ε) from the
Gaussian fixed point g� = 0. While the Gaussian fixed point is
fully infrared stable for ε > 0, all interacting fixed points have
at least one infrared relevant direction. For initial values of
the couplings beyond a certain finite threshold of order O(ε),
the flow is unstable and diverges at finite RG time, indicating
the onset of spontaneous symmetry breaking. Critical fixed
points, which govern the quantum critical behavior of contin-
uous phase transitions, are those with precisely one infrared
relevant direction. Among the different critical fixed points,
we are looking for the one corresponding to the onset of spin
symmetry breaking via condensation of the SU(2) vector

〈ψ̄α (12 ⊗ �σ )ψα〉 �= 0. (19)

This fixed point is readily identified in the large-Nf limit.
In this limit, the individual flow equations for g1, g2, . . . , g6

decouple and the fixed-point structure can be computed an-
alytically. For the set of six quadratic fixed-point equations,
there may be at most 26 = 64 possibly degenerate and/or com-
plex solutions. However, in the large-Nf limit, the quadratic
term ∝ g2

2 vanishes in the flow equation for g2. The same is
true, albeit also beyond the large-Nf limit, for the quadratic
term ∝ g2

5 in the flow equation of the Thirring coupling g5

[47]. The absence of such quadratic term can be understood
as a fixed point located at infinite coupling g�

2 → ∞ and
g�

5 → ∞, respectively. In fact, new fixed points located at
g�

2 ∝ Nf emerge upon the inclusion of the O(1/Nf ) corrections
in the flow equation for g2. However, the Thirring coupling g�

5
vanishes at any fixed point also beyond the large-Nf limit, as a
consequence of the absence of a g2

5 term also for finite Nf . For
large, but finite, Nf , in addition to the Gaussian fixed point at
vanishing couplings, there are therefore 25 − 1 = 31 possibly
degenerate and/or complex fixed points at finite couplings.
In the large-Nf limit, the critical fixed points are located on
the coordinate axes of our flavor-singlet basis. The symme-
try breaking pattern corresponding to each of the critical
fixed points can then be simply identified on the basis of
the mean-field decoupling of the corresponding flavor-singlet
four-fermion term, which is controlled in the large-Nf limit.
This implies that the fixed point located at

g�
GNH = [

1/4 + O(1/Nf ),O(1/Nf ), 0, 0, 0,O
(
1/N2

f

)]
ε

(20)

corresponds to Gross-Neveu-Heisenberg quantum criticality,
with SU(2) order parameter 〈ψ̄α (12 ⊗ �σ )ψα〉, and the fixed
point located at

g�
GNI = [0, 0, 0, 1/4 + O(1/Nf ), 0, 0]ε (21)

corresponds to Gross-Neveu-Ising quantum criticality, with
Z2 order parameter 〈ψ̄α (12 ⊗ 12)ψα〉. Another fixed point
located at

g�
GNI′ = [0, 0, 0, 0, 0, 1/4 + O(1/Nf )]ε (22)

also corresponds to Gross-Neveu-Ising quantum criticality,
with Z2 order parameter 〈ψ̄α (γ5 ⊗ 12)ψα〉, breaking not only
chiral symmetry but also inversion symmetry. This fixed point
is completely equivalent to the one at g�

GNI due to the invari-
ance of the flow equations under exchange of the couplings
as (g1, g2, g3, g4, g5, g6) ↔ (−g3, g2,−g1,−g6, g5,−g4). In
particular, the set of eigenvalues of the stability matrix at
g�

GNI and g�
GNI′ are equal. This statement holds for arbitrary

Nf within the one-loop approximation.
Note that the only flow equation containing a term ∝ g2

4
is the one for g4 itself, such that upon starting the flow on
the axis g ∝ g�

GNI in the ultraviolet, no other couplings gi �=4

are generated in the infrared, in agreement with earlier study
[19,47]. Similarly, the flow equations for g3, g4, and g5 do not
contain terms ∝ gig j with i, j ∈ {1, 2, 6}, such that g3, g4, and
g5 are not generated under the RG if simultaneously absent
initially. This is again a statement that holds for arbitrary Nf

within the one-loop approximation. Put differently, the space
spanned by the couplings g1, g2, and g6 is invariant under
the one-loop RG. As this subspace of the full theory space
contains the Gross-Neveu-Heisenberg fixed point, we denote
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TABLE I. Fixed points in Gross-Neveu-Heisenberg subspace, their locations, number of relevant directions, and collisions as function of Nf .

(g�
1, g�

2, g�
6)/ε #(�i > 0)

O (0, 0, 0) 0 Gaussian
H (h1, h2, h6) 1 Gross-Neveu-Heisenberg

I
(

0, 0, − Nf
4Nf −2

) {
1, for Nf > N (1)

f

2, for Nf < N (1)
f

Gross-Neveu-Ising′, collides with D for
Nf → N (1)

f = 3/2
A

(
0, − Nf

8 , 0
)

2 part of RG invariant plane spanned by A, B, and C
B

(
Nf

4Nf +4 , 0, − Nf
4Nf +4

)
2 part of RG invariant plane spanned by A, B, and C

C
(

Nf
4Nf +4 , − Nf

8 , − Nf
4Nf +4

)
3 part of RG invariant plane spanned by A, B, and C

D (e1, e2, e6)

⎧⎪⎪⎨
⎪⎪⎩

complex, for Nf > N (2)
f

2, for N (1)
f < Nf < N (2)

f

1, for Nf < N (1)
f

annihilates with E for Nf ↗ N (2)
f = 1.5146 . . . ,

collides with I for Nf → N (1)
f = 3/2

E ( f1, f2, f6)

{
complex, for Nf > N (2)

f

1, for Nf < N (2)
f

annihilates with D for Nf ↗ N (2)
f = 1.5146 . . .

it as “Gross-Neveu-Heisenberg subspace”. For the analysis of
the Gross-Neveu-Heisenberg criticality at the one-loop order,
it is hence sufficient to consider the flow only within this
subspace. We emphasize, however, that the RG invariance of
the Gross-Neveu-Heisenberg subspace is not symmetry pro-
tected. At higher loop orders, there may be other terms that
will require one to consider the full six-dimensional theory
space.

C. Gross-Neveu-Heisenberg subspace

The Gross-Neveu-Heisenberg subspace is defined by

g = (g1, g2, 0, 0, 0, g6), (23)

which is the smallest RG invariant subspace containing the
Gross-Neveu-Heisenberg fixed point. The latter is located at
g�

GNH = [h1(Nf ), h2(Nf ), 0, 0, 0, h6(Nf )]ε, with real functions
h1(Nf ) > 0, h2(Nf ) < 0, and h6(Nf ) > 0. The Gross-Neveu-
Heisenberg subspace also contains the Gross-Neveu-Ising′
fixed point at g�

GNI′ = [0, 0, 0, 0, 0,−Nf/(4Nf − 2)]ε, as well
as six additional real or complex fixed points. Table I
shows the locations of all fixed points in the Gross-Neveu-
Heisenberg subspace, together with their numbers of infrared
relevant directions. The latter are obtained from the eigenval-
ues �i of the stability matrix (−∂βi/∂g j ) at the respective
fixed point. Importantly, for all values of Nf , the Gross-Neveu-
Heisenberg fixed point features a single infrared relevant
direction, corresponding to a critical fixed point. For fi-
nite Nf < ∞, it features finite fixed-point couplings in all
three channels −g1/(2Nf )[ψ̄ (1 ⊗ �σ )ψ]2, −g2/(2Nf )[ψ̄ (γμ ⊗
�σ )ψ]2, and −g6/(2Nf )[ψ̄ (γ5 ⊗ 12)ψ]2 of the Gross-Neveu-
Heisenberg subspace. The evolution of these fixed-point
couplings as function of Nf is depicted in Fig. 1. We have
explicitly verified that perturbations out of the Gross-Neveu-
Heisenberg subspace are infrared irrelevant in the vicinity of
the Gross-Neveu-Heisenberg fixed point. As an illustration of
the RG flow near the Gross-Neveu-Heisenberg fixed point,
Fig. 2 presents the flow diagram within the plane spanned
by the couplings g1 and g6 for fixed g2 ≡ h2(Nf ), for differ-
ent values of Nf . Therein, the Gross-Neveu-Heisenberg fixed

point labeled by H is marked as red dot. The gray dots labeled
by O′, B′, and I ′ indicate points in parameter space in which
the flow is perpendicular to the plane g2 ≡ h2(Nf ). In the
large-Nf limit, they represent projections of the fixed points
O, B, and I, respectively, and are adiabatically connected to
these upon lowering Nf .

The Gross-Neveu-Ising′ fixed point at g�
GNI′ features a

single relevant direction only for Nf above a critical fla-
vor number N (1)

f = 3/2 + O(ε). For Nf → N (1)
f , it collides

with the bicritical fixed point D, and exchanges, for Nf <

N (1)
f , its role with respect to RG stability with the lat-

ter. Note that due to the symmetry of the flow equations,
a simultaneous fixed-point collision occurs away from the
Gross-Neveu-Heisenberg subspace at the same flavor num-
ber, involving the Gross-Neveu-Ising fixed point g�

GNI =
[0, 0, 0, Nf/(4Nf − 2), 0, 0]ε and a bicritical fixed point at
[0, e2,−e1,−e6, 0, 0]ε. Such fixed-point-collision scenario,
involving an exchange of stability between Gross-Neveu-Ising
and bicritical fixed points, has been found previously in a
one-loop analysis in fixed D = 2 + 1 space-time dimensions
[22].

FIG. 1. Evolution of Gross-Neveu-Heisenberg fixed-point cou-
plings g�

GNH = [h1(Nf ), h2(Nf ), 0, 0, 0, h6(Nf )]ε as function of flavor
number Nf .
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FIG. 2. RG flow in the plane spanned by g1 and g6 for fixed g2 = h2(Nf ) through the Gross-Neveu-Heisenberg fixed point for (a) Nf = 2,
(b) Nf = 4, and (c) Nf = 8. The red dot denotes the position of the Gross-Neveu-Heisenberg fixed point H. Gray dots labeled by O′, B′, and
I ′ indicate points in parameter space in which the flow is perpendicular to the plane g2 = h2(Nf ), which become projections of the Gaussian
fixed point O, the critical fixed point B, and the bicritical fixed point I in the large-Nf limit. The gray line indicates the projection of the RG
invariant subspace spanned by the fixed points A, B, and C.

Remarkably, for a second critical flavor number N (2)
f =

1.5146 . . . , i.e., only slightly above N (1)
f , the fixed point D

is involved in another fixed-point collision. In this case, it
merges with the fixed point E , with both of them disappearing
into the complex coupling plane for Nf > N (2)

f . Such fixed-
point annihilation has been observed in a variety of gauge
theories in 2+1 [50–58] and higher [59,60] dimensions, but
also in nongauge theories [22,61–68].

IV. CRITICAL EXPONENTS

The universal critical exponents we determine here are
the correlation-length exponent 1/ν, the anomalous dimen-
sions of the order-parameter and fermion fields, ηφ and ηψ ,
respectively, and the corrections-to-scaling exponent ω. The
dynamical critical exponent is z = 1 exactly, as a consequence
of Lorentz invariance, which has been shown to emerge at low
energy for a Gross-Neveu-Heisenberg quantum critical point
[40].

A. Correlation-length exponent 1/ν

The correlation-length exponent 1/ν determines the diver-
gence of the correlation length near the quantum critical point.
It is given by the unique positive eigenvalue �1 > 0 of the
stability matrix (−∂βi/∂g j ) at the corresponding critical fixed
point. To leading order in the perturbative expansion, we find
both for the Gross-Neveu-Heisenberg and the Gross-Neveu
Ising fixed points

1/ν = ε + O(ε), (24)

in agreement with the general result valid for all critical four-
fermion models near the lower critical dimension [22].

B. Order-parameter anomalous dimension ηφ

As there appears no dangerously irrelevant coupling in
the problem, we assume hyperscaling to hold. The order-

parameter anomalous dimension ηφ is then linked to the
correlation-length exponent 1/ν and the susceptibility expo-
nent γ via the hyperscaling relation

ηφ = 2 − γ /ν. (25)

Within our fermionic formulation, we can determine the
susceptibility exponent γ using the scheme described in
Ref. [56]. To this end, we add the corresponding infinitesimal
mass term to the effective Lagrangian as

L �→ L + �ψ̄αMψα, (26)

with M = 12 ⊗ 12 for Gross-Neveu-Ising criticality and
M = 12 ⊗ �σ for Gross-Neveu-Heisenberg criticality. In the
presence of the infinitesimal mass term, the scaling form of
the free-energy density near criticality reads [56]

f (δg,�) = |δg|DνF±
(

�

|δg|xν
)

, (27)

with scaling function F±. In the above equation, δg is the
eigenvector associated with the RG relevant direction, and x
denotes the eigenvalue associated with the RG flow of �,

β� = −x� + O(�2). (28)

Differentiating twice with respect to the mass parameter �

yields the scaling of the susceptibility,

χ = − ∂2 f

∂�2
∝ |δg|−γ , with γ = (2x − D)nu. (29)

With the help of the hyperscaling relation (25), the order-
parameter anomalous dimension is then given by

ηφ = D + 2(1 − x). (30)

At one-loop order, the flow of the mass parameter � has
the form

β� = −
(

1 +
∑

i

cigi

)
� + O(�2), (31)

035151-6



GROSS-NEVEU-HEISENBERG CRITICALITY FROM … PHYSICAL REVIEW B 107, 035151 (2023)

with coefficients

ci = 1

4DNf

∑
μ

{NfTr(MγμOiγμ)Tr(MOi )

− Tr[OiγμMγμOiM]}, (32)

where Oi denotes the 4×4 matrix in the four-fermion term
parametrized by gi, and for brevity we have omitted factors
of 12 in direct products with γ matrices, i.e., γμ ≡ γμ ⊗ 12.
Note that in the above equation, no summation over repeated
indices i is assumed, and we have rescaled the couplings in
the same way as described below Eqs. (13)–(18). The order-
parameter anomalous dimension at a fixed point g� = (g�

i ) can
then be obtained from

ηφ = 2 + ε − 2
∑

i

cig
�
i (33)

in D = 2 + ε dimensions.
Evaluating the matrix algebra for the Gross-Neveu-Ising

mass M = 12 ⊗ 12 and O4 = 12 ⊗ 12, using the Gross-
Neveu-Ising fixed-point value g�

GNI = [0, 0, 0, Nf/(4Nf − 2),
0, 0]ε, yields the order-parameter anomalous dimension for
Gross-Neveu-Ising criticality

ηGNI
φ = 2 − 2Nf

2Nf − 1
ε + O(ε2). (34)

This agrees with the known results near the lower critical
dimension [19,69–71], thereby providing a first cross-check
of our calculations.2

For Gross-Neveu-Heisenberg criticality, we assume M =
12 ⊗ σz without loss of generality, and use the couplings
g�

GNH = [h1(Nf ), h2(Nf ), 0, 0, 0, h6(Nf )]ε at the Gross-Neveu-
Heisenberg fixed point. Evaluating the matrix algebra yields

ηGNH
φ = 2 +

[
1 − 2

(1 + 4Nf )h1(Nf ) + 2h2(Nf ) − h6(Nf )

Nf

]
ε + O(ε2) (35)

for general Nf . It is instructive to further expand our small-ε results for large Nf ,

ηGNH
φ = 2 −

[
1 − 1

2Nf
− 5

4N2
f

+ 19

8N3
f

+ O
(
1/N4

f

)]
ε + O(ε2), (36)

which agrees, up to the order calculated, with the large-Nf exponents computed for arbitrary 2 < D < 4 [39], upon expanding
the latter for small ε = D − 2.3 This furnishes another nontrivial cross-check of our calculations. For the cases relevant for
interacting electrons on the single-layer [24–26,30] and bilayer [40–42] honeycomb lattices, we explicitly find from Eq. (35),
i.e., without expanding in 1/Nf ,

ηGNH
φ =

⎧⎨
⎩

2 − ε
6 + O(ε2), for Nf = 2,

2 − 0.812333ε + O(ε2), for Nf = 4,

2 − 0.921305ε + O(ε2), for Nf = 8.

(37)

Equation (37) represents one of the main results of this paper.

C. Fermion anomalous dimension ηψ

As in any critical four-fermion model near the lower criti-
cal dimension, the fermion anomalous dimension vanishes at
one-loop order, ηψ = 0 + O(ε2). This implies that knowledge
of the O(ε) fixed-point values, together with the result of
the corresponding two-loop self-energy diagram, is sufficient
to compute ηψ to order O(ε2). While at the one-loop order
all regulator dependencies can be factored out by appropri-
ate rescalings of the couplings, this may no longer be true
at higher orders. We employ a minimal subtraction scheme
analogous to Ref. [47], with an infrared cutoff in the form of
a mass term mψ̄ (12 ⊗ 12)ψ , and an effective fermion propa-
gator

G(p) = −ipμ(γμ ⊗ 12)

p2 + m2
. (38)

2Note that the definition for N used in Ref. [19] deviates from our
definition for Nf as N (Ref. [19]) = 2N (this work)

f .
3Note that the definitions for ε and N used in Ref. [39] deviate

from our definitions for ε and Nf as ε(Ref. [39]) = −ε(this work)/2 and
N (Ref. [39]) = 2N (this work)

f .

Note that we have omitted the mass term in the numerator of
the effective propagator, which gives no contribution to the
pole in 1/ε, as a consequence of the infrared finiteness of
the theory [47]. Evaluating the sunset diagram for the fermion
self-energy at a fixed point g� = (g�

i ) yields

ηψ = g�
i Hi jg

�
j, (39)

with the matrix elements

Hi j = 1

32N2
f

∑
μ,ν,λ

(δμ,0δνλ + δν,0δμλ + δλ,0δμν )

× {NfTr(γ0OiγμO j )Tr(γνO jγλOi )

− Tr(γ0OiγμO jγνOiγλO j )}, (40)

where Oi again denotes the 4×4 matrix in the four-fermion
term parametrized by gi, and for brevity we have omitted
factors of 12 in direct products with γ matrices, i.e., γμ ≡
γμ ⊗ 12. Note that in the above equation, no summation over
repeated indices i and j is assumed, and we have rescaled
the couplings as gi/2π �→ gi, which agrees with the rescaling
below Eqs. (13)–(18) for the present regularization scheme.

Evaluating the matrix algebra for the Gross-Neveu-Ising
fixed point g�

GNI yields

ηGNI
ψ = 4Nf − 1

8(2Nf − 1)2
ε2 + O(ε3), (41)
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FIG. 3. (a) Corrections-to-scaling exponent ω for the Gross-Neveu-Ising fixed point as a function of Nf . (b) Same as (a), but for the
Gross-Neveu-Heisenberg fixed point, featuring a distinct minimum near Nf = 2, corresponding to a slow flow towards the fixed point. The
inset shows the angle ϕ between g�

GNH and the surface normal n = (1, 0, 1)/
√

2 of the invariant subspace spanned by the fixed points A, B,
and C, as function of Nf .

in agreement with the literature results [19,69–71], providing another cross check of our approach.
For the Gross-Neveu-Heisenberg fixed point g�

GNH = [h1(Nf ), h2(Nf ), 0, 0, 0, h6(Nf )]ε, we find

ηGNH
ψ = [

3(4Nf + 1)h2
1 + 24Nf h

2
2 + (4Nf − 1)h2

6 + 12h1h2 − 6h1h6 + 12h2h6
] ε2

2N2
f

+ O(ε3) (42)

for general Nf , leading to

ηGNH
ψ =

[
3

2Nf
− 9

8N2
f

− 3

4N3
f

+ O
(
1/N4

f

)]
ε2 + O(ε3) (43)

in the large-Nf limit. The first two terms agree with the previous large-Nf calculation in fixed space-time dimension 2 < D < 4
[39], when expanding the latter for small ε = D − 2. The third term ∝ 1/N3

f does not agree: We have found −3ε2/(4N3
f ), whereas

Ref. [39] suggests −9ε2/(8N3
f ). However, this discrepancy can be traced back to a term −2/[3(μ − 1)] on the right-hand side

of Eq. (6.6) of Ref. [39], which should not be there. Without that term, the large-Nf result, when expanded near two dimensions,
fully agrees with our Eq. (43).4 For the physically relevant cases [24–26,30,40–42], we find

ηGNH
ψ =

⎧⎨
⎩

7
72ε2 + O(ε3), for Nf = 2,

0.0748866ε2 + O(ε3), for Nf = 4,

0.0422519ε2 + O(ε3), for Nf = 8,

(44)

which represents another important result of our paper.

D. Corrections-to-scaling exponent ω

The exponent ω determines the leading corrections to scal-
ing near the quantum critical point. It is given by the negative
of the second-largest eigenvalue �2 < 0 of the stability ma-
trix (−∂βi/∂g j ) at the corresponding critical fixed point. The
leading-order results for the Gross-Neveu-Ising and Gross-
Neveu-Heisenberg fixed points are shown in Figs. 3(a) and
3(b), respectively.

In the Gross-Neveu-Ising case, the corrections-to-scaling
exponent ω vanishes for Nf → N (1)

f = 3/2. This is a di-
rect consequence of the fixed-point collision occurring at
this value of Nf . For Nf < N (1)

f , the Gross-Neveu-Ising fixed

4We are grateful to John Gracey for pointing this out to us.

point develops a second relevant direction, as discussed in
Sec. III C.

Remarkably, in the Gross-Neveu-Heisenberg case, the ex-
ponent features a distinct minimum of ω ≈ 0.3ε + O(ε2) near
Nf = 2. This can be understood to arise from the competition
between the different interaction channels in the vicinity of the
critical fixed point. In particular, the infrared relevant direction
of the Gross-Neveu-Heisenberg fixed point, which is parallel
to the fixed-point vector g�

GNH itself, has a large component
perpendicular to the RG invariant plane spanned by the fixed
points A, B, and C. This RG invariant plane is characterized
by an O(4) symmetry generated by (12, γ5) ⊗ �σ , under which
the bilinears ψ̄ (12 ⊗ �σ )ψ and iψ̄ (γ5 ⊗ 12)ψ transform as
components of an O(4) vector, and which is an enhancement
of the spin SU(2) symmetry defined in Eq. (6). This is il-
lustrated in the inset of Fig. 3(b), which shows the angle ϕ

between g�
GNH and the surface normal n = (1, 0, 1)/

√
2 of the

RG invariant plane spanned by the fixed points A, B, and C,
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featuring a distinct minimum near Nf = 2. The presence of
an RG invariant plane in the vicinity of the Gross-Neveu-
Heisenberg fixed point perpendicular to the fixed point’s
relevant direction arguably leads to a slow flow on the crit-
ical surface, i.e., towards the critical point. Near Nf = 2,
the corrections-to-scaling exponent ω is therefore relatively
small, implying that fluctuations over a comparatively large
number of length scales need to be integrated out to approach
the ultimate infrared behavior. We emphasize that this result
arises from the competition between the different interaction
channels within our Fierz-complete basis, and could not have
been obtained within standard 4 − ε or large-Nf approaches,
which typically involve the fluctuations within the respective
condensation channel only.

V. ESTIMATES FOR GROSS-NEVEU-HEISENBERG
CRITICALITY IN 2+1 DIMENSIONS

The knowledge of the critical exponents in D = 2 + ε

space-time dimensions, together with literature results for
these exponents in D = 4 − ε dimensions [13], allows us to
employ an interpolational resummation scheme in order to
obtain estimates for the critical exponents in the physical
cases for D = 2 + 1. In the Gross-Neveu-Ising case, such an
approach has previously been shown to lead to a significant
improvement [16,43]. Here, we focus on the leading expo-
nents 1/ν, ηφ , and ηψ . We do not attempt an interpolation
of the corrections-to-scaling exponent ω, since the leading
corrections to scaling, as obtained in the previous subsec-
tion, arise from the competition between different interaction
channels, which has not been included in 4 − ε expansion
approaches to date.

We employ a scheme based on two-sided Padé approxi-
mants defined as

[m/n](D) := a0 + a1D + · · · + amDm

1 + b1D + · · · + bnDn
, (45)

with non-negative integers m and n, and real coefficients
a0, . . . , am and b1, . . . , bn, chosen such that the Padé ap-
proximant matches both the 2 + ε and 4 − ε results, when
expanding the approximant near the lower and upper critical
dimensions, respectively. The order m + n of the Padé approx-
imant is determined by the number of constraints given by
the 2 + ε and 4 − ε results. Near the upper critical dimension,
all leading exponents are known up to quartic order in ε =
4 − D. Near the lower critical dimension, we have computed
the correlation-length exponent 1/ν and the boson anomalous
dimension ηφ to linear order, and the fermion anomalous di-
mension to quadratic order in ε = D − 2. This implies that the
orders of the corresponding Padé approximants are m + n = 6
for 1/ν and ηφ , and m + n = 7 for ηψ , respectively. While in
principle several choices for m and n are possible, some of
these cannot satisfy all constraints near D = 2 and D = 4 for
real coefficients. This applies to m = 0 for ηφ and 1/ν, as well
as to m = 0, 1, 2 for ηψ . Furthermore, some choices lead to
singularities of the corresponding Padé approximants between
2 < D < 4.

Figure 4 shows the nonsingular Padé approximants for the
critical exponents at the Gross-Neveu-Heisenberg fixed point
as a function of space-time dimension 2 < D < 4 for the

TABLE II. Critical exponents of the Gross-Neveu-Heisenberg
universality class for Nf = 2 four-component Dirac fermions in D =
3 space-time dimensions, relevant for the transition between the
Dirac semimetal and the antiferromagnetic insulator in the Hubbard
model on the honeycomb lattice [25,26,30]. Here, we have used dif-
ferent two-sided Padé approximants [m/n], interpolating between the
expansions near the lower and upper critical dimensions. In the upper
(lower) part of the table, marked as O(ε, ε4) [O(ε2, ε4)], we have
employed the results to linear (quadratic) order in ε = D − 2 and
to quartic order in ε = 4 − D. The latter are obtained from Ref. [13].
Approximants that cannot satisfy all constraints are marked as “n.e.”,
those exhibiting singularities in 2 < D < 4 dimensions are marked
as “sing.” The blanks signify approximants for which the required ε2

corrections are not yet available.

Nf = 2 [m/n] 1/ν ηφ ηψ

O(ε, ε4) [1/5] 0.83569 1.07386 n.e.
[2/4] 0.76888 1.02731 n.e.
[3/3] sing. 0.97641 sing.
[4/2] sing. 0.95000 0.15943
[5/1] 0.75902 1.02035 sing.
[6/0] 0.94485 1.03755 0.15592

O(ε2, ε4) [3/4] 0.14750
[4/3] 0.10199
[5/2] sing.
[6/1] sing.
[7/0] 0.13960

physically relevant cases on the single-layer [24–26,30] and
bilayer [40–42] honeycomb lattices, i.e., for Nf = 2, Nf = 4,
and Nf = 8. The numerical values in D = 2 + 1 space-time
dimensions of the different Padé approximants are given in
Tables II, III, and IV, respectively. The final best-guess es-
timates are determined via averaging over the results from
the different nonsingular Padé approximants for the highest-
order expansion results available for each exponent. We thus

TABLE III. Same as Table II, but for Nf = 4 four-component
Dirac fermions, relevant for the transition between nematic and
coexistent nematic-antiferromagnetic orders on the Bernal-stacked
honeycomb bilayer [40].

Nf = 4 [m/n] 1/ν ηφ ηψ

O(ε, ε4) [1/5] 0.86441 1.03391 sing.
[2/4] 0.84006 1.00147 sing.
[3/3] sing. sing. 0.06418
[4/2] sing. sing. 0.05950
[5/1] 0.83956 0.99998 sing.
[6/0] 0.89489 1.02706 0.05906

O(ε2, ε4) [3/4] 0.05848
[4/3] 0.05570
[5/2] 0.05776
[6/1] 0.05887
[7/0] 0.05886

035151-9



LADOVRECHIS, RAY, MENG, AND JANSSEN PHYSICAL REVIEW B 107, 035151 (2023)

FIG. 4. Correlation-length exponent 1/ν (left column), order-parameter anomalous dimension ηφ (center column), and fermion anomalous
dimension ηψ (right column) of the Gross-Neveu-Heisenberg universality class as function of space-time dimension 2 < D < 4 for Nf = 2
(first row), Nf = 4 (second row), and Nf = 8 (last row). The different curves in each panel correspond to different Padé approximants [m/n],
which interpolate between the series expansions around the lower and upper critical dimensions D = 2 and D = 4, respectively. Data points
at D = 3 refer to literature results from 4 − ε expansion (�) [13], 1/Nf expansion (�) [39,40,42], functional RG (◦) [16,38,40], as well as
determinantal quantum Monte Carlo (�) [27–31] and hybrid Monte Carlo (�) [33–36] simulations.

arrive at

1/ν =
⎧⎨
⎩

0.83(12), for Nf = 2,

0.86(4), for Nf = 4,

0.913(20), for Nf = 8,

(46)

TABLE IV. Same as Table II, but for Nf = 8 four-component
Dirac fermions, relevant for the transition between the trigonal-
warping-induced Dirac semimetal and the antiferromagnetic insula-
tor on the Bernal-stacked honeycomb bilayer [41,42].

Nf = 8 [m/n] 1/ν ηφ ηψ

O(ε, ε4) [1/5] 0.92445 1.01040 n.e.
[2/4] 0.90752 sing. n.e.
[3/3] 0.89871 sing. 0.02769
[4/2] 0.90389 sing. 0.02679
[5/1] 0.90865 sing. sing.
[6/0] 0.93249 1.00979 0.02591

O(ε2, ε4) [3/4] 0.02682
[4/3] 0.02657
[5/2] 0.02660
[6/1] 0.02718
[7/0] 0.02676

for the correlation-length exponent, as well as

ηφ =
⎧⎨
⎩

1.014(64), for Nf = 2,

1.016(18), for Nf = 4,

1.0101(3), for Nf = 8,

(47)

and

ηψ =
⎧⎨
⎩

0.130(28), for Nf = 2,

0.0579(22), for Nf = 4,

0.0268(4), for Nf = 8,

(48)

for the boson and fermion anomalous dimensions, respec-
tively. In the above equations, the numbers in parentheses
correspond to the maximal deviations from the mean values
among the different approximants, which can be understood
as a lower bound for the uncertainty of our best-guess esti-
mates. We emphasize that the true systematic error is hard
to quantify and may be significantly larger than this lower
bound. This is particularly true for cases in which only few
nonsingular Padé approximants exist. Nevertheless, we find it
reassuring that for the case of Nf = 8, for which the large-Nf

expansion is expected to yield reliable results, our estimates
for 1/ν and ηφ are within error bars fully consistent with the
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TABLE V. Gross-Neveu-Heisenberg critical exponents for Nf =
2 four-component Dirac fermions from interpolation between series
expansions near lower and upper critical dimensions (this work) in
comparison with previous results from fourth-order 4 − ε expan-
sion [13], second-order (third-order for ηψ ) 1/Nf expansion [39],
functional RG in local potential approximation (LPA’) [16] and
next-to-leading order derivative expansion (NLO) [38], as well as
determinantal quantum Monte Carlo (DQMC) [27–32] and hybrid
Monte Carlo (HMC) [33–36] simulations for different linear lattice
sizes L and inverse temperatures β or projection times τ . In cases
where ηφ and/or 1/ν were not computed directly, we have employed
appropriate hyperscaling relations to obtain these. In cases where
results from different Padé approximants (4 − ε expansion), different
regulators (functional RG), or different lattices (Monte Carlo simula-
tions) are available within the same work, we show the corresponding
mean values.

Nf = 2 Year 1/ν ηφ ηψ

Interpolation (this work) 2022 0.83(12) 1.01(6) 0.13(3)
4 − ε expansion, O(ε4) [13] 2017 0.64 0.98 0.17
1/Nf expansion, O(1/N2,3

f ) [39] 2018 0.85 1.18 0.11
functional RG, NLO [38] 2018 0.80 1.03 0.07
functional RG, LPA’ [16] 2014 0.77 1.01 0.08
DQMC, τ ∼ L � 40 [31] 2020 0.95(5) 0.75(4) 0.23(4)
DQMC, τ ∼ L � 40 [30] 2016 0.98(1) 0.47(7) 0.22(2)
DQMC, β = L � 24 [29] 2021 1.11(4) 0.80(9) 0.29(2)
DQMC, β = L � 21 [28] 2019 1.14(9) 0.79(5)
DQMC, τ = 60, L � 18 [27] 2015 1.19(6) 0.70(15)
DQMC, β = L � 20 [32] 2021 1.01(8) 0.55(2)
HMC, β � 12, L � 102 [36] 2021 0.84(4) 0.52(1)
HMC, β � 12, L � 102 [35] 2020 0.84(4) 0.85(13)
HMC, β = 21, L � 24 [34] 2019 1.08 0.62
HMC, β = 21, L � 18 [33] 2018 0.86 0.87(2)

large-Nf results quoted in Ref. [42], and our estimate for ηψ is
within error bars almost consistent with those of Ref. [42].5

Our estimates are compared with a variety of literature
results available for Nf = 2 from 4 − ε expansion [13], 1/Nf

expansion [39], functional RG [16,38], as well as determinan-
tal quantum Monte Carlo [27–32] and hybrid Monte Carlo
[33–36] simulations in Table V. Available literature results for
different Nf are included as black dots in Fig. 4. For Nf = 2,
the deviations between the results of the different methods are
considerable: For 1/ν, the analytical estimates are typically
significantly smaller than those of determinantal quantum
Monte Carlo calculations; the hybrid Monte Carlo estimates
lie roughly between these two. For ηφ , on the other hand, the
analytical estimates are significantly larger than those of most
of the quantum Monte Carlo simulations. In the case of ηψ ,
analytical estimates are again significantly smaller than those
of determinantal quantum Monte Carlo calculations; hybrid
Monte Carlo estimates for ηψ are not available at present. For
Nf = 4, literature results from 4 − ε expansion [13], 1/Nf ex-
pansion [39], and functional RG [40], all of which as compiled
in Ref. [40], agree very well with our results in the case of 1/ν

5Note that the definition for N used in Ref. [42] deviates from our
definition for Nf as 2N (Ref. [42]) = N (this work)

f .

and ηφ ; some deviations, in particular from the functional RG
estimate, are present in the case of ηψ .

VI. CONCLUSIONS

To conclude, we have determined the critical behavior of
the Gross-Neveu-Heisenberg universality class within an ε

expansion around the lower critical space-time dimension of
two. In contrast to the Gross-Neveu-Ising case [19], the crit-
ical fixed point associated with the Gross-Neveu-Heisenberg
universality class is characterized by a combination of differ-
ent four-fermion interaction channels, requiring an approach
that takes these channels into account in an unbiased way.
For the Gross-Neveu-Heisenberg case, a Fierz-complete basis
of the theory space compatible with the symmetries of the
model comprises six four-fermion interaction terms. Apply-
ing the general formula derived in Ref. [22] to this system
has allowed us to derive the flow equations of this six-
dimensional theory space. By making use of hyperscaling
relations and the flow of an infinitesimal symmetry breaking
fermion bilinear, we have demonstrated how to compute the
full set of critical exponents within the fermionic language.
Applying this scheme to the Gross-Neveu-Ising fixed point,
for which various literature results are available, facilitates
a nontrivial cross-check of our approach. Our results for the
leading-order order-parameter anomalous dimension ηφ and
the next-to-leading order fermion anomalous dimension ηψ at
the Gross-Neveu-Heisenberg fixed point are original.

These results have allowed us to obtain improved esti-
mates for the critical exponents in D = 2 + 1 space-time
dimensions, as relevant for interacting fermion models on the
honeycomb and bilayer honeycomb lattices. Here, we have
employed a resummation scheme that takes the expansions
near the lower and upper critical dimensions simultane-
ously into account. For the Gross-Neveu-Ising case, such an
interpolational approach has previously been shown to pro-
vide significantly more reliable estimates in comparison with
standard extrapolation schemes [16,43]. In the Gross-Neveu-
Heisenberg case, our results for Nf = 8, relevant for the
transition between the trigonal-warping-induced semimetal
and the antiferromagnetic insulator on the Bernal-stacked
honeycomb bilayer [41,42], agree with previous large-Nf es-
timates [39] within an uncertainty on the level of �3%.
For Nf = 4, relevant for the nematic-to-coexistence transi-
tion on the honeycomb bilayer [40], the deviations between
our estimates and the large-Nf results [39], upon appropriate
resummation of the latter [40], are only slightly larger as
compared with the Nf = 8 case, with the largest relative differ-
ence of �8% occurring for the fermion anomalous dimension.

Interestingly, for Nf = 2, relevant for the semimetal-to-
antiferromagnet transition in the honeycomb-lattice Hubbard
model [25,26,30], we have found that the Gross-Neveu-
Heisenberg fixed point is characterized by a slow flow towards
criticality, corresponding to a small corresponding exponent ω

and generically sizable corrections to scaling. This result can
be understood to arise from the competition between different
interaction channels present at the Gross-Neveu-Heisenberg
fixed point. This is in contrast to the Gross-Neveu-Ising fixed
point, which is characterized by a single and uniquely iden-
tifiable interaction channel. The critical point of a lattice
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model of, e.g., spinless fermions interacting via a repulsive
nearest-neighbor density-density interaction, can therefore be
close in theory space to the Gross-Neveu-Ising fixed point,
leading to small scaling corrections. The generically large
scaling corrections in the Gross-Neveu-Heisenberg case for
Nf = 2 might explain the significant spread between the esti-
mates from the various numerical and analytical approaches,
cf. Table V. To track down the origin of these discrepan-
cies, it would be interesting to test whether the data obtained
in the simulations are in principle compatible with a small
corrections-to-scaling exponent ω. Within our one-loop analy-
sis, we estimate ω ≈ 0.3 for Nf = 2; however, a more accurate
estimate, obtained from, e.g., a full two-loop analysis around
the lower critical dimension, or an interpolation between the
lower and upper critical dimensions, would certainly be highly
desirable. An interpolational approach to estimate ω would
require to compute the scaling dimensions of the different
four-fermion terms within the 4 − ε expansion, which might
be an interesting direction for future work.

On more general grounds, our paper demonstrates how to
determine the critical behavior of fermion models in cases
where the corresponding critical fixed point is characterized
by different four-fermion interaction channels. This should be
of relevance for other fermionic universality classes as well.

In particular, our general formulas for the order-parameter
anomalous dimension ηφ to linear order in ε = D − 2, see
Eqs. (32) and (33), and the fermion anomalous dimension ηψ

to quadratic order in ε, see Eqs. (39) and (40), together with
the general formula for the flow equations of relativistic four-
fermion models [22], could be immediately applied to other
relativistic universality classes, such as Gross-Neveu-XY
[72–74], Gross-Neveu-SO(N) [75–77], or nematic [78,79]
transitions. These may host even more interesting phenom-
ena, such as emergent supersymmetry [80–82], fixed-point
annihilation, and complexification [22,77], or quasiuniversal
behavior [79].
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