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Nonstabilizerness, also known as magic, quantifies the number of non-Clifford operations needed to prepare a
quantum state. As typical measures either involve minimization procedures or a computational cost exponential
in the number of qubits N , it is notoriously hard to characterize for many-body states. In this paper, we show that
nonstabilizerness, as quantified by the recently introduced stabilizer Rényi entropies (SREs), can be computed
efficiently for matrix product states (MPSs). Specifically, given an MPS of bond dimension χ and integer Rényi
index n > 1, we show that the SRE can be expressed in terms of the norm of an MPS with bond dimension
χ 2n. For translation-invariant states, this allows us to extract it from a single tensor, the transfer matrix, while
for generic MPSs this construction yields a computational cost linear in N and polynomial in χ . We exploit this
observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate
numerical results up to large system sizes. We analyze the SRE near criticality and investigate its dependence on
the local computational basis, showing that it is, in general, not maximal at the critical point.
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I. INTRODUCTION

The very idea of quantum computers owes its origin to
the difficulty of simulating quantum many-body physics on
a classical one [1]. Yet, there exist classes of quantum states
which can be simulated classically. A prominent example is
that of stabilizer states, i.e., the states generated by Clifford
operations [2–5].

Cliffords are an important class of unitaries in quantum
information theory [6]. They can be implemented fault tol-
erantly [7,8] in many prototypical error-correcting quantum
codes [9,10], allowing for universal computation if supple-
mented with suitable nonstabilizer ancillary states [11,12].
They also play a prominent role in many-body physics as
building blocks to construct tractable toy models for, e.g.,
nonequilibrium entanglement dynamics [13] or the anti-de
Sitter/conformal field theory correspondence [14].

An important task is to quantify the degree to which a
quantum state cannot be prepared by Clifford gates. This
property, called nonstabilizerness or magic [9], is related to
the difficulty of classically simulating quantum states [15–19]
and has been argued to be a necessary condition for quantum
chaos [20–22].

It was recently suggested that nonstabilizerness is an in-
teresting quantity in many-body settings, shedding light, for
instance, on the structure of ground-state (GS) wave functions
[23–27]. In particular, an intriguing connection was put for-
ward between criticality and “long-range magic” [23–25], i.e.,
magic which cannot be removed by quantum circuits of finite
depth [25]. Unfortunately, measures of nonstabilizerness are
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typically hard to compute [27–35], especially when the local
Hilbert space dimension is even [36–38]. While an efficient
measurement protocol for quantum computers has been re-
cently demonstrated [39], quantitative investigations of these
ideas remain difficult.

In this context, useful measures of magic, the stabilizer
Rényi entropies (SREs), were recently introduced in Ref. [20].
They are expressed in terms of the expectation values of all
Pauli strings and allow for explicit computations as exempli-
fied in Ref. [26] for the GS of the transverse-field Ising model.
They can be probed experimentally by randomized measure-
ment protocols [40] or Bell measurements [39]. However, the
computational cost to evaluate the SRE of generic states grows
exponentially in the number of qubits N , strongly limiting the
system sizes which can be studied.

Here, we show that, for integer Rényi index n, the SREs
can be computed efficiently for the important class of matrix
product states (MPSs) [41–43]. By mapping the SRE onto
the norm of a certain MPS, cf. Fig. 1, we show that magic
can be extracted out of a single tensor for translation-invariant
(TI) states, while it can be computed at a cost linear in N for
generic MPSs. Based on this result, we revisit the study of
magic in the quantum Ising model for large N . We analyze
the SRE near criticality and investigate its dependence on the
local computational basis.

The rest of this paper is organized as follows. In Sec. II,
we explain the main idea to compute the SRE in MPSs.
We show how it can be computed locally for TI MPSs and
discuss the efficient numerical procedure for its evaluation in
the general, non-TI case. These results are applied in Sec. III,
which contains our study of the quantum Ising chain, while
our conclusions are consigned to Sec. IV. Finally, the most
technical part of our paper, together with additional numerical
results, are reported in the Appendix.
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FIG. 1. (a) Pictorial representation of the replica approach and
the contraction identity Eq. (3) for integer Rényi index n. (b) The
transfer matrix τ , encoding full information on the stabilizer Rényi-n
entropy for TI MPSs.

II. SRE AND MATRIX PRODUCT STATES

A. Preliminaries

We consider a system of N qubits, with Hilbert space
H = ⊗N

j=1H j , and H j � C2. We denote by {σα}3
α=0 the Pauli

matrices (σ 0 = 1) by PN the set of all N-qubit Pauli strings
and by {|0〉, |1〉} the local computational basis. Given a pure
(normalized) state |�N 〉 ∈ H, the SRE of order n reads [20]

M (n)(|�N 〉) = (1 − n)−1 ln
∑

P∈PN

〈�N |P|�N 〉2n

2N
. (1)

The SRE is a measure of nonstabilizerness in the following
sense [20]: (i) it is zero iff |�N 〉 is a stabilizer state, (ii) it is
invariant under Clifford unitaries, and (iii) it is additive under
tensor product. We will consider the case where |�N 〉 is an
MPS [41–43]

|�N 〉 =
∑

{sk}
tr
(
SAs1

1 . . . AsN
N

) |s1, . . . , sN 〉 , (2)

where As
k are χ × χ matrices. We call χ the bond dimension,

as opposed to the physical local dimension d (d = 2 for
qubits). If S = |R〉 〈L|, |�N 〉 is an MPS with open boundary
conditions (OBCs), while if S = 1, and As

j = As
k ∀ j, k we say

that |�N 〉 is a TI MPS with periodic boundary conditions
(PBCs). In this case, we will further assume that Ak are normal
[42]. This is a technical condition, ensuring that |�N 〉 does not
have long-range correlations. Note that the state Eq. (2) is not
necessarily normalized.

MPSs admit a useful graphical representation [42], where
each matrix As

k is interpreted as a tensor with three indices,
denoted by three outer legs, cf. Fig. 1. Legs shared by two
tensors, A and B, correspond to a contraction, meaning that
the associated common index is summed over [44]. We will
denote by A · B the tensor obtained by contracting the legs
shared by A and B.

MPSs are an invaluable tool in one-dimensional
many-body physics, representing faithfully GSs of local
Hamiltonians [45,46] and being at the basis of powerful
numerical algorithms [47]. For any MPS |�N 〉 and P ∈ PN ,

the expectation values 〈�N |P|�N 〉 can be computed
efficiently, i.e., at a cost linear in N . Yet, since the SRE
involves a sum of 4N terms, a straightforward evaluation of
Eq. (1) results in a cost exponential in N , making the SRE
hard to compute for generic n.

B. Computability from the replica MPS

As our first result, we show that the SRE can be computed
efficiently for integer n > 1. The idea is based on the simple
identity

∑

P∈PN

〈�N |P|�N 〉2n

2N
= (〈�N | ⊗ 〈�∗

N |)⊗n�
(n)
1 ⊗ �

(n)
2

⊗ · · · ⊗ �
(n)
N (|�N 〉 ⊗ |�∗

N 〉)⊗n, (3)

where �
(n)
j = (1/2)

∑3
α=0(σα

j ⊗ σα∗
j )⊗n, while (·)∗ denotes

complex conjugation. Eq. (3) can be verified by elementary
algebraic manipulations. The right-hand side of Eq. (3) can be
interpreted as the norm of a 2n-replica MPS |�(n)

N 〉, with bond
dimension χ ′ = χ2n and physical dimension d (n) = 22(n−1).
To see this, we first note that (|�N 〉 ⊗ |�∗

N 〉)⊗n is an MPS
with bond dimension χ2n and physical dimension 22n. Next,
it is easy to verify that �

(n)
k � 0 and rank(�(n)

k ) = 22(n−1).
Therefore, we can write �

(n)
k = 	

†
k 	k , and define the new

tensor Bk = 	k · (Ak ⊗ A∗
k )⊗n. Thus, we have

1

2N

∑

P∈PN

〈�N |P|�N 〉2n = 〈
�

(n)
N

∣∣�(n)
N

〉
, (4)

with
∣∣�(n)

N

〉 =
∑

{s̃k}
tr
(
[S ⊗ S∗]⊗nBs̃1

1 . . . Bs̃N
N

) |s̃1, . . . , s̃N 〉 , (5)

where now s̃k = 0, . . . , d (n) − 1,

M (n)(|�N 〉) = (1 − n)−1
[

ln
〈
�

(n)
N

∣∣�(n)
N

〉 − lnN 2n
]
, (6)

where N = 〈�N |�N 〉. This replica approach is reminiscent of
a similar trick used in the study of the so-called participation
entropy [48–52]. In this context, it has served as the basis of
both analytical methods [53,54] and Monte Carlo numerical
calculations [48,55,56].

We note that one can derive an alternative expression for
Eq. (3), without complex conjugation. To this end, we observe
that, since P is Hermitian, we have both | 〈�N |P|�N 〉 |2 =
〈�N |P|�N 〉 〈�∗

N |P∗|�∗
N 〉 and | 〈�N |P|�N 〉 |2 = 〈�N |P|�N 〉2.

Using the latter, we arrive at an expression similar to Eq. (3)
where �

(n)
j is replaced by (1/2)

∑3
α=0(σα

j )⊗2n. Note, however,
that this is not a positive operator for n odd, so in this case
we cannot proceed to write a relation such as Eq. (4). We
will make use of the alternative expression for n = 2 later,
cf. Eq. (10).

Equation (6) has important ramifications, as we first illus-
trate for TI MPS [57]. In this case, Bj = B, independent of j.
Introducing the transfer matrix [42]

τ =
d (n)−1∑

s̃=0

Bs̃ ⊗ Bs̃∗, (7)

and recalling S = 1, we have 〈�(n)
N |�(n)

N 〉 = tr(τN ) = ∑
k λN

k .
Here {λk} is the set of (complex) eigenvalues of τ . This
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result is interesting: It states that magic, a global quantity,
is completely determined by the spectrum of a single local
tensor, τ , whose dimensions do not scale with N . In fact, this
construction allows us to study directly the thermodynamic
limit N → ∞. Assuming τ has a single largest eigenvalue λ

(n)
0

[58] and that the state is normalized in the thermodynamic
limit, we have

m(n) := lim
N→∞

M (n)(|�N 〉)/N = (1 − n)−1 ln λ
(n)
0 . (8)

Magic is thus extensive, and the asymptotic value of its den-
sity is a function of the leading eigenvalue of τ .

We can take a step further, showing that m(n) can be com-
puted locally. To this end, consider a region A of � qubits and
assume N � �. Denoting by ρA the reduced density matrix on
A, we introduce a local probe for the density of SRE:

m(n)
� = −1

�
ln

1

2�

∑

P∈P�

(tr[ρAP])2n. (9)

We note that this differs from the formula for the Rényi-2
stabilizer entropy of mixed states in Ref. [21], and here is
intended as a local probe of pure-state magic. However, since
MPSs satisfy an entanglement area law, the two definitions
give the same density for large �. Using that τ has a single
largest eigenvalue λ

(n)
0 , we show in Appendix A that m(n)

� =
m(n) + O(1/�), i.e., m(n) can be extracted from measuring a
finite region of � sites, up to an error O(1/�). This result
generalizes a similar observation made in Ref. [26] for the GS
of the quantum Ising model to TI MPSs, putting it on rigorous
grounds.

When S = |R〉 〈L|, the state |�(n)
N 〉 is an MPS with OBCs,

and we may assume N = 1. Its norm can be computed exactly
at a cost [47] O(Nd (n)χ ′3) = O(N22(n−1)χ6n), which is linear
in N , as previously announced. From the practical point of
view, the bottleneck for numerical computations comes from
the factor χ6n. However, for n = 2 one can exploit additional
symmetries, further reducing the computational cost.

To see this, note that, for n = 2, the right-hand side of
Eq. (3) can be rewritten as

〈�N |⊗4 �
(2)
1 ⊗ · · · ⊗ �

(2)
N |�N 〉⊗4 = 〈

�̃
(2)
N |�̃(2)

N

〉
, (10)

and �
(2)
j = (1/2)

∑3
α=0(σα )⊗4, so no complex conjugation

appears. Here |�̃(2)
N 〉 is the MPS with OBCs generated by

B̃k = 	k · (Ak )⊗4, and with boundaries |R〉⊗4, 〈L|⊗4. The ten-
sors B̃k manifestly commute with the linear representation of
the Klein four group K = {1, S12S34, S13S24, S14S23}, where
S jk = ∑

n,m |n〉 j |m〉k〈m| j〈n|k exchanges replica spaces j, k.
Therefore, the auxiliary space decomposes into irreducible
representations of K. In fact, because of OBCs, the only
irreducible representation allowed is the trivial one. Project-
ing onto the corresponding subspace, we compress χ to
χ̃ = (1/4)χ2(3 + χ2), reducing the computational cost; see
Appendix B for details.

III. SRE IN THE QUANTUM ISING MODEL

We apply the previously developed MPS approach to study
magic in the GS of the quantum Ising model (with OBCs),

HIsing = −
N−1∑

k=1

σ x
k σ x

k+1 − h
N∑

k=1

σ z
k , (11)

where h is a magnetic field. The model is exactly solvable
via the Jordan-Wigner (JW) mapping, and displays a quantum
phase transition at h = hc = 1 [59]. GS magic of the quantum
Ising chain was recently investigated in Refs. [24,26]. While
Ref. [24] focused on the one- and two-site GS reduced density
matrix, Ref. [26] computed the stabilizer Rényi-2 entropy of
the whole chain (with PBCs), based on its exact solution. The
method, however, involved a computational cost exponential
in N and was limited to sizes up to N = 12 [26]. We revisit the
study of GS magic for the Hamiltonian Eq. (11), obtaining ac-
curate numerical data up to N � 300, significantly extending
previous analyses.

Our approach is based on approximating the GS of Eq. (11)
as an MPS using the standard density-matrix renormalization
group algorithm [47] implemented with the ITensor library
[60] and exploiting Eq. (6) to compute the stabilizer Rényi-2
entropy. Let us denote by |�N (χ )〉 an MPS approximation
for the true ground state |�gs

N 〉, with bond dimension χ . The
efficiency of this method depends on how the difference  =
|M (2)(|�N (χ )〉) − M (2)(|�gs

N 〉)| scales with the fidelity F =
| 〈�N (χ )|�gs

N 〉 |2. Comparing against exact-diagonalization
calculations up to N = 12, we verified that, roughly,  ∼
|1 − F |0.5, so |1 − F | is not required to be exponentially small
in N . In practice, in all our computations, we always verified
that our results are stable upon increasing χ , and we see that
relatively small bond dimensions are enough to approximate
M (2)(|�gs

N 〉) up to good accuracy. Further details and addi-
tional numerical data are reported in Appendix C.

We studied the density

m(h, N ) = M (2)
(∣∣�gs

N

〉)/
N (12)

as a function of N for different values of h [61]. For small
system sizes, we recover the results of Ref. [26]: Away from
h = 1, we find m ∝ h2 for h � 1 and m ∝ h−2 for h � 1. In
addition, m(h, N ) displays its maximum, denoted by m0(N )
for a value h0(N ) approaching hc = 1 for N → ∞. The large
system sizes available allow us to study the behavior near hc

more closely. We have computed m0(N ) and h0(N ) up to N =
300, and fitted both sets of data against the functions

h0(N ) = chN−ηh + bh, (13a)

m0(N ) = cmN−ηm + bm (13b)

for the parameters ch, bh, ηh and cm, bm, ηm. We find
bh = 0.9996(3), ηh = 1.078(18), and bm = 0.3080(6), ηm =
0.665(34). Here we report the error associated with the fitting
procedure, including an estimation of the error due to finite
bond dimension.

Next, motivated by the scaling of entanglement near criti-
cality [62–65], we investigated the emergence of a universal
scaling behavior, plotting the data against the rescaled vari-
able (h − h0(N ))N1/ν , with ν = 1 [62]. Figure 2(a) shows our
results m(h, N ) shifted by its maximum m0(N ). We observe
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(a) (b) (c)

FIG. 2. (a) Scaling behavior of density of magic for increasing system sizes. m0(N ) and h0(N ) are, respectively, the maximum of m(h, N )
and the value of h for which m(h, N ) is maximal. Here γ � 0.85 is chosen to have the best data collapse. (b), (c) Linear coefficient and
sublinear terms, defined via M (2)(|�gs

N 〉) = DN N + cN . For each N , DN , and cN are extracted following the procedure explained in the main
text with δN = 4. For large N , DN coincides with the density m.

excellent data collapse when rescaling m(h, N ) − m0(N ) by
Nγ with γ � 0.85.

It is interesting to discuss the connections with the par-
ticipation entropy, which has been extensively studied in
one-dimensional systems [49–52]. Similar to Eq. (1), it is
defined as the Rényi entropy of a classical probability dis-
tribution function | 〈�gs

N |i1, . . . iN 〉 |2, where |i j〉 is a local
computational basis [48]. In the Ising model, it was shown
to scale linearly in N , while its subleading O(1) term displays
a universal steplike profile as a function of h [49]. Inspired
by these studies, we define the linear coefficient DN and the
sublinear term cN via

M (2)
(∣∣�gs

N

〉) =: DN N + cN . (14)

To extract DN , cN , we exploit the procedure explained in
Ref. [66]: We compute M (2)(|�gs

N 〉) for sets of three sizes
N − δN , N , and N + δN , with small δN and fit the corre-
sponding three values against the straight line DN N + cN .
The result of our analysis is reported in Figs. 2(b) and 2(c)
Contrary to the participation entropy [50], cN does not display
a universal steplike profile for the available system sizes. Still,
it appears to develop a discontinuity at hc = 1. Overall, these
findings confirm that different features of the SRE detect the
presence of the quantum phase transition, substantiating the
results presented in Ref. [21].

The definition of the SRE strongly depends on the com-
putational basis, and an important question is whether some
of the previously observed features are independent from
it. Therefore, we have studied the SRE in different bases,
obtained by acting on the system with V ⊗N , where V is a
single-qubit unitary. We found that the behavior of the density
m(h, N ) is not universal, in the sense that it is strongly basis
dependent. In Fig. 3(a), we report data for different choices
of V , while Fig. 3(b) shows data for a rotation of an angle
θ = π/4 around the y axis, Vy = exp(−i 1

2θσ y). We clearly
see that Vy does not develop an extremum at hc = 1. This
is confirmed by a fit h = 0.946(3). In light of this analysis,
the unrotated basis appears to be special, as m displays a
maximum at criticality. This could be explained by the fact
that the Hamiltonian is written precisely in terms of the Pauli
matrices, although this point deserves further investigations.

Finally, the coefficient cN appears to develop a discontinuity
at the critical point, independent of the chosen basis; see
Appendix C for additional numerical data. Therefore, the
behavior of cN seemingly captures the phase transition, in
analogy to the participation entropy [48].

Overall, our findings suggest that a significant part of GS
magic is short-ranged, even at criticality, as a large fraction
of it can be removed by strictly local unitary transformations.
To investigate this point further, we set up an optimization
scheme to look for the local unitary transformation minimiz-
ing magic for a given value of h and N . This can be done
by a simple global optimisation approach [67] in the space
of single-qubit unitaries V . In Fig. 3(c), we find that the
minimal density of magic mmin displays a clear peak close to
hc = 1. This analysis confirms the intuition that criticality is
associated to long-range magic [23,68]. Note that the peak
of mmin in Eq. (3) is not exactly at hc = 1. This could be
due to the fact that local rotations are not the most general
unitary transformations with a finite correlation length. We
expect that performing an optimization over a larger family
of local transformations, such as quantum circuits of in-
creasing finite depth, will result in the maximum of mmin to
approach hc.

IV. OUTLOOK

We developed a replica approach to study the SRE [21]
of MPSs. In the TI case, we showed that the SRE can be
expressed entirely in terms of the spectrum of a suitably
defined transfer matrix, while it can be computed efficiently
for MPSs with OBCs. We illustrated the usefulness of this
construction by computing the Rényi-2 stabilizer entropy in
the Ising chain, significantly expanding previous analyses
[26]. By investigating the dependence of the SRE on different
local bases, we unveiled a more subtle connection between
magic and criticality than previously expected. Our work
opens up many directions. The method presented here could
be straightforwardly applied to GSs of more general one-
dimensional models, probing the role played by integrability
and quantum chaos. In addition, our replica approach could
be applied in different classes of tensor-network states such
as projected entangled-pair states (PEPS) [43] or tree-tensor
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(a) (b) (c)

FIG. 3. (a) Density of magic m against field h for different bases defined by single-qubit rotations Vα = exp(−i 1
2

π

4 σα ), where σα ∈
{1, σ x, σ y, σ z} are the Pauli operators. We show N = 80 and χ = 8. (b) m for the rotated basis Vy close to the critical point. Solid black
line shows the fit of minimum magic m0 = cmN−ηm + bm and corresponding field h0 = chN−ηh + bh with asymptotic limit bh = 0.943(1),
bm = 0.065(1). We clearly see that the SRE is not maximal for h = 1 (dashed line as guide to the eye). (c) Minimal magic over the set of
all local basis transformations. Numerical minimization is repeated five times to avoid local minima. By increasing N , m can be reduced
significantly for h < 1, being maximal close to (but not at) h = 1.

networks [69], opening the way to investigate many-body
quantum magic in higher dimensions.
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APPENDIX A: LOCALITY OF MAGIC FOR TI MPS

In this Appendix,we provide further details on the SRE
of TI MPSs. We show, in particular, that the SRE can be
computed locally. To this end, we consider a region A of �

qubits and, denoting by ρA, the reduced density matrix on A.
We define

m(n)
� = − lim

N→∞
1

�
ln

1

2�

∑

P∈PN

(tr[ρAP])2n. (A1)

Our goal is to show that, for TI MPSs |�N 〉, we have

m(n)
� = lim

N→∞
M (n)(|�N 〉)

N
+ O(1/�). (A2)

We consider an MPS |�N 〉 with PBCs |�N 〉 =∑
{sk} tr(As1 . . . AsN ) |s1, . . . , sN 〉 with transfer matrix

τ (A) =
1∑

s=0

As ⊗ As∗. (A3)

We assume that limN→∞ 〈�N |�N 〉 = 1, without loss of gen-
erality. Next, we introduce the replica MPSs

∣∣�(n)
N

〉 =
∑

{s̃k}
tr
(
Bs̃1

1 . . . Bs̃N
N

) |s̃1, . . . , s̃N 〉 , (A4a)

∣∣� (n)
N

〉 =
∑

{s̃k}
tr
(
Cs̃1

1 . . .Cs̃N
N

) |s̃1, . . . , s̃N 〉 , (A4b)

where Bk = 	k · (Ak ⊗ A∗
k )⊗n, and 	k is given by

�
(n)
k = (1/2)

3∑

α=0

(
σα

k ⊗ σα∗
k

)⊗n = 	
†
k 	k, (A5)

while Ck = (Ak ⊗ A∗
k )⊗n. Finally, we define the corresponding

transfer matrices

τ
(n)
� (B) =

d (n)−1∑

s̃=0

Bs̃ ⊗ Bs̃∗, (A6a)

τ
(n)
� (C) =

2n−1∑

s̃=0

Cs̃ ⊗ Cs̃∗, (A6b)

where d (n) = 2(n−1), cf. the main text.
We assume that A is normal [42], that is, (i) there ex-

ists no nontrivial projector � such that Ai� = �Ai� and
(ii) the associated completely positive map (CPM) εA(·) =∑d

i=1 Ai(·)Ai† has a unique eigenvalue of magnitude (and
value) equal to its spectral radius, which is equal to one.
Then, the transfer matrix τ (A) in Eq. (A3) has unique left
and right eigenvectors |R〉, 〈L|, corresponding to eigenvalues
λ = 1 (and no other eigenvalue ν with |ν| = 1). Clearly, the
same is true for τ

(n)
� (C), with leading eigenstates |R(n)

� 〉 :=
(|R〉 ⊗ |R∗〉)⊗n, 〈L(n)

� | := (〈L| ⊗ 〈L∗|)⊗n.
In addition, we also assume that τ

(n)
� (B) has a unique

eigenvalue of magnitude (and value) equal to its spectral
radius, denoted by λ

(n)
0 . Note that this condition alone does

not imply that B is normal. This is a working hypothesis
encoding typical behavior of MPSs, and which simplifies our
derivations. However, we do not expect it to be necessary. In
fact, numerical evidence suggests that this condition always
holds if A is normal, although we were not able to prove it.
We will denote the right/left eigenstates associated with λ

(n)
0

by |R(n)
� 〉 and 〈L(n)

� |. Note that

lim
N→∞

M (n)(|�N 〉)

N
= lim

N→∞
(1 − n)−1 1

N
ln tr

[
τ

(n)
� (B)N

]

= (1 − n)−1 ln λ(0)
n . (A7)
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Let us now consider a chain of N sites and set R = N − �.
Using the same replica approach explained in the main text,
we can rewrite the argument of the logarithm in Eq. (A1) as

1

2�

∑

P∈PN

(tr[ρAP])2n

= 1

2�

∑

{α j }�j=1

〈�N |σα1
1 . . . σ α��1�+1 · · · 1N |�N 〉2n

= tr
{
[τ�

(n)(B)]�
[
τ

(n)
� (C)

]R}
. (A8)

Taking the limit R → ∞, we get

lim
R→∞

tr
{[

τ
(n)
� (B)

]�[
τ

(n)
� (C)

]R}

= 〈
L(n)

�

∣∣τ (n)
� (B)

]�∣∣R(n)
�

〉

= (
λ(0)

n

)� 〈
L(n)

�

∣∣R(n)
�

〉 〈
L(n)

�

∣∣R(n)
�

〉
(1 + O(e−α�)) (A9)

for some α > 0. To conclude, it is enough to show that
〈L(n)

� |R(n)
� 〉 > 0 (and analogously for 〈L(n)

� |R(n)
� 〉). To see that

this is true, note first that 〈L(n)
� |R(n)

� 〉 = tr{L(n)
� R(n)

� }, where L(n)
� ,

R(n)
� are the matrix representations of 〈L(n)

� |, |R(n)
� 〉, i.e., the

eigenvectors of the CPMs ε
†
C and εB, respectively. Next, we

use that since A is normal, L(n)
� has full rank, and that both

L(n)
� , R(n)

� are positive operators. This follows from the fact
that, for a CPM with a single nondegenerate eigenvalue on its
peripheral spectrum, the corresponding eigenstate is a positive
operator [70].

APPENDIX B: COMPRESSION OF THE REPLICA
MPS FOR RÉNYI-2 STABILIZER ENTROPY

We provide some technical details on the implementation
of the replica MPS for Rényi-2 SRE.

Let |�N 〉 be an MPS with OBCs. First, we note that, for
n = 2, the right-hand side of Eq. (3) in the main text can be
rewritten as

〈�N |⊗4 �
(2)
1 ⊗ · · · ⊗ �

(2)
N |�N 〉⊗4 = 〈

�̃
(2)
N

∣∣�̃(2)
N

〉
, (B1)

with �
(2)
j = (1/2)

∑3
α=0(σα )⊗4, so no complex conjugation

appears. Here |�̃(2)
N 〉 is the replica MPS with OBCs generated

by the tensors B̃k = 	k · (Ak )⊗4 and with boundary vectors
|R〉⊗4, 〈L|⊗4. Using the definition of 	k , the local tensors
B̃k now manifestly commute with the elements of the linear
representation of the Klein four group

K = {1, S12S34, S13S24, S14S23}, (B2)

where S jk is the SWAP operator exchanging replica spaces
j and k. Therefore, the auxiliary space decomposes into ir-
reducible representations of K. Because of OBCs, the only
possible irreducible representation is the trivial one. There-
fore, we may insert in the auxiliary space the projector

� = 1
4 (1 + S12S34 + S13S24 + S14S23). (B3)

It is easy to compute

rank(�) = (1/4)χ2(3 + χ2). (B4)

(a) (b)

FIG. 4. (a) Error  = |m − mED| in magic density m via MPS
compared to exact diagonalization MED for N = 12 and various χ .
(b)  plotted against fidelity F . Dashed line is a guide to the eye
showing  ∝ |1 − F |0.5.

Then, we find a matrix Q such that � = Q†Q and we can
reduce the bond dimension by defining the new tensor

C = QB̃Q†. (B5)

Importantly, Q is sparse, and one can construct C without ever
constructing the full matrix B̃.

To illustrate the construction, we consider the transfor-
mation of the left link of the local tensor, i.e., C′ = QA⊗4.
First, we note that we can construct Q by considering the
action of � on the set of basis states |a1, a2, a3, a4〉, with ai ∈
{0, . . . , χ − 1} and i = 1, . . . , 4, which represent the bond
indices of (Ak )⊗4. � applied to a basis state yields a linear
combination of states, e.g., � |1200〉 ∼ |1200〉 + |2100〉 +
|0012〉 + |0021〉. The rows of Q can be written as all unique
transformations of � |a1, a2, a3, a4〉 including proper normal-
ization. Here, each row consists of only up to four nonzero
entries. Then, we construct QA⊗4 by computing each entry of
Q individually, without performing explicit matrix multiplica-
tion. This turns out to be numerically faster and less memory
consuming as we do not need to explicitly construct the full
tensor A⊗4.

APPENDIX C: ADDITIONAL NUMERICAL DATA

In this Appendix, we provide additional numerical data for
the GS SRE in the quantum Ising model.

1. Accuracy and dependence with χ

We begin by studying the accuracy of our MPS-based ap-
proach. As mentioned in the main text, we have first compared
it against exact-diagonalization (ED) data, which can be per-
formed for small system sizes. In Fig. 4, we plot the difference

(a) (b)

FIG. 5. (a) Density of SRE, m, of the GS as function of χ for
various system sizes N close to h ≈ 1. (b) Difference of m computed
for bond dimension χ and χ0 = 12. Dashed line is a fit with |m −
m(χ0)| ∝ 10−γχ with γ = 0.32.
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(b)(a) (c)

(e)(d) (f)

(h)(g) (i)

(k)(j) (l)

FIG. 6. Magic density m, linear coefficient DN , and sublinear term cN as defined via M (2)(|�gs
N 〉) = DN N + cN for the GS of Ising model.

Extraction procedure is explained in the main text. We show four different bases Vα = exp(−i 1
2

π

4 σα ), where σα ∈ {1, σ x, σ y, σ z} are the Pauli
operators. (a), (d), (g), (h) show m; (b), (e), (h), (k) DN ; and (c), (f), (i), (l) cN . We show four bases, namely, (a)–(c) unrotated basis, (d)–(f) Vy,
(g)–(i) Vz, and (j)–(l) Vx .

 = |m − mED| between the density of Renyi-2 stabilizer en-
tropy in the GS of the Ising Hamiltonian, computed using ED
(mED) and our method (m). Figure 4(b) shows, in particular,
the difference as a function of h for increasing bond dimension
χ . For N = 12, we see that the latter is very small ( 10−7)
already for χ = 6. In Fig. 4(b), we investigate the dependence
of  with the fidelity F = | 〈�N (χ )|�gs

N 〉 |2. Different sets
of points of the same color correspond to data produced for
different values of h and the same bond dimension χ . The
dashed line is a guide for the eye, showing that, roughly,
 ∼ |1 − F |0.5.

For larger system sizes, ED data are not available, but we
have always tested that our data are well converged upon
increasing the bond dimension. An example is shown in
Fig. 5(a). In general, we see that, as N increases, a larger bond
dimension is needed to have faithful results. Still, the data
appear to be converged already for χ = 10, up to N = 300. In
Fig. 5, we also plot the difference between the density of SRE
of two MPS approximations, |�N (χ )〉 and |�N (χ0 = 12)〉, for
χ = 2, .., 11. The plot shows a convincing exponential decay
of the error as a function of χ for all sizes, further supporting
the accuracy of the method.
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(b)(a) (c)

(k)(j) (l)

(e)(d) (f)

(i)(h)(g)

FIG. 7. Magic density m, linear coefficient DN , and sublinear term cN close to criticality. We show the same parameters as in Fig. 6 with
(a), (d), (g), (j) m; (b), (e), (h), (k) DN ; and (c), (f), (i), (l) cN . We show four bases with (a)–(c) unrotated basis, (d)–(f) Vy, (g)–(i) Vz, and
(j)–(l) Vx . Magic is computed with bond dimension χ = 8 for N � 80 and χ = 10 otherwise.

2. Additional data for rotated bases

Finally, we provide additional data for the density of SRE
in rotated bases. We consider, in particular, the linear coeffi-
cient DN and subleading term cN defined via

M (2)
( ∣∣�gs

N

〉 ) =: DN N + cN . (C1)

As mentioned in the main text, we have extracted them, ex-
ploiting the procedure explained in Ref. [66], namely, we
computed M (2)(|�gs

N 〉) for sets of three sizes N − δN , N , and
N + δN with small δN and fit the corresponding three values
against the straight line DN N + cN . We report in Fig. 6, data
for three different bases as a function of h.

Figure 7 shows the same data close to criticality. Clearly,
DN coincides with the density of SRE for large N . Consis-
tently, while it displays a maximum for the unrotated basis,
this is not the case in general. This is reported in Fig. 7, show-
ing that DN either displays a maximum or a minimum that is
extremal away from hc for the chosen bases. Polynomial fits
of the extremum with

h0(N ) = chN−ηh + bh (C2)

suggest that this effect persists even in the limit of large N . In
contrast to m and DN , we find that the coefficient cN becomes
extremal close to hc. The extremum can be fitted very well
with

cN,0 = ac ln(N ) + bc, (C3)
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suggesting that it is logarithmically diverging. A polyno-
mial fit of the extremal field hcN

0 for cN is consistent with
limN→∞ hcN

0 = hc = 1, at least within the numerical accuracy.

These findings persist for the four types of bases Vα we in-
vestigated, suggesting that cN is able to diagnose the phase
transition, independent of the local basis.
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