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Characteristics of topological semimetals such as a nonsaturating magnetoresistance (MR), a field-induced
metal to semiconducting crossover and a robust resistivity plateau are observed under a magnetic field in type-I
RbBi2 bulk superconductor with Tc = 4.15 K. The MR exhibits a notable 3500% increase at 2 K and 9 T and
the resistivity follows a power law temperature dependence, while the MR ∝ H1.26, indicating weak carrier
compensation. First principles calculations provided insights into the dynamical stability of the cubic structure at
0 K. Both hole and electron pockets are observed at the Fermi surface. The electron-phonon interaction constant
indicates weak coupling strength (<1) that leads to a maximum predicted Tc of 2.852 K. Just below the Fermi
level, EF , the electronic band structure consists of linear band crossings at the X points in the Brillouin zone
(BZ) corresponding to massless, symmetry-protected Dirac fermions.

DOI: 10.1103/PhysRevB.107.035143

I. INTRODUCTION

In topological materials, the quantum state is entangled
to an extent where it’s emergent quasiparticles exhibit ex-
otic behaviors that are unique and cannot be reproduced in
conventional solids. These exotic properties are topologically
protected as they are robust against perturbations. Studies
on numerous materials to date have established that topo-
logical phases supporting topologically protected boundary
states can exist in two and three dimensional time-reversal
symmetry (TRS) invariant systems in the absence of an exter-
nal magnetic field [1]. Many candidate topological insulators
containing bismuth, Bi, have been explored for this purpose
[2]. Bi metal exhibits strong spin-orbit coupling (SOC) that
has been linked to topologically nontrivial band structures in
its compounds. Several binary Bi compounds have been inves-
tigated for topological superconductivity. Examples include
Bi-alkali and alkaline-earth intermetallic compounds such as
LiBi, NaBi, KBi2 [3], CsBi2 [4], Ca11Bi10−x [5], CaBi2 [6],
CaBi3, SrBi3 [7], BaBi3 [7], and Ba2Bi3 [8]. Among these,
KBi2 [9] and CaBi2 are reportedly type-I superconductors,
although the topological nature of their superconductivity has
not been confirmed.

RbBi2 is isostructural to KBi2 with a higher supercon-
ducting transition temperature, Tc = 4.15 K. In this work,
we report on the Dirac (semi)metallic nature of RbBi2 and
its electronic properties. This is a superconducting system
which exhibits extremely large nonsaturating MR and a Dirac
dispersion. RbBi2 exhibits a very large MR of about 3500%
under an applied magnetic field of 9 T. While metallic behav-
ior is observed at zero field above Tc, a metal-semiconductor
crossover appears at low temperatures when the magnetic
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field exceeds Hc. A robust resistivity plateau appears below
10 K and persists up to 9 T. These characteristics are typ-
ical of topological semimetals with centrosymmetric crystal
structures [10]. At constant field, the resistivity follows a
power law temperature dependence [11] while the MR is
fit following Kohler’s rule with an exponent, m ∼1.26. An
m ∼2 is indicative of perfect carrier compensation [12], thus
the current value obtained for RbBi2 indicates weak carrier
compensation. Phonon calculations based on first principles
density functional theory (DFT) predicted the cubic structure
to be dynamically stable at 0 K. The linear-response approach
provided a weak electron-phonon coupling strength of < 1,
yielding a maximum superconducting Tc of 2.852 K using the
McMillan formula [13]. The electronic band structure near the
Fermi energy showed a linear band dispersion and crossing
indicative of a massless Dirac fermion at each of the three X
points in the BZ below EF . The massless Dirac spectrum is
protected by the fourfold screw rotation symmetry S4.

II. RESULTS AND DISCUSSION

A. Magneto-transport characterization

RbBi2 is cubic with Fd3m space group symmetry [14].
The crystal structure is shown in Fig. 1(a). The Bi tetrahedra
connect with each other by vertex-sharing to form a three-
dimensional network and the Rb atoms are arranged in a
diamond sublattice which is intertwined with the network of
Bi tetrahedra. The Bi sublattice forms a hyperkagome struc-
ture as shown in Fig. 1(b).

The results from the transport measurements under mag-
netic field are summarized in Fig. 2. Shown in Fig. 2(a) is
the electrical resistivity as a function of temperature under
an applied magnetic field ranging from 0 to 9 T. At zero
field, RbBi2 exhibits very good metallic conductivity even at
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FIG. 1. (a) The unit cell showing the cubic crystal structure of
RbBi2. (b) The Bi sublattice forming a hyperkagome structure on
a plane perpendicular to the threefold (111) axis. (c) The fourfold
screw S4 and twofold C2 rotations of the lattice. Number indicates
the fractional part of the vertical positions of the atoms (in units of
the lattice constant a). (d) Brillouin zone and high symmetry points.

room temperature. The resistivity follows a linear tempera-
ture dependence until about 25 K, below which it follows
a power-law temperature dependence ρ = A + BT 2.91 as it
approaches the superconducting transition. Under field, the
resistivity follows a complex power law dependence. Shown
in Fig. 2(b) is the resistivity as a function of temperature at
9 T. At low temperatures, the resistivity is fit (solid red line)
with ρ = ρ0 + AT 2 + BT 3 + CT 5 where ρ0 = 15, A = −0.1,
B = 7 × 10−3, and C = −4.7 × 10−5.

Below 10 K, above the critical field, Hc, with the supercon-
ducting transition suppressed, the resistivity exhibits a plateau
that extends down to 2 K, the lowest measured temperature.
The resistivity data below 10 K measured on a liquid N2

quenched sample of RbBi2 is shown in Fig. 2(c). The plateau
is observed for fields up to 9 T, with the residual resistivity ris-
ing linearly with field [Fig. 2(d)]. The magnetic field induces
a crossover in the temperature dependent behavior of the re-
sistivity from metallic to semiconducting and is accompanied
by a very large MR.

The magneto-transport behavior is shown in Fig. 2(e). The
MR at two temperatures: above and below the observed Tc is
plotted as a function of applied magnetic field. Typically in
conventional metals, the MR decreases because the relaxation
rate τ decreases with increasing temperature. The MR in
this system shows no saturation at 9 T. The MR is obtained
by MR(B) = ρ(B)−ρ(B0 )

ρ(B0 ) × 100 %. As-grown RbBi2 exhibits
an MR of about 3500% at 2 K and 9 T. The most trivial
mechanism responsible for the extremely large unsaturated
MR in semimetals has been associated with a semiclassi-
cal two-band model where electron and hole-like carriers
are almost compensated [15]. However, nonsaturating large
MR has also been observed in topological Weyl semimetals
such as WTe2 [16] and MoTe2 [17] with high mobilities and

FIG. 2. (a) The electrical resistivity as a function of applied
magnetic field in the range 0–9 T. (b) Temperature dependence of re-
sistivity at low temperatures in the presence of applied field H = 9 T.
The solid line shows the power law fit ρ = ρ0 + AT 2 + BT 3 + CT 5

to the data at low temperatures. (c) The low temperature resistivity
behavior at applied fields measured on a quenched sample of RbBi2

above the critical field. (d) The residual resistivity at 2 K plotted as
a function of the applied magnetic field. (e) The magnetoresistance
(MR) of RbBi2 is compared between data collected at 2 and 5 K. (f)
MR fitted with MR = α(H/ρ0)m at 2 K and 5K showing the Kohler
scaling.

low-residual resistivities. Although the two-band model pre-
dicts a quadratic in applied-field MR, these systems usually
exhibit a linear field dependence and the origin of the extreme
MR is not well understood.

Typically the magnetotransport in semiclassical single-
band metals follows a functional form known as Kohler’s
rule where �ρ/ρ0 ∝ F (H/ρ0), in which ρ0 is the zero-field
resistivity [18]. In most simple metals, the MR exhibits an H2

dependence so that MR is proportional to τ 2H2. Therefore a
plot of MR versus (H/ρ0) is expected to collapse to a single
temperature independent curve if the number of carriers is
constant, and with only one type of carrier with a scattering
rate that is the same at all points on the Fermi surface. This
is not what is observed as seen from the fitting of the MR in
RbBi2 with Kohler’s scaling [Fig. 2(f)]. �ρ/ρ0 ∝ (H/ρ0)1.26

which is not consistent with a Fermi-liquid quasiparticle scat-
tering rate. We suggest that the electron-hole compensation
can be one potential explanation for the large MR behavior in
RbBi2, however, we do not see a quadratic field dependence
of MR which implies that such compensation is weak. It is not
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FIG. 3. Phonon dispersion curves of RbBi2 along the high-
symmetry directions using (a) Linear-response theory and (b) Finite
displacement method. The high symmetry points are marked in the
Brillouin zone in Fig. 1(d).

likely for the electron-hole compensation to be the dominant
mechanism due to the complex nature of Fermi surface in
this material. The different temperature dependence of ρ and
MR is because ρ is related to the 1/τ over the Fermi surface.
The MR on the other hand is related to 〈τ 〉 over the Fermi
surface. The transport and magnetotransport are reminiscent
of the behavior observed in systems such as Ag2−d(Te/Se)d

[19], Bi2Te3 [20], Bi metal [21], graphite [22], Cd3As2 [23],
and (Sr/Ca)MnBi2 [24]. In these systems, the mechanism
for the large MR has been attributed to involve the presence
of Dirac fermions and their linear dispersion [such as in
Ag2−d(Te/Se)d, Bi2Te3] or Fermi surface compensation. It is
possible that the magnetic field breaks TRS and reorganizes
the Dirac Fermi surface. A high mobility of the Dirac carriers
could induce a very large MR as in the case of Cd3As2.

B. Phonons and electron-phonon coupling

The phonon dispersion curves along the W-L-�-X-W high
symmetry points as calculated using linear-response theory
[Fig. 3(a)] and the results from the supercell based finite
displacement method are shown [Fig. 3(b)]. Overall, both
plots show similar features. Most importantly, no phonons
with imaginary frequencies are found using either method.
This suggests that the cubic structure of RbBi2 is dynamically
stable at 0 K. This result is in agreement with the experimental
data where no structural phase transition was seen in any of
our experiments down to 2 K.

The calculated electron-phonon coupling constant, λep,
from the linear-response theory varied from 0.55 to 0.72
depending on the broadening used to calculate the α2F (ω)
function. Since our calculated λep is less than one, we used the
McMillan formula [13] instead of the Allen-Dynes formula to
estimate Tc. The McMillan formula provided a Tc estimate be-
tween 1.263 and 2.852 K, which is in close agreement with the
experimental value (∼4.15 K for a polycrystal). Intriguingly,
our calculated λep for RbBi2 agrees closely with that in KBi2

[25], an experimentally confirmed Type-I superconductor [9].

C. Electronic band structure and Fermi surface

In Figs. 4(a) and 4(b), electronic band structures of metallic
RbBi2 without and with SOC are shown along the �-X-W-
�-L high symmetry directions, respectively. In the absence
of SOC, a total of four bands cross the Fermi energy (EF).
All four bands are from the Bi-atom. Introducing SOC has
a nontrivial effect on the electronic band structure. Some of
the major changes occur along the X-W k path near EF. Two
bands that cross the �-X and X-W k path in Fig. 4(a) are
shifted to higher energies (by ∼0.5 eV) as shown in Fig. 4(b).
Consequently, in the SOC electronic band structure, no bands
cross EF along the X-W path. Another interesting difference
due to SOC is observed in the W-� path. A Dirac-like linear
dispersion along the W-� path at ∼0.75 eV below EF in
Fig. 4(a) is gapped in Fig. 4(b) when SOC is turned on. The
band crossing at the X point just above the Fermi level is also
Dirac which is qualitatively the same as the one below the
Fermi level.

Figure 5(a) is a plot of the Fermi surface without SOC.
An electron pocket (in red) is located at the � point of the
BZ. Hole pockets at the X and L points can be seen in
Figs. 5(c) and (d), resulting in a complex Fermi surface with
electron and hole characteristics as shown in Fig. 5(b). This
topology is similar to the Fermi surface of superconductor
KBi2 [25]. In Fig. 6, the Fermi surface and corresponding
Fermi velocity are plotted with SOC included. An electron
pocket is present at the � point, shown in green in Fig. 6(a). In
Fig. 6(b), a complex structure that consists of tubes connecting
the X and L points are formed. The maximum and minimum
Fermi velocities, v f , were calculated to be 2.64 × 106 and
0.65 × 106 ’m/s, respectively. The maximum v f is found
around the electron pocket in the � point of the BZ [Fig. 6(c)],
whereas the minimum v f is found in the tubes that connect the
X and L points.

D. Massless Dirac fermions at the X points

The fourfold degenerate bands closest to and below EF at
each of the three X points correspond to a massless Dirac
fermion [Fig. 4(c)] [26]. Thus, RbBi2 is a Dirac (semi)metal
[27]. Here we review the symmetry-protected Dirac point and
present an effective k · p Hamiltonian description near each
X point. The symmetry group at X is generated by time
reversal T , inversion P, twofold rotation C2, and fourfold
screw rotation S4. Since the three X points are related to each
other by the threefold rotation about the (111) axis, it suffices
to focus on one where S4 is parallel to, say, the a axis and
the C2 is parallel to the perpendicular b axis. [See Fig. 1(c)].
While the symmorphic C2, P, and T all mutually commute,
the nonsymmorphic screw rotation S4 = C4T 1/4

a contains the
fractional translation T 1/4

a and does not commute with P and
C2. T 1/4

a translates along the a axis by a/4, where a is the
lattice constant of the cubic cell. At the X point, (T 1/4

a )2 = −1
and therefore the screw representation obeys PS4P = −S4.
The twofold rotation flips the screw direction by conjugacy,
C2S4C

−1
2 = S−1

4 .
The fourfold degenerate bands at X irreducible represents

the little group and is referred to as X5. We adopt the following
4 × 4 matrix representations for the symmetries. T = isyK
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FIG. 4. Electronic band structures of RbBi2 (a) without SOC (scalar relativistic) and (b) with SOC (fully relativistic). The Fermi energy
(EF) is set at 0 eV. (c) Dirac point at X at −0.4187 eV below the Fermi level. For the two pairs of bands that cross the Fermi level, the degenerate
pair with lower (higher) energy are bands No. 5 and No. 6 (No. 7 and No. 8).

where K is the complex conjugate, and

C2 =
(

isy 0
0 −isx

)
, S4 =

(
0 isy

isx 0

)
, (1)

and P = σz = diag(1,−1). Here, sx,y,z are the spin Pauli
matrices, and 1 is the spin identity matrix. The Kramers’
theorem and PT symmetry, which is antiunitary and squares
to (PT )2 = −1, requires all band at all momentum to
be doubly degenerate. Restricting to the screw symmetric

FIG. 5. (a)–(d) Fermi surface without SOC for RbBi2. Four
bands cross the EF, whose Fermi surface is shown here. The Brillouin
zone showing the high symmetry points is shown in Fig. 1(d).

a axis in momentum space, bands can be labeled by their
S4 eigenvalues. The four bands near the Dirac point along
ka are grouped in two degenerate pairs with S4 eigen-
values {eiπ/4, ei3π/4} and {e−iπ/4, e−i3π/4}. The eigenvalues
are 4th roots of unity because S4

4 = −1. PT switches
the degenerate eigenstates since (PT )S4 = −S4(PT ). For

FIG. 6. ( a)–(d) Fermi surface and corresponding Fermi velocity
of RbBi2 with SOC. The high symmetry points are labeled.
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example, S4(PT )|eiπ/4〉=−(PT )S4|eiπ/4〉=−(PT )eiπ/4|eiπ/4〉
= ei3π/4(PT )|eiπ/4〉. These two pairs of degenerate bands
cross at X and the Dirac crossing is protected by S4 and PT
symmetry.

The massless Dirac bands can be effectively described by
the k · p Hamiltonian in a linear approximation near the X
point,

H (X + k) = εX I + h̄vzkzγz + h̄vx(kxγx + kyγy), (2)

where the x, y, z directions are the orthogonal b, c, a direc-
tions, respectively. The fourfold degenerate bands at X sits
below EF at εX = −0.418705 eV. The gamma matrices are
restricted by the little symmetry group at X5. They are

γz = σx(sx + sy)√
2

, γx = σy + σxsz√
2

, γy = σy − σxsz√
2

,

(3)

which mutually anticommute, and each matrix square equals
to the identity, γ 2 = I. The Fermi velocities vx and vz along
the axis normal and parallel to the screw direction from X
are extracted by a polynomial fit of band energies near X
(within 4% away from X towards � and M). Using the numer-
ical lattice parameter a = 9.52016 Å, they are vx = (2.568 ±
0.006) × 105m/s and vz = (4.94 ± 0.06) × 105 m/s.

The Dirac fermions at the three X points can become mas-
sive if the fourfold screw symmetry is broken, for example
when the material is under uniaxial stress along the threefold
(111) direction. The only timereversal and inversion symmet-
ric mass term is mP, where the Dirac masses of the three X
points are identical due to the threefold symmetry. The sign
of m depends on the sign of stress. Since the tension and com-
pression phases are separated by three Dirac transitions—an
odd number, one of them must be in the strong Z2 topological
insulating phase, and exhibits gapless Dirac surface bands at
the surface projected X̄ points.

E. Topology of the Fermi surfaces

Although RbBi2 has finite Fermi surfaces and is a band
metal, it is classified as an enforced semimetal with Fermi
degeneracy (ESFD) [28] for the following reasons. The par-
tially filled doubly degenerate conduction bands No. 7 and No.
8 can be continuously deformed above EF while keeping all
symmetries (see Fig. 4). Similarly, the partially empty doubly
degenerate valence bands No. 5 and No. 6 can be moved
below EF . The Dirac crossing at X between the conduction
and valence bands is still symmetry protected. It will reside
exactly at the Fermi level after a continuous band deformation
because of charge neutrality and electron filling. The resulting
band structure is semimetallic as it has a vanishing Fermi
surface and energy gap. However, in the real material, the
electron and hole pockets have finite Fermi surfaces. They
enclose the same volume in momentum space because of
charge neutrality.

The valence bands No. 5 and No. 6 cut across EF and give
rise to the hole pocket Fermi surface [shown in Fig. 6(a)]. It
has an isotropic shape and resembles a smoothed out rhombic
dodecahedron that encloses the � point at its center. The
conduction bands No. 7 and No. 8 cut across EF and give
rise to the electron pocket Fermi surface [shown in Fig. 6(b)].

At low temperature, the electron pocket occupies regions near
the boundary of the Brillouin zone including the X and L
points, and does not overlap with the hole pocket near the zone
center. The electron Fermi surface 
e−FS has genus 18, and is
topologically equivalent to a torus with 18 “holes”. It has 18
independent longitudinal cycles that wrap inside 
e−FS where
the conduction band is occupied, and 18 meridian cycles that
wrap outside 
e−FS where the conduction band is empty.
The electron Fermi surface 
e−FS consists of 24 “tubes” that
connect between the three X points and the four L points. Each
X point is connected to any given L point by two “tubes”. The
longitudinal (meridian) cycles run inside (outside) the tubes.
A longitudinal loop cycle links a meridian cycle if they thread
the same tube. We defer the consequence of the negative
Gaussian curvature of 
e−FS and the Wilson loop algebra of
its cycles to future work.

III. CONCLUSION AND SPECULATION

There exists a large list of nonmagnetic compounds re-
cently discovered that exhibit extraordinary responses under
field, i.e., large positive MR, with centrosymmetric symme-
tries. Systems such as NbSb2 [29], YSb [30], LaSb [31],
MoAs2 [10], TaSb2 [32], and NbAs2 [33] all show strong MR,
a resistivity plateau, induced by the magnetic field, leading
to a crossover from a metal to a semiconductor. In these
systems, the exponent in the Kohler’s fitting is less than two,
indicating weaker carrier compensation. Magnetotransport in
semiclassical single-band metals scales as MR = F (H/ρ0)
assuming a single scattering rate. In our system, MR ∝ H1.26

which deviates from Kohler scaling. The MR is almost linear
that may arise from the quantum limit, suggesting that it could
be the Dirac carriers that induce the large MR [34].

We close by speculating on the prospect of normal metal-
lic and superconducting phases of this Dirac material under
symmetry-breaking perturbations. The three massless Dirac
fermions can become massive in this case and RbBi2 may
serve as a testbed for tunable topological phases. As discussed
in Sec. II D, we expect uniaxial stress along the (111) direc-
tion turn the material into a strong topological insulator that
hosts protected surface Dirac fermions. It would be equally
interesting to explore the effects of other directional pertur-
bations such as electric/magnetic fields or shear stress, on
the topology and transport nature of this system. The high
genus electron Fermi surface contains saddle point regions
with negative Gaussian curvature that associate to high density
of states and locally flat energy dispersions along special
directions. These regions are prone to electron many-body
interactions and may give rise to nontrivial strong corre-
lated behaviors. The superconducting state of RbBi2 deserves
further investigation due to the strong SOC and Dirac na-
ture of the material. For example, the surface Dirac fermion
of a topological insulator are known to host vortex-bound
Majorana zero modes under superconducting pairing [35].
Although RbBi2 is a type-I superconductor, quantum vortices
could be introduced in thin film sandwiched by bulk trivial
type-II superconductors. It would be interesting to observe
such exotic excitations on the superconducting RbBi2 surface
and the onset of surface Majorana gap under a strong enough
symmetry-lowering perturbation such as the uniaxial stress.
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Thus, RbBi2 is a strong candidate to be a topological system
from which the interplay of superconductivity and Dirac states
can be explored.

Methods

1. Material Synthesis

The RbBi2 samples were prepared by solid state reaction
following the procedure described in Ref. [14]. Rubidium
pieces (Alfa Aesar, 99.5%) and Bismuth powder (Alfa Aesar,
99.99%) were mixed in a 1:2 molar ratio and the mixture
was vacuum sealed in a quartz ampule. The samples were
heated at 700 ◦C for 24 hours. Two batches of samples were
synthesized, one that was slowly cooled down (furnacecooled)
to room temperature and the other quenched from 700 ◦C in
liquid N2 to room temperature. The samples are denoted as
AG (as-grown) and Q (quenched), respectively. The sample
preparation and handling were done inside an Argon filled
glovebox to avoid exposure to air. Electrical transport and
magnetization measurements were performed as a function
of magnetic field. Magnetic field studies on correlated metals
have been instrumental in revealing the ground state proper-
ties of the normal state by suppressing the superconducting
transition. The magnetic field interacts with the charge carriers
through the Lorentz force, coupling directly to the orbital
motion.

2. First Principles Calculations

DFT calculations were performed using the planewave
pseudopotential code, QUANTUM ESPRESSO [36] within
the generalized gradient approximation [37] and the PBEsol
exchange-correlation functional is used for all calculations
[38]. The ultrasoft pseudopotential optimized in the Rappe-
Rabe-Kaxiras-Joannopoulos scheme was used to treat the core
and valence electrons [39]. The RbBi2 system is built as a
six-atom cubic cell (space group Fd 3̄m), where Rb atoms
occupy the 8a Wyckoff site and the Bi atoms occupy the
16d site. The lattice constant was obtained by performing a
variable-cell optimization, where both the cell and the inter-
nal coordinates were allowed to relax. A � point centered
Monkhorst-Pack k-point mesh of size 16 × 16 × 16 was used

for the structure optimization [40]. A kinetic energy and
charge density cutoff of 70 and 700 Ry, respectively, were
used in the self-consistent field (SCF) calculation. An energy
threshold of 7 × 10−10 Ry was used for the SCF calculation
in the electronic steps. Marzari-Vanderbilt smearing with a
degauss width of 0.001 Ry was used [41]. The calculated
equilibrium lattice parameter of 9.52016 Å agreed well with
the experimental value (9.59 Å). The electronic band struc-
ture and Fermi surface calculations were performed with and
without SOC in the Hamiltonian. In the SOC calculations,
fully-relativistic pseudopotential were used only for the Bi-
atoms because the atom-projected density of states indicated
that only the Bi-orbitals are involved in the Fermi surface.
For the Fermi surface calculations, non-SCF calculations were
performed with a dense 32 × 32 × 32 k mesh. The Fermi sur-
face is visualized using XCRYSDEN [42]. The Fermi velocity
was also calculated using the SOC term (v f ) and visualized
the contour using the Fermisurfer software [43].

The phonon dispersion curve, electron-phonon coupling
strength (λep), and Eliashberg spectral function [α2F (ω)]
were calculated using the linear-response theory [44]. Both Rb
and Bi atoms are described using scalar-relativistic pseudopo-
tentials in these calculations. The superconducting critical
temperature was calculated using the McMillan formula
[13]. An energy threshold of 10−15 Ry was used for self-
consistency based on a 4 × 4 × 4 Monkhorst-Pack grid. A
total of ten double-delta smearing values with a spacing of
0.005 Ry were used in the electron-phonon coupling calcu-
lation. In addition to the linear-response theory, the phonon
dispersion curve was also calculated based on the finite
displacement method using PHONOPY [45]. A 2 × 2 × 2 su-
percell of the conventional cell was used in these calculations.
In the SCF calculations, a 4 × 4 × 4 k point mesh and an
energy threshold of 7 × 10−12 Ry were used for convergence.
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