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Sachdev-Ye-Kitaev model: Non-self-averaging properties of the energy spectrum
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The short time (large energy) behavior of the Sachdev-Ye-Kitaev model (SYK) is one of the main reasons for
the growing interest garnered by this model. True chaotic behavior sets in at the Thouless time, which can be
extracted from the energy spectrum. In order to do so, it is necessary to unfold the spectrum, i.e., to filter out
global tendencies. Using a simple ensemble average for unfolding results in a parametically low estimation of
the Thouless energy. By examining the behavior of the spectrum as the distribution of the matrix elements is
changed into a log-normal distribution, it is shown that the sample-to-sample level spacing variance determines
this estimation of the Thouless energy. Using the singular value decomposition method, which filters out these
global sample-to-sample fluctuations, the Thouless energy becomes parametrically much larger, essentially of
the order of the band width. It is shown that the SYK model is non-self-averaging even in the thermodynamic
limit which must be taken into account in considering its short time properties.
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I. INTRODUCTION

The interplay between disorder and interactions in quan-
tum systems has been a central theme in condensed-matter
physics for the last half century. Recently the Sachdev-Ye-
Kitaev (SYK) model [1,2] has garnered much interest in the
fields of quantum gravity and quantum field theory [3,4]. A
key feature of the model is that it follows random matrix the-
ory (RMT) behavior, as is manifested in the chaotic behavior
of its energy spectrum.

Two-body random interaction models have a long history
[5]. The SYK model first appeared in the context of spin
liquids [1] and then in string theory [6] and quantum gravity
[4]. The SYK model is known to be chaotic [7–9], show-
ing a Wigner-like behavior of the energy spectra. Once the
SYK model is perturbed by a single-body random term which
mimics diagonal disorder in the Anderson model [10–16], or
several SYK dots are coupled by single-body random terms
[17–21], a transition from metallic (chaotic) to insulating be-
havior occurs which leads to a Wigner-to-Poisson crossover
of the statistical properties of the spectra.

While studying nuclear and condensed-matter systems it
became clear that many physical systems exhibit universal
behavior at long times (short energy scales) [22–27]. Never-
theless, universality may break at shorter times (large energy
scales) for which a particle has no time to sample the entire
phase space of the system and its behavior depends on local
nonuniversal features [28]. Thus, in the context of disordered
metals the scale for which the metallic spectrum deviates
from the universal behavior is known as the Thouless en-
ergy, ETh = h̄D/L̃2 = g� (D is the diffusion constant, L̃ is
the linear dimension, g is the dimensionless conductance,
and � is the average level spacing), and the Thouless time,
tTh = h̄/ETh = L̃2/D.

The question whether an analog of the Thouless energy
manifests itself in the SYK model has surfaced in Ref. [7],

where García-García and Verbaarschot have studied (among
other things) the variance of the number of levels as a function
of the size of an energy window E , denoted by 〈δ2n(E )〉
(where 〈. . .〉 represents an ensemble average and n(E ) is
the number of levels within E ). A departure from the RMT
behavior is apparent above a certain value of E , which quite
naturally was identified with the Thouless energy. Moreover,
at larger energy windows, the number variance adopts a
quadratic form, 〈δ2n(E )〉 = a + b〈n(E )〉2. Evidence for the
Thouless energy has also been seen for other measures such
as off-diagonal expectation values [29] and the spectral form
factor [30]. For the latter the unfolding procedure has influ-
ence on determining the time for which the spectral form
factor transits into a linear increase and then into a plateau
determining the transition into RMT behavior. In Ref. [20]
the origin of the Thouless energy for the SYK model was
identified as the relaxation of modes prevailing at shorter
scale. For disordered metals these modes are know as the
diffusion modes. For the SYK model it was suggested that
similar modes can be constructed, where the number of such
modes is connected to the number of independent interaction
terms in the SYK model, which is much smaller than the
size of the Hilbert space. This leads to an energy scale which
determines the Thouless energy. Thus, the energy scale for the
departure of the SYK model level number variance from the
RMT prediction is determined by the scale of the sample-to-
sample fluctuations of the ensemble.

In the SYK model all the terms have just a single vari-
ance scale, which is well behaved (box or Gaussian) and
therefore the origin of the additional energy scale determining
the Thouless energy is not obvious. As noted recently by Jia
and Verbaarschot [31] this deviation from RMT behavior has
its root in large-scale sample-to-sample fluctuations of the
spectrum. They attribute these fluctuations to the relatively
small number of independent random variables contributing
to the SYK Hamiltonian. The basic premises of self-averaging
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quantities is that averaging a quantity over an ensemble of
realizations or averaging over a single large realization will
lead to the same result. If not, the system is not self-averaging.
For detecting the universal behavior of the fluctuations of
the energy spectrum, one must remove the nonuniversal
model-dependent band structure. For a self-averaging model
the procedure is straight forward, just average the nearest-
neighbor level spacing around a particular level over all the
realizations in the ensemble. For the SYK model, comparing
the averaged level spacing to the level spacing of a particular
sample shows (see, e.g., Fig 4) an almost constant deviation
between them which persists for large portions of the energy
spectrum. Parametrizing these long-range deviations between
the ensemble average and particular realizations by terms of
Q-Hermite orthogonal polynomials and removing these devia-
tions from the spectrum results in a pure RMT behavior which
is retained up to a very large energy scale.

The influence could be quantified [31] by estimating the
energy scale for which the small number of independent ran-
dom variables will change the level number variance. Using
the notation for the complex SYK (CSYK) half-filled model
defined in the next section, where L is the number of sites,
the size of the Hilbert space is ( L

L/2) ∼ 2L. This is equiv-
alent to the usual formulation of the SYK model with 2L
Majorana fermions with four-body interactions. The number
of independent variables is (2L

4 ) ∼ L4, leading to a variance

of L−2 in any observable. Thus, one expects the number of
levels n to deviate significantly O(1) from RMT predictions
on a scale of n ∼ L2. A similar result emerges from the cal-
culation in Ref. [20] where the coefficient b in the number
variance was estimated as b ∼ L−4, thus becoming significant
at n ∼ L2.

Although the deviation from RMT is shifted to larger n as
the system size L increases, the proportion of levels following
RMT predictions out of the total number of states goes to
zero as L2/2L. On the other hand, one would expect that after
filtering out the sample-specific large-scale deviation from the
ensemble-averaged density of states (level spacings) the RMT
behavior will be followed for a finite portion of the spectrum.
Thus, one expects the Thouless energy to crucially depend on
whether one simply averages over an ensemble or takes into
account the sample-specific large-scale deviations. This is a
hallmark of a non-self-averaging system [32].

Hence, the energy scale for which the spectrum departs
from the RMT predictions crucially depends on the unfolding,
i.e., the method by which the average over the density of states
is performed. Estimating the local density of states by a simple
ensemble average will give a different value than an unfolding
method that is able to take into account sample-specific global
behavior of the spectrum. In recent studies it has been shown
[33–39] that these sample-specific long-ranged features of the
spectrum can be identified by the singular value decomposi-
tion (SVD) procedure. The basic idea behind the procedure is
to arrange the energy spectrum of the ensemble of different
realizations as a matrix, where each row is P consecutive
eigenvalues of a given realization, and the number of rows
is the number of realizations M. As detailed in Sec. V, SVD is
essentially a procedure by which the M × P matrix is written
as a sum over a series of amplitudes multiplied by M × P

matrices which are constructed by an outer product of two
different vectors of sizes P and M. The vector of size P
is in essence the averaged correction to the spectra of all
realizations for this term in the series, while the M terms of
the second vector attenuate this averaged correction for each
of the M different realizations, and the amplitude gives the
overall weight of this term in the series. Thus, each matrix in
the series is a product of P + M numbers, compared to the PM
numbers composing the original data. Summing up m terms in
the series gives the matrix closest to the original one for the
summation of matrices constructed by outer products of two
vectors. Generally, plotting the amplitudes from large to small
(known as a Scree plot) shows that the largest amplitudes
[usually O(1) modes] are orders of magnitude larger than
the rest, while the following amplitudes obey a power law.
The largest terms depict the global behavior of the energy
spectrum, while the terms whose amplitudes follow a power
law capture the shorter-range properties. Thus SVD is a very
natural method to examine the SYK spectrum behavior, and
uncover the universal properties of the spectrum, obscured by
realization-specific deviations.

One may conclude that there are two possible energy scales
for the deviation of the spectrum of the SYK model from
RMT predictions. The first is the energy scale for which the
number variance of the spectrum unfolded by the ensemble-
averaged level spacing deviates from the RMT prediction,
which for self-averaging systems such as disordered metals is
the Thouless energy. The second energy scale corresponds to
the energy for which the number variance diverges from RMT
predictions where the unfolding is performed with methods
such as the Q-Hermite orthogonal polynomials [31] or by
SVD [33–39], or probably by other methods which factor in
global sample-specific fluctuations. For a non-self-averaging
system such as the SYK model, these two energy scales are
not equal, and for clarity we retain the notation of Thouless
energy, ETh, for the case where the spectrum is unfolded by
an ensemble average over all realizations, while the second
scale is denoted by ETh∗ .

Here we show that one can tweak the behavior of the
CSYK model to a more non-self-averaging behavior by
changing the distribution of the off-diagonal terms to a
log-normal distribution. Thus, it is possible to enhance the
non-self-averaging behavior and study its influence on ETh

and ETh∗ . Such a wide distribution was not previously con-
sidered for the SYK model and should help to clarify the
divergence of ETh∗ from ETh.

The paper is arranged as follows: the CSYK model is
defined in Sec. II. Corroborating the expected behavior for
short-range energy scales is performed in Sec. III. The univer-
sal statistics fourfold symmetry as a function of the system
size is observed. In Sec. IV long-range energy scales are
probed by the number variance. The spectrum is unfolded
by using the local ensemble-averaged level spacing. RMT
predictions hold only up to ETh, which becomes smaller as the
log-normal distribution acquires a thicker tail towards larger
values. Above ETh the variance increases quadratically as a
function of the number of levels in the energy window. In
Sec. V we switch to the SVD analysis. This analysis reveals
that each realization has a level spacing structure related
to the ensemble-averaged level spacing with sample-specific
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adjustments. Thus, one should adapt the unfolding for each
realization. After a realization-adapted unfolding, the number
variation follows the RMT prediction for much larger energy
scales, i.e., ETh∗ � ETh. Actually, ETh could be estimated
from the sample-to-sample variance in the level spacing. In
Sec. VI these results are discussed in the limit of large CSYK
systems, showing that in the thermodynamic limit the SYK
model is non-self-averaging.

II. COMPLEX SYK MODEL

Here we use the complex spinless fermion version of the
SYK model given by the following Hamiltonian:

Ĥ =
L∑

i> j>k>l

Vi, j,k,l ĉ
†
i ĉ†

j ĉk ĉl , (1)

the couplings Vi, j,k,l are complex numbers, where the real and
imaginary components are independently drawn from an iden-
tical distribution. We study here two different distributions:
The first is a box distribution between −L−3/2/2 . . . L−3/2/2,
where L is the number of sites. The second distribution is the
log-normal distribution

P(V ) = (A/|V |)e
− ln2 (|V |/Vtyp )

2p ln(V −1
typ ) , (2)

with Vtyp ∼ K−γ /2, K is the size of the Hilbert space, A is a
normalization, and γ and p are parameters. For simplicity,
here we set p = 0.5, while γ is varied [40]. Thus, the log-
normal distribution becomes wider and more skewed as γ

increases. The number of fermions is conserved and we con-
sidered the N = L/2 sector for even L and the N = (L + 1)/2
sector for odd L, resulting in a Hilbert space size of K = (L

N )
and a matrix size of K × K .

III. SHORT ENERGY SCALES

As a first step we would like to probe the nearest-neighbor
level spacing statistics of the CSYK box distribution in order
to establish the extended regime of this model. One expects
that in the extended-regime short energy scales (long times)
follow the Wigner statistics. The short energy scale statistics
is revealed by the ratio statistics, defined as

r = 〈
min

(
rn, r−1

n

)〉
, rn = En − En−1

En+1 − En
, (3)

where En is the nth eigenvalue of the Hamiltonian and 〈. . .〉
is an average over an ensemble of different realizations of
disorder and half of the eigenvalues around the middle of
the band. For the Wigner distribution rs

∼= 0.5307 for the
GOE symmetry, rs

∼= 0.5996 for the GUE symmetry, and
rs

∼= 0.6744 for the GSE symmetry [41].
An interesting behavior emerges for the CSYK model. It is

known that as a consequence of the symmetries of the SYK
model, the spectrum of Eq. (1) shows statistics which depend
on L [7–9]. For L mod 4 = 0 the statistics are GOE, For L
mod 4 = 2 the statistics are GSE, and for L mod 4 = 1 and
3 the statistics are GUE. This is indeed seen in Fig. 1 where
rs averaged over the middle half of the energy spectrum, for
different sizes L = 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 and

FIG. 1. The nearest-neighbor level spacing statistics as mani-
fested in the behavior of the ratio statistics rs for different system
sizes L of the CSYK model with a box distribution are indicated by
the black circles. The number of fermions is N = L/2 for even L and
N = (L + 1)/2 for odd L. The rs values expected for GOE (dashed
red), GUE (dashed green), and GSE (dashed blue) are marked. The
expected fourfold symmetry is seen.

numbers of fermions N = 4, 5, 5, 6, 6, 7, 7, 8, 8, and 9, is
plotted. In all cases we exactly diagonalize the corresponding
K × K matrix and average over 3000 realizations of disorder
(except for the largest size for which only 100 realizations
were computed). It can be seen that the expected fourfold
symmetry is followed.

Concentrating on the L = 16 with N = 8 systems, we in-
vestigate the role played by changing the distribution from the
box distribution to a log-normal distribution. Setting p = 0.5
and increasing γ we sweep through the values γ = 1, 1.5,
2, 2.5, 3, 4, and 5. For all these values rs

∼= 0.5307 ± 0.001.
Thus, GOE universal behavior on short energy scales is per-
fectly followed.

IV. LOCAL ENSEMBLE UNFOLDING

As discussed, the practice of determining the Thouless
energy is fraught with difficulties. In order to compare any
spectrum to RMT predictions, one must recast the spectrum
such that it will exhibit an averaged constant density of states,
i.e., a constant level spacing throughout the region examined.
What is the averaging procedure? Usually, one averages the
level spacing over an ensemble of disordered realizations in
a given energy region and then reconstructs a particular spec-
trum, such that the level spacing is on the average equal to 1
everywhere. Specifically, the averaged level spacing for the ith
level is �i = 〈Ei+p − Ei−p〉/2p [where p is O(1), here chosen
as p = 5], and the unfolded spectrum for the jth realization is
ε

j
i = ε

j
i−1 + (E j

i − E j
i−1)/�i. For brevity we call this unfold-

ing procedure local ensemble unfolding.
Implementation of this local unfolding procedure for the

level number variance of the CSYK model with a box distri-
bution and for log-normal distributions with γ = 1 and 1.5
results in the behavior depicted in the inset of Fig. 2, which is
in agreement with the behavior observed in Refs. [7,31]. Here
the number variance begins by following the GOE predictions
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FIG. 2. The level number variance, 〈δ2n(E )〉, as a function of
the energy window E . Symbols (black, box; red, γ = 1; blue, γ =
1.5) represent the variance with local ensemble unfolding, fitted
for larger values by a + b〈n(E )〉2 (where b = 1.78 × 10−5 for the
box distribution, b = 1.25 × 10−3 for γ = 1, and b = 4.4 × 10−3

for γ = 1.5). The cyan line is the GOE prediction 〈δ2n(E )〉 =
(2/π 2) ln(〈n(E )〉) + 0.44. Insert: Zoom into smaller values of 〈n〉.
Deviations from the GOE behavior are observed. A curve depicting
GOE plus a constant of 0.2 corresponds to the dashed cyan line.
Using the intersection between the variance and the dashed cyan line
to determine the Thouless energy results in ETh ∼ 95� for the box
distribution, ETh ∼ 13� for γ = 1, and ETh ∼ 7� for γ = 1.5.

and grows quadratically for larger 〈n〉. The Thouless energy
corresponds to the point where the number variance deviates
from GOE predictions. As an estimate of the Thouless en-
ergy we chose the point for which the variance deviates by
an arbitrary amount (set as 0.2), resulting in ETh ∼ 95� for
the box distribution, ETh ∼ 13� for γ = 1, and ETh ∼ 7�

for γ = 1.5, where � = 〈�i〉. This will naturally lead to the
conclusion that, as γ increases, ETh strongly decreases. For
larger values of γ the variance departs from the GOE predic-
tions close to � and those values were not plotted to avoid
cluttering the figure at small 〈n〉.

As emphasized by Jia and Verbaarschot [31], since unlike
typical RMT models for which all nondiagonal terms are
random, SYK models have just (2L

4 ) � (L
N ) independent non-

diagonal terms, which leads to significant sample-to-sample
fluctuations within the ensemble, and using the average level
spacing obtained by an ensemble average may significantly
skew the number variance. Thus, we need a way to charac-
terize the level spacing for a specific sample more accurately.
As previously discussed, in Ref. [31] this was achieved by
parametrizing the spectrum using Q-Hermite orthogonal poly-
nomials. As described in the next section, here the SVD
method is used.

V. SINGULAR VALUE DECOMPOSITION

SVD can be used to characterize the features of the
spectrum; for example, on what scale does it follow RMT
predictions [33–39]? For the analysis, one tabulates P eigen-
values around the center of the band of M realizations of
disorder as a matrix X of size M × P, where Xmp is the pth

FIG. 3. The scree plot of the singular values for the CSYK model
with box and log-normal distributions with p = 0.5 and γ = 1, 1.5,
2, 2.5, 3, 4, and 5 for L = 16 and N = 8, with M = 4096 realizations
and P = 4096 eigenvalues around the middle of the band. The square
amplitudes of the singular values λk are indicated by the symbols.
The cyan line corresponds to λk ∼ k−α , with α = 1, as expected for a
spectrum which follows Wigner-Dyson statistics. The lower k modes
which capture the nonuniversal global structure of the spectrum
deviate from Wigner-Dyson statistics.

level of the mth realization. The matrix X is decomposed
to X = U	V T , where U and V are M × M and P × P ma-
trices, correspondingly, and 	 is a diagonal matrix of size
M × P and rank r = min(M, P). The r diagonal elements
of 	 are the singular values amplitudes (SV) σk of X . All
σk are positive and therefore may be ordered by their size
σ1 � σ2 � · · · σr . The Hilbert-Schmidt norm of the matrix
||X ||HS =

√
TrX †X = ∑

k λk (where λk = σ 2
k ). The matrix X

could be written as a series composed of matrices X (k), where
X (k)

i j = UikV T
jk and Xi j = ∑

k σkX (k)
i j . This series is an approx-

imation of matrix X , where the sum of the first m modes
gives a matrix X̃ = ∑m

k=1 σkX (k), for which ||X ||HS − ||X̃ ||HS

is minimal, i.e., the minimal departure between the approx-
imate energy spectrum of all realizations, X̃ , obtained using
m(M + P) independent variables compared to the full energy
spectrum which requires MP variables. For the local ensemble
average one unfolds using an averaged spectrum, thus em-
ploying P independent values. Thus, if only the first mode
of the SVD is taken into account (m = 1), the approximation
of the energy spectrum has M additional parameters. Writing
down explicitly the k = 1 term of the spectrum for the ith
realization results in X (k=1)

i j = Ui1V T
j1. Thus, the P values,

common to all realizations V T
j1, are multiplied by a single

parameter Ui1 unique to each of the M realizations. In other
words, the ensemble-averaged spectrum V T

j1 is scaled by a
single parameter Ui1 for each realization.

The idea is that low modes capture the global behavior
of the spectrum common to all realizations, while higher
modes sample the fluctuations on smaller energy scales. If
a distinct pattern of behavior of the amplitude as a function
of the mode number can be seen for a particular range of
k, it is meaningful to discuss different behaviors at different
energy scales. Indeed, as can be seen in Fig. 3, examining
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FIG. 4. The level spacing for the CSYK model with box distri-
bution and different log-normal distribution with γ = 1, 2, 3, 4, and
5 for L = 16 and N = 8, for M = 4096 realizations and P = 4096
eigenvalues around the middle of the band. The ensemble-averaged
level spacing, �i, for the local unfolding method is the same for all
samples and is depicted by the black curve. The SVD unfolded level
spacing, �

j
i , is realization dependent. Five individual realizations

for each distribution are shown (red, green, blue, yellow, and brown
curves). As γ increases the sample-to-sample fluctuation increases.
It is clear that the long-range correlations within a sample are very
significant.

the scree plot of the singular values λk for the box distri-
bution and the log-normal distribution with different values
of γ and a fixed p = 0.5, for L = 16, N = 8, with M =
4096 realizations and P = 4096 eigenvalues around the mid-
dle of the band, one sees two distinct regions. The lowest
modes’ (k = 1 and 2 for the box distribution and γ = 1;
k = 1, 2, 3, and 4 for 1.5 � γ � 2.5; and k = 1, 2, 3, 4,
5, and 6 for 3 � γ � 5) amplitudes are much larger than
those of all the other modes, and they determine the very
large scale, nonuniversal, behavior of the spectrum. The
bulk of the modes for larger k follow a power-law behav-
ior (λk ∼ k−α ) with α = 1, as expected for Wigner-Dyson
statistics [33–35].

In order to illustrate the difference between the local en-
semble unfolding and unfolding using the lower modes of
the SVD, it is useful to examine the difference in the be-
havior of level spacing of the ith level, �i, obtained by each
method. While for the local ensemble unfolding the level
spacing �i is averaged over all realizations and therefore
is not realization dependent, for the SVD unfolding the ith
level spacing of the jth realization �

j
i = (ε̃ j

i+p − ε̃
j
i−p)/2p,

where ε̃
j
i = ∑2

k=1 σkUikV T
jk is realization dependent. As can

be seen in Fig. 4 there is a noticeable difference between the
realization-specific level spacing �

j
i and the ensemble aver-

age �i. This difference becomes larger as γ increases, i.e., as
the width of the log-normal distribution increases. Moreover,
the difference, �

j
i − �i, is long-range correlated for a given

realization across thousands of levels. Thus, it makes sense
to define the typical spacing difference between realizations
δ� = √〈(� j

i − �i )2〉i, j . For L = 16 and N = 8 with M =
4096 realizations and P = 4096 levels around the center of the
band, one gets δ� = 4.44 × 10−3� for the box distribution,

δ� = 3.52 × 10−2� for γ = 1, and δ� = 6.61 × 10−2� for
γ = 1.5.

This long-range sample-to-sample level fluctuation can ex-
plain the behavior of the level number variance of the local
ensemble unfolding seen in Fig. 3. Essentially, for larger
values of 〈n〉, 〈δ2n〉 = a + b〈n〉2, with b = 1.78 × 10−5 for
the box distribution, b = 1.25 × 10−3 for γ = 1, and b =
4.4 × 10−3 for γ = 1.5. The quadratic behavior could be
understood as the consequence of realization-specific long-
range fluctuation of the level spacing. Calculations show
〈δ2n〉 = 〈(n − 〈n〉)2〉, taking into account that after unfold-
ing 〈n〉 = n and for a typical realization n ∼ n(1 + δ�/�).
Thus, 〈δ2n〉 ∼ (nδ�/�)2, and after plugging in the above-
mentioned values of δ� one obtains 〈δ2n〉 ∼ 1.97 × 10−5n2

for the box distribution, 〈δ2n〉 ∼ 1.24 × 10−3n2 for γ = 1,
and 〈δ2n〉 ∼ 4.36 × 10−5n2 for γ = 1.5, in good agreement
with the numerical values quoted above. Moreover, using our
previous definition of the Thouless energy as the energy for
which the deviation from RMT results becomes larger than
some threshold, b(ETh/�)2 = 0.2, and using b = (δ�/�)2,
one gets ETh = 0.44�2/δ�, resulting in ETh = 100�, 18.5�,
and 6.7� for box and log-normal distributions with γ = 1 and
1.5, correspondingly, in good agreement with the results in
Fig. 3.

One concludes that the main contribution to the local
ensemble-averaged Thouless energy ETh comes from the
sample-to-sample long-range fluctuations which can be quan-
tified by δ�, the typical level spacing difference between the
different realizations in the ensemble.

Thus, using the sample-specific level spacing from the
SVD (i.e., �

j
i ) for unfolding will eliminate the sample-to-

sample fluctuations’ contribution to the number variance.
Indeed, using the SVD unfolded spectrum of the jth re-
alization ε̃

j
i defined by ε

j
i = ε

j
i−1 + (ε̃ j

i − ε̃
j
i−1)/� j

i , for the
calculation of the realization-specific level number variance
one obtains the values depicted in Fig. 5. The number variance
fits well with GOE expectations up to ETh∗ ∼ 800� for the
box and γ = 1 distributions, ETh∗ ∼ 500� for 1.5 � γ � 2.5
distributions, and ETh∗ ∼ 300� for 3 � γ � 5 distributions.
The deviation is towards lower variance than predicted by
GOE, similar to the behavior of the number variance after
unfolding using Q-Hermite orthogonal polynomials [31]. As
shown in Ref. [38] the energy of deviation from the universal
behavior can be read off the scree plot by defining the mode
for which the behavior deviates from the k−1 power law as
kTh∗ . Thus, as can be garnered from Fig. 3, kTh∗ ∼ 2 for
the box and γ = 1 distributions, kTh∗ ∼ 4 for 1.5 � γ � 2.5
distributions, and kTh∗ ∼ 6 for 3 � γ � 5 distributions. Esti-
mating the Thouless energy by ETh∗ = r�/2kTh∗ [38] results
in ETh∗ ∼ 1000�, ETh∗ ∼ 500�, and ETh∗ ∼ 300�, not to far
from the estimations obtained in Fig. 5.

Up to now we have mainly presented results for L = 16,
which is the largest system for which we have ample statistics.
Nevertheless, as can be seen in Fig. 1, for the CSYK model
the statistics change for different values of L. In order to
verify that our conclusions regarding the non-self-averaging
behavior of the model are relevant for any symmetry, we
calculated 〈δ2n(E )〉 for the box distribution using both local
ensemble unfolding and SVD unfolding for L = 15, with
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FIG. 5. The SVD unfolded level number variance, 〈δ2n(E )〉, as a
function of the energy window E for box and log-normal γ = 1, 1.5,
2, 2.5, 3, 4, and 5 distributions, represented by the symbols. The cyan
dashed line is the GOE prediction 〈δ2n(E )〉 = (2/π 2) ln(〈n(E )〉) +
0.44. The SVD unfolded number variance departs from GOE pre-
dictions at ETh∗ ∼ 800� for the box and γ = 1 distributions, at
ETh∗ ∼ 500� for 1.5 � γ � 2.5 distributions, and at ETh∗ ∼ 300�

for 3 � γ � 5 distributions.

N = 8 particles. P = 3000 eigenvalues around the middle of
the band were taken for M = 3000 realizations. For this case,
the GUE behavior 〈δ2n(E )〉 = (1/π2) ln(〈n(E )〉) + 0.35, is
expected. Indeed, as can be seen in Fig. 6, both unfolding
methods fit the GUE expectation for small 〈n〉. On larger
scales the same difference that was seen for L = 16 GOE is
seen for L = 15 GUE systems. The local ensemble unfolding
results in ETh ∼ 90�, and a fit to a quadratic behavior of the
form a + bn2 leads to b = 2.48 × 10−5, while for the SVD

FIG. 6. The level number variance, 〈δ2n(E )〉, as a function of
the energy window E for the box distribution using local ensemble
unfolding (black symbols) and SVD unfolding (red symbols) for
L = 15, N = 8, P = 3000, and M = 3000. The cyan dashed line
is the GUE prediction 〈δ2n(E )〉 = (1/π 2) ln(〈n(E )〉) + 0.35, while
the green dashed line follows a + bn2, with b = 2.48 × 10−5. The
different behavior for the two unfolding methods is clear. Inset: The
scree plot of the singular values λk indicated by the symbols as
functions of k. The purple line corresponds to λk ∼ k−α , with α = 1.

unfolding ETh∗ ∼ 800�. Comparing with the typical spacing
difference between realizations for the box distribution which
for L = 15 equals to δ� = 5.17 × 10−3, one would estimate
ETh = 0.44�2/δ� ∼ 85� and b = (δ�/�)2 ∼ 2.67 × 10−5,
both in good agreement with the numerical results. As ex-
plained above ETh∗ = r�/2kTh∗ , here r = 3000 and kTh∗ ∼ 2,
resulting in ETh∗ ∼ 750�, again in good agreement with the
results.

VI. DISCUSSION

Much of the fascination with the SYK model is connected
to its chaotic behavior. Since short time scales are associated
with large energy scales, deviation from GOE behavior of the
spectra on large energy scales indicates nonchaotic behavior
on short time scales. Estimating the time for which the chaotic
behavior emerges is relevant to the estimation of the scram-
bling time of the SYK models, which motivates its application
to studies of quantum gravity in black holes [42]. Ensemble
averaging also plays an important role in the duality between
the SYK model and classical general relativity.

For self-averaging systems there is no difference between
averaging over the ensemble or averaging over a large single
realization. As discussed, for finite-size SYK samples, there
is a huge difference between the Thouless time for SVD
unfolding compared to the ensemble-averaged unfolding, a
difference which is larger as the distribution of the interaction
elements is more skewed.

Nevertheless, it is relevant to extrapolate to infinite systems
(L → ∞) in order to see whether this difference persists. The
SYK model has three timescales [43]: (i) band structure time
tB associated with the band width B; (ii) Thouless time, tTh

or tTh∗ , on which much of the paper concentrated, and (iii)
Heisenberg time tH. Since the band width depends linearly
on L, tB = h̄/B ∼ h̄/L. Thus, the Heisenberg time tH = h̄/�,
where � ∼ B/2L, is tH = h̄ 2L/L. The Thouless time for the
ensemble-averaged unfolding is tTh = h̄/ETh, where ETh ∼
�L2 and resulting in tTh = h̄ 2L/L3. For the SVD unfold-
ing, ETh∗ ∼ 2L�B/kTh∗ , with kTh∗ ∼ O(1), and thus, tTh∗ ∼
kTh∗ h̄/B ∼ kTh∗/L. Hence, tH > tTh � tTh∗ � tB, and while
the realization-adjusted Thouless time limL→∞ tTh∗ → 0, the
ensemble-averaged Thouless time limL→∞ tTh → ∞. The dif-
ference between tTh and tTh∗ increases as the distribution is
more skewed (Figs. 2 and 5). Other estimates of the Thouless
energy using the spectral form factor coupled with a way to
factor in the level density [30] results in tTh∗ ∼ ln(L). For
small values of L this result is quite close to tB and the
Thouless time we obtained from the number variance using
SVD unfolding. It would be impossible to compute large L,
and therefore an exact dependence of tTh∗ on L is hard to
establish. Nevertheless, it would be interesting to study the
spectral factor using SVD unfolding in order to compare both
measures directly.

This leads to the conclusion that one cannot determine the
behavior of the SYK model by ensemble average for times
shorter than tTh, since shorter times are non-self-averaging.
Moreover, these times (tTh∗ ∼ tB < tTh < tH) correspond to a
parametically large span of times. Therefore, when one wishes
to study the transition from chaotic to localized behavior
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in modified SYK models [10–21] for which the number of
independent random variables remains low, sample-to-sample
fluctuations are expected to remain important and non-self-
averaging at short times should be considered. In principal,

although the transition occurs at long times, nevertheless these
effects could obscure the transition point and influence the
perceived nature of the metallic regime. This will be consid-
ered in future studies.
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