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Exceptional heavy-fermion semimetals in three dimensions
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Topological heavy-fermion systems in three dimensions are usually classified as topological insulators or
semimetals. Here, we theoretically predict a different type of heavy-fermion system (dubbed exceptional heavy-
fermion semimetal) by studying a three-dimensional periodic Anderson model consisting of strongly correlated
localized f electrons and itinerant conduction c electrons in a zinc-blende lattice. Due to the breaking of inversion
symmetry, the quasiparticle lifetimes at different sublattices are distinct, leading to the emergence of Weyl excep-
tional rings in the complex pole of the Green’s function at finite temperatures; such rings lead to the appearance
of bounded Fermi surfaces (bulk Fermi disks). As temperatures rise, two pairs of Weyl exceptional rings merge
into two exceptional rings with one bounded bulk Fermi surface (bulk Fermi tube), which are experimentally
measurable by angle-resolved photoemission spectroscopy. Finally, we use the dynamical mean-field theory to
calculate the spectral functions which illustrate the emergence of bulk Fermi tubes. Our work thus opens the
door for studying exceptional heavy-fermion semimetal phases in three dimensions.
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I. INTRODUCTION

Strongly correlated systems host a variety of intrigu-
ing phenomena beyond noninteracting electrons [1–5]. For
instance, strongly correlated systems may allow for the ex-
istence of a bulk Fermi arc with ending points, which has
been experimentally observed in the pseudogap phase of
two-dimensional (2D) copper oxide high-temperature super-
conductors [6]. Such a bulk Fermi surface with boundaries is
not allowed in a Hermitian noninteracting system with trans-
lational symmetry. Even in type-II Weyl semimetals, while
a bulk Fermi surface can become open, boundaries are not
allowed [7,8]. In this context, it has been theoretically shown
that bulk Fermi arcs can also appear in 2D heavy-fermion
systems due to the presence of exceptional points [9–14],
where the single-particle effective Hamiltonian becomes non-
diagonalizable. However, it is not clear whether bulk Fermi
surfaces with boundaries can also emerge in a realistic three-
dimensional (3D) strongly correlated material. The question
is motivated by the recent discovery of exceptional rings with
bounded Fermi surfaces in noninteracting non-Hermitian ul-
tracold atomic systems or optical systems [15–23].

In heavy-fermion materials, apart from topological Kondo
insulating phases [24–26], Weyl semimetal phases may
also emerge, such as in noncentrosymmetric CeRu4Sn6 or
Ce3Bi4Pd3 [27–35]. In the paper, we study a microscopic pe-
riodic Anderson model describing an f -electron system, such
as CeRu4Sn6 or Ce3Bi4Pd3, and theoretically predict a differ-
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ent type of heavy-fermion state: exceptional heavy-fermion
semimetals which have exceptional rings with bounded Fermi
surfaces in the complex pole of the Green’s function at fi-
nite temperatures. The model consists of strongly correlated
localized f electrons and itinerant conduction electrons in a
zinc-blende structure with A and B sublattices [see Fig. 1(a)].
The interactions for f electrons renormalize the effective
one-body Hamiltonian through a self-energy in the retarded
Green’s function. In the presence of hybridization between f
electrons and conduction electrons, the interactions not only
renormalize parameters for a Weyl Hamiltonian but also trans-
form Weyl points into exceptional rings. Such a ring arises
from the fact that f electrons on A and B sublattices ex-
hibit different lifetimes due to the broken inversion symmetry.
Based on the second-order perturbation theory, we show that a
Weyl point develops into a Weyl exceptional ring with a bulk
Fermi disk as temperatures rise [see Fig. 1(d)]. As we further
raise temperatures, two pairs of such Weyl exceptional rings
merge into two exceptional rings [see Fig. 1(d)], leading to the
emergence of a bounded Fermi surface in the shape of a tube.
Finally, we utilize the dynamical mean-field theory (DMFT)
to numerically compute the spectral functions illustrating the
emergence of the bulk Fermi tubes in our system. Given
the fact that a noncentrosymmetric heavy-fermion semimetal
Ce3Bi4Pd3 has been experimentally identified [30,31], we
expect that the Fermi tubes may be experimentally observed
in the material.

II. PERIODIC ANDERSON MODELS

We start by considering a 3D periodic Anderson model
consisting of strongly correlated localized f electrons and
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FIG. 1. (a) Schematic of the zinc-blende structure consisting of A
and B sublattices. The first Brillouin zone of the fcc structure (b) with
six pairs of Weyl points marked out as red (chiral charge +1) and
blue (chiral charge −1) solid circles, which develop into three bulk
Fermi tubes as shown in (c). (d) Schematic of the evolution of the
zero-energy structure from four Weyl points to four Weyl exceptional
rings marked by blue curves with bulk Fermi disks highlighted by
the gold color; the Weyl exceptional rings finally develop into two
exceptional rings with bulk Fermi tubes highlighted by the gold
color. The winding number over the closed red circle enclosing two
Weyl exceptional rings vanishes so that the two rings can merge.

conduction c electrons in a zinc-blende lattice with two
sublattices denoted by A and B. The Hamiltonian reads

Ĥ = Ĥc + Ĥf + Ĥc f , (1)

where Ĥc, Ĥf , and Ĥc f describe the conduction c electrons,
localized f electrons, and their hybridization, respectively.
Specifically, Ĥf = ε f

∑
j,σ f̂ †

jσ f̂ jσ + U
∑

j n̂ f
j↑n̂ f

j↓ with ε f be-
ing the energy of localized f electrons and U characterizing
the Coulomb repulsion strength for f electrons, and Ĥc f =
V

∑
j,σ ( f̂ †

jσ ĉ jσ + H.c.) with V denoting the hybridization

strength. Here, ĉ jσ and f̂ jσ (ĉ†
jσ and f̂ †

jσ ) are the fermion an-
nihilation (creation) operators for a conduction and f electron
with spin σ at site j, respectively; n̂ f

jσ refers to the number
of f electrons with spin σ at site j. For conduction electrons,
we write down its Hamiltonian in momentum space as Ĥc =∑

k �̂
†
k Hc(k)�̂k, where �̂

†
k = (ĉ†

k↑,A ĉ†
k↑,B ĉ†

k↓,A ĉ†
k↓,B)

and

Hc(k) = σ0[u1(k)τx + u2(k)τy + mτz] + λD · στz, (2)

which is a modified Fu-Kane-Mele model [36]. Here, σν

and τν (ν = x, y, z) represent Pauli matrices acting on spin
and sublattice degrees of freedom, respectively, and σ0 is
the identity matrix. u1(k) and u2(k) are determined by the
nearest-neighbor hopping between different sublattices with
strength t , and 2m represents the amount of the on-site poten-
tial difference on sublattices A and B, which breaks inversion
symmetry. Dν (k) (ν = x, y, z) is determined by the spin-orbit
coupling with strength λ. The specific expressions of u1, u2,
and Dν can be found in Appendix A. To simplify notations,
we have set the lattice constant a = 1.

Without interactions, when |m| < 4|λ|, the Hamiltonian of
conduction electrons exhibits six pairs of Weyl points located
at (±k0, 0, 2π ), (2π, 0,±k0), (0,±k0, 2π ), (0, 2π,±k0),
(±k0, 2π, 0), and (2π,±k0, 0), where k0 = 2 sin−1(|m/4λ|)
with 0 < k0 < π [see the locations of Weyl points in the first

FIG. 2. (a) The first Brillouin zone of the fcc structure. The
red lines denote the high symmetry path. (b) The band structure
of the Hamiltonian Hc(k) of conduction c electrons along the high
symmetry path. The band structure of the whole Hamiltonian H0(k)
along the high symmetry path (c) without εs, and (d) with εs. Here,
t = 0.5, m = 1.2, λ = 0.6, V = 2, ε f = 1, and εs = 4.

Brillouin zone in Fig. 1(b) and the band structure in Fig. 2(b)].
These points annihilate each other through the critical point
|m| = 4|λ|, leading to a topologically trivial insulator when
|m| > 4|λ|.

In the presence of localized f electrons and the hybridiza-
tion between f and c electrons, the Hamiltonian in momentum
space without interactions is expressed as

H0(k) =
(

ε f V

V Hc(k)

)
. (3)

The hybridization changes the energy εc,i(k) (i = 1, 2, 3, 4)
of Hc(k) to two energies εi,±(k) = {[ε f + εc,i(k)] ±√

[ε f − εc,i(k)]2 + 4V 2}/2. Thus, a Weyl point at zero
energy in Hc(k) becomes two Weyl points with different
energies: One has a negative energy corresponding to a
quarter filling [see Fig. 2(c)]. For convenience, we will add
a constant energy shift εs = V 2/ε f in Hc so that the energy
at Weyl points between the second and third bands is fixed at
the zero energy [see Fig. 2(d)]. Note that such a shift will not
change the physics.

In the presence of interactions, we consider the retarded
Green’s function at the energy ω

GR(ω, k) = [ω + μ − H0(k) − 
(ω, k)]−1, (4)

where μ is the chemical potential and 
(ω, k) is the self-
energy. Similar to the two-dimensional case [9], since there
are interactions only for f electrons, only f electrons acquire
a nonzero self-energy,


(ω) =
(


 f (ω) 0
0 0

)
. (5)
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Here, we also assume that the self-energy is independent
of quasimomenta because we consider heavy f electrons
without dispersion (in other words, the temperature is high
compared to the bandwidth of f electrons) [9]. With time-
reversal symmetry, 
 f is independent of spins, i.e., [
 f ]σσ ′ =
[
 f ]σσ ′δσσ ′ . However, without inversion symmetry, 
 f can
have different components at different sublattices. At finite
temperatures, the self-energy takes complex values due to
quasiparticle finite lifetimes. The breaking of inversion sym-
metry thus leads to different lifetimes for electrons at different
sublattices, resulting in the appearance of Weyl exceptional
rings as shown in the following discussion.

To demonstrate that exceptional rings emerge in the pres-
ence of lifetime difference of electrons at different sublattices,
we expand the self-energy in the Taylor series up to the first
order with respect to ω,


 f (ω) ≈ a0 − i�0 + (a1 − i�1)τz + a0ωω + a1ωωτz, (6)

where a0 + a1 and a0 − a1 (a0ω + a1ω and a0ω − a1ω)
describe the zeroth-order (first-order) real parts of the
self-energy at sublattices A and B, respectively, and �0 + �1

and �0 − �1 depict the inverse of quasiparticle lifetimes at
sublattices A and B, respectively. To present clearly, we here
do not consider the imaginary contribution in the first-order
correction (see Appendix B for the derivation). In this case,
the first-order terms only renormalize parameters as ε f r =
ε f + a0 → ε̄ f r = [(ZA + ZB)ε f r + (ZA − ZB)a1]/2, �0 →
�̄0 = [(ZA + ZB)�0 + (ZA − ZB)�1]/2, a1 → ā1 = [(ZA −
ZB)ε f r + (ZA + ZB)a1]/2, �1 → �̄1 = [(ZA − ZB)�0 + (ZA

+ ZB)�1]/2 with ZA = 1/(1 − a0ω − a1ω ), and ZB =
1/(1 − a0ω + a1ω ). The first-order terms also renormalize
the coupling matrix diag(V,V ) to diag(VA,VB) with
VA = √

ZAV and VB = √
ZBV . When �0 = �1 = 0, we

add an energy shift εs = (ε̄ f rV̄ 2 + V0ā1)/(ε̄2
f r − ā2

1) with

V̄ =
√

V 2
1 + V 2

2 , V0 = −2V1V2, V1 = (VA + VB)/2, and
V2 = (VA − VB)/2 in Hc to fix the energy of Weyl points
at zero corresponding to a quarter filling. There, the
locations of Weyl points in momentum space are still
determined by Hc with a renormalized mass m̄ = m − dz0

with dz0 = (V̄ 2a1 + V0ε̄ f r )/(a2
1 − ε̄2

f r ). In fact, only k0 is

changed to k̄0 = 2 sin−1(|m̄/4λ|) with 0 < k̄0 < π .
We now study the effects of the imaginary parts of the

self-energy on the pole of the Green’s function. To de-
rive an analytical expression of the energy close to a Weyl
point, we assume that �0, �1, a1, a0ω, and a1ω are small
quantities. Slightly away from a Weyl point kW determined
by u1(kW ) = u2(kW ) = 0 and m̄ + αλD(kW ) = 0 with D =√

D2
x + D2

y + D2
z and α = ±1, u1, u2, and m̄ + αλD(kW )

are small quantities. Specifically, u1(kW + δk) = dx, u2(kW +
δk) = dy, and m̄ + αλD(kW + δk) = dz, where δk is a small
vector measured with respect to kW . The energy is derived as

ω = −i�̄0v̄0 ±
√

v̄2
1

[
d2

x + d2
y + (dz − iγ̄0)2

]
, (7)

where v̄0 = εs/(ε̄ f r + εs), v̄1 = ε̄ f r/(ε̄ f r + εs), and γ̄0 =
εs�̄1/ε̄ f r . Remarkably, the inverse lifetime difference �1 at
two sublattices leads to the emergence of a Weyl excep-
tional ring determined by dz = 0 and d2

x + d2
y = γ 2

0 , where the
Hamiltonian becomes nondiagonalizable. One of the authors

has established that a Weyl exceptional ring is characterized
by two topological invariants: the Chern number and the Berry
phase [15]. In addition, the real part of the energy vanishes
inside the ring, leading to a bulk Fermi surface in the shape
of a Fermi disk. Specifically, consider the two pairs of Weyl
points on the kz = 2π plane. Based on the perturbation theory
up to the second order (see Appendix C for details), as tem-
peratures rise, the difference of the inverse of quasiparticle
lifetimes �1 gets bigger, leading to the development of four
Weyl exceptional rings from four Weyl points; as �1 further
increases, the neighboring Weyl exceptional rings merge and
become two exceptional rings [see Fig. 1(d)]. The two rings
serve as two boundaries of a bounded Fermi surface in the
shape of a Fermi tube [there is a total of three Fermi tubes in
the first Brillouin zone as shown in Fig. 1(c)]. The mergence
can happen due to the fact that the winding number defined as
[37–39]

WL = 1

2π

∮
L

dk · ∇k[arg(ω+) + arg(ω−)], (8)

vanishes over a closed path enclosing two neighboring rings
[see Fig. 1(d)]. Here, ω− and ω+ refer to the two energies
close to zero energy which are numerically obtained by ap-
proximating the self-energy up to the first order.

The bounded Fermi surface manifests in the spectral
functions, which can be experimentally measured by angle-
resolved photoemission spectroscopy (ARPES). The spectral
functions read

ρ(ω, k) = −(1/π )ImTr[GR(ω, k)], (9)

which reflects the pole information of the Green’s function.
To demonstrate, we calculate the self-energy by the pertur-
bation theory up to the second order (see Appendix C) and
then evaluate the spectral functions (see Fig. 3). Specifically,
when T = 1/20, there are two pairs of Weyl exceptional
rings with four bulk Fermi disks [see Fig. 1(d) (center) and
Fig. 4(a)]. Note that in Figs. 3–6, we take kB Kelvin and Kelvin
as energy and temperature units, respectively. We illustrate the
Fermi disk structures by the sectional view of the zero-energy
spectral function in the ky = 0 plane around kz = 2π and in
the kz = 2π plane. The former shows two short bright lines
and the latter shows four bright arcs. The arcs are connected to
form a ring with much smaller values in the connecting parts,
which arises from the fact that the existence of �0 widens the
spectral functions. When the temperature is raised to T = 1/6,
two pairs of Weyl exceptional rings become two rings with
a bulk Fermi tube [Fig. 4(b)]. Similarly, the sectional view
of the zero-energy spectral function reflects the bulk Fermi
tube structure: There are two bright lines in the ky = 0 plane
and a bright circle in the kz = 2π plane. Figure 5(a) further
displays the spectral functions with respect to the energy
for three typical points in momentum space. On the Fermi
tube, the spectral function exhibits a peak at zero energy;
away from the tube, it develops a minimum around the zero
energy and peaks away from the zero energy, consistent with
the energy spectrum structure (see Appendix D for details).
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FIG. 3. The sectional view of the zero-energy spectral functions
(a), (c) in the ky = 0 plane around kz = 2π and (b), (d) in the kz = 2π

plane, which are calculated by the perturbation theory. The results
imply the existence of bulk Fermi disks in (a) and (b) or bulk Fermi
tubes in (c) and (d) due to the appearance of Weyl exceptional rings
[see Fig. 4(a)] at the temperature T = 1/20 or a pair of excep-
tional rings [see Fig. 4(b)] at T = 1/6, respectively. Here, t = 0.5,
m = 1.2, λ = 0.6, V = 2, U = 2, ε f = 1, and εs = 4.

III. SPECTRAL FUNCTIONS CALCULATED
BY THE DMFT

In order to analyze the interacting effects more accurately,
we adopt the DMFT with the segment-based hybridization-
expansion continuous-time quantum Monte Carlo impurity
solver (CT-HYB) implemented in the toolkit Triqs [40].
Within the DMFT, we treat the self-energy 
(k, ω) in Eq. (4)
approximately as 
(ω) based on the local fluctuation approx-
imation. We also numerically confirm that the off-diagonal
entries in 
 f (ω) are much smaller than the diagonal ones.
Even though the self-energy is k independent, it is beyond the
reach of the perturbation theory for intermediate and strong
interactions.

FIG. 4. The contours of exceptional rings around kz = 2π at the
temperature (a) T = 1/20 and (b) T = 1/6, which are calculated by
the perturbation theory with an approximation, a0ω ≈ 0 and a1ω ≈
0. Blue/red nodes denote the original Weyl points. Here, t = 0.5,
m = 1.2, λ = 0.6, V = 2, U = 2, ε f = 1, and εs = 4.

FIG. 5. The spectral function versus the energy for three typi-
cal points in momentum space. The positions of these points are
schematically marked out by the corresponding colored solid circles
in Fig. 1(d) (right). (a) is calculated by the perturbation theory with
the same system parameters as in Fig. 3 at T = 1/6, and (b) is cal-
culated by the DMFT at T = 1/11 with t = 0.5, m = 1.2, λ = 0.6,
V = 2, U = 2.5, ε f = 0.275, and εs = 4.

To calculate the spectral function ρ(ω, k), we first employ
the DMFT to compute the imaginary time Green’s function
and then carry out the numerical analytic continuation of the
imaginary time self-energy 
(iωn) with Triqs/maxent. For
the numerical analytic continuation, we find that the output
of 
(ω) is extremely sensitive to the noise in 
(iωn). To
ensure the reliability of our results, we need to reduce the
amplitude of noises as far as possible. In practice, we utilize
the Legendre polynomial to reduce high-frequency noises dur-
ing self-consistent iterations and average multistep iterative
results of 
(iωn) as the final output after convergence.

Figure 6 demonstrates the sectional view of the zero-
energy spectral functions around kz = 2π at T = 1/11
obtained by the DMFT calculation. We see clearly the exis-
tence of bulk Fermi tubes, which is consistent with the results
computed by the perturbation theory. The spectral functions
with respect to the energy exhibit a peak at zero energy in a
momentum on a Fermi tube and peaks away from zero energy
in momenta away from the Fermi tube [see Fig. 5(b)]. The
results are qualitatively consistent with those obtained by the
perturbation theory. However, compared with the results from
the perturbation theory calculations, the contrast between the
values of the peak and background of ρ(ω, k) from the DMFT

FIG. 6. The sectional view of the zero-energy spectral functions
(a) in the ky = 0 plane around kz = 2π and (b) in the kz = 2π plane,
which are calculated by the DMFT at T = 1/11. The results indicate
the existence of bulk Fermi tubes due to the appearance of a pair of
exceptional rings. Here, t = 0.5, m = 1.2, λ = 0.6, V = 2, U = 2.5,
ε f = 0.275, and εs = 4.
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calculations is lower. We attribute this to a smaller value of
�1/�0 from the DMFT than that from the perturbation theory,
generating a relatively larger background. Because the DMFT
is a better way to treat interactions, one can attribute the fea-
tures above to interaction effects. Clearly, the DMFT reveals
that the bulk Fermi tubes benefit from the complex-valued
self-energy from intermediate interactions. However, one can
expect that this interesting phenomenon would be finally sup-
pressed by strong interactions when the system enters into the
Mott insulator phase (see Appendix E for details).

IV. CONCLUSION

In summary, we have found a different type of 3D heavy-
fermion phase: exceptional heavy-fermion semimetals which
possess exceptional rings in the complex pole of the Green’s
function at finite temperatures. Such rings give rise to bounded
bulk Fermi surfaces such as Fermi disks or Fermi tubes man-
ifesting in the spectral functions, which are experimentally
measurable by ARPES. We finally use the dynamical mean-
field theory to calculate the spectral functions in our system,
revealing the emergence of bulk Fermi tubes. Recently, a non-
centrosymmetric heavy-fermion semimetal Ce3Bi4Pd3 has
been experimentally identified [30,31], and we may expect
that bulk Fermi tubes may be experimentally observed in the
material. Our work thus opens another direction for studying
exceptional heavy-fermion semimetal phases in 3D.
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APPENDIX A: HOPPING TERMS IN THE HAMILTONIAN

The hopping terms u1, u2, and Dν (ν = x, y, z) in the
Hamiltonian (2) in the main text are given by

u1(k) = t

[
1 +

3∑
n=1

cos(k · an)

]
, (A1)

u2(k) = t
3∑

n=1

sin(k · an), (A2)

Dx(k) = λ{sin(k · a2) − sin(k · a3) sin[k · (a2 − a1)]

+ sin[k · (a3 − a1)]}, (A3)

Dy(k) = λ{sin(k · a3) − sin(k · a1) sin[k · (a3 − a2)]

+ sin[k · (a1 − a2)]}, (A4)

Dz(k) = λ{sin(k · a1) − sin(k · a2) sin[k · (a1 − a3)]

+ sin[k · (a2 − a3)]}, (A5)

where a1 = (0, 1/2, 1/2), a2 = (1/2, 0, 1/2), and a3 =
(1/2, 1/2, 0) are the lattice vectors for a fcc lattice.

APPENDIX B: THE ENERGY DISPERSION
IN THE PRESENCE OF THE SELF-ENERGY

In this Appendix, we will derive the energy dispersion near
a Weyl point in the presence of the self-energy. For clarity,
we first study a simple case where the self-energy contains
only the terms that are independent of the energy, and show
the emergence of Weyl exceptional rings arising from the
quasiparticle lifetime difference at different sublattices. After
that, we demonstrate that the effects of including a term in
the self-energy that is linearly dependent of the energy is the
renormalization of system parameters, which does not affect
the qualitative feature of the energy spectrum.

1. Energy spectra in the presence of the real
energy-independent self-energy

We now study the effects of the terms in the self-energy
that are independent of the energy, which read


 f = a0 − i�0 + (a1 − i�1)τzσ0, (B1)

where a0 + a1 and a0 − a1 denote the zeroth-order real parts
of the self-energy at sublattices A and B, respectively, and
�0 + �1 and �0 − �1 denote the inverse of quasiparticle life-
times at sublattices A and B, respectively. In the derivation, we
first consider the complex self-energy and then make �0 and
�1 zero. The inverse of the Green’s function is

G−1 = ω −
(

ε̃ f + aτz V
V Hc + εs

)
, (B2)

where ε̃ f = ε f + a0 − i�0 = ε f r − i�0 and a = a1 − i�1.
Here

Hc = σ0(u1τx + u2τy + mτz ) + λD · στz. (B3)

We can transform this matrix into a block form

H̃c = S†HcS =
(

h+ 0
0 h−

)
= u · τ + λDσzτz (B4)

with h± = u1τx + u2τy + (m ± Dλ)τz, ux = u1, uy = u2, and
uz = m by the matrix

S = (|u+〉 |u−〉)τ0. (B5)

Here |u±〉 are eigenstates of D · σ corresponding to eigenval-
ues ±D, i.e., D · σ|u±〉 = ±D|u±〉.

The determinant of the inverse of the Green’s function can
be simplified as

det(G−1) =
∣∣∣∣ε̃ f + aτz − ω V

V H̃c + εs − ω

∣∣∣∣
= |(ε̃ f + aτz − ω)(Hc + εs − ω) − V 2|
= |S†[(ε̃ f + aτz − ω)(Hc + εs − ω) − V 2]S|
= |(ε̃ f + aτz − ω)(H̃c + εs − ω) − V 2|
= |(ε̃ f + aτz − ω)(u · τ + λDσzτz + εs − ω) − V 2|

=
∣∣∣∣b0+ + b+ · τ 0

0 b0− + b− · τ

∣∣∣∣
= (

b2
0+ − b2

+
)(

b2
0− − b2

−
)
, (B6)
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where

b0α = ω2 − V 2 − ω(ε̃ f + εs) + ε̃ f εs + au′
z,

bx = (−ω + ε̃ f )ux − iauy,

by = (−ω + ε̃ f )uy + iaux,

bzα = −ω(uz + a + αλD) + ε̃ f u′
z + aεs,

bα =
√

b2
x + b2

y + b2
zα

with u′
z = uz + αλD and α = ±1. In the derivation, we have

used the identity

det

(
A B
C D

)
= det(AD − ACA−1B), (B7)

where A, B, C, and D are n×n, n×m, m×n, and m×m matri-
ces, respectively, and A is invertible. It follows immediately
from the identity(

A B
C D

)(
I −A−1B
0 I

)
=

(
A 0
C D − CA−1B

)
. (B8)

We also have

b2
x + b2

y = [(−ω + ε̃ f )2 − a2]
(
u2

x + u2
y

)
. (B9)

The poles of the Green’s function are determined by
det(G−1) = 0 which yields

b2
0α = b2

α.

To determine the position of a Weyl point in momentum space,
we suppose that ε̃ f and a are real (ε̃ f = ε f r and a = a1). The
existence of a Weyl point at zero energy ω = 0 requires that
b0(ω = 0) = b(ω = 0) and b0(ω = 0) = −b(ω = 0) so that

b0(ω = 0) = 0, (B10)

b(ω = 0) = 0, (B11)

where we have dropped the subscript α to simplify notations.
Specifically, we require that

−V 2 + ε̃ f εs + au′
z = 0, (B12)

ux = uy = 0, (B13)

ε̃ f u′
z + aεs = 0. (B14)

These equations indicate that the location of a Weyl point is
the same as that in Hc with an effective mass m̃ = m − u′

z.
In fact, only k0 changes to k̃0 = 2 sin−1(|m̃/4λ|). These equa-
tions further lead to

u′
z = uW z = −a1V 2

ε2
f r − a2

1

, (B15)

εs = ε f rV 2

ε2
f r − a2

1

. (B16)

We are now interested in deriving the energy dispersion
near a Weyl point. By expanding ux, uy, and u′

z around zero,

that is, ux = dx, uy = dy, and u′
z = uW z + dz where dx, dy, and

dz are the first-order small quantities, we obtain

b0 = ω2 − ω(ε f r + εs) + a1dz, (B17)

bx = (−ω + ε f r )dx − ia1dy, (B18)

by = (−ω + ε f r )dy + ia1dx, (B19)

bz = −ω(dz + a1 + uW z ) + ε f rdz. (B20)

Based on these expressions, we derive the energy spectrum
around zero energy up to the first order as

ω ≈
2dzε f ruW z ±

√
v2

x

(
d2

x + d2
y

) + v2
z d2

z

c0
, (B21)

where v2
x = (a2

r − ε2
f r )c0, v2

z = v2
x + 4ε2

f ru2
W z, and c0 = (a1 +

uW z )2 − (ε f r + εs)2. The result clearly shows the linear dis-
persion for the energy near the Weyl point.

2. Energy spectra in the presence of the complex
energy-independent self-energy

In this section, we consider the effects of both the real and
imaginary parts in the self-energy. To derive an analytical re-
sult, we assume that �0 and �1 are first-order small quantities
and a1 = 0. With these approximations, we can derive the
energy dispersion close to zero energy up to the first order
as

ω ≈ −i�0v0 ±
√

v2
1

[
d2

x + d2
y + (dz − iγ0)2

]
(B22)

with v0 = εs/(ε f r + εs), v1 = ε f r/(ε f r + εs), and γ0 =
εs�1/ε f r . With nonzero �1, it is easy to see that a Weyl point
becomes a Weyl exceptional ring determined by dz = 0 and
d2

x + d2
y − γ 2

0 = 0.
To analyze the effects of a1, we assume that it is a first-

order small quantity (so is uW z). We find that a1 does not affect
our results up to the first order. Since a1 is involved in εs,
one may think that some higher-order corrections from a1 are
included in εs.

3. Renormalization due to the energy-dependent
parts in the self-energy

We now study the effects of the energy-dependent parts in
the self-energy. The self-energy can be expanded in the Taylor
series up to the first order with respect to ω as


 f ≈ a0 − i�0 + (a1 − i�1)τzσ0 + a0ωω + a1ωωτzσ0,

(B23)
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where a0ω and a1ω are complex numbers. The inverse of the Green’s function is

G−1 = ω −
(

ε̃ f + aτz + aωω + azωωτz V
V Hc + εs

)
(B24)

=

⎛
⎜⎜⎝

ω(1 − a0ω − a1ω ) − ε̃ f − a 0 −V 0
0 ω(1 − a0ω + a1ω ) − ε̃ f + a 0 − V

−V 0
0 −V ω − Hc − εs

⎞
⎟⎟⎠. (B25)

We now evaluate the determinant of the inverse of the Green’s function,

det(G−1) =

∣∣∣∣∣∣∣∣
ω(1 − a0ω − a1ω ) − ε̃ f − a 0 −V 0

0 ω(1 − a0ω + a1ω ) − ε̃ f + a 0 − V
−V 0
0 −V ω − Hc − εs

∣∣∣∣∣∣∣∣
(B26)

= 1

ZAZB

∣∣∣∣∣∣∣∣
ω − ZAε̃ f − ZAa 0 −√

ZAV 0
0 ω − ZBε̃ f + ZBa 0 − √

ZBV
−√

ZAV 0
0 −√

ZBV ω − Hc − εs

∣∣∣∣∣∣∣∣
(B27)

= 1

ZAZB

∣∣∣∣ω − ε̄ f − āτz −(V1 + V2τz )
−(V1 + V2τz ) ω − Hc − εs

∣∣∣∣ (B28)

= 1

ZAZB
|(ω − ε̄ f − āτz )(ω − Hc − εs) − (V1 + V2τz )2| (B29)

= 1

ZAZB
|(ω − ε̄ f − āτz )(ω − Hc − εs) + V0τz − V̄ 2|, (B30)

where ZA=1/(1−a0ω − a1ω ), ZB=1/(1−a0ω + a1ω ), ε̄ f =
ε̄ f r − i�̄0 = [(ZA + ZB)ε̃ f + (ZA − ZB)a]/2, ā = ā1 − i�̄1 =
[(ZA−ZB)ε̃ f + (ZA + ZB)a]/2, V1 = (

√
ZA + √

ZB)V/2, V2 =
(
√

ZA − √
ZB)V/2, V̄ =

√
V 2

1 + V 2
2 , and V0 = −2V1V2. The

determinant can be further reduced to

det(G−1) = 1

ZAZB
|S†[(ω − ε̄ f − āτz )(ω − Hc − εs)

+V0τz − V̄ 2]S| (B31)

= 1

ZAZB
|(ω − ε̄ f − āτz )(ω − H̃c − εs)

+V0τz − V̄ 2|, (B32)

which is almost the same as Eq. (B6) except a prefactor
1/(ZAZB) and a new term V0τz, which can be obtained by
replacing aεs with aεs + V0 in Eq. (B6). We now assume that
a0ω and a1ω are real. Similar to the preceding case, when ε̄ f

and ā are real, the existence of Weyl points at zero energy
requires ω = 0 and

ε̄ f εs − V̄ 2 + āu′
z = 0, (B33)

ux = uy = 0, (B34)

ε̄ f u′
z + āεs + V0 = 0 (B35)

which leads to

u′
z = uW z = −V̄ 2ā1 + V0ε̄ f r

ε̄2
f r − ā2

1

, (B36)

εs = ε̄ f rV̄ 2 + V0ā1

ε̄2
f r − ā2

1

. (B37)

Around the Weyl point, one can also derive the energy dis-
persion, which is given by Eq. (B21) with renormalized
parameters and εs and uW z including extra terms. For clarity,
we write down the dispersion explicitly,

ω ≈
2dzε̄ f ruW z ±

√
v̄2

x

(
d2

x + d2
y

) + v̄2
z d2

z

c̄0
, (B38)

where v̄2
x = (ā2

1 − ε̄2
f r )c̄0, v̄2

z = v̄2
x + 4ε̄2

f ru2
W z, and c̄0 = (ā1 +

uW z )2 − (ε̄ f r + εs)2.
In the presence of the imaginary parts in ε̄ f and ā, if �̄0,

�̄1, ā0ω, and ā1ω are first-order small quantities (so is uW z),
the dispersion is also given by Eq. (B22) with renormalized
parameters, that is,

ω ≈ −i�̄0v̄0 ±
√

v̄2
1

[
d2

x + d2
y + (dz − iγ̄0)2

]
(B39)

with v̄0 = εs/(ε̄ f r+εs), v̄1=ε̄ f r/(ε̄ f r+εs), and γ̄0 = εs�̄1/ε̄ f r .

APPENDIX C: THE PERTURBATION THEORY

In this Appendix, we compute the self-energy using the
second-order perturbation theory. For the interactions in the
form of Un̂i,↑n̂i,↓, the f -electron Matsubara Green’s func-
tion up to the second-order corrections can be described by
the one-particle-irreducible diagram, as shown in Fig. 7. The
self-energy up to the second-order corrections is expressed as
[41,42]


σ, j (iωn) =Un f
−σ − U 2T 2

∑
ωx,ωy

G f
σ, j (iωx )G f

−σ, j (iωy)

× G f
−σ, j (iωx + iωy − iωn), (C1)
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FIG. 7. Diagrammatic expansion for the f -electron Matsubara
Green’s function.

where iωn is the Matsubara frequency, σ =↑,↓ is the spin in-
dex, j = A, B is the sublattice index, T is the temperature, and
G f

σ, j (iωn) is the corresponding f -electron Matsubara Green’s
function. With time-reversal symmetry, Matsubara Green’s
functions of spin up and down have the same form and we thus
drop the spin index. The blue dashed line in Fig. 7 represents
the interaction term connecting four Matsubara Green’s func-
tions of f electrons. For any order of perturbation, one can
show with the method of the equation of motion [42,43], the
self-energy must connect with Matsubara Green’s functions
of f electrons from the same sublattices. It indicates, for the
matrix form of self-energy, only diagonal terms of f electrons
are nonzero.

The first-order self-energy term can be understood as the
Hartree part of the electron’s self-energy and is not a function
of the frequency and thus can be contained in ε f . By perform-
ing the sum over the Matsubara frequency, the second-order
self-energy can be reduced to [41,42]


 j (ω)

= −U 2
∫∫∫ +∞

−∞
dω1dω2dω3ρ

f
j (ω1)ρ f

j (ω2)ρ f
j (ω3)

× nF (ω1)nF (ω2)nF (−ω3) + nF (−ω1)nF (−ω2)nF (ω3)

ω − ω1 − ω2 + ω3 + i0+ ,

(C2)

FIG. 8. (a) The density of states for the f electrons at sublattices
A and B without interactions as a function of the energy ω. (b) The
numerically computed self-energy based on Eq. (C2) at the tem-
perature T = 1/6. Here, t = 0.5, m = 1.2, λ = 0.6, V = 2, U = 2,
ε f = 1.125, and εs = 4.

where nF = 1/(eω/T + 1) is the Fermi-Dirac distribution
function, and ρ

f
j (ω) = − 1

π
ImG f

j (ω + i0+) is f -electron den-
sity of states at the sublattice j in the absence of interactions.

Figure 8(a) shows the density of states of the f elec-
tron ρ

f
A/B(ω) with t = 0.5, m = 1.2, λ = 0.6, V = 2, U = 2,

ε f = 1.125, and εs = −4, which is used to compute the self-
energy. The densities of states vanish at the energy close to
the zero energy, indicating the existence of Weyl points there.
Figure 8(b) displays the numerically calculated second-order
self-energy based on Eq. (C2) at the temperature T = 1/6.
One can observe that the self-energy exhibits oscillations,
which result from the Van Hove singularities in the density
of states. In addition, the amplitude of the self-energy at the
sublattice A is much larger than that at the sublattice B due to
the more compact ρ

f
A (ω).

We calculate the self-energies at different temperatures and
perform the Taylor expansion with respect to ω near the zero
energy,


 f (ω) ≈ a0 − i�0 + (a1 − i�1)τz + a0ωω + a1ωωτz

(C3)

=
(

a0A + a1Aω 0
0 a0B + a1Bω

)
, (C4)

where Re(a0A)=a0 + a1, Im(a0A)= − (�0 + �1), Re(a1A) =
a0ω + a1ω, Re(a0B) = a0 − a1, Im(a0B) = −(�0 − �1), and

TABLE I. List of Taylor coefficients for the self-energy at different temperatures evaluated by Eq. (C2). Here t = 0.5, m = 1.2, λ = 0.6,
V = 2, U = 2, ε f = 1.125, and εs = 4.

T Re(a0A) Re(a1A) Im(a0A) Re(a0B) Re(a1B) Im(a0B) �1

1/30 −0.1921 −0.5401 −0.0012 −0.0350 −0.2381 −1.76×10−4 5.32×10−4

1/28 −0.1932 −0.5423 −0.0016 −0.0353 −0.2391 −2.44×10−4 6.63×10−4

1/26 −0.1944 −0.5451 −0.0020 −0.0357 −0.2404 −3.48×10−4 8.19×10−4

1/24 −0.1960 −0.5486 −0.0025 −0.0362 −0.2422 −5.11×10−4 0.0010
1/22 −0.1980 −0.5530 −0.0033 −0.0367 −0.2447 −7.65×10−4 0.0013
1/20 −0.2004 −0.5588 −0.0045 −0.0372 −0.2484 −0.0012 0.0016
1/18 −0.2033 −0.5662 −0.0062 −0.0377 −0.2537 −0.0018 0.0022
1/16 −0.2067 −0.5753 −0.0092 −0.0379 −0.2615 −0.0030 0.0031
1/14 −0.2107 −0.5860 −0.0147 −0.0377 −0.2731 −0.0049 0.0049
1/12 −0.2149 −0.5963 −0.0252 −0.0364 −0.2899 −0.0084 0.0084
1/10 −0.2190 −0.6009 −0.0457 −0.0333 −0.3137 −0.0148 0.0155
1/8 −0.2222 −0.5881 −0.0864 −0.0274 −0.3443 −0.0266 0.0299
1/6 −0.2229 −0.5415 −0.1640 −0.0179 −0.3756 −0.0496 0.0572
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FIG. 9. Plots of Taylor coefficients for the self-energy at different temperatures using the data listed in Table I. Here, t = 0.5, m = 1.2,
λ = 0.6, V = 2, U = 2, ε f = 1.125, and εs = 4.

Re(a1B) = a0ω − a1ω. The numerically computed Taylor co-
efficients are listed in Table I, where Im(a1A) and Im(a1B)
are not displayed as their values are much smaller than those
of the corresponding real parts. To clearly see their change
with respect to temperatures, we also provide the curve de-
scription in Fig. 9. As discussed in the preceding section,
the existence of Re(a0A) and Re(a0B) changes the position
of Weyl points in momentum space and their energy (if εs is
held fixed). Figure 9(a) tells us that Re(a0A) and Re(a0B) only
slightly change with temperatures, indicating that the position
and energy of Weyl points change slightly. Im(a0A) [Im(a0B)]
reveal the inverse of the lifetime of quasiparticles at sublattice
A (B) and must be negative. Both |Im(a0A)| and |Im(a0B)|
increase with the rise of temperatures, and their difference
�1 also increases significantly with temperatures, leading to

enlarged Weyl exceptional rings as temperatures rise, which
further merge into two exceptional rings as discussed in the
main text. As discussed in the preceding section, Re(a1A) and
Re(a1B) renormalize system parameters and thus do not affect
the qualitative feature of the energy spectrum.

APPENDIX D: THE SPECTRAL FUNCTIONS
WITH RESPECT TO THE ENERGY

In the main text, we have shown the spectral functions with
respect to the energy at three fixed points in momentum space.
Here, we analyze the features of the spectral functions as func-
tions of both ω and k. We consider two cases: One is along the
kx line with ky = 0 and kz = 2π which crosses the Fermi tube,
and the other is along the kz line with kx = −0.675 and ky = 0

FIG. 10. (a) The spectral function ρ(ω, k) with respect to ω and kx with ky = 0 and kz = 2π . The real and imaginary parts of the
corresponding energy spectrum for the second and third bands of the effective Hamiltonian are plotted in (b) and (c), respectively. (d) The
spectral function ρ(ω, k) with respect to ω and kz with kx = −0.675 and ky = 0 with the real and imaginary parts of the corresponding energy
spectrum plotted in (e) and (f), respectively. In (d) and (e), two vertical lines refer to the positions where the real part of the energy spectrum
begins to split. Here, t = 0.5, m = 1.2, λ = 0.6, V = 2, U = 2, ε f = 1.125, εs = 4, and T = 1/6.
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FIG. 11. (a)–(d) Imaginary parts of the Matsubara Green’s function and (e)–(h) quasiparticle weights for f electrons on sublattice A or B
with respect to the interaction U at T = 1/8 or T = 1/11.

which is along the Fermi tube. In Fig. 10, we plot the spectral
functions at the temperature T = 1/6, which are numerically
calculated by the second-order perturbation theory. In the
former case [see Fig. 10(a)], there appear two bright lines
crossing zero energy corresponding to two exceptional points,
which agree well with the blue branch in the energy spec-
trum (the poles of the Green’s function) shown in Fig. 10(b).
One may wonder why the other red branch disappears in
the spectral function. To interpret the phenomenon, we plot
the imaginary parts of the energy spectrum in Fig. 10(c),
illustrating that the red branch has larger absolute values of
the imaginary parts. With larger imaginary values, the spectral
functions are broader so that this branch is invisible compared
to the blue one with smaller imaginary values. In the latter
case, the spectral function exhibits a bright region around ω =
0 which extends along kz near kz = 2π , corresponding to the
zero-energy part in the energy dispersion [see Fig. 10(e)]. The
energy spectrum then splits into two branches as kz deviates
from the flat region, which can also be observed in the spectral
function. For the splitting parts, the peak becomes wider and
weaker since the corresponding imaginary parts of the energy
spectra are larger [see Fig. 10(f)]. Note that while the posi-
tions in the spectral function where the splitting happens are
slightly different from those in the energy spectrum, they are
closely related. Also note that the imaginary parts of the two
branches do not touch because the chosen momenta do not
cross exceptional rings due to the fact that the Fermi surface
slightly deviates from a cylinder shape and takes the shape of
a barrel.

APPENDIX E: OTHER DATA ANALYSIS
ABOUT THE DMFT CALCULATION

To confirm the reliability of our DMFT calculations, we
use the existing scripts to compute the Mott transition with
the increase of the interaction strength U at different tempera-
tures. The phase transition can be identified by the imaginary
parts of the Matsubara Green’s function G(iωn) and the quasi-
particle weights Z . A significant decline in the |ImG(iωn)|
near ω0 ≡ πT is observed in Figs. 11(a)–11(d), which is one
of the characteristics when the Mott transition happens. We
point out that there is a site-selective Mott-insulating behavior
between A and B sites [44]. While electrons on sublattice A
enter into the Mott-insulating phase (e.g., U > 4), electrons
on sublattice B are still in the metallic phase. The distinct be-
havior arises from the breaking of inversion symmetry, which
is also crucial for the emergence of different quasiparticle life-
times on different sublattices. The Mott transition can also be
identified by quasiparticle weights Z , which can be calculated
approximately at low temperatures by

Z ∼=
[

1 − Im
(iω0)

ω0

]−1

. (E1)

The results of Z are shown in Figs. 11(e)–11(h). We see that
with the increase of U , Z on sublattice A decreases toward
zero, signaling a transition from a metallic phase to the Mott-
insulating phase. Compared with the quasiparticle weights on
sublattice A, the decline of the weights on sublattice B with the
interaction is slower and smoother, which agrees well with the
result of the Matsubara Green’s function.
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