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Unconventional symmetry breaking due to nonlocal order parameters has attracted considerable attention in
many strongly correlated metals. Famous examples are the nematic order in Fe-based superconductors (SCs) and
the star-of-David charge density order in kagome metals. Such exotic symmetry breaking in metals is a central
issue of modern condensed matter physics, while its theoretical foundation is still unclear in comparison with the
well-established theory of superconductivity. To overcome this difficulty, here, we introduce the form factor that
generalizes the nonlocal order parameter into the Luttinger-Ward (LW) Fermi liquid theory. We then construct a
rigorous formalism of the density-wave equation that gives the thermodynamically stable form factor, like the SC
gap equation. In addition, a rigorous expression of the Ginzburg-Landau free energy for the unconventional order
is presented to calculate various thermodynamic properties. In the next stage, we apply the derived formalism to
a typical Fe-based SC FeSe, by using the one-loop LW function that represents the free-energy gain due to the
interference among paramagnons. The following key experiments are naturally explained: (i) Lifshitz transition
(=disappearance of an electron pocket) due to the bond + orbital order below Tc; (ii) Curie-Weiss (CW) behavior
of the nematic susceptibility at higher T , and the deviation from the CW behavior at lower T near the nematic
quantum critical point; and (iii) scaling relation of the specific heat jump at Tc, �C/Tc ∝ T b

c with b ∼ 3. (Note
that b = 0 in the Bardeen-Cooper-Schrieffer theory.) These results lead to a conclusion that the nematicity in
FeSe is the bond + orbital order due to the paramagnon interference mechanism. The present theory paves the
way for solving various unconventional phase transition systems.
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I. INTRODUCTION

Recently, rich symmetry-breaking phenomena due to un-
conventional order parameters have attracted considerable
attention in various electron systems. A famous example
is the C2-symmetric nematic order in various Fe-based su-
perconductors (SCs) [1–4]. It has been established that the
nematic state is driven by electron correlation, thanks to
electronic nematic susceptibility measurements performed by
shear-modulus analysis [5–7], Raman spectroscopy [8–10],
and elastoresistivity measurements [11–14]. Similar nematic
orders are also observed in magic-angle twisted bilayer
graphene [15,16], titanium pnictide oxide [17], and cuprate
SCs [18–21]. Also, the correlation-driven density wave (DW)
with nonzero wave vector (q �= 0) has attracted increasing
attention recently. Famous examples are the star-of-David
DW state in kagome metal CsV3Sb5 [22–25], the charge DW
(CDW) states in cuprate SCs [20,21,26–30], and the multipole
DW states in heavy fermion systems [31–33]. Furthermore,
more exotic odd-parity DW orders that accompany the charge
or spin-loop current (sLC) have been discovered in kagome
metals [34,35], iridates [36], and cuprates [37].

We call these DW states unconventional because they
have nonlocal and non-s-wave order parameters, in anal-
ogy to unconventional (non-s-wave) superconductivity. For
example, the order parameter of the d-wave bond order
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is Oi, j = Ō(δ|x−x′|,1δy−y′,0 − δx−x′,0δ|y−y′ |,1), where (x, y) and
(x′, y′) are the integer coordinates of i and j sites
[20,21,26,38–41]. (In high contrast, the conventional mag-
netic order mi = ni↑ − ni↓ is local.) However, simple local
spin DW (SDW) is inevitably derived within the mean-field-
level approximations for the Hubbard models with screened
Coulomb interactions [42,43]. Therefore, beyond mean-field,
many-electron theories are necessary to understand the uncon-
ventional DW states. This is a difficult but very interesting
theoretical problem, and this is a central issue of modern
condensed matter physics. On the other hand, these uncon-
ventional DW states we are interested in are metallic, so the
itinerant picture will be fruitful. In addition, the U (1) gauge
symmetry is preserved. Thus, it is promising to construct the
formalism of the DW states based on the microscopic Fermi
liquid theory [44–47].

In general, the DW state at wave vector q originates
from the particle-hole (p-h) pairing condensation, Dqσ

k = (1 −
P0)〈c†

k+q,σ ck,σ 〉, where ck,σ is the electron annihilation oper-
ator, k is the momentum, and σ (= ±1) is the spin index
[38,42,43]. Here, P0 represents the projection onto the to-
tally symmetric state with respect to the space group and
the time reversal [42,43]. Rich classes of the DW states
are determined by the symmetry of the p-h condensation
Dqσ

k . For example, a simple SDW state is given as the k-
independent function Dqσ

k = mσ . The realized DW state Dqσ

k
should be uniquely determined as the extremum of the free
energy.
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In Fermi liquids, the single-electron kinetic term between
sites i and j is given by tσ

i, j = t0
i− j + �σ

i, j , where t0
i− j is the

hopping integral of the bare Hamiltonian, and �σ
i, j is the

self-energy due to the correlation between other electrons.
Here, we define the symmetry-breaking part of the self-energy
[42,43]:

δtσ
i, j ≡ (1 − P0)�σ

i, j . (1)

In the absence of the DW order (T � Tc), we obtain δtσ
i, j =

0 by definition. When the DW order emerges (T � Tc), δtσ
i, j

becomes finite due to nonzero Dqσ

k . Thus, δtσ
i, j is the energy-

dimension order parameter of the DW state.
Here, we consider the DW state at a constant wave vector

q. For convenience, we introduce the form factor δtqσ

k that is
the Fourier transform of δtσ

i, j [42,43]:

δtqσ

k ≡ 1

N

∑
i j

δtσ
i j exp[−ik · (ri − r j )] exp(−iq · ri ), (2)

where ri is the position of site i. The classification of the
symmetry of the form factor is presented in Sec. I A.

The theoretical way to derive the form factor δtqσ

k has not
been established yet. The aim of this paper is to establish
an exact framework to derive δtqσ

k , based on which we can
construct reliable and useful approximate theories. In the sta-
tistical mechanics, the symmetry breaking with δtqσ

k occurs
when the grand potential � is reduced. In other words, δtqσ

k
is uniquely determined as the stationary state with the mini-
mum grand potential. In strongly correlated Fermi liquids, a
rigorous formalism of the grand potential � is given by the
Luttinger-Ward (LW) theory [45]. In the LW theory, the LW
function �[G], which is the functional of the electron Green’s
function G, plays a central role. The self-energy � and the ir-
reducible two-particle interaction I are uniquely derived from
the functional derivatives of �[G] [45].

In this paper, we first introduce the form factor δtqσ

k into
the LW theory to analyze the symmetry breaking at wave
vector q. Its (k − q/2) dependence represents the symmetry
of the DW. We next derive the DW equation to obtain the
form factor that minimizes the LW ground potential below
Tc. In this theory, the optimized δtqσ

k is uniquely obtained
because the DW equation is equivalent to the thermodynamic
stationary condition. This formalism enables us to study a
rich variety of electron-correlation-driven DW states (δtqσ

k )
without assuming any symmetry, like the analysis of the
SC states (�σσ ′

k ) based on the SC gap equation. In addi-
tion, we derive an exact expression of the Ginzburg-Landau
(GL) free energy F ∝ aqφ

2, where φ is the amplitude of
the DW order. The coefficient aq is uniquely related to the
eigenvalue of the DW equation λq. Thus, we can calculate
the thermodynamic properties and the stability of the DW
state.

In the next stage, we apply the derived DW equation to
FeSe by using the one-loop LW function �FLEX[G] that rep-
resents the quantum interference among paramagnons. This
theory naturally explains the following essential experimental
reports: (i) the nematic Fermi surface (FS) and the Lifshitz
transition due to bond + orbital order [48–51]; (ii) Curie-
Weiss (CW) behavior of the nematic susceptibility χnem at
higher temperatures, and the deviation from the CW behavior

at lower temperatures near the nematic quantum critical point
(QCP) [12–14,52]; and (iii) the scaling relation of the specific
heat jump at Tc, �C/Tc ∝ T b

c (b ∼ 3). This relation naturally
explains the smallness of (or undetected) �C/Tc reported
in several nematic systems, such as RbFe2As2 (Tc ∼ 40 K)
[53] and cuprate SCs (Tc ∼ 200 K) [18,19]. In cuprates, the
nematic transition occurs at the pseudogap temperature T ∗
[18,19], while no anomaly in specific heat at T = T ∗ has been
reported previously.

Interestingly, recent experiments have revealed that the
nematic QCP is clearly separated from the magnetic QCP in
Fe(Se, S) and Fe(Se, Te) [54] in addition to Na(Fe, Co)As
[55]. Such a clear separation between two QCPs in addition to
the key points (i)–(iii) is naturally understood by the present
theory. Therefore, the nematicity in FeSe is the bond + or-
bital order due to the paramagnon interference mechanism
[2,3,42,56].

Here, we construct the DW equation based on the LW the-
ory. The LW theory is expected to be valid for various strongly
correlated metals except for the vicinity of the localized Mott
states. Thus, the present theory is expected to pave the path
to understanding the useful concept of the vestigial nematic
order from the itinerant picture.

A. Form factor

Here, we discuss the rich variety of unconventional DW
states [38,42,43,57,58] by classifying the symmetry of the
form factor. The exotic DW states are represented by the non-
local order parameter δtσ

i j , which is parameterized by different
site indices i and j. Then the effective hopping integral is
tσ
i, j = t0

i− j + δtσ
i j , where t0

i− j is the original hopping integral
with A1g symmetry. In conventional charge (spin) orders, the
order parameter is expressed as δt↑

i j = +(−)δt↓
i j with i = j,

respectively.
In recent years, in contrast, unconventional nonlocal orders

given by δtσ
i j with i �= j have been discovered and attracted

increasing attention. Here, we assume the Hermitian order
parameter [42,43]:

δtσ
i j = (

δtσ
ji

)∗
, (3)

δtqσ

k = (
δt−qσ

k+q

)∗
, (4)

where δtσ
i j is classified into four channels in terms of parity

symmetry (P = ±1) and time-reversal symmetry (T = ±1),
as shown in Fig. 1(a). Below, we discuss the case of q = 0.
First, we consider the case of δt↑

i j = δt↓
i j . When δti j is real,

the bond order with (P, T ) = (+1,+1) is realized. As an
example, the d-wave bond order in the square lattice model
is shown in Fig. 1(b). When δti j is pure imaginary, the charge-
loop current (cLC) with (P, T ) = (−1,−1) is realized. Its
form factor in k-space is δtk ∝ cos kx − cos ky. An example of
the cLC order in anisotropic triangular lattice model is shown
in Fig. 1(c).

Next, we consider the case of δt↑
i j = −δt↓

i j . When δti j is
real, the spin-bond order with (P, T ) = (+1,−1) appears.
When δti j is pure imaginary, the sLC order with (P, T ) =
(−1,+1) appears. An example of the sLC order is shown in
Fig. 1(d).
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FIG. 1. (a) Classification of nonlocal order parameters (quantum
liquid crystal states). Spin-symmetric (antisymmetric) order corre-
sponds to the charge (spin) channel order. The four states are labeled
as (P,T ), where P = ±1 (T = ±1) is the parity of the inver-
sion symmetry (time-reversal symmetry). (b) d-wave bond order
with (P,T ) = (+1,+1). (c) Charge-loop-current (cLC) order with
(P,T ) = (−1, −1) in Ref. [59]. (d) Spin-loop-current (sLC) order
with (P,T ) = (−1, +1) in Ref. [43].

In addition, the translational symmetry is violated when the
DW wave vector q is nonzero. Furthermore, orbital orders
[56], valley orders [16], and multipole orders [31] emerge
when the Wanner functions possess multiple degrees of free-
dom. These rich nonlocal DW states are called the quantum
liquid crystal (QLC) order [42], We note that, in a simple
single-site model, the cLC and sLC orders in real space (δtσ

i j =
−δtσ

i j ) are purely imaginary according to the Hermitian con-
dition. However, the Fourier transformation of such a current
order δtqσ

k becomes real.

B. Stoner theory for ferromagnetic transition

Here, we briefly review the mean-field theory of the ferro-
magnetic (FM) transition and derive a simplified DW equation
and GL free energy. This explanation will be useful to un-
derstand the derivation of the DW equation based on the LW
theory in later sections. It is also understood that the mean-
field theory is insufficient to explain the nematic order. Below,
we consider the following Hubbard model:

H =
∑
i �= j,σ

t0
i− jc

†
iσ c jσ + HI, (5)

HI =
∑

iσ

Uc†
iσ ciσ c†

iσ̄ ciσ̄ = U

4

∑
i

(
n2

i − m2
i

)
, (6)

where ni = ni↑ + ni↓ and mi = ni↑ − ni↓. The conduction
electron energy is εk = 1

N

∑
i, j t0

i− j exp[i(ri − r j ) · k]. In the
mean-field approximation, the magnetic order is expressed
as the spin-dependent δt : δt↑

ii = −δt↓
ii = −U

2 mi. Here, we set

Mi ≡ Umi/2. In the case of the FM (q = 0) order, Mi = M.
Thus, the grand potential is given by

�MF = T

N

∑
k,σ

ln GMF
kσ + 1

U
M2

= − 1

N

∑
k,σ

ln{1 + exp[−β(εkσ − μ)]} + 1

U
M2, (7)

where k ≡ [k, εn = (2n + 1)πT ], εkσ = εk + Mσ , and
GMF

kσ = (iεn − εkσ + μ)−1 is the electron Green’s function.
From the stationary condition of the �MF, which is given by
∂�MF/∂M = 0, the mean-field equation for M is obtained as

M = − U

2N

∑
kσ

f (εkσ )σ. (8)

Next, we derive the linearized mean-field equation by lineariz-
ing the right-hand side of Eq. (8). It is given as

αSM = U

N

∑
k

[
−∂n(εk )

∂εk

]
M = Uχ0(q = 0)M, (9)

where αS is the eigenvalue, which reaches unity at the critical
temperature. Here, n(ε) is the Fermi distribution function. In
the mean-field approximation, αS = Uχ0(0), where χ0(0) is
the irreducible susceptibility at q = 0. Here, αS is called the
spin Stoner factor. Equation (9) is the simplest example of the
spin-channel DW equation with Is

kk′,q = U .
Here, we consider the GL free energy for the magnetic

transition:

FGL = aM2 + 1
2 bM4. (10)

Here, FGL = �MF + μN , where μ is the chemical potential.
Based on Eq. (7), the coefficient a is expressed as

a = χ0(0)

(
−1 + 1

αS

)
. (11)

This equation is consistent with the Stoner theory [60].
For the magnetic state at finite wave vector q, the

eigenvalue of Eq. (9) is given as αS (q) = Uχ0(q, 0), and
the q-dependent coefficient of the GL free energy be-
comes aq = χ0(q, 0)[−1 + 1

αS (q) ]. Note that aq ≈ aq=0 +
1
2

∑x,y,z
μ cμq2

μ, where cμ = ∂2
μaq/∂q2

μ|q=0. Here, χ0(q, 0) =
1
N

∑
k

n(εk+q )−n(εk )
εk−εk+q

is the irreducible susceptibility for general
q. The relation αS > αS (q) holds for q �= 0 in FM metals.

Considering the T dependence of χ0(0), the coefficient
aq=0 at T = 0 is given as

aq=0(T = 0)  π2

3
BT 2

c , (12)

where B ≡ D′′(0) + [D′(0)]2/D(0), and D(0) is the density
of states (DOS) at the Fermi energy. Thus, the necessary
condition for the FM transition (Tc > 0) is given as B < 0 in
the mean-field approximation.

However, recent experiments have revealed that the ferro-
DW order appears even in the case of B > 0 in several strongly
correlated electron systems such as Fe-based SCs. Thus, to
understand the ferro-DW transition, we have to go beyond the
mean-field theory. In addition, exotic nonlocal DW orders (δtσ

i j
with i �= j) summarized in Fig. 1 cannot be explained within
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the mean-field approximation. To solve these difficulties, in
this paper, we study the DW phase transition based on the LW
theory.

II. DERIVATION OF DW EQUATION FROM LW THEORY

The LW theory in Ref. [45] provides an exact expression
of the grand potential �, which is applicable for strongly
correlated metals unless the perturbation treatment is violated.
In the first part of this section, we discuss the order parameter
at q = 0. Hereafter, we omit the orbital indices of the Green’s
functions and the Coulomb interactions to simplify the expres-
sions because it is straightforward to denote them explicitly. In
the LW theory, the grand potential is expressed as

�LW[G] = �F[G] + �[G], (13)

�F[G] = T

N

∑
kσ

{
ln(Gkσ ) − Gkσ

[(
Gfree

kσ

)−1 − G−1
kσ

]}
,(14)

where k ≡ (k, εn): k = (kx, ky) is the wave vector and
εn = (2n + 1)πT is the fermion Matsubara frequency. Here,
T

∑
k · · · ≡ T

∑
εn

∑
k · · · , and Gkσ is the Green’s function

with the self-energy: Gkσ = [(Gfree
kσ )−1 − �kσ ]−1. Now the

self-energy can be divided into

� = �0 + δt, (15)

where �0 is the normal state self-energy without any sym-
metry breaking, and δt is equal to the DW order parameter
introduced in Sec. I. Here, �0 belongs to A1g symmetry, while
δ� belongs to non-A1g symmetry. Thus, δt = 0 for T > Tc.

In Eq. (14), �[G] is the LW function which is given by
calculating the all-closed linked skeleton diagrams. Based on
Eq. (14), we can define � as a functional of � [61]:

�[�] = −T

N

∑
kσ

ln
[−(

Gfree
kσ

)−1 + �kσ

] + P[�], (16)

where P[�] is considered as the Legendre transformation of
�[G] introduced by Potthoff [61]:

P[�] ≡ −T

N

∑
kσ

Gkσ �kσ + �[G]. (17)

In deriving the GL free energy, we must analyze �[�] in
Eq. (16). Using the LW function � and Potthoff function F
[61], the self-energy and Green’s function are respectively
expressed as

δ�[G]

δGkσ

= �kσ [G], (18)

δP[�]

δ�kσ

= −Gkσ [�]. (19)

Then the functional derivations of �[G] and �[�] are respec-
tively given by

δ�[G]

δGkσ

= G−1
kσ − (

Gfree
kσ

)−1 + �kσ [G], (20)

δ�[�]

δ�kσ

= 1(
Gfree

kσ

)−1 − �kσ

− Gkσ [�]. (21)

FIG. 2. (a) Definition of the irreducible four-point vertex func-
tion Ix

kkq (x = s, c). (b) Right-hand side of the linearized density wave
(DW) equation composed of Ix

kkq. f q,x
k is the form factor at wave

vector q.

When � is stationary, the following Dyson equation is satis-
fied:

�kσ [G] = (Gkσ
free )−1 − G−1

kσ [from Eq. (20) = 0], (22)

Gkσ [�] = 1(
Gfree

kσ

)−1 − �kσ

[from Eq. (21) = 0]. (23)

Based on the LW theory, the ferro (q = 0) DW transitions are
naturally described by the self-consistent equation (we call
this the DW equation).

Here, we introduce the irreducible four-point vertex Iσσ ′
kk′

shown in Fig. 2(a). It is a Jacobian connecting � and G as
[61]

δ�kσ [G]

δGk′σ ′
= Iσσ ′

kk′ , (24)

δGkσ [�]

δ�k′σ ′
= {

Iσσ ′
kk′

}−1
. (25)

Therefore, the following analytical relation [61] is obtained:

T

N

∑
k′′σ ′′

δ�kσ [G]

δGk′′σ ′′

δGk′′σ ′′[�]

δ�k′σ ′
= δkk′δσσ ′, (26)

which is exactly satisfied when G is uniquely determined from
� via one-to-one correspondence.

The DW equation is derived from the following stationary
conditions:

δ�LW[G]

δ�kσ

∣∣∣∣
�0

= 0, (at any T ), (27)

δ�LW[G]

δ�kσ

∣∣∣∣
�̄

= 0 (T < Tc), (28)

where �0 is the self-energy without any symmetry breaking,
and �̄ is the stationary self-energy after the symmetry break-
ing. For T > Tc, the thermodynamic state is given by Eq. (27),
which corresponds to the minimum of the free energy shown
in Fig. 3(a). For T < Tc, Eq. (28) gives the symmetry-breaking
state shown in Fig. 3(b). [Equation (28) corresponds to the
unstable extremum.]

By using Eqs. (28) and (21),

δ�LW[G]

δ�kσ

∣∣∣∣
�̄

= −G2
kσ �kσ + δ�[G]

δ�kσ

= −G2
kσ �kσ + T

N

∑
k′σ ′

δGk′σ ′

δ�kσ

δ�[G]

δGk′σ ′
, (29)
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FIG. 3. Schematic picture of the Ginzburg-Landau (GL) free en-
ergy (a) above Tc [a(T ) > 0] and (b) below Tc [a(T ) < 0]. Stationary
points are shown by blue circles.

where δGk′σ ′
δ�kσ

= G2
kσ δkk′ . Thus, the stationary condition of

Eq. (28) is rewritten as

δ�[G]

δGkσ

∣∣∣∣
G0

= �0
kσ , (30)

δ�[G]

δGkσ

∣∣∣∣
Ḡ

= �̄kσ , (31)

where Ĝ0 = ({Ĝfree}−1 − �̂0)−1. Equations (30) and (31)
compose the exact DW equation that describes the DW state
below Tc. Then the order parameter is δtkσ = �̄kσ − �0

kσ .
It is noteworthy that the SC gap equation is derived from

the stationary condition of the LW function in the SC state
δ�[G, F ], where F (G) is the anomalous (normal) Green’s
function [62]. Thus, the derived DW equations for the form
factor, Eqs. (30) and (31), are well-founded comparable with
the well-known SC gap equation.

Next, we derive the linearized DW equation with respect to
δt . By subtracting Eq. (30) from (31), we obtain

δtkσ = T

N

∑
k′σ ′

δ2�[G]

δGk′σ ′δGkσ

∣∣∣∣
Ḡ

δGk′σ ′

= T

N

∑
k′σ ′

δ2�[G]

δGk′σ ′δGkσ

∣∣∣∣
G0

δGk′σ ′ + O(δG2), (32)

where δG ≡ Ḡ − G0. Here, we rewrite δtkσ as

δtkσ ≡ φ · fkσ , (33)

where φ is a real parameter, and f q
k is the normalized order pa-

rameter that belongs to one of the irreducible representations
in non-A1g symmetry. It is convenient to set maxk | fkσ | = 1
because the relation φ = maxk |δtkσ | holds. Thus, we derive
the following linearized DW equation for q = 0 by introduc-
ing the eigenvalue λ to the left-hand side of Eq. (32):

λ fkσ = T

N

∑
k′σ ′

Iσσ ′
kk′

(
G0

k′σ ′
)2

fk′σ ′ , (34)

where we denote Iσσ ′
kk′ ≡ Iσσ ′

kk′ |�0 to simplify the notation. In
Eq. (34), the largest eigenvalue λ reaches unity at T = Tc, and
its eigenvector gives the form factor of the DW state.

The linearized DW equation can be generalized for finite
q orders as follows. First, we consider the DW order with the
wave vector q = g · m/n, where g is the reciprocal lattice vec-
tor, and m, n are integers (0 � m < n). Then we can introduce
the n × n-matrix Green’s function Glm

k = 〈k + lq|Ĝ|k + mq〉,

where l, m = 0 ∼ n − 1. In this case, Eq. (31) becomes

δ�[G]

δGkσ

∣∣∣∣
Ḡlm

= �̄lm
kσ . (35)

Hereafter, we drop the overlines of Ḡ and �̄ to simplify the
notation.

Here, we adopt the extended Brillouin zone scheme for �k
to simplify the explanation. After that, the DW equation can
be linearized with respect to the q-linear term in δt given
by δtm+1,m ≡ δt q

k . By introducing the q-dependent eigenvalue,
we obtain the following linearized DW equation for general q:

λq f q
kσ

= T

N

∑
k′σ ′

Iσσ ′
kk′qG0

k′σ ′G0
k′+qσ ′ f q

k′σ ′, (36)

where q ≡ (q, ωl ): q = (qx, qy) is the wave vector, and ωl =
2lπT is the boson Matsubara frequency. The condition λq = 1
brings the DW transition temperature Tc with wave vector q,
which can be interpreted as the p-h gap equation. The form
factor of the eigenvalue equation, Eq. (36), contains the uncer-
tainty of the phase factor eiθ . The correct phase θ is uniquely
fixed by following the Hermitian condition in Eq. (4).

The DW equation, Eq. (36), is further simplified by intro-
ducing the spin (s) and charge (c) channel functions in the
absence of the spin-orbit interaction [43]:

f c(s) = f↑ + (−) f↓. (37)

Ic(s) = I↑↑ + (−)I↑↓. (38)

Finally, we derive the simplified linearized DW equa-
tion for x (=s, c) channel form factor at q from Eq. (36) as
follows:

λx
q f q,x

k = T

N

∑
k′

Ix
kk′qG0

k′G0
k′+q f q,x

k′ . (39)

The right-hand side of Eq. (39) is shown in Fig. 2(b). There-
fore, we derived the exact expression of the DW equation in
Eq. (36) or Eq. (39) composed of the true irreducible four-
point vertex I and the self-energy.

We can derive the expression of λx
q from Eq. (39) as

λx
q = X x

q

χ0 f (q)
, (40)

where X is given as

X x
q = T 2

N2

∑
k,k′

(
f q,x
k

)∗
G0

kG0
k+qIx

kk′qG0
k′G0

k′+q f q,x
k′ , (41)

and χ0 f (q) is the irreducible susceptibility with the form
factor f q

kσ
:

χ0 f (q) ≡ −T

N

∑
kσ

f q
kσ

G0
k+qσ G0

kσ f −q
kσ

. (42)

From Eq. (40), the relation λx
q ∝ X x

q is obtained because
χ0 f (q) is nearly T independent.

It is noteworthy that the DW equation introduced by Onari
et al. [3], Kawaguchi et al. [20], Tsuchiizu et al. [21], and
Tazai et al. [42], which has been applied to iron-based and
cuprate SCs, is derived from the exact DW equation given in
Eq. (36). The detailed derivation is shown in Appendix A.
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Before closing this section, we reproduce the Stoner theory
by applying the mean-field approximation to Eq. (39). In the
mean-field theory,

Is
kk′q = −U, δ�

q,s
k = Mδq,0. (43)

Therefore, the Eq. (39) is given by

λsM = −T

N

∑
k′

G0
k′G0

k′UM = Uχ0M. (44)

Thus, the eigenvalue for the FM transition corresponds to the
Stoner factor αS:

λs = Uχ0 ≡ αS. (45)

III. DERIVATION OF GL FREE ENERGY BASED
ON THE LINEARIZED DW EQUATION

A. GL free energy for DW state with form factor f

Here, we derive the expression of the GL free energy based
on the DW equation. The GL free energy due to the ferro-DW
transition (δtkσ = φ fkσ ) is expressed as

�DW(T, μ, φ) = a(T )φ2 + 1
2 bφ4. (46)

Its schematic picture above Tc [a(T ) > 0] and that below Tc

[a(T ) < 0] are shown in Figs. 3(a) and 3(b), respectively.
Note that the coefficients a and b are functional of the form

factor fkσ . By using �[�] defined in Eq. (16), the coefficient
a is calculated from the second functional derivation of �[�]
as

�[�0 + δt] − �[�0] ≈ T

N

∑
kσk′σ ′

δ2�[�]

δ�k′σ ′δ�kσ

∣∣∣∣
�=�0

δtk′σ ′δtkσ .

(47)

By using Eq. (21), we obtain

δ2�[�]

δ�k′σ ′δ�kσ

= δ

δ�k′σ ′

{
1(

Gfree
kσ

)−1 − �kσ

− Gkσ [�]

}

= G2
kσ δkk′ − δGkσ [�]

δ�k′σ ′

= (
G0

kσ

)2
δkk′ − {

Iσσ ′
kk′

}−1
, (48)

where we used the relation in Eq. (25). Therefore, Eq. (47) is
rewritten as

�[�0 + δt] − �[�0] ≈ T

N

∑
kσ

(
G0

kσ

)2
(δtkσ )2

−T

N

∑
kσk′σ ′

{
Iσσ ′
kk′

}−1
δtkσ δtk′σ ′ .(49)

Here, we recall that the order parameter δtkσ = φ · fkσ is
determined by using the DW equation, Eq. (36). By using
Eq. (36) together with Eqs. (24)–(26), Eq. (49) is rewritten
as

�[�0 + δt] − �[�0] 
(

1 − 1

λ

)
T

N

∑
kσ

(
G0

kσ

)2
f 2
kσφ2

= −2χ0 f (0)

{
1 − 1

λ

}
φ2, (50)

where the factor 2 originates from the spin degeneracy.
We can derive the GL free energy for the order parameter

at nonzero wave vector q by considering the large unit cell as
we discussed in Sec. II. Thus, the coefficient a defined in the
Gibbs free energy in Eq. (46) is obtained as

aq(T ) = −2χ0 f (q)

(
1 − 1

λq

)
. (51)

As a result, we obtain the exact expression for coefficient aq

by using the eigenvalue λq in the DW equation. The obtained
general expressions in Eqs. (42) and (51) are meaningful to
discuss the DW transition.

Finally, we stress that Potthoff’s Legendre transformation
of the LW formalism [61] is necessary to derive the correct
GL free energy expression. In Appendix B, we explain that the
expansion of Eq. (14) with respect to δt leads to an inaccurate
expression.

B. GL free energy for Bardeen-Cooper-Schrieffer
superconductivity

Here, we consider the GL equation for the spin-singlet
superconductivity. Here, we express the spin-singlet SC gap
function as �k = ψ · fk , where fk is the normalized form
factor. Based on the LW theory for the SC states, we can derive
that the second-order GL parameter is given by

a(T ) = −2χ0ψ
pp (0)

(
1 − 1

λsc

)
, (52)

χ0ψ
pp (0) = T

N

∑
k

|ψk|2G0
kG0

−k, (53)

where λ is the eigenvalue of the linearized gap equation given
by

λsc fk = T

N

∑
k′

Vkk′G0
k′G0

−k′ fk′ , (54)

where Vkk′ = δ2�
δFδF † |�=0. Here, F and F † are anomalous

Green’s functions. The derivation of Eq. (52) is essentially the
same as that for the DW transition given in previous sections.
We can show that the relationship in Eq. (52) is also valid for
the spin-triplet superconductivity.

IV. NUMERICAL ANALYSIS OF NEMATIC STATE IN FeSe

In this section, we explain the important unsolved prob-
lems in FeSe, which is one of the most famous Fe-based
SCs. We try to understand the following key topics on the
nematicity, for both above and below the nematic transition
temperature Tc, based on a unified theory: (i) Lifshitz transi-
tion below Tc, (ii) nematic susceptibility above and below Tc,
and (iii) specific heat jump at T = Tc. In FeSe, Tc corresponds
to the structure transition temperature TS .

In previous sections, we derived the exact expressions of
the linearized DW equation in Eq. (39) for T > Tc and the full
DW equation in Eqs. (30) and (31) for T < Tc. Here, we solve
these equations for FeSe based on the one-loop approximation
for the LW function �FLEX derived in Appendix A. We in-
clude the normal state (=without order parameter) self-energy
�0 into the DW equations because it is necessary to satisfy
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the stationary condition Eqs. (30) and (31), although it was
dropped in previous studies [3].

We study a realistic d + p-orbital Hubbard model with
onsite multiorbital Coulomb interaction U for FeSe:

H = H0 + rHU , (55)

where H0 is the d + p-orbital tight-binding model for FeSe,
and HU is the d-orbital Coulomb interaction for the d +
p-orbital model given by the constrained-random-phase-
approximation method. The matrix elements in HU are
composed of the intraorbital Coulomb repulsion Ul,l , the in-
terorbital Coulomb repulsion Ul,m (l �= m), and the exchange
term Jl,m, as we explain in Appendix C.

In Eq. (55), r(< 1) is the reduction factor of HU that repre-
sents the screening due to p orbitals. According to Ref. [63],
the averaged intraorbital Uav ∼ 7 eV is reduced to ∼4 eV due
to the screening effect by p orbitals. In this paper, we set
r = 0.3–0.4, where Tc increases with r. In contrast, Tc slowly
decreases with r for r > 0.5. Thus, the obtained Tc depends
on r, while the symmetry and the form factor of the nematic
order is insensitive to the choice of r. We note that the relation
αS < 1 is satisfied for any r in the present two-dimensional
FeSe model because the fluctuation-exchange (FLEX) ap-
proximation satisfies the Mermin-Wagner theorem [64]. This
fact is favorable for realizing the nonmagnetic nematic state
(λ > 1 and αS < 1).

In the present numerical study for FeSe, we use 64 × 64 k-
meshes, and 4096 or 8192 Matsubara frequencies. Figure 4(a)
represents the FS of the FeSe model. We derive the nor-
mal self-energy �0 by applying the FLEX approximation. In
the case of r = 0.36, the obtained orbital-dependent mass-
enhancement factors at T = 10 meV are about z−1

xy ∼ 5 and
z−1

xz,yz ∼ 3, respectively. The Stoner factor is ∼0.9, and its T
dependence is very weak.

A. Above T c: Linearized DW equation analysis

First, we analyze the multiorbital Hubbard model for FeSe
based on the linearized DW equation in Eq. (39), with the
kernel function in Eq. (A3). Here, we incorporate the normal
state self-energy �0 given in Eq. (A2) into the DW equation to
perform the conserving approximation. Here, �0 is significant
to derive realistic Tc and beautiful CW/non-CW behaviors of
χnem, although it has been dropped in our previous analyses.

Here, we discuss the kernel function in Eq. (A3). The
first line in Eq. (A3) gives the Hartree term, Maki-Thompson
(MT) term, and the second and third lines in Eq. (A3) give
the Aslamazov-Larkin (AL) terms. Both MT and AL terms
cause important fluctuation-induced interaction for the DW.
In Fe-based SCs, the nematic order mainly originates from
the AL terms, which represent the interference between para-
magnons [2,3,56,65]. The MT term is also important to induce
the characteristic sign reversing in the form factor in k-space
[1,3]. On the other hand, the cLC orders in geometrically frus-
trated Hubbard models mainly originate from the MT terms
[59]. Note that the MT terms induce striking non-Fermi liquid
transport phenomena near the QCPs [66].

Figure 4(b) shows the q dependence of the largest charge-
channel eigenvalue λc

q at r = 0.40 and T = 5 meV derived
from the DW equation. (Below, we drop the superscript c of

FIG. 4. (a) Fermi surface (FS) of FeSe model. Here, the weights
of the xz, yz, and xy orbitals are shown in green, red, and blue.
(b) Obtained eigenvalue λq at T = 5 meV and r = 0.40 derived from
the linearized density wave (DW) equation. The fact that λq exhibits
the maximum at q = 0 means the emergence of the ferro-DW order.
(c) Renormalized form factor at q = 0, δt∗

k,m,m with m = m′ = xz, yz,
and xy, derived from the full DW equation at T = 5 meV; see Fig. 5.
The deformed FS in the nematic state is shown. (d) T dependence of
λq=0(T ) for r = 0.32, 0.36, and 0.40. (e) Obtained R = (−λ̇Tc ) as
a function of Tc for r = 0.40–0.32. The relation R ∝ T b

c with b ≈ 3
holds. The inset shows R in the RbFe2As2 model. Note that R ≈ 1
(b = 0) in the Bardeen-Cooper-Schrieffer (BCS) superconductivity.

λc
q for simplicity.) The obtained λq exhibit the maximum at

q = 0 because the convolution of two χ s
q’s, Cq ≡ ∑

p χ s
pχ

s
p+q,

included in the AL-type vertex corrections (VCs) is largest
at q = 0. Here, λq=0 exceeds unity, and the typical transition
temperature Tc (∼100 K) in Fe-based SCs is reproduced by
including �0. We note that similar results were obtained in
Fig. S4(a) in the Supplemental Material of Ref. [67] by con-
sidering �0.

The obtained form factors belong to B1g symmetry, which
is shown in Fig. 4(c): The xz, yz-orbital form factors express
the k-dependent orbital polarization, which has been reported
by previous DW equation studies without �0 [3]. The ob-
tained xz, yz-orbital polarization elongates the hole pocket
along the ky axis, as experimentally reported in Refs. [48,68].
In addition, the xy-orbital form factor represents that the d-
orbital bond order f ∝ cos kx − cos ky emerges at the same Tc.
This d-wave order leads to the disappearance of an electron-
pocket around the Y point [49–51]. Thus, the experimentally
observed ferronematic order in FeSe is naturally obtained.
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We stress that the coexistence of the xz, yz-orbital order and
the dx2−y2 -wave bond order on the xy orbital was already
reported in Figs. S3(a)–S3(d) in the Supplemental Material
of Ref. [67]. In addition, the dxy-wave bond order on the xy
orbital has been studied in RbFe2As2 in Ref. [69].

We comment that a simple A1g symmetry order that accom-
panies the net charge order is suppressed by the Hartree term
in the kernel function. In contrast, the B1g symmetry order in
Fig. 4(c) is free from suppression by the Hartree term due to
sign reversal in the form factor.

Figure 4(d) shows the temperature dependence of λq=0(T )
for r = 0.40–0.32. At higher temperatures (T � 10 meV),
λq=0(T ) exhibits T -linear behavior. The nematic susceptibil-
ity above Tc is χnem = χ0 f (0)(1 − λq=0)−1, as proved theoret-
ically in Ref. [69]. Therefore, it is confirmed that the experi-
mental CW behavior of χnem at higher temperature is naturally
explained in the present theory. The deviation from the CW
behavior at lower temperatures will be discussed in Sec. V B.

Figure 4(e) shows the obtained R = (−λ̇Tc) as a func-
tion of Tc. Here, λ̇ ≡ dλ

dT |Tc , R approximately corresponds
to λq=0(T = 0) − 1, and R becomes very small when Tc �
10 meV. The reason is the recovery of the Fermi liquid be-
havior λ(0) − λ(T ) ∝ T 2 because the system is far from the
magnetic QCP. Also, the relation R ∝ T b

c (b ∼ 3) is satisfied
in this paper. In Sec. V A, we will explain that R is propor-
tional to the jump in the heat capacity at Tc.

B. Below T c: Full DW equation analysis

Next, we analyze the full DW equation given as Eqs. (30)
and (31) for T < Tc. We safely assume the uniform (q = 0)
order parameter because λq takes the largest value at q = 0,
as found in Fig. 4(b). The aim of this subsection is to explain
the essential properties of the nematic state (T < Tc) in FeSe
based on the paramagnon interference mechanism.

Now we explain the procedure of the numerical study in
detail: The total self-energy is given in Eq. (15), where �0 is
the normal self-energy without any symmetry breaking given
by Eq. (A2). Here, we calculate �0 at each T by subtract-
ing its static and Hermitian part �0,H(k) ≡ [�0(k,+iδ) +
�0(k,−iδ)]/2 to fix the shape of the FS [70]. Next, we
derive the symmetry-breaking part δt self-consistently based
on the following procedure: (a) We first calculate Sk ≡
T
N

∑
q Gk+q[�]Wq[�], where Gk[�] and Wq[�] are functions

of the total self-energy. (b) Next, we derive δt as

δtk = (1 − P0)Sk, (56)

where P0 is the projection operator for the totally symmetric
(A1g) channel. (c) The total self-energy is given as � = �0 +
δt . We repeat (a)–(c) until δt converges.

It is easy to show that the δt-linear term of Sk gives the
right-hand side of the linearized DW equation, Eq. (39), with
the kernel function in Eq. (A3). Thus, the full DW equation is
equivalent to the linearized DW equation when δt is very
small.

Figure 5(a) represents the obtained renormalized order pa-
rameter δt∗

m(k) = zmδtm(k) for m = xz and m = xy at the Y
point. The obtained Tc = 12 meV completely coincides with
that given by the linearized DW equation. The nematic order
occurs as the second order, and the averaged order parameter

FIG. 5. (a) Obtained renormalized symmetry breaking self-
energy δt∗

m,m(k) for m = xz, xy at the Y point, derived from the full
density wave (DW) equation at r = 0.40. The second-order transi-
tion occurs at Tc = 12 meV, which is consistent with the linearized
DW equation analysis in Fig. 4(d). TL (= 9 meV) is the Lifshitz
transition temperature. (b) Fermi surface (FS) in the nematic state at
T = 5meV (<TL ). The electron-pocket around the Y point disappears
due to the xy-orbital form factor. In addition, the hole pocket is
elongated along the ky axis due to the xz, yz-orbital polarization with
the sign reversal in k-space. (c) Renormalized band structure in the
normal state. (d) Renormalized band structure in the nematic state.

δt∗
av ≡ (|δt∗

xz| + |δt∗
xy|)/2 at the Y point is ∼2Tc at T = 5 meV.

Thus, the present theory gives the ratio δt∗
av/Tc ∼ 2, which is

like the ratio �∗
0/T SC

c ∼ 2 in the Bardeen-Cooper-Schrieffer
(BCS) theory. Thus, both the development of χnem above Tc

and the nematic order parameter below Tc are well explained
by the present theory.

The relation 2|δt∗
xz| ≈ |δt∗

xy| in Fig. 5(a) indicates that both
the (xz + yz) and xy orbitals equally contribute to the nematic
order. In Appendix D, we explain the relative phase between
the xz- and xy-orbital form factors δtxz,xz(0, π )δtxy,xy(0, π ) <

0 based on the GL analysis. This relation is significant for the
Lifshitz transition below Tc, as we will explain below.

Due to the nematic order parameter, the FS with C4 symme-
try in Fig. 4(a) is deformed to the C2-symmetry FS depicted
in Fig. 5(b) at r = 0.40 and T = 5 meV. The corresponding
band dispersions in the normal state and those in the nematic
state are shown in Figs. 5(c) and 5(d), respectively. They are
renormalized by the factor z ∼ 5 for the xy orbital and z ∼ 3
for xz, yz orbitals. The original band dispersion is shown in
Appendix C. The hole pocket is elongated along the ky axis
due to the xz, yz-orbital polarization [3,48,68]. Interestingly,
the electron pocket around the Y point disappears in the
nematic state due to the dx2−y2 -wave form factor on the xy
orbital. This nematic Lifshitz transition has been confirmed by
many angle-resolved photoemission spectroscopy (ARPES)
studies [49,50]. The relative phase between two form fac-
tors δtxz,xz(0, π )δtxy,xy(0, π ) < 0 originates from the kinetic
energy gain due to the pseudogap formation by the Lifshitz
transition.
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FIG. 6. Eigenvalue of the density wave (DW) equation in the
nematic state λ(T ) with the nematic self-energy �0 + δt , where δt
is derived from the full DW equation. Because �0 + δt represents
the thermal equilibrium state, the nematic susceptibility χ̄nem(T ) =
[1 − λ(T )]−1 is positive and diverges at T = Tc.

In addition, in the nematic phase, the hole pocket is elon-
gated along the ky axis due to the xz, yz-orbital polarization
with the sign reversal in k-space. This has also been confirmed
by ARPES studies [48,68]. Thus, experimental key findings in
the nematic states are satisfactorily reproduced by the present
paramagnon interference mechanism [2,3,42,56].

C. Connection between above and below T c

In the previous subsection, we derived the nematic self-
energy � ≡ �0 + δt based on the full DW equation. The
derived nematic state corresponds to the stationary point of
the LW grand potential �LW[�], as proved in Sec. II. Because
the obtained nematic state is thermodynamically stable, we
can calculate the nematic susceptibility below Tc based on the
linearized DW equation with the nematic self-energy.

Figure 6 exhibits the eigenvalue of the linearized DW equa-
tion in the nematic state (� ≡ �0 + δt), λfull DW, in the case of
r = 0.40. (We also show the DW equation eigenvalue with the
normal self-energy �0, λ′(T ), for reference.) We see that λ(T )
reaches unity at T = Tc, while it monotonically decreases for
T < Tc. We find that 1 − λ(T ) ≈ |1 − λ′(T )| for T � Tc, as
naturally expected in the GL theory. The beautiful numerical
result in Fig. 6 means that the nematic state derived from
the full DW method corresponds to the stationary point of �

very accurately. Thus, electronic states of FeSe both above
and below Tc are understood in a unified way based on the
paramagnon interference mechanism.

The nematic susceptibility in the nematic state T < Tc

is χnem(T = 0) = χ0 f (0)/[1 − λ(T = 0)], where 1 − λ(T =
0) ≈ R. Since R (∝ T 3

c ) is much smaller than unity, as shown
in Fig. 4(e), in this paper, we clarified that sizable nematic
fluctuations remain in the nematic phase in Fe-based SCs.
This is important information to understand the pairing mech-
anism in FeSe.

V. DISCUSSIONS

In this section, we discuss important unsolved properties
in Fe-based SCs based on the present theory. We analyze the

specific heat jump at T = Tc in Sec. V A and calculate the T
dependence of χnem near the nematic QCP in Sec. V B.

A. Jump in the specific heat at T c in FeSe

From the stationary point of the free energy
[∂�DW(T, μ, φ)/∂φ|T,μ = 0], we obtain φ = 0 and

φ =
√

−a(T )
b above and below Tc, respectively. Here, we

assume a simple T dependence of a, a(T ) = ȧ(T − Tc),
where ȧ = − da

dT |Tc (> 0). Then we obtain the BCS-like order
parameter for T < Tc as

φ =
√

ȧ

b
(Tc − T ). (57)

Then the order parameter at T = 0 is φ0 ≈ √
(ȧTc)/b.

Based on the GL free energy, we discuss the jump of the
heat capacity �C due to the DW transition, which is calcu-
lated by

�CDW

Tc
= − d2�DW

dT 2

∣∣∣∣
T =Tc

= (ȧTc)

(
φ0

Tc

)2

. (58)

Now we calculate ȧ based on Eq. (50). In FeSe, χ0 f (0) is
almost independent of T , while −λ̇ ≡ − dλ

dT |Tc takes a large
positive value, as shown in Fig. 4(d), due to the AL-type VCs
in the kernel function I . Then we obtain

(ȧTc) = 2χ0 f (0)(−λ̇Tc). (59)

Note that χ0 f (0) is equal to the DOS projected by the form
factor f , D f (0) ≡ 1

N

∑
k δ(εk − μ) f 2

k , in the absence of the
self-energy.

Hereafter, we explicitly consider the mass-enhancement
factor due to the self-energy z−1 ≡ 1 − ∂Re�/∂ε|ε=μ. The
relation z−1 � 1 holds in general for strongly correlated met-
als. In the Fermi liquid theory, Green’s function is given
as Gk = z/[iεn − z(εk − μ)]. Then the DOS is changed to
χ

0 f
z (0) = zχ0 f

z=1(0) = zD f (0), and the observed renormalized
order parameter is φ∗

0 ≡ zφ0. Thus, �CDW/Tc due to the ne-
matic transition is given by

�CDW

Tc
= 2z−1D f (0)R

(
φ∗

0

Tc

)2

, (60)

where R = (−λ̇Tc). As we summarized in Fig. 4(e), R ∼
0.3 for r = 0.40, and R ∼ 0.1 for r = 0.36. In contrast,
�CSC/T SC

c due to the BCS superconductivity is �CSC/T SC
c =

2z−1D f (0)(ψ∗
0 /T SC

c )2 with � = ψ · f , which corresponds to
R = 1 in Eq. (60). (Here, ψ∗

0 ≡ zψ0 is the observed gap
function.) Because ψ∗

0 /T SC
c ≈ 2, we obtain �CSC/T SC

c =
8z−1D f (0), which is close to 9.4z−1D f (0) in the BCS the-
ory. Because φ∗

0/T SC
c ≈ 2 in the present numerical study, we

obtain the relation

�CDW

Tc
∼ R

�CSC

T SC
c

. (61)

In the present theory, R ∝ T b
c with b ∼ 3 for r = 0.40–0.34

(Tc = 12–6 meV), as shown in Fig. 4(e). Thus, the relation
�CDW

Tc
∝ T b

c is predicted by the present theory.
Next, we discuss the nematic state in RbFe2As2, which

is a heavily hole-doped Fe-based SC. This system exhibits
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FIG. 7. (a) Obtained eigenvalue λq for RbFe2As2 model at r =
0.30 [69]. The obtained form factor at q = 0 is the dxy-symmetry
bond order on the xy orbital. Here, we consider the renormalization
factor z = 1

2 by following Ref. [2]. (b) T dependence of λq=0 in
RbFe2As2 model.

the uniform (q = 0) nematic order. Interestingly, the observed
nematicity possesses the dxy-wave symmetry, whose director
is 45◦ rotated from the dx2-y2 -wave nematicity in FeSe. Fig-
ure 7(a) shows the DW equation eigenvalue in the RbFe2As2

Hubbard model, which was introduced in Ref. [69]. The ob-
tained form factor at q = 0 is the dxy-wave bond order on the
xy orbital, as we revealed in Ref. [69]. Here, we set �0 =
(1 − z−1)(iεn − μ) by following Ref. [2], instead of calculat-
ing the FLEX self-energy. We set the renormalization factor
z = 1

2 (=m/m∗). Then Tc is renormalized to be T ∗
c = zTc, and

λz=1
q (T ) is equal to λz

q(zT ) [2].
Figure 7(b) exhibits the T dependence of λq=0. Here, the

relations R ∼ 0.1 when Tc ∼ 10 meV and R ∝ T b
c (b ∼ 2.5)

are obtained in the RbFe2As2 model. This result indicates
that the relation R ∼ 0.01 is satisfied at Tc ∼ 40 K. In fact,
in the FeSe model, we obtained the relation R ∝ T b

c (b ∼ 3)
at low Tc (=6–12 meV) by using fine k-meshes (642) and
many Matsubara frequencies (8192) to obtain reliable results
at low T ; see Fig. 4(e). A similar relation is expected to
be realized in other Fe-based SC models within the same
paramagnon interference mechanism. Therefore, the present
theory gives a natural explanation why �CDW

Tc
in RbFe2As2

(Tc ≈ 40 K) reported in Ref. [53] is much smaller than that
in FeSe (Tc ≈ 90 K) in Ref. [71].

FIG. 8. (a) Nematic susceptibility χ̄nem = 1/[1 − λ(T )] for r =
0.34 and 0.40 as a function of T . χ̄nem follows the Curie-Weiss
(CW) behavior [C/(T − T0 )] at higher temperatures. However, it
deviates from the CW behavior at low temperatures. (b) Derivation
of the Weiss temperature T0 from λ(T ). (c) The paramagnon interfer-
ence Aslamazov-Larkin (AL) term Xq=0 that is proportional to λq=0.
�

f
q=0(Q) is the three-point vertex. (d) Obtained X̄q=0 as a function of

T . X̄q=0 starts to saturate at low temperatures, consistently with the
deviation from the CW law in χ̄nem.

B. CW/non-CW behavior in nematic susceptibility

Here, we discuss the nematic susceptibility χnem due to the
electron correlation. According to Refs. [67,69], the nematic
susceptibility is given as

χnem = zD f (0)
1

1 − λ(T )
, (62)

where λ(T ) is the eigenvalue of the DW equation with
the normal self-energy �0. Figure 8(a) shows the normal-
ized susceptibility χ̄nem ≡ χnem/χ0

nem = 1/[1 − λ(T )] for r =
0.40 and 0.34, which corresponds to Tc = 12 and 6.2 meV,
respectively. In both cases, χ̄nem follows the CW behavior
at higher temperatures (T > T ∗ ∼ 10 meV). In contrast, at
lower temperatures (T < T ∗) for r = 0.34, χ̄nem exhibits a
clear deviation from the CW behavior. The Weiss temperature
T0 is derived from Fig. 8(b): We see that λ(T ) changes from
T linear to T 2-like at T ∼ T ∗ ∼ 8 meV. Similar Fermi liquid
behavior in λ(T ) is also recognized in Fig. 4(d). This result
is natural because the system is far from the magnetic QCP.
Thus, the present theory provides a natural explanation for the
non-CW χnem near the nematic QCP with Tc ≈ 0 reported in
Ref. [12].

Here, we discuss the reason χnem exhibits the CW/non-CW
behavior depending on r. According to Eq. (40), the eigen-
value λq at q = 0 is proportional to X in Eq. (41) because
χ0 f (q = 0) is almost constant. In FeSe, the nematic state is
mainly caused by the paramagnon interference AL term in Xq.
It is approximately given as

Xq=0 = T
∑
Q,m

3
∣∣� f ,m

Q,q=0

∣∣2(
U 2χ s,m

Q

)2
, (63)
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where χ s,m
Q is the spin susceptibility for d-orbital m, and �

f ,m
Q,q

is the three-point vertex composed of three Green’s functions:

�
f ,m
Q,q=0 = −T

∑
p

(
Ĝ0

p f̂ q=0
p Ĝ0

p

)
m,m

(
Ĝ0

p+Q

)
m,m, (64)

where Ĝ0
p is the matrix representation of the multiorbital

Green’s function with FLEX self-energy. Their expressions
are shown in Fig. 8(c). In a simple single-orbital model,
the analytic expression of Eq. (64) is given as �

f
Q,q=0 =

1
N

∑
k[− ∂n(εk )

∂εk
] 1
εk−Q−εk

f q=0
k , where n(ε) is the Fermi distribu-

tion function [72]. When Q ≈ Qnesting, �
f
Q,q=0 exhibits strong

enhancement at low temperatures due to [−∂n(εk )/∂εk]
[2,72].

In FeSe, the spin Stoner factor αS is nearly constant for
T > Tc. Then the strong T dependence of λ(T ) originates
from �

f
Q,q=0, not from V s

Q, as we explained in Ref. [2]. The
paramagnon interference magnifies the nematic susceptibility,
but its magnification is nearly constant. To confirm this fact,
we introduce a simplification of Xq=0 in Eq. (63) as follows:

X̄q=0 = T
∑
Q,m

∣∣∣� f ,m
Q,q=0

∣∣∣2
. (65)

Figure 8(d) shows the numerical result of X̄q=0 at r = 0.34.
For T � 10 meV, X̄q=0 exhibits almost perfect T -linear be-
havior. Its increment at low T originates from the FS nesting.
In contrast, at lower temperatures, X̄q=0 starts to saturate when
T is smaller than the nesting energy scale [2]. This saturation
gives rise to the non-CW behavior of χnem near the nematic
QCP (Tc ∼ 0), as shown in Fig. 8(a).

Thus, the paramagnon interference mechanism satis-
factorily explains both the CW behavior of χnem above
T ∗(∼10 meV) and its non-CW behavior below T ∗. These be-
haviors are observed in various Fe-based SCs near the nematic
QCP: Ba(Fe, T )2As2 with T = Co, Ni; (Ba, A)Fe2As2 with
A = K, Rb; and Fe(Se, Pn) with Pn = Te, S [14,52,54]. (In
this mechanism, �

f
Q,q=0 is the coupling constant between the

nematicity and the paramagnons, and its increment leads to
large χnem at low temperatures.) Once the nematic order is
established below Tc, the spin Stoner factor αS increases, as
we discussed in Refs. [3,73].

In the present mechanism, the deviation from the CW be-
havior of χnem below T ∗ is equal to the Fermi liquid behavior
λ(0) − λ(T ) ∝ T 2. This deviation is naturally expected when
the nematic QCP is well separated from the magnetic QCP,
even in the absence of impurities. We will discuss this point
in the Summary section.

VI. SUMMARY

In this paper, we derived a formally exact DW equation,
by introducing the form factor of the DW state δtqσ

k into the
LW theory. Its solution automatically satisfies the extremum
condition of the grand potential. By solving the DW equation,
the optimized form factor and its wave vector are uniquely
obtained for both above and below Tc. This formalism enables
us to perform the Baym-Kadanoff conserving approximation
that is essential to obtain thermodynamic stable states. In
addition, we derive an exact expression of the GL free energy

F ∝ aqφ
2, where φ is the amplitude of the DW order at

wave vector q. The coefficient aq [≈aq0 + 1
2

∑
μ,ν cμ,ν (qμ −

qμ
0 )(qν − qν

0 )] is uniquely related to the eigenvalue of the DW
equation λq. This formalism enables us to calculate various
thermodynamic properties of the DW state.

In the second part, we analyzed the nematic state in FeSe
based on the derived DW equation based on a realistic mul-
tiorbital Hubbard model with one single parameter r. We
explained the following key experiments in Fe-based SCs:
(i) Lifshitz transition due to bond + orbital order [49,50];
(ii-1) the CW behavior of χnem ∝ 1/|1 − λ(T )| at higher tem-
peratures; 1 − λ(T ) ∝ T0 − T ; (ii-2) deviation from the CW
behavior of χnem at low temperatures near the nematic QCP
without magnetic criticality; λ(0) − λ(T ) ∝ T 2 [12,13,52];
and (iii) a scaling relation �C/Tc ∝ T b

c (b ∼ 3) that naturally
explains the smallness of �C/Tc reported in several nematic
systems [18,19,53]. This is because the gain of the free energy
in the nematic transition is much smaller than that in the SC
state. In addition, we explain (iv) the nematic QCP away from
the magnetic QCP observed in Fe(Se, S), Fe(Se, Te) [54], and
Na(Fe, Co)As [55].

The present theory naturally explains the essential points
(i)–(iv). Thus, it is concluded that the nematicity in FeSe is
the bond + orbital order due to the paramagnon interference
mechanism depicted in Fig. 8(c) [2,3,42,56].

The behavior (ii-2) has been observed in various Fe-based
SCs near the nematic QCP: Ba(Fe, T )2As2 with T = Co,
Ni; (Ba, A)Fe2As2 with A = K, Rb; and Fe(Se, Pn) with
Pn = Te, S [14,54]. This behavior is frequently ascribed to
the impurity-induced Griffiths phase, while it is widely ob-
served insensitively to the impurity potential strength. (For
example, the quantum oscillation is observed in Te- and S-
doped FeSe.) In the present theory, the behavior (ii-2) is
naturally explained when the nematic QCP is well separated
from the magnetic QCP, even in the absence of impurities.
It is useful to verify the relation λ(0) − λ(T ) ∝ T 2 experi-
mentally. In the present mechanism, the increment of χnem

at low T originates from the T dependence of �Q,q=0 in
Eq. (64) [2], and the self-energy due to thermal spin fluctua-
tions [66,74] is also important to derive a perfect CW behavior
of χnem. The self-energy due to nematic fluctuations will also
be important (|�nem| � |�FLEX|) adjacent to the nematic QCP,
unless the dynamical nematic fluctuations are suppressed by
the acoustic phonons. This is an important future issue. It is
considered that a perfect CW behavior for 30–250 K observed
in BaFe2(As0.3P0.7)2 [14] is ascribed to the magnetic critical-
ity due to the coincidence of the nematic and magnetic QCPs.

The present theory paves the way for understanding var-
ious unconventional phase transition systems for both above
and below Tc. For example, the analysis of the odd-parity
DW order accompanying spontaneous current, which has
been reported in cuprates and kagome metals recently, is
an important future problem [43,59]. The (local and/or
nonlocal) multipole order physics in 5d- and f -electron sys-
tems with strong spin-orbit interaction is another important
future issue [31]. In addition, it is important to develop
the numerical method beyond the one-loop approximation.
The functional-renormalization-group method [42,59,75–77],
which is equivalent to the parquet equation, would be useful
to obtain a reliable kernel function of the DW equation. The
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FIG. 9. (a) Diagrammatic expressions of �FLEX[G] in the one-
loop approximation. For simplicity, diagrams in the single-orbital
Hubbard models are shown, while we study multiorbital Hubbard
models in this paper. (b) Self-energy �k = δ�FLEX/δGk . (c) Lin-
earized density wave (DW) equation with the kernel function I
derived from the second derivative of �FLEX[G] with respect to G.
The Maki-Thompson (MT) term and the Aslamazov-Larkin (AL)
terms give the fluctuation-induced interaction for the DW.

exotic superconductivity mediated by the DW fluctuations
[22,78–80] would be a very interesting future problem.
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APPENDIX A: JUSTIFICATION OF ONARI-KONTANI
APPROXIMATION IN THE DW EQUATION

Here, we derive the DW equation introduced by Onari et al.
[3], Kawaguchi et al. [20], Tsuchiizu et al. [21], and Tazai
et al. [42], which has been applied to iron-based and cuprate
SCs, from the exact DW equation given in Eq. (36). In the
present calculation, we apply the FLEX approximation for
�FLEX[G]. It is given as [62]

�FLEX = T
∑

q

Tr

{
3

2
ln

(
1 − U sχ0

q

) + 1

2
ln

(
1 − U cχ0

q

)}

+ T

4

∑
q

Tr
{(

U sχ0
q

)2 + (
U cχ0

q

)2}

+ T
∑

q

Tr

{
3

2
U sχ0

q + 1

2
U cχ0

q

}
, (A1)

which is expressed in Fig. 9(a). Here, U s(c) is the spin-channel
(charge-channel) Coulomb interaction, and U s = −U c = U
in the single-orbital Hubbard model. Their matrix expressions
in multiorbital systems are introduced in the next section.

In the framework of the conserving approximation, the
first-order derivative of �FLEX[G] gives the self-energy �. It
is expressed as [81,82]

�0
k = T

N

∑
q

G0
k+qW 0

q , (A2)

which is expressed in Fig. 9(b). Here, W 0
q = ( 3

2V s
q +

1
2V c

q ), V x
q = U x + U xχ x

qU x (x = s, c), and χ x
q = χ0(q)/[1 −

U xχ0(q)].
Finally, we derive the irreducible four-point vertex I from

the second derive of �FLEX[G]. The derived charge-channel
kernel function in the DW equation, Eq. (39), for x = c is
given by [20,43]

Ic
kk′q = −3

2
V s

k−k′ − 1

2
V c

k−k′

+ T

N

∑
p

[
3

2
V s

p+qV s
p + 1

2
V c

p+qV c
p

]
G0

k−pG0
k′−p

+ T

N

∑
p

[
3

2
V s

p+qV s
p + 1

2
V c

p+qV c
p

]
G0

k−pG0
k′+p,

(A3)

which is depicted in Fig. 9(c). Note that the double-counting
U 2 terms in Eqs. (A3) and (A2) should be subtracted properly.

Although the DW equation with the kernel in Eq. (A3) is
an approximation, it satisfies the Baym-Kadanoff conserving
laws by introducing �FLEX. That is, the solution of the DW
equation is the thermal equilibrium state derived from the
stationary condition of �FLEX. Thus, the Onari-Kontani-type
DW equation [3,20,21,42] is given by dropping �FLEX from
Eq. (A3). Furthermore, the present exact DW equation is
useful to go beyond the Onari-Kontani approximation.

APPENDIX B: GL FREE ENERGY FROM �[G]

In the main text, we derive the GL free energy based on
the grand potential �[�]. Here, we show a different way to
obtain GL free energy by using �[G] starting from Eq. (14)
in the main text. The coefficient a is derived from the second
functional derivation of �[G] as

�[Ḡ] − �[G0] =
∑

kσk′σ ′

δ2�[G]

δGk′σ ′δGkσ

∣∣∣∣
G=G0

δGk′σ ′δGkσ , (B1)

δ2�[G]

δGk′σ ′δGkσ

= δ

δGk′σ ′

×
{

G−1
kσ − (

Gfree
kσ

)−1 + �kσ [G]
}

= −G−2
kσ δkk′ − δ�kσ [G]

δGk′σ ′
, (B2)

δ2�[G]

δGkσ δGk′σ ′

∣∣∣∣
G=G0

= −(
G0

kσ

)−2
δkk′ − Iσσ ′

kk′ . (B3)
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FIG. 10. Band-dispersion of the present FeSe model without
self-energy. The renormalized dispersion due to the self-energy is
shown in Fig. 5.

Thus, we obtain the following results:

�[G] − �[G0] = T

N

∑
kσ

(
G0

kσ

)−2
(δGkσ )2

−T

N

∑
kσk′σ ′

Iσσ ′
kk′ δGkσ δGk′σ ′

= χ f (0){1 − λ}φ2, (B4)

where we use the relation δGkσ = (G0
kσ )2δtkσ and set tkσ =

fkσ · φ. Therefore, the coefficient a of GL free energy from
�[G] is given by

a = χ f (0){1 − λ}φ2. (B5)

At T = Tc, the obtained a by �[G] is the same as the one by
�[�] in the main text, while it becomes different at T �= Tc.
Moreover, the expression a by �[G] does not reproduce the
results by mean-field approximation. Thus, the expression of
Eq. (B5) is correct only at T = Tc.

APPENDIX C: EIGHT-ORBITAL MODELS FOR FeSe

Here, we introduce the eight-orbital d-p models for FeSe.
We first derived the first-principles tight-binding models using
the WIEN2K and WANNIER90 codes. Crystal structure parame-
ters of FeSe are given in Ref. [83]. By following Ref. [2],
we introduce the k-dependent shifts for orbital l , δEl , to
obtain the experimentally observed FSs [49,50]. In this pa-
per, we introduce the intraorbital hopping parameters into
the first-principles FeSe model to shift the dxy-orbital band
(dxz/yz-orbital band) at (�, M, X) points by (0, −0.35, +0.40)
[(−0.22, 0, +0.16)] in units of electronvolts. Such level shifts
are introduced by the additional intraorbital [2]. The band
dispersion of the present FeSe model without self-energy is
shown in Fig. 10. Its FS is given in Fig. 4(a) in the main text.

In this multiorbital model, the matrix expression of the
noninteracting Green’s function is given as

Ĝfree
k = [

(εn − μ)1̂ + ĥ0
k

]−1
, (C1)

where k ≡ (k, εn), and ĥ0
k is the matrix expression of the

kinetic term, which is given by the Fourier transformation of
the tight-binding model.

We also explain the multiorbital Coulomb interaction term
HU . The multiorbital Coulomb interaction term is expressed
as HU = 1

4

∑
i,σσ ′

∑
ll ′mm′ U σσ ′

ll ′mm′d†
i,l,σ d†

i,m′,σ ′di,m,σ ′di,l ′,σ ,
where l, m represent the orbital indices, σ = +1 (−1)
represents the ↑ (↓) spin, i is the site index, and
Û σσ ′ = −Û c − σσ ′Û s. The matrix elements of Û s are
given by [2]

(Û s)l1l2,l3l4 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ul1,l1 , l1 = l2 = l3 = l4,

U ′
l1,l2

, l1 = l3 �= l2 = l4,

Jl1,l3 , l1 = l2 �= l3 = l4,

Jl1,l2 , l1 = l4 �= l2 = l3,
0, otherwise.

(C2)

Also, the bare Coulomb interaction for the charge channel is

(Û c)l1l2,l3l4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Ul1,l1 , l1 = l2 = l3 = l4,

U ′
l1,l2

− 2Jl1,l2 , l1 = l3 �= l2 = l4,

−2U ′
l1,l3

+ Jl1,l3 , l1 = l2 �= l3 = l4,

−Jl1,l2 , l1 = l4 �= l2 = l3,

0. otherwise.

(C3)

Here, Ul,l , U ′
l,l ′ , and Jl,l ′ are the first-principles Coulomb in-

teraction terms given in Ref. [63].
In the main text, we omit the orbital indices of the Green’s

functions and the Coulomb interactions to simplify the expres-
sions. It is straightforward to write the orbital indices of these
expressions in multiorbital models by using Eqs. (C1)–(C3).

APPENDIX D: RELATIVE PHASE BETWEEN xz- AND
xy-ORBITAL FORM FACTORS

As we discussed in the main text, the relation 2|δt∗
xz| ≈

|δt∗
xy| in Fig. 5(a) indicates that both the (xz + yz) and xy

orbitals equally contribute to the nematic order in FeSe. The
(xz + yz)-orbital polarization (xy-orbital bond order) origi-
nates from the spin fluctuations on (xz + yz) orbitals (xy
orbital). Here, we discuss the relative phase between xz- and
xy-orbital form factors δtxz,xz(0, π ) × δtxy,xy(0, π ) < 0 based
on the GL analysis.

According to Eq. (48) or Eq. (49), the second-
order interorbital free energy is F (2)

2,4 = −2χ
0 f
2,4φ2φ4, where

χ0δt
2,4 = −T

∑
k G2,4(k)G4,2(k) f2,2(k) f4,4(k) and δtm,m(k) =

fm,m(k)φm. We verified numerically that χ
0 f
2,4 > 0, which

is consistent with the relations χ0
22,44(0) < 0 in FeSe and

δt2,2(k)δt4,4(k) < 0 around the Y point shown in Fig. 4(c).
Thus, the relation φ2φ4 > 0 is realized, and therefore, the
Lifshitz transition occurs in FeSe. In other words, the relation
φ2φ4 > 0 [i.e., δt2,2(0, π )δt4,4(0, π ) < 0] is a direct conse-
quence of the multiorbital band structure of Fe-based SCs.
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