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Emergent fermionic gauge theory and foliated fracton order in the Chamon model
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The Chamon model is an exactly solvable spin Hamiltonian exhibiting nontrivial fracton order. In this
paper, we dissect two distinct aspects of the model. First, we show that it exhibits an emergent fractonic
gauge theory coupled to a fermionic subsystem symmetry-protected topological state under four stacks of Z2

planar symmetries. Second, we show that the Chamon model hosts 4-foliated fracton order by describing an
entanglement renormalization group transformation that exfoliates four separate stacks of 2D toric codes from
the bulk system.
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I. INTRODUCTION

Gapped quantum systems can form nontrivial phases of
matter in the absence of symmetry if they exhibit long-range
entanglement in the many-body ground state [1]. The tradi-
tional examples of long-range entangled phases are those with
intrinsic topological order such as fractional quantum Hall
states [2,3] and discrete gauge theories [4,5], which are char-
acterized at low energy by topological quantum field theories
[6]. In 2005, Chamon discovered a three-dimensional exactly
solvable lattice model [7] that represents the first example of a
unique kind of long-range entangled order known as fractonic
order [8,9].

Quantum phases with fractonic order cannot be described
by topological quantum field theory due to an intertwin-
ing of universal properties with lattice geometry [8–11]. In
particular, fractonic orders are characterized by a ground
state degeneracy (GSD) that scales exponentially with linear
system size and the existence of fractional excitations with
constrained mobility [9,12–15]. The Chamon model, for in-
stance, harbors three kinds of quasiparticles: planons, which
are mobile within a plane; lineons, which can move along a
line; and fractons, which are fundamentally immobile as indi-
vidual particles [12]. In recent years, a wide range of fracton
orders have been discovered theoretically, each exhibiting a
different manifestation of constrained quasiparticle mobility
and subextensive GSD [8,9,11,13–48]. Notable examples in-
clude the Haah cubic code [13] and the X-cube model [9].
It is natural to ask how the variety of fractonic orders can
be systematically characterized within a common theoretical
framework.

*Current address: Facebook Inc., Menlo Park, California 94025,
USA.

Many fractonic orders have a unified characterization as
emergent gauge theories of discrete subsystem symmetries,
which have either planar or fractal geometry [9,49–51]. For
example, the X-cube model is obtained by gauging three
orthogonal sets of planar Ising symmetries of a cubic lat-
tice spin-1/2 paramagnet (referred to as a 3-foliated gauge
theory) [9]. The gauging procedure has been extended to
fermion parity subsystem symmetries in fermionic systems,
whose gauging yields gapped fractonic gauge theories with
emergent fermionic charges [52,53]. On one hand, a large
class of fractonic orders, including those belonging to the
class of Calderbank-Shor-Steane (CSS) stabilizer codes, can
be obtained via this procedure [51]. On the other hand, it
remains unclear how, or if, certain fracton models, including
the Chamon model, can be obtained by gauging and hence
characterized by emergent gauge theory.

In a parallel development, the concept of foliated fracton
order (FFO) was recently introduced in an effort to system-
atically characterize fractonic orders with planon excitations
[50,54]. A lattice model is said to have FFO if the lattice size
can be systematically reduced by removing, or exfoliating,
layers of 2D topological orders from the bulk 3D system via
a finite-depth quantum circuit. Such a transformation maps
a subset of the bulk planon excitations into anyons of the
exfoliated 2D orders. For instance, for the X-cube model, it
is possible to exfoliate layers of 2D toric code normal to the
three cubic lattice directions, hence the X-cube model is said
to have a 3-foliation structure. The notion of FFO has been
shown to apply to a large class of models beyond the X-cube
model [55–57]. However, thus far it has remained unknown
whether the fractonic order of the Chamon model is foliated.

The purpose of this paper is to fill the gaps in the fracton lit-
erature by presenting two results on the Chamon model. First,
we show that the model is characterized by a 4-foliated gauge
theory coupled to a fermionic subsystem symmetry-protected
topological (SSPT) state. In other words, it can be obtained
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FIG. 1. (a) The operator Oc, which is a tensor product of the six Pauli operators. (b) A tetrahedral wire-frame operator, which is equal to a
product of Oc operators inside the tetrahedron. (c) A loop operator for an elementary planon of the Chamon model, which is a product of Oc

operators within the loop. (d)–(f) Three planon string operators W3, W2, and W1 forming a T junction (the bold edge represents the same edge
in each subfigure). The fermionic exchange statistic of the elementary planon is given by W3W

†
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by gauging four sets of planar Z2 symmetries that protect
a nontrivial SSPT state [38,58] in a fermionic lattice system
and then performing a local unitary transformation. This is a
surprising result because there is no a priori clear division
of fractional excitations into gauge charge and gauge flux
sectors (as is the case for CSS codes). Instead, it is necessary
to expand the unit cell and divide the excitations into charge
and flux sectors according to the sublattice on which they
reside. This is reminiscent of the gauge theory description of
the much simpler 2D Wen plaquette model [59].

Second, we show that the Chamon model exhibits FFO
with a 4-foliation structure composed of 2D toric code re-
source layers. In particular, we describe an entanglement
renormalization (ER) group transformation [22,60,61] that
maps a copy of the Chamon model on a 3L × 3L × 3L cubic
lattice to a coarse-grained Chamon model on an L × L × L
lattice tensored with four decoupled stacks of 2D toric codes.
This 4-foliation structure is consistent with the four orienta-
tions of planons in the Chamon model, and is most easily
described in terms of the action of the transformation on
the planon excitations. We have also obtained an explicit
translation-invariant Clifford circuit realizing this transforma-
tion.

The paper is organized as follows. In Sec. II, we review
the Chamon model and its essential properties. In Sec. III, we
explain the characterization of the Chamon model in terms
of emergent fermionic gauge theory. In Sec. IV, we describe

the FFO exhibited by the Chamon model. We conclude with a
discussion in Sec. V.

II. THE CHAMON MODEL

The Chamon model was originally defined on an FCC
lattice with one qubit per site [7,12], exhibiting the tetrahedral
point group symmetry of the lattice. For our purposes, it will
be more convenient to place the model on a cubic lattice with
one qubit per site by performing an isometry of R3 defined by(

0, 1
2 , 1

2

) → (1, 0, 0),(
1
2 , 0, 1

2

) → (0, 1, 0),(
1
2 , 1

2 , 0
) → (0, 0, 1). (1)

In this formulation, the Hamiltonian has the form

HC = −
∑

c

Oc, (2)

where c indexes the elementary cubes of the lattices and Oc

is the six-body Pauli operator depicted in Fig. 1(a). For any
pair of cubes c, c′, it holds that [Oc, Oc′ ] = 0, thus HC is an
exactly solvable stabilizer code Hamiltonian [62]. The GSD
of the model on an Lx × Ly × Lz periodic cubic lattice has the
form

log2 GSD = Lx + Ly + Lz + gcd(Lx, Ly, Lz ) − 3, (3)
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The linear component of this formula arises from the follow-
ing relations between stabilizer generators:

∏
c∈P

Oc = 1, (4)

where P is any dual lattice plane normal to the x, y z, or w =
(1, 1, 1) directions. This gives a total of Lx + Ly + Lz + Lw

relations, where Lw = gcd(Lx, Ly, Lz ) is the number of planes
normal to w under periodic boundary conditions. However,
not all of these relations are independent. The global relation
between all Hamiltonian terms is generated by the product of
all planar relations for each of the four directions. Hence, there
are three redundant relations leading to the constant correction
in Eq. (4).

The model hosts fractional excitations of all mobility types:
fractons, lineons, and planons. This structure can be un-
derstood by examining the quasiparticle creation operators.
First, lineons are created at the endpoints of truncated seg-
ments of rigid wire-frame operators, which are products of
all Oc terms within a given polyhedral region bounded by
x, y, z, and w planes. Due to the relations in Eq. (4), such
an operator is supported on the edges of the polyhedron,
for instance, the tetrahedral wire-frame operator pictured in
Fig. 1(b). There are six kinds of lineons, with mobility in
the x, y, z, (0, 1,−1, ), (−1, 0, 1), and (1,−1, 0) directions,
respectively. They obey triple fusion rules in which three dis-
tinctly oriented lineons fuse together into the vacuum, which
is possible when their respective string operators form the
corner of a wire-frame operator. For example, both the x, y, z
lineon triple and the (1,−1, 0), (0, 1,−1), z lineon triple fuse
into the vacuum, whereas x, y, (1,−1, 0) and x, y, (−1, 0, 1)
triples do not. A lineon corresponds to an excitation of a pair
of (next-nearest neighbor) Hamiltonian terms.

Fractons, on the other hand, correspond to excitations of
a single isolated Hamiltonian term and are created at the
corners of membrane operators. For instance, consider the
action of a single Pauli Z operator at the origin. This excites
four Hamiltonian terms centered around (1/2,−1/2,−1/2),
(1/2,−1/2, 1/2), (−1/2, 1/2,−1/2), and (−1/2, 1/2, 1/2).
Hence, a large rectangular membrane of Pauli Z operators
within a plane normal to the (1,1,0) direction will excite
four isolated Hamiltonian terms at the corners of the mem-
brane. There are equivalent membrane operators normal to
the (0,1,1) and (1,0,1) directions composed of Pauli X and
Y operators, respectively.

Finally, there are four types of planons mobile within
planes normal to the x, y, z, and w directions, respectively. For
each direction, there is one independent species of planon per
lattice spacing, referred to as an elementary planon. A closed
string operator for an elementary planon can be obtained by
taking the product of all Oc operators in a large region within a
single x, y, z, or w plane, for instance, as depicted in Fig. 1(c).
There are two important features: First, each of the elementary
planons has fermionic exchange statistics. Second, adjacent
parallel planons have a mutual π braiding statistic. These facts
can be verified by examining the structure of the planon string
operators as shown in Figs. 1(d)–1(f). Since the elementary
planons can be regarded as lineon dipoles, this also implies
that intersecting lineons have a mutual π braiding statistic.

FIG. 2. The tetrahedral-octahedral honeycomb. Each cube of a
cubic lattice is split into two tetrahedra and one octahedron by (1,1,1)
planes (shaded).

III. EMERGENT FERMIONIC GAUGE THEORY

In this section, we demonstrate that the Chamon model is
equivalent under a generalized local unitary (gLU) transfor-
mation [1] to a fractonic gauge theory coupled to a fermionic
SSPT state [38,58]. We begin with the SSPT matter Hamilto-
nian HM , which is symmetric under four stacks of Z2 planar
symmetries. We then gauge the symmetry to obtain a spin
model HG. Finally, we transform HG into the Chamon model
HC via a gLU.

We also sketch an argument that HM is a weak SSPT in the
sense of Refs. [63,64].

A. Matter Hamiltonian

First, we describe the matter Hamiltonian HM . We consider
a cellulation of R3 obtained by slicing along lattice planes
of integer spacing normal to the x, y, z, and w = (1, 1, 1)
directions. The x, y, and z planes divide R3 into unit volume
elementary cubes, and each cube is further sliced into three
3-cells by the w planes: two types of tetrahedra and one
octahedron, as pictured in Fig. 2. The Hilbert space of HM

is composed of one fermionic orbital per tetrahedron and one
qubit per octahedron. The Hamiltonian has the form

HM = −
∑

t

iγtγ
′

t −
∑

o

Xo, (5)

where γt indicates the fermion at tetrahedra t , Xo indicates the
Pauli X operator that acts on the qubit of the octahedra o, and

Xo ≡ Xo

1∏
a=0

1∏
b=0

1∏
c=0

1∏
d=0

Zo+aŷ−bẑ+c(1,−1,0)+d (−1,0,1), (6)

where o + �r represents the octahedron displaced from o by �r
[see Fig. 3(a)]. The terms of HM mutually commute, hence the
model is exactly solvable.

HM is symmetric under four stacks of unitary Z2 planar
subsystem symmetries, normal to the x, y, z, and w directions.
Each symmetry generator is associated with a dual lattice
plane of the tetrahedral-octahedral honeycomb. Let P denote
the set of all 3-cells lying in a dual lattice plane. Then the
corresponding symmetry of HM is

SP =
∏
t∈P

iγtγ
′

t

∏
o∈P

Xo. (7)
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FIG. 3. (a) Depiction of the operator Xo. Each Pauli operator acts
on an octahedral qubit, whose center points form a cubic lattice. The
octahedron o is indicated by subscript. (b) The set of edges Eo with
respect to the octahedron o, whose vertices are the six dots.

There is one symmetry generator for every such P. To see that
the Xo terms commute with all of these symmetries, note that
each of the x, y, z, and w planes contains at least one of the ŷ,
ẑ, (1,−1, 0), or (−1, 0, 1) vectors.

We note that the subsystem symmetries obey the global
relations ∏

Px

SPx =
∏
Py

SPy =
∏
Pz

SPz =
∏
Pw

SPw
, (8)

where the products are over all dual lattice planes Pμ normal
to μ. Importantly, we also note that the product of symmetries
over all even dual lattice planes in all four directions is equal
to the global fermion parity ZF

2 , which is thus generated by
the subsystem symmetry group. Therefore, a bosonic system
will be obtained upon gauging the symmetries.

B. Gauging

We now discuss the gauging of symmetries according to
the general prescription [50,52,53,65]. The first step is to
identify a set of minimal couplings that generate the algebra
of symmetric operators together with the on-site symmetry
representations (Pauli X on qubits and iγ γ ′ on fermion or-
bitals). There is one minimal coupling for each edge e of the
tetrahedral-octahedral honeycomb, acting on the degrees of
freedom associated with the four 3-cells adjacent to e (two
octahedra o and o′ and two oppositely oriented tetrahedra t
and t ′), which we choose to be

Me ≡ ZoZo′γtγt ′ . (9)

The second step is to introduce a gauge qubit degree of
freedom for each minimal coupling, hence one per edge.
We simultaneously restrict the Hilbert space by introducing
generalized Gauss’s law constraints for each matter degree of
freedom. The constraints have the form

Xo

∏
e∈o

Xe = 1, iγtγ
′

t

∏
e∈t

Xe = 1 (10)

for each octahedron o and tetrahedron t .
The third step is to couple the gauge and matter degrees of

freedom by introducing a gauged Hamiltonian that preserves
the constraints. In particular, in the gauged Hamiltonian, the
minimal coupling for each edge e is composed with the gauge

qubit operator Ze:

Me → MeZe. (11)

This modification is nonunique, since there are multiple ways
to express the operator Xo in terms of the minimal couplings.
We choose the expression

Xo = Xo

∏
e∈Eo

Me, (12)

where Eo is the set of edges depicted in Fig. 3(b). Hence,

Xo → Xo

∏
e∈Eo

MeZe. (13)

The final step is to add a set of terms Bv,μ for each vertex
v to the gauged Hamiltonian to gap out the gauge flux exci-
tations. Here μ = x, y, z,w and Bv,μ is defined as the tensor
product of Pauli Z operators over the six links adjacent to v

in the plane normal to μ. Thus, the gauged Hamiltonian takes
the form

H̃M = −
∑

t

iγtγ
′

t −
∑

o

Xo

∏
e∈Eo

MeZe −
∑
v,μ

Bv,μ, (14)

subject to the constraints Eqs. (10).
The matter degrees of freedom can be eliminated via the

unitary

Xo → Xo

∏
e∈o

Xe, Zo → Zo,

γt → γt

∏
e∈t

Xe, γ ′
t → γ ′

t ,

Xe → Xe, Ze → MeZe,

(15)

which maps the constraints of Eqs. (10) to Xo = 1 and iγtγ
′

t =
1, respectively. The Ze operators are defined in Fig. 4 such
that Ze and Ze′ anticommute if e and e′ belong to the same
tetrahedron, and commute otherwise. In the constrained space,
H̃M is mapped to a bosonic Hamiltonian HG acting on the pure
gauge qubit Hilbert space:

HG = −
∑

t

At −
∑

o

Ao −
∑
v,μ

Bv,μ, (16)

where
At ≡

∏
e∈t

Xe, Ao ≡
∏
e∈o

Xe

∏
e∈Eo

Ze, (17)

and Bv,μ is the image of Bv,μ under the unitary Eqs. (15).
The terms of HG mutually commute, hence they define a Pauli
stabilizer code.

C. Excitation content and ground-state degeneracy of the
gauged Hamiltonian

To analyze the properties of HG, it is helpful to express
the Hamiltonian in terms of operators X e and Ze associated
with edge e of the tetrahedral-octahedral honeycomb. These
operators are defined in Fig. 4. We have already used the Ze

operators in the unitary Eqs. (15). In particular,

Ac =
∏
e∈c

X e, Bv,μ =
∏

v�e⊥μ

Ze, (18)

where the second product is over the six edges e adjacent to v

in the plane normal to μ. These operators are defined in Fig. 4
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FIG. 4. Definitions of the Pauli operators introduced in this section. The operators X v,i and Zv,i acting on HG for i = 1, . . . , 6 are defined
in the table on the left, which are equivalent to the X e and Ze operators for the bold edge e. Red, green, and blue edges, respectivel, represent
the action of Pauli Z , Y , and X . The operators X̂v,i and Ẑv,i acting on HC for i = 1, . . . , 8 are defined in the tables on the left, with v given
by the enlarged magenta dot in each figure (an unlabeled enlarged dot has no Pauli action). The 3-cell operators At , At ′ , and Ao, and vertex
operators Bv,μ of HG are defined in the tables on the right. The vertices of octahedron o are indicated by black dots, whereas the vertex v for
each Bv,μ operator is the central vertex. The operators Ât , Ât ′ , Âo, B̂v,x , B̂v,y, and B̂v,z acting on HC are likewise defined in the tables on the
right. These operators, together with Ẑv,7 and Ẑv,8, generate the stabilizer group of HC . The shaded cubes indicate that a given operator is equal
to a product of the corresponding cube terms of HC (the color of each cube corresponds to the vertex of minimum x, y, and z coordinates).

and satisfy the relations

X
2
e = Z

2
e = 1, {X e, Ze} = [X e, Ze′ ] = 0, (19)

where e and e′ are distinct edges. On the other hand, if e and
e′ are nearby, then it is generically the case that

[X e, X e′] 	= 0, [Ze, Ze′] 	= 0. (20)

It is instructive to note that due to Eqs. (18), there is a for-
mal relation between HG and a certain 4-foliated version of
the X-cube model, H4XC, described in Appendix A. Roughly
speaking, HG is obtained from H4XC by replacing Xe → X e

and Ze → Ze.
HG has six qubits and six stabilizer generators per unit cell

(since one of the four Bv,μ terms is redundant). The stabilizer
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FIG. 5. Three fracton dipole string operators W3, W2, and W1 forming a T junction (the bold edge represents the same edge in each
subfigure). The fermionic exchange statistic of the fracton dipole is given by W3W

†
2 W1W

†
3 W2W

†
1 = −1. The red, green, and blue edges represent

Pauli operators Z , Y , and X . The bold gray edge has no Pauli action.

generators obey the following relations:∏
c∈P

Ac = 1,
∏
v∈P′

Bv,μ = 1, (21)

where c ∈ P indexes all 3-cells in a dual lattice plane P, and
v ∈ P′ indexes all vertices belonging to a direct lattice plane
P. However, three of these relations are redundant, hence the
GSD of HG on an Lx × Ly × Lz lattice with periodic boundary
conditions satisfies

log2 GSD = 2Lx + 2Ly + 2Lz + 2 gcd(Lx, Ly, Lz ) − 3. (22)

The fractional excitations of HG can be split into two
sectors, which we refer to as electric charges and magnetic
fluxes. The magnetic sector consists of lineons created at
the endpoints of rigid string operators, which are finite seg-
ments of wire-frame operators equal to the product of all Ac

terms within a polyhedral region bounded by x, y, z, and
w planes. Rigid string operators are equal to the product
of X e operators over all edges of the string, which follows
from the first expression of Eqs. (18). There are six species
of lineons, corresponding to the six orientations of edges
in the tetrahedral-octahedral honeycomb: x, y, z, (1,−1, 0),
(0, 1,−1), and (−1, 0, 1). Triples of lineons meeting at a
single vertex fuse into the vacuum if their string operators
belong to the corner of a wireframe operator. For example,
x, y, z, and (1,−1, 0), (0, 1,−1), z lineon triples fuse into the
vacuum, whereas x, y, (1,−1, 0), and x, y, (−1, 0, 1) triples
do not. Due to these triple fusion rules, composite excita-
tions of two adjacent parallel lineons, i.e., lineon dipoles, are
planons. There are four species of lineon dipoles in the model:
those mobile in planes normal to the x, y, z, or w directions.
The loop operators for lineon dipoles are wire-frame operators
with a slab geometry.

The electric sector consists of fractons created at the
corners of dual lattice membrane operators composed of a
product of Ze operators over all dual lattice faces comprising
the membrane (each dual lattice face corresponds to a direct
lattice edge e). Each fracton excitation is associated with a 3-
cell of the tetrahedral-octahedral honeycomb. Fracton dipoles
composed of a tetrahedral fracton and an adjacent octahedral
fracton, are planons. There are four species of fracton dipoles

in the model: those mobile in planes normal to the x, y, z, or
w directions.

The charge and flux sectors of HG interact via general-
ized long-range Aharanov-Bohm statistical interactions. In
particular, a phase of −1 is obtained when a lineon dipole
flux encircles a fractonic charge, and likewise when a fracton
dipole charge encircles a lineonic flux. These interactions
arise from the commutation relations of Eqs. (19).

There are also nontrivial statistical interactions within both
the electric and magnetic sectors, due to the nontrivial com-
mutation relations of Eqs. (20). In the electric sector, the
tetrahedral fractons are fermionic, whereas the octahedral
fractons are bosonic. Therefore, each of the fracton dipoles
is a fermion. This self-exchange statistic can be explicitly
computed using the formula θ = W3W

†
2 W1W

†
3 W2W

†
1 , where

Wi are three fracton dipole string operators with a common
endpoint [66,67], as in Fig. 5.

In the magnetic sector, the lineons exhibit nontrivial ex-
change statistics and nontrivial braiding statistics with other
lineons. In particular, any pair of lineons intersecting in an
x, y, z, or w plane has a mutual π braiding statistic, arising
from the anticommutation of intersecting lineon string oper-
ators. This can be observed from the form of the wire-frame
operators, an example of which is shown in Fig. 6. As a result,
lineon dipoles in adjacent planes likewise have a π braiding
statistic. Moreover, each lineon dipole is a fermion.

D. Mapping to the Chamon model

We now describe a gLU transformation that maps the
ground space of HG to that of the Chamon model HC . Based on
the expressions Eqs. (3) and (22) for the GSD of these models,
it is clear that for this transformation to work, a unit cell of HG

must correspond to a 2 × 2 × 2 cell of HC . Therefore, in this
section, we place the Chamon model qubits on the sites of
a cubic lattice with half-integer coordinates. With respect to
the integer cubic lattice, the Chamon model has eight qubits
and eight stabilizer generators per unit cell, forming a Hilbert
space HC as shown in Fig. 7. We label the qubits with a double
subscript v, i with i = 1, . . . , 8 and v the vertex of the integer
lattice coinciding with qubit 1.
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FIG. 6. A tetrahedral wireframe operator for HG, given by a
product of Ac terms over 3-cells inside the tetrahedron. The red,
green, and blue edges represent Pauli operators Z , Y , and X .

On the other hand, the gauged model HG has only six qubits
per unit cell (one per edge of the tetrahedral-octahedral honey-
comb). To match the degrees of freedom, we add two ancillary
qubits per unit cell to the Hilbert space of HG, forming a
Hilbert space HG which has eight qubits per unit cell and can
thus be identified with HC . Each of the eight qubits is likewise
labeled with a double subscript v, i with i = 1, . . . , 8. Qubits
1 through 6 are those associated with the edges emanating
from v in the x, y, z, (0, 1,−1), (−1, 0, 1), and (1,−1, 0) di-
rections, respectively, and 7 and 8 are the two ancillary qubits.
We also add two additional terms Zv,7 ≡ Zv,7 and Zv,8 ≡ Zv,8

for each vertex v to HG, defining an augmented Hamiltonian
H ′

G.
To facilitate the transformation, in Fig. 4 we define oper-

ators X̂v,i and Ẑv,i on HC that obey relations identical to X v,i

and Zv,i for i = 1, . . . , 8:

[[X̂v,i, X̂v′, j]] = [[X v,i, X v′, j]],

X̂ 2
v,i = Ẑ2

v,i = 1, [[X̂v,i, Ẑv′, j]] = [[X v,i, Zv′, j]],

[[Ẑv,i, Ẑv′, j]] = [[Zv,i, Zv′, j]].

(23)

where [[A, B]] ≡ A−1B−1AB. (Each of these group commuta-
tors is a ±1 phase). Due to these relations, and the fact that
Zv,i and X v,i generate the operator algebra of HG, it follows

FIG. 7. A 2 × 2 × 2 cell of the Chamon model, regarded as a unit
cell in the transformation between HC and HG. There are eight qubits
in the unit cell, each represented by a dot of a distinct color.

that there exists an operator algebra automorphism V mapping

X v,i → X̂v,i, Zv,i → Ẑv,i. (24)

Moreover, as shown in Fig. 4, V maps the terms of H ′
G to a set

of stabilizers

{Ât , Ât ′ , Âo, B̂v,x, B̂v,y, B̂v,z, Ẑv,7, Ẑv,8} (25)

that generates the stabilizer group of HC . Therefore,

V H ′
GV † ∼ HC, (26)

where ∼ denotes equality of ground spaces. In the Supple-
mental Material (SM) MATHEMATICA file [68], we demon-
strate that V is in fact a finite-depth Clifford circuit. Thus, we
have arrived at the first main result of the paper: the Chamon
model HC is gLU equivalent to the gauged Hamiltonian HG.
Appendix B provides an alternative description of this trans-
formation in terms of the polynomial description of translation
invariant Pauli stabilizer codes.

To better understand this equivalence, we consider how the
transformation acts on the fractional excitation superselection
sectors. First, we note that the wire-frame operators of HG

are mapped by V into wire-frame operators (with even-length
edges) of the Chamon model HC . Therefore, the lineons of
HG become the lineons of HC (with even lattice coordinates)
under the transformation. This is consistent with the fact that
both models exhibit a mutual π braiding statistic between
intersecting lineons sharing an x, y, z, or w plane. Second,
we note that the loop operators for fracton dipoles of HG are
transformed into loop operators for the elementary planons
of the Chamon model lying in even dual lattice planes. In
other words, adjacent fracton dipoles are mapped into pairs of
elementary planons of HC separated by two lattice spacings.
This is consistent with the fact that the fracton dipoles of HG

have fermionic exchange statistics but trivial mutual braiding
statistics, as the elementary planons in the Chamon model are
fermions that braid nontrivially with their nearest neighbors
only.

E. Weak SSPT

In this section, based on the excitation content of HG, we
argue that the matter Hamiltonian HM represents a weak SSPT
state. A weak SSPT is defined as one that can be obtained by
stacking 2D SPTs onto a trivial state in such a way that all
planar symmetries are preserved [63,64]. In the presence of
fermionic degrees of freedom, this definition can be extended
to allow for stacking of noninvertible 2D topological states. In
particular, we consider starting with a completely trivial state
(Ising paramagnet plus atomic insulator) on the matter Hilbert
space of HM . We then stack alternating layers of invertible
topological orders corresponding to the ν = 4 and ν = −4
states of the Kitaev 16-fold way [66] onto each plane of
the tetrahedral-octahedral honeycomb. Finally, each of the SP

symmetry generators is modified such that it is the product
of the original SP with the total fermion parities of the two
Kitaev states adjacent to P. It is easy to see that this modifi-
cation preserves all the relations of the symmetry group. We
conjecture that this state belongs to the same universality class
as the model HM .
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To see why this is reasonable, it is helpful to consider the
same construction on the gauged level, which should yield a
model gLU equivalent to the Chamon model. In the gauged
system, the stacking of Kitaev states is equivalent to stack-
ing alternating layers of fermion parity-gauged ν = 4 and
ν = −4 states, i.e., semion-fermion and anti-semion-fermion
topological orders, onto an untwisted fermionic gauge theory
(equivalent to the model described by polynomial matrix T �

of Appendix A). After stacking, bound states of the emer-
gent fermion and the fracton dipole living in the same plane
are condensed, confining all of the original lineons in the
model but leaving deconfined bound states formed out of a
lineon fused with the a semion (or antisemion) in each of
the two parallel planes. This step is equivalent to modifying
the symmetry generators SP on the ungauged level. It is clear
that this procedure results in the correct braiding statistics of
gauge flux planons, i.e., a mutual semionic statistic between
adjacent lineon dipoles. Each of these bound-state lineons
can be mapped to a (possibly dyonic) lineon of the Chamon
model, therefore the condensed model has the same fractional
excitation content as the Chamon model.

IV. FOLIATED FRACTON ORDER

A model is said to have FFO if its system size can be
systematically reduced by disentangling, or exfoliating, layers
of 2D topological orders from the bulk system via gLU trans-
formation [54]. If there are n different orientations of such 2D
states, the model is said to have an n-foliation structure. The
first known example of FFO was the X-cube model, which
has a 3-foliation structure, followed by a handful of other
examples including 1-, 2-, and 3-foliated models [55–57,69].

In this section, we demonstrate that the Chamon model
hosts 4-FFO, with foliation layers normal to the x, y, z, and
w = (1, 1, 1) directions. In particular, we show that the sys-
tem size can be decreased by a constant factor m by exfoliating
stacks of 2D toric codes [5] in four directions from the bulk
system, where m is any odd integer. This result is consistent
with previous studies on entanglement signatures [70] and
compactification [71] of the model.

HC is defined on a cubic lattice, which we will take to
have integer coordinates in this section and refer to as �.
The combination of Hamiltonian and its underlying lattice is
denoted HC (�). We also define coarse-grained cubic lattices
m� whose lattice constants are the integer m. For a given odd
m, we posit the existence of a Clifford circuit U satisfying

UHC (�)U † ∼ HC (m�) + H2D(m�), (27)

where ∼ denotes equality of ground spaces, and the Hamil-
tonian H2D describes four stacks of decoupled 2D toric codes
normal to the x, y, z, and w directions, respectively, each with
m−1

2 toric codes per lattice spacing. We construct such a circuit
explicitly in the SM MATHEMATICA file in the m = 3, 5 cases.
In the case of general m, we show in Appendix C that unitary
U exists, although we do not explicitly equate the model
H2D(m�) to stacks of toric codes. In the following discussion,
we explain the Chamon model’s foliation structure (27) at the
level of its fractional excitations.

In general, gapped long-range entangled phases are char-
acterized by the structure of fractional excitations above the
ground state. In FFOs, exfoliation of a set of 2D topologi-
cal states corresponds to a factorization of the fusion group
A of quasiparticle superselection sectors into two subgroups
A′ � A2D. Here, we use � to denote a product of fusion groups
such that there are no nontrivial mutual statistics between
the two factors. A′ is the fusion group of the coarse-grained
fracton order, and A2D is the fusion group of planons in the
exfoliated topological layers.

In the case of the Chamon model, we find that the fusion
group AC (�) on lattice � obeys the following property:

AC (�) ∼= AC (m�) � A2D(m�), (28)

where

A2D = Ax
2D � Ay

2D � Az
2D � Aw

2D (29)

and Ax
2D, Ay

2D, Az
2D, and Aw

2D are the fusion groups of stacks of
2D toric codes in the x, y, z, and w directions, respectively,
each with m−1

2 toric codes per lattice spacing. Here ∼= denotes
a locality-preserving isomorphism.

To see this, note that by the transformation of the previous
section, the fusion rules of HC (�) are identical to those of the
4-foliated X-cube model H4XC(2�) discussed in Appendix A
(since HC is gLU equivalent to HG whose fusion rules are the
same as H4XC). The fusion group of H4XC is known to have the
form A4XC = Q4XC × P4XC, where P4XC is the subgroup con-
sisting of all planon excitations [69] and Q4XC is a (nonunique)
finite subgroup generated by one fracton and three lineons.
As an aside, this observation forms the basis of the notion of
quotient superselection sectors (QSSs), which are defined as
equivalence classes of superselection sectors modulo planons
[69]. According to this definition, the group of QSS of H4XC

(and hence of HC) is A4XC/P4XC
∼= Q4XC.

Hence, we have that AC = QC × PC , where QC is an order-
16 subgroup and PC = Px

C � Py
C � Pz

C � Pw
C is the subgroup of

all planons. The decomposition of Eq. (28) is implied by the
following decomposition of P:

PC (�) ∼= PC (m�) � A2D(m�), (30)

since QC can always be chosen such that QC and A2D(m�)
have no nontrivial mutual statistics, i.e.,

AC (�) ∼= [QC × PC (m�)] � A2D(m�). (31)

The equivalence Eq. (30) can in turn be factored by direction:

Pμ
C (�) ∼= Pμ

C (m�) � Aμ
2D(m�). (32)

Thus, we can focus on the group of planons in a single di-
rection, Pμ

C (�). Recall from Sec. II that for a given direction,
there is one independent planon per lattice spacing whose loop
operator is given by the product of Oc terms in a particular
dual lattice plane. The total group is generated by the set
of all such elementary planons. Each elementary planon has
fermionic exchange statistics. Moreover, neighboring planons
have mutual semionic braiding statistics.

To demonstrate Eq. (30), we need to find an alternative
set of generating planons that splits into two parts: one that
generates Pμ

C (m�) and one that generates Aμ

2D(m�). Actually,
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FIG. 8. Planon diagrams depicting coarse-grained bases of μ-normal planons in a given direction μ = x, y, z,w for the (a) m = 3 and
(b) m = 5 cases. Each basis is translation-invariant with respect to the enlarged unit cell of 2m�. Each vertical line is commensurate with a
μ-normal lattice plane, hence the numbers 0 to 2m represent dual lattice coordinates. A box lying in column k represents a planon living in that
dual lattice plane. On the other hand, each horizontal row represents a single generator of our chosen basis, equal to the fusion product of all
elementary planons in the row. Since each unit cell contains 2m basis planons, A and G (K) belong to different unit cells for the m = 3 (m = 5)
case. The planon bases are partitioned into m subsets of two generators per unit cell, such that they have pairwise trivial mutual braiding
statistics. (Recall that adjacent planons of the Chamon model have a mutual π braiding statistic.) For m = 3, the subsets are colored black
(ADG), red (BC), and blue (EF), whereas for m = 5 they are colored black (AFK), green (BE), red (CD), purple (GJ), and blue (HI). The black
planons are excitations of the coarse-grained Chamon model HC (m�), as they are fermions (being composed of an odd number of fermions
with trivial mutual statistics) with a mutual π braiding statistic between adjacent pairs. On the other hand, each of the remaining m − 1 pairs
of planons generates a decoupled layer of 2D toric code. These diagrams verify the relation (33).

we will show the following equivalent relation:1

Pμ
C (�) ∼= Pμ

C (m�) � Aμ
2D(2m�) � Aμ

2D(2m�). (33)

Factorization of this form for m = 3 and m = 5 are depicted
in the planon diagrams of Fig. 8, demonstrating that the
fractional excitation structure of HC indeed exhibits the de-
composition of Eq. (28). It is straightforward to generalize
these diagrams for larger m. Thus, we conclude that the Cha-
mon model exhibits a 4-foliation structure of 2D toric code
layers in the x, y, z, and w directions.

V. DISCUSSION

In this paper, we have carried out a comprehensive in-
vestigation of the Chamon model. Specifically, we have
demonstrated two results: First, its characterization as a
twisted 4-foliated gauge theory with emergent fermionic

1The additional coarse-graining by a factor of two is necessary to
pair up 3-fermion states so they can be transformed into pairs of toric
codes.

charge. Second, we have found that it has a 4-foliation struc-
ture composed of 2D toric code layers. The foliation structure
is consistent with a conjecture of Ref. [61], which outlines
conditions under which a copy of 2D toric code can be ex-
tracted from a 3D stabilizer code model under a local unitary.
The emergent gauge theory structure found in this paper has
been used by two of the authors to write a topological defect
network for the Chamon model [72].

The transformation between the Chamon model and the
4-foliated X-cube variant HG is reminiscent of previous find-
ings about the checkerboard model [55] and the Majorana
checkerboard model [8], which were, respectively, shown to
be equivalent to two copies of the (3-foliated) X-cube model
and to the semionic X-cube model [56] (plus transparent
fermions), each of which has a clear gauge theory descrip-
tion. It is similarly reminiscent of the equivalence between
the Wen plaquette model [59] and the 2D toric code [66].
These transformations all have in common that the original
model, e.g., Chamon, has an enhanced translation symmetry
compared with the transformed model, e.g., HG. Therefore,
the respective gauge theory descriptions are enriched by trans-
lation symmetry via a nontrivial permutation on the fractonic
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superselection sectors. We leave a detailed exploration of this
topic to future studies.

While it is known that CSS stabilizer codes can generi-
cally be characterized via emergent gauge theory, our results
raise the question of how generally non-CSS codes in three
dimensions admit such a description. It seems plausible that
all stabilizer codes possess a gauge theory description and
hence it could be enlightening to study more examples. For
instance, one could check whether a gauge theory description,
analogous to the Chamon model, is possible for the fracton
models in Ref. [29]. Another question raised by this paper
is that of strong subsystem symmetry-protected topological
(SPT) states in fermionic systems, whose classification is an
open problem. We have argued that the Chamon model is dual
to a weak subsystem SPT.

More generally, it is an open question to what extent the
framework of emergent gauge theory has utility in the clas-
sification of fractonic phases of matter. To our knowledge,
among the class of exactly solvable lattice models, there are
no examples that are explicitly known to not admit a gauge
theory description. It would be interesting to either find such
an example or demonstrate that none exist. On the other hand,
there are examples of fractonic orders with excitations of in-
finite order which are unlikely to have any characterization in
terms of finite gauge groups (although they arise naturally as
infinite-component U (1) Chern-Simons gauge theories [73]).

Finally, it is worthwhile to note that the some of the frac-
tonic excitations in the Chamon model exhibit nonbosonic
self-exchange statistics [74]. For the present analysis, it has
been sufficient to consider in detail the statistics of planon ex-
citations. A systematic investigation of fracton self-statistics
in n-foliated models is left to future work.
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APPENDIX A: RELATION BETWEEN HG AND THE
4-FOLIATED X-CUBE MODEL

In this Appendix, we introduce the 4-foliated X-cube
model H4XC and describe its relation to HG. The fusion

structure of excitations of H4XC is identical to that of HG.
However, the models differ in terms of the self- and mutual
statistics of the excitations. In this Appendix, we will use the
Z2[x, y, z, 1/x, 1/y, 1/z] Laurent polynomial ring formalism
for describing translation-invariant Pauli stabilizer codes [15].
In this formalism, Pauli operators in a cubic lattice system
with n qubits per site are represented by length 2n column vec-
tors whose entries are elements of Z2[x, y, z, 1/x, 1/y, 1/z].
The first n entries represent the Pauli X components, and the
last n entries the Pauli Z components.

The Hilbert space of H4XC is the same as that of HG. It
is composed of one qubit on each edge of the tetrahedral-
octahedral honeycomb. The Hamiltonian has the form

H4XC = −
∑

c

Ac −
∑
v,μ

Bv,μ, (A1)

where c runs over all 3-cells of the honeycomb, v all vertices,
μ = x, y, z,w, and

Ac =
∏
e∈c

Xe, Bv,μ =
∏

v�e⊥μ

Ze. (A2)

The terms are shown in Fig. 9. This model is described by the
polynomial matrix

� =
(

A 0
0 B

)
, (A3)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 yz y + z

1 zx z + x

1 xy x + y

1 x x + 1

1 y y + 1

1 z z + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 + 1
x 1 + 1

x

1 + 1
y 0 1 + 1

y

1 + 1
z 1 + 1

z 0
1
y + 1

z 0 0

0 1
x + 1

z 0

0 0 1
x + 1

y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

The columns of A represents the 3-cell terms At , At ′ , and Ao,
whereas the columns of A represent the vertex terms Bv,x, Bv,y,
and Bv,z, which together generate Bv,w. Note that �†�6� =
0, where † represents transposition combined with spatial
inversion, �k = (0 Ik

Ik 0 ) is the 2k × 2k symplectic form, and

FIG. 9. The terms At , At ′ , Ao, Bv,x , Bv,y, Bv,z, and Bv,w of H4XC, where t and t ′ are oppositely oriented tetrahedral cells and o an octahedral
cell. Here blue represents Pauli X and red Pauli Z . Each term is a tensor product of the depicted Pauli operators.
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Ik the k × k identity matrix. Thus, the terms of H4XC are
mutually commuting.

HG can be obtained from H4XC via a pair of locality-
preserving, invertible but nonisomorphic transformations of
the Pauli group P:

W : P → P, T : P → P . (A5)

In the polynomial formalism, these transformations cor-
respond to multiplication by invertible but nonsymplectic
matrices:

W =
(

I6 0
W̃ I6

)
, T =

(
I6 T̃
0 I6

)
, (A6)

where

W̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 z z 0
0 0 0 0 0 0
1 1 0 z z 0
1
y

1
y 0 z

y
z
y 0

0 0 0 0 0 0
1
y

1
y 0 z

y
z
y 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 + y
x 0 0 z + 1 0

0 0 0 0 0 0

1 + x
z 1 + y

z 0 0 x + 1 0

1 + x
yz 1 + 1

z 1 + 1
y 0 1 + x

y 0

0 1 + y
xz 0 0 0 0

1 + 1
y 1 + 1

x 1 + z
xy 1 + z

x 1 + z
y 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A7)

Note that T 2 = W 2 = 1. It holds that

Ac = T (W (Ac)), Bv,μ = T (W (Bv,μ)). (A8)

Therefore, the Hamiltonian HG is represented by the polyno-

mial matrix � = TW �. Since �
†
�6� = 0, the terms of HG

mutually commute hence defining a stabilizer code. Note that

TW =
(

I6 + T̃ W̃ T̃
W̃ I6

)
. (A9)

The T and W transformations can also be used to define
two other non-CSS stabilizer code Hamiltonians, repre-
sented by the polynomial matrices W � and T �, satisfying
�†W †�6W � = 0 and �†T †�6T � = 0. The Hamiltonians
represented by �, �, W �, and T � can each be obtained via
a gauging procedure of four stacks of planar Z2 symmetries.
The procedure was described explicitly for HG, represented
by �, in Sec. III B. On the other hand, �, W �, and T � can
be obtained by gauging the following matter Hamiltonians,
respectively:

H (1)
M = −

∑
t

Xt −
∑

o

Xo, (A10)

H (2)
M = −

∑
t

Xt −
∑

o

Xo, (A11)

H (3)
M = −

∑
t

iγtγ
′

t −
∑

o

Xo. (A12)

The Hilbert space of H (3)
M is the same as that of HM , whereas

those of H (1)
M and H (2)

M differ in that the fermionic orbital on

each tetrahedral 3-cell is replaced by a qubit. The symmetries
of H (3)

M are the same as those of HM , whereas for H (1)
M and H (2)

M
they are simply a product of Pauli X operators over all 3-cells
in a given dual lattice plane.

Therefore, each of the models �, �, W �, and T � repre-
sents a distinct kind of fractonic gauge theory. � is coupled
to a trivial bosonic paramagnet, T � to a trivial atomic
insulator/paramagnet state, W � to a bosonic SSPT state, and
� to a fermionic SSPT. The fusion rules of all four mod-
els are identical; moreover, the generalized Aharanov-Bohm
statistics between gauge charge and flux sectors have identical
form. However, the models differ in terms of the statistics
within the charge and flux sectors. Acting on �, the W matrix
represents a twist of the gauge flux statistics, whereas the T
matrix represents a transmutation of the gauge charge statis-
tics. This can be seen from the equations

W †�6W =
(

W̃ + W̃ † I6

I6 0

)
,

T †�6T =
(

0 I6

I6 T̃ + T̃ †

)
,

W †T †�6TW =
(

W̃ + W̃ † I6

I6 T̃ + T̃ †

)
. (A13)

The off-diagonal components represent the Aharanov-Bohm
interactions whereas the diagonal components represent the
statistics within the charge and flux sectors. Therefore, � and
W � have purely bosonic gauge charge statistics, whereas the
tetrahedral fractonic charges of � and T � are fermionic. On
the other hand, � and W � have purely bosonic gauge flux
lineons, whereas intersecting lineons of � and W � have a
mutual semionic braiding statistic.

APPENDIX B: POLYNOMIAL REPRESENTATION OF THE
TRANSFORMATION FROM HG TO HC

In this Appendix, we express the transformation from the
gauge theory Hamiltonian HG to the Chamon model HC in
terms of the Laurent polynomial formalism. Regarding a 2 ×
2 × 2 cell as the unit cell with qubits labeled as in Fig. 7, HC

is represented by the 16 × 8 stabilizer map:

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x y 0 0 xz yz 0
1 0 0 y z 0 0 yz
1 0 0 x z 0 0 xz
0 1 1 0 0 z z 0
0 x y 0 0 x y 0
1 0 0 y 1 0 0 y
1 0 0 x 1 0 0 x
0 1 1 0 0 1 1 0
0 0 y xy z xz 0 0
0 0 y y z z 0 0
1 x 0 0 0 0 z xz
1 1 0 0 0 0 z z
1 x 0 0 0 0 y xy
1 1 0 0 0 0 y y
0 0 1 x 1 x 0 0
0 0 1 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)
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We define a matrix C whose first (last) eight columns represent the operators X̂v,i (Ẑv,i) for i = 1, . . . , 8:

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 0 z z 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 1 + y

x
z
x

yz
x z y 0 0

0 1 0 0 0 0 0 0 0 0 z
y z xz

y 0 0 1 + x
y

0 0 0 0 0 0 0 1
y 0 0 0 0 0 1 1

y 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1

y 1 1 1 0 1 + x
y 1 0 1

z + x
yz

0 0 0 0 0 0 0 0 0 0 1
y 0 0 1 1

y 0
0 1 1 y + z z y 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 z

y z xz
y 0 0 x

y

0 0 0 0 0 1 1
y

1
y 1 + 1

y 1 + 1
x 1 + z

xy 1 + z
x 1 + z

y 1 0 1
y

0 0 1 0 0 0 1 1 0 1 1 0 x 0 0 x
z

0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1
z

0 0 0 0 0 0 0 1
y 0 0 0 1 0 0 1

y
1
z

0 0 0 0 0 0 1
y 0 1

y 0 0 1 0 0 1
y

1
z

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

In this Appendix, we will redefine the matrices W and T from
the previous Appendix such that they accommodate the two
ancillary qubits. In particular,

W =
(

I8 0
W̃ ⊕ I2 I8

)
, T =

(
I8 T̃ ⊕ I2

0 I8

)
. (B3)

Then, we define a matrix V = CW T satisfying V †�8V = �8

and V TW = C. Therefore V is a Clifford QCA that maps
X v,i → X̂v,i and Zv,i → Ẑv,i. Moreover,

V � = �̂V2, (B4)

where V2 is the invertible matrix:

V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
y 0 1

y 0 0

0 0 1 0 0 1
x 0 0

0 0 1 1
y

1
y

1
y

1
y 0

0 0 1 0 1
xy

1
xy 0 0

0 0 1 1
z 0 0 0 1

z

0 0 1 0 0 0 0 0

0 0 1 1
yz

1
yz 0 0 0

0 1 0 0 1
yz 0 0 1

yz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

Therefore, V maps the ground space of HG to that of HC . In
the SM MATHEMATICA file, we demonstrate that V is actually
a finite-depth Clifford circuit (i.e., it can be decomposed into
a product of elementary symplectic transformations). This
demonstrates that HG and HC are gLU equivalent.

APPENDIX C: ENTANGLEMENT RENORMALIZATION
OF THE CHAMON MODEL

In this Appendix, we study the ER on the Chamon model
using the polynomial formalism [15,22]. The stabilizer map σ

and the excitation map ε for the Chamon model can be written

as

σ =
(

(1 + x−1)(y−1 + z−1)
(1 + y−1)(x−1 + z−1)

)
(C1)

and

ε = σ †�1 = ((1 + y)(x + z)(1 + x)(y + z)), (C2)

respectively [15]. Our approach to doing ER involves going
to a basis of stabilizer terms such that the associated basis
excitations include the bosonic planon charges. Then we write
the creation operators or movers of these bosonic charges
and apply translation invariant gates (up to coarse graining)
to reduce them into a canonical form of unit vectors. The
excitations that form the bosonic planons and the relative
positions between them are shown in Fig. 8. Before stating an
explicit ER result for the Chamon model, we first prove that a
coarse-grained copy of itself can be extracted under ER of the
Chamon model. In particular, we have the following theorem.

Theorem C.1. For any odd m, there exists a Clifford circuit
U such that

UHC (�)U † ∼ HC (m�) + HB(m�) (C3)

for some Pauli Hamiltonian HB. Here ∼ denotes equality of
ground spaces.

Proof. We first write two fracton creation operators,

s1 = xm−1(1+y+...+ym−1)(1 + z/x + ... + (z/x)m−1)(1, 0)T

and

s2 = ym−1(1+x+...+xm−1)(1 + z/y + ... + (z/y)m−1)(0, 1)T ,

which create fracton excitations at the sites corresponding to
the polynomials (1 + ym)(xm + zm) and (1 + xm)(ym + zm),
respectively. Note that s1 and s2 are related via permutation
of x and y. In other words, the action of the excitation map as
defined in Eq. (C2) on operators s1 and s2 is given by

εs1 = (1 + ym)(xm + zm),

εs2 = (1 + xm)(ym + zm).
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Under coarse graining of the lattice, the translation group is
reduced such that the translation variables modify to x′ =
xm, y′ = ym, z′ = zm. On the coarse-grained lattice, the repre-
sentation of the creation operators s1 and s2 is given by s(m)

1

and s(m)
2 , respectively; namely, φm

# (s1) = s(m)
1 and φm

# (s2) =
s(m)

2 where φm
# is the map that implements coarse graining

by a factor of m. We now state two lemmas about s(m)
1 and

s(m)
2 , one about the commutation relation and the other about

reducing them to a canonical form via elementary symplectic
transformations. The proofs of these lemmas are given after
this proof.

Lemma C.1. For odd m, s(m)†
1 �ms(m)

2 = 1, where �m =
(0 1
1 0 ) is a 2m × 2m symplectic form and 1 is an m × m

identity matrix.

Lemma C.2. For odd m, the creation operators s(m)
1 and s(m)

2
can be mapped to

s(m)
1 = (1 0 · · · 0 | 0 · · · 0)T

,

s(m)
2 = (0 0 · · · 0 | 1 · · · 0)T

. (C4)

via translation invariant elementary symplectic transfor-
mations. Here, as shown, s(m)

1 and s(m)
2 , respectively, have

only one nonzero entry at the first and (m3+1)th vector
components.

The excitation represented as a singleton element, (1) be-
fore coarse-graining, is represented by the unit vector e1 =
(1, 0, 0, ..., 0)T with m entries after coarse graining. Con-
sidering the action of ε on the creation operators s(m)

1 , s(m)
2

yields εs(m)
1 = (1 + y′)(x′ + z′)e1 and εs(m)

2 = (1 + x′)(y′ +
z′)e1, the excitation map becomes

ε =

⎛
⎜⎜⎝

(1 + y)(x + z) � � · · · � (1 + x)(y + z) � � · · · �

0 � � · · · � 0 � � · · · �
...

...
...

...
...

...

0 � � · · · � 0 � � · · · �

⎞
⎟⎟⎠, (C5)

where we suppressed the ′ in the coarse-grained translation variables and where � indicates unknown entries. Since

((1 + x−1)(y−1 + z−1) 0 0 · · · 0 (1 + y−1)(x−1 + z−1) 0 0 · · · 0)T ∈ ker ε,

the topological order condition ker ε = imσ = im�qε
† implies that the rows of ε must generate

((1 + y)(x + z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0)T
.

This implies that we can insert this as a row in the excitation map as follows:

ε =

⎛
⎜⎜⎜⎜⎝

(1 + y)(x + z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0
(1 + y)(x + z) � � · · · � (1 + x)(y + z) � � · · · �

0 � � · · · � 0 � � · · · �
...

...
...

...
...

...

0 � � · · · � 0 � � · · · �

⎞
⎟⎟⎟⎟⎠. (C6)

On applying appropriate row operations, we get

ε =

⎛
⎜⎜⎜⎜⎝

(1 + y)(x + z) 0 0 · · · 0 (1 + x)(y + z) 0 0 · · · 0
0 � � · · · � 0 � � · · · �

0 � � · · · � 0 � � · · · �
...

...
...

...
...

...

0 � � · · · � 0 � � · · · �

⎞
⎟⎟⎟⎟⎠. (C7)

Thus, we have extracted a copy of the Chamon model.

We now give proofs of the two lemmas that were used in
proving Theorem C.1.

Proof of Lemma C.1 The polynomial given by s†
1�1s2 en-

codes the commutation of translates of s1 and s2. Here, �m =
(0 1
1 0 ) is an 2m × 2m symplectic form and 1 is an m × m

Identity matrix. Let us denote the coefficient of g in the poly-
nomial s†

1�1s2 as (s†
1�1s2)g. We note that two Pauli operators

a and b commute if (a†�qb)1 = 0.
Note that s1 and s2 can be expressed as follows:

s1 = (1 + y + ... + ym−1)(xm−1 + zxm−2 + ... + zm−1)(1, 0)T

and

s2 = (1 + x + ... + xm−1)(ym−1 + zym−2 + ... + zm−1)(0, 1)T .

Since all powers of translation variables are less than m, under
coarse graining by a factor of m in each direction, we are left
with 2m-dimensional vectors for s1 and s2 with only 1s and 0s.
For s1, the 1s appear in the first half and for s2, in the second
half. Due to this form, s(m)†

1 �ms(m)
2 = (s(m)†

1 �ms(m)
2 )1, i.e., only

the coefficient of 1 contributes and there are no monomials.
Since the commutation relation between the operators s1 and
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s2, i.e., (s†
1�1s2)1 is not affected by coarse graining, we get

s(m)†
1 �ms(m)

2

= (s(m)†
1 �ms(m)

2 )1

= (s†
1�1s2)1

= m mod 2. (C8)

Thus, s(m)†
1 �ms(m)

2 = 1 when m is odd. �
Proof of Lemma C.2 For both s1 and s2, the degrees of

translation variables x, y, and z range from 0 to m − 1. Thus,
after coarse graining, s(m)

1 and s(m)
2 are both supported at only

one unit cell (at location 1). In particular, s(m)
1 is a Lau-

rent polynomial vector over F2[1], satisfying s(m)†
1 �ms(m)

1 =
0. Since F2[1] is a principal ideal domain, we can find an
elementary symplectic transformation E1 composed of CNOT
gates that turns s1 into a vector with a single nonzero com-
ponent, say, g at the first entry. Since the only nonzero
component in F2[1] is 1, g = 1.

Since the transformation E1 acts only at the origin, E1s(m)
2

still acts only at location 1 and thus is a Laurent polynomial
vector over F2[1]. Since s(m)†

1 �ms(m)
2 = 1, the (m3 + 1)th com-

ponent of E1s(m)
2 must be 1. Since E1s(m)

2 can have nonzero
entries, i.e., 1s only in the second half of the vector, they can
all be cancelled out via CNOT gates without affecting the
form of s(m)

1 . Thus, the we get the form of s(m)
1 and s(m)

2 as
desired.

1. Explicit ER circuit

In the SM MATHEMATICA file, we have constructed a circuit
U which carries out an explicit ER of the Chamon model
given as follows:

UHC (�)U † ∼ HC (3�) + H2D(6�) + H2D(6�),

H2D = H toric
x + H toric

y + H toric
z + H toric

w . (C9)

Here, H toric
μ is a stack of 2D toric codes along the μ direction

with one layer per lattice spacing.
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